201
|
Zhu S, Chen J, Zheng M, Gong W, Xue X, Li W, Zhang L. Identification of immunodominant linear B-cell epitopes within the major outer membrane protein of Chlamydia trachomatis. Acta Biochim Biophys Sin (Shanghai) 2010; 42:771-8. [PMID: 20923859 DOI: 10.1093/abbs/gmq087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.
Collapse
Affiliation(s)
- Shanli Zhu
- Department of Microbiology and Immunology, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
202
|
Reinhold P, Sachse K, Kaltenboeck B. Chlamydiaceae in cattle: commensals, trigger organisms, or pathogens? Vet J 2010; 189:257-67. [PMID: 20980178 DOI: 10.1016/j.tvjl.2010.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/16/2022]
Abstract
Epidemiological data indicate that infection of cattle with chlamydiae such as Chlamydophila (C.) pecorum, C. abortus, C. psittaci and Chlamydia suis, is ubiquitous with mixed infections occurring frequently. The apparent lack of association between infection and clinical disease has resulted in debate as to the pathogenic significance of these organisms, and their tendency to sub-clinical and/or persistent infection presents a challenge to the study of their potential effects. However, recent evidence indicates that chlamydial infections have a substantial and quantifiable impact on livestock productivity with chronic, recurrent infections associated with pulmonary disease in calves and with infertility and sub-clinical mastitis in dairy cows. Data also suggest these infections manifest clinically when they coincide with a number of epidemiological risk factors. Future research should: (1) use relevant animal models to clarify the pathogenesis of bovine chlamydioses; (2) quantify the impact of chlamydial infection at a herd level and identify strategies for its control, including sub-unit vaccine development; and (3) evaluate the zoonotic risk of bovine chlamydial infections which will require the development of species-specific serodiagnostics.
Collapse
Affiliation(s)
- Petra Reinhold
- Institute of Molecular Pathogenesis at The Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany.
| | | | | |
Collapse
|
203
|
Abstract
Bacteria can exist in metabolically inactive states that allow them to survive conditions that are not conducive for growth. Such dormant cells may sense when conditions have improved and re-initiate growth, lest they be outcompeted by their neighbours. Growing bacteria turn over and release large quantities of their cell walls into the environment. Drawing from recent work on the germination of Bacillus subtilis spores, we propose that many microorganisms exit dormancy in response to cell wall muropeptides.
Collapse
|
204
|
Akande V, Turner C, Horner P, Horne A, Pacey A, British Fertility Society. Impact of Chlamydia trachomatis in the reproductive setting: British Fertility Society Guidelines for practice. HUM FERTIL 2010; 13:115-25. [PMID: 20849196 PMCID: PMC3069694 DOI: 10.3109/14647273.2010.513893] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chlamydia trachomatis infection of the genital tract is the most common sexually transmitted infection and has a world-wide distribution. The consequences of infection have an adverse effect on the reproductive health of women and are a common cause of infertility. Recent evidence also suggests an adverse effect on male reproduction. There is a need to standardise the approach in managing the impact of C. trachomatis infection on reproductive health. We have surveyed current UK practice towards screening and management of Chlamydia infections in the fertility setting. We found that at least 90% of clinicians surveyed offered screening. The literature on this topic was examined and revealed a paucity of solid evidence for estimating the risks of long-term reproductive sequelae following lower genital tract infection with C. trachomatis. The mechanism for the damage that occurs after Chlamydial infections is uncertain. However, instrumentation of the uterus in women with C. trachomatis infection is associated with a high risk of pelvic inflammatory disease, which can be prevented by appropriate antibiotic treatment and may prevent infected women from being at increased risk of the adverse sequelae, such as ectopic pregnancy and tubal factor infertility. Recommendations for practice have been proposed and the need for further studies is identified.
Collapse
Affiliation(s)
- Valentine Akande
- Bristol Centre for Reproductive Medicine, Southmead Hospital, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
205
|
Abstract
There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.
Collapse
Affiliation(s)
- Kelsi M Sandoz
- Molecular & Cellular Biology Program & the Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331–4804, USA
| | - Daniel D Rockey
- Molecular & Cellular Biology Program & the Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331–4804, USA
| |
Collapse
|
206
|
Villegas E, Sorlózano A, Gutiérrez J. Serological diagnosis of Chlamydia pneumoniae infection: limitations and perspectives. J Med Microbiol 2010; 59:1267-1274. [PMID: 20724512 DOI: 10.1099/jmm.0.020362-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular human pathogen responsible for a wide range of acute and chronic human diseases, including pneumonia and other respiratory diseases. Serological methods for the diagnosis of C. pneumoniae infection vary widely, and several authors have reported significant inter- and intra-laboratory variability in diagnostic methods and criteria. Over the past 10 years, numerous studies have focused on the identification of specific antigens for application in serodiagnosis, including the diagnosis of persistent infections. The use of proteomics may enable the development of serological diagnosis kits that offer reliable sensitivity and specificity and might even differentiate between the various stages of infection with this pathogen.
Collapse
Affiliation(s)
- Enrique Villegas
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | - Antonio Sorlózano
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | - José Gutiérrez
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Departamento de Microbiología, Universidad de Granada, Granada, Spain
| |
Collapse
|
207
|
Borel N, Dumrese C, Ziegler U, Schifferli A, Kaiser C, Pospischil A. Mixed infections with Chlamydia and porcine epidemic diarrhea virus - a new in vitro model of chlamydial persistence. BMC Microbiol 2010; 10:201. [PMID: 20663197 PMCID: PMC2919482 DOI: 10.1186/1471-2180-10-201] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Chlamydiae induce persistent infections, which have been associated with a wide range of chronic diseases in humans and animals. Mixed infections with Chlamydia and porcine epidemic diarrhea virus (PEDV) may result in generation of persistent chlamydial infections. To test this hypothesis, an in vitro model of dual infection with cell culture-adapted PEDV and Chlamydia abortus or Chlamydia pecorum in Vero cells was established. Results Infected cultures were investigated by immunofluorescence (IF), transmission electron microscopy (TEM) and re-infection experiments. By IF, Chlamydia-infected cells showed normal inclusions after 39 hpi. Dual infections with Chlamydia abortus revealed a heterogenous mix of inclusion types including small inclusions consisting of aberrant bodies (ABs), medium-sized inclusions consisting of ABs and reticulate bodies and normal inclusions. Only aberrant inclusions were observable in dual infection experiments with Chlamydia pecorum and PEDV. TEM examinations of mixed infections with Chlamydia abortus and Chlamydia pecorum revealed aberrant chlamydial inclusions containing reticulate-like, pleomorphic ABs, which were up to 2 μm in diameter. No re-differentiation into elementary bodies (EBs) was detected. In re-infection experiments, co-infected cells produced fewer EBs than monoinfected cells. Conclusions In the present study we confirm that PEDV co-infection alters the developmental cycle of member species of the family Chlamydiaceae, in a similar manner to other well-described persistence induction methods. Interestingly, this effect appears to be partially species-specific as Chlamydia pecorum appears more sensitive to PEDV co-infection than Chlamydia abortus, as evidenced by TEM and IF observations of a homogenous population of aberrant inclusions in PEDV - Chlamydia pecorum co-infections.
Collapse
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
208
|
Guzman DSM, Diaz-Figueroa O, Tully T, Ciembor P, Morgan T, Walden M, Poston RP, Flammer K, Mitchell MA, Ritchie B. Evaluating 21-day doxycycline and azithromycin treatments for experimental Chlamydophila psittaci infection in cockatiels (Nymphicus hollandicus). J Avian Med Surg 2010; 24:35-45. [PMID: 20496604 DOI: 10.1647/2009-009r.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To determine the efficacy of 21-day therapy with azithromycin and doxycycline in the treatment of experimental infection with Chlamydophila psittaci in cockatiels (Nymphicus hollandicus), 30 birds randomly assigned to 3 treatment groups and 1 control group were inoculated with C psittaci by combined intranasal and ocular routes. Morbidity, mortality, and results of polymerase chain reaction testing confirmed that infection was successful. Birds in group 1 (n = 8) received azithromycin at 40 mg/kg PO q48h for 21 days; in group 2 (n = 8), doxycycline at 35 mg/kg PO q24h for 21 days; in group 3 (n = 8), doxycycline at 35 mg/kg PO q24h for 45 days; and, in group 4 (controls; n = 6), no treatment. Six birds died either before or within 2 days of initiating treatment: 4 in the 3 treatment groups and 2 in the control group. Clinical signs resolved and mortality ceased 2-6 days after treatment was initiated in all treatment groups, whereas birds in the control group exhibited clinical signs for the duration of the study. Plasma doxycycline concentrations were measured during the treatment period and exceeded 1 microg/mL at all time points. The absence of clinical signs and mortality in the treatment groups, even after inducing an immunocompromised state with dexamethasone (3 mg/kg IM q24h for 5 days), starting on day 70 postinoculation, suggested that treatment resulted in elimination of the pathogen. After euthanasia of the remaining 24 birds, 23 of the carcasses were submitted for necropsy. Spleen and liver samples from the birds in all treatment and control groups were polymerase chain reaction negative for C psittaci nucleic acid, and organisms were not detected by Gimenez stain. No gross or histologic differences were observed in the livers and spleens of treated and untreated infected birds. Lesions consistent with avian chlamydiosis (hystiocytosis) were seen in all birds and were considered residual. In this study, a 21-day course of either doxycycline or azithromycin was effective in eliminating C psittaci infection in experimentally inoculated cockatiels. Additional studies are necessary to evaluate the efficacy of these treatments in naturally infected cockatiels as well as other species of birds.
Collapse
Affiliation(s)
- David Sanchez-Migallon Guzman
- Department of Veterinary Clinical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Chlamydiae growing in target mucosal human epithelial cells in vitro can transition from their normal developmental cycle progression, alternating between infectious but metabolically inactive elementary bodies to metabolically active but noninfectious reticulate bodies (RBs) and back to elementary bodies, into a state of persistence. Persistence in vitro is defined as viable but noncultivable chlamydiae involving morphologically enlarged, aberrant, and nondividing RBs. The condition is reversible, yielding infectious elementary bodies after removal of the inducers, including penicillin, interferon-gamma, iron or nutrient starvation, concomitant herpes infection, or maturation of the host cell into its physiologically differentiated state. All aberrant RB phenotypes are not the same, owing to differing up- or down-regulated chlamydial gene sets and subsequent host responses. Although all persistence-inducing conditions exist in vivo, key questions include (1) whether or not aberrant chlamydial RBs occur in vivo during the alternating acute-silent chronic-acute chlamydial infection scenario that exists in infected patients and animals and (2) whether such aberrant RBs can contribute to prolonged, chronic inflammation, fibrosis, and scarring.
Collapse
Affiliation(s)
- Priscilla B Wyrick
- Department of Microbiology, J H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
210
|
Kokab A, Jennings R, Eley A, Pacey AA, Cross NA. Analysis of modulated gene expression in a model of Interferon-gamma-induced persistence of Chlamydia trachomatis in HEp-2 cells. Microb Pathog 2010; 49:217-25. [PMID: 20558272 DOI: 10.1016/j.micpath.2010.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chlamydia trachomatis is an important pathogen, being the commonest sexually transmitted bacterial disease in the Western world and is also implicated in a number of acute and chronic diseases. Persistent infections of C. trachomatis are particularly associated with chronic infections, which although eliciting an immune response, result in tissue damage leading to complications such as pelvic inflammatory disease. Interferon (IFN)-gamma is known to induce persistent infections of C. trachomatis both in vitro and in vivo. METHODS A model of IFN-gamma-induced persistence containing aberrant inclusions of C. trachomatis was developed in the HEp-2 cell line. Morphological changes to inclusions were assessed by fluorescence immunocytochemistry and transcript levels determined by Real-Time RT-PCR. To assess infectivity of C. trachomatis in an IFN-gamma-induced persistent state, cultures containing aberrant inclusions were inoculated onto fresh HEp-2 monolayers. RESULTS IFN-gamma induced aberrant inclusion formation at 0.01 ng/ml. Doses from 0.05 to 100 ng/ml did not significantly increase numbers of aberrant inclusions, and some normal inclusions were observed at the highest dose of IFN-gamma. Transfer of IFN-gamma-treated C. trachomatis onto fresh cultures confirmed the infectivity of these cultures. Real-Time RT-PCR identified apparent increased expression of the C. trachomatis heat-shock response genes ct604 and ct755 at 96-h post-infection. However comparisons with control cultures suggest that this more likely reflects a failure to down regulate gene expression as observed in untreated cultures. CONCLUSIONS These data show that whereas IFN-gamma induces aberrant inclusion formation, many normal inclusions are still observed at high doses of IFN-gamma, and that the infectivity of such cultures is presumably from these. Transcriptional changes observed in response to IFN-gamma suggest a failure of the C. trachomatis life cycle in response to IFN-gamma, however IFN-gamma-induced transcriptional changes may be masked by the presence of normal inclusions. The implications of these observations in relation to models of persistence of C. trachomatis are discussed.
Collapse
Affiliation(s)
- Abas Kokab
- Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, UK
| | | | | | | | | |
Collapse
|
211
|
BARINOVA AN, PLAVINSKY SL. Using immune response modifiers for urogenital clamidiosis. Mathematic simulation and forecast of clamidiosis epidemiological process. VESTNIK DERMATOLOGII I VENEROLOGII 2010. [DOI: 10.25208/vdv950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
There was an analysis of the role immune response modifiers (by the example of Cycloferon) play as a part of treatment schemes of urogenital clamidiosis from the point of view of public health. A math model of the chlamydia infection dynamics in a hypothetic cohort of women running a high risk of infection (commercial sex workers) and their clients was used for the analysis. The data of the study of commercial sex workers from ten regions of the Russian Federation as well as data published on the Cycloferon treatment efficacy were used for model calibration. The resulting data confirm that making immune response modifiers a part of the urogenital clamidiosis treatment regimen decreases the prevalence of the disease in the population by 6-30%. The strategy aimed at making the drug a part of the treatment regimen for the risk group patients seems to be most efficient.
Collapse
|
212
|
GRIFFITH JE, HIGGINS DP, LI KM, KROCKENBERGER MB, GOVENDIR M. Absorption of enrofloxacin and marbofloxacin after oral and subcutaneous administration in diseased koalas (Phascolarctos cinereus). J Vet Pharmacol Ther 2010; 33:595-604. [DOI: 10.1111/j.1365-2885.2010.01169.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
213
|
Chlamydia pneumoniae-induced memory CD4+ T-cell activation in human peripheral blood correlates with distinct antibody response patterns. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:705-12. [PMID: 20219874 DOI: 10.1128/cvi.00209-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlamydia pneumoniae is a frequent pathogen of the respiratory tract, and persistent infections with this obligate intracellular bacterium have been associated with different severe sequelae. Although T-cell activation during acute C. pneumoniae infections has been described, little is known about the frequency or the role of the C. pneumoniae-specific memory T cells that reside in the human body after the resolution of the infection. In the present study, the C. pneumoniae-induced T-cell responses in peripheral blood mononuclear cells of 56 healthy volunteers were analyzed and compared to the donor's serum antibody reactivity toward whole C. pneumoniae as well as recombinant C. pneumoniae antigens. Following short-term stimulation with C. pneumoniae, both gamma interferon (IFN-gamma)- and interleukin-2 (IL-2)-producing CD4(+) T-cell responses could be detected in 16 of 56 healthy individuals. C. pneumoniae-activated CD4(+) T cells expressed CD154, a marker for T-cell receptor-dependent activation, and displayed a phenotype of central memory T cells showing dominant IL-2 production but also IFN-gamma production. Interestingly, individuals with both IFN-gamma- and IL-2-producing responses showed significantly decreased immunoglobulin G reactivity toward C. pneumoniae RpoA and DnaK, antigens known to be strongly upregulated during chlamydial persistence, compared to IgG reactivity of seropositive individuals with no T-cell response or CD4(+) T-cell responses involving the production of a single cytokine (IFN-gamma or IL-2). Our results demonstrate that memory CD4(+) T cells responding to C. pneumoniae stimulation can be detected in the circulation of healthy donors. Furthermore, among seropositive individuals, the presence or the absence of dual IFN-gamma- and IL-2-producing T-cell responses was associated with distinct patterns of antibody responses toward persistence-associated C. pneumoniae antigens.
Collapse
|
214
|
Chlamydia trachomatis antigens in enteroendocrine cells and macrophages of the small bowel in patients with severe irritable bowel syndrome. BMC Gastroenterol 2010; 10:19. [PMID: 20158890 DOI: 10.1186/1471-230x-10-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 02/16/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inflammation and immune activation have repeatedly been suggested as pathogentic factors in irritable bowel syndrome (IBS). The driving force for immune activation in IBS remains unknown. The aim of our study was to find out if the obligate intracellular pathogen Chlamydia could be involved in the pathogenesis of IBS. METHODS We studied 65 patients (61 females) with IBS and 42 (29 females) healthy controls in which IBS had been excluded. Full thickness biopsies from the jejunum and mucosa biopsies from the duodenum and the jejunum were stained with a monoclonal antibody to Chlamydia lipopolysaccharide (LPS) and species-specific monoclonal antibodies to C. trachomatis and C. pneumoniae. We used polyclonal antibodies to chromogranin A, CD68, CD11c, and CD117 to identify enteroendocrine cells, macrophages, dendritic, and mast cells, respectively. RESULTS Chlamydia LPS was present in 89% of patients with IBS, but in only 14% of healthy controls (p < 0.001) and 79% of LPS-positive biopsies were also positive for C. trachomatis major outer membrane protein (MOMP). Staining for C. pneumoniae was negative in both patients and controls. Chlamydia LPS was detected in enteroendocrine cells of the mucosa in 90% of positive biopsies and in subepithelial macrophages in 69% of biopsies. Biopsies taken at different time points in 19 patients revealed persistence of Chlamydia LPS up to 11 years. The odds ratio for the association of Chlamydia LPS with presence of IBS (43.1; 95% CI: 13.2-140.7) is much higher than any previously described pathogenetic marker in IBS. CONCLUSIONS We found C. trachomatis antigens in enteroendocrine cells and macrophages in the small bowel mucosa of patients with IBS. Further studies are required to clarify if the presence of such antigens has a role in the pathogenesis of IBS.
Collapse
|
215
|
Vanover J, Kintner J, Whittimore J, Schoborg RV. Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. MICROBIOLOGY-SGM 2010; 156:1294-1302. [PMID: 20110302 DOI: 10.1099/mic.0.036566-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When presented with certain unfavourable environmental conditions, Chlamydia trachomatis reticulate bodies (RBs) enter into a viable, yet non-cultivable state called persistence. Previously, we established an in vitro C. trachomatis and herpes simplex virus type 2 (HSV-2) co-infection model. These data indicate that (i) viral co-infection stimulates chlamydial persistence, (ii) productive HSV replication is not required for persistence induction, and (iii) HSV-induced persistence is not mediated by any currently characterized anti-chlamydial pathway or persistence inducer. In this study we demonstrated that chlamydial infectivity, though initially suppressed, recovered within 44 h of co-infection with UV-inactivated HSV-2, demonstrating that HSV-induced persistence is reversible. Co-incubation of chemically fixed, HSV-2-infected inducer cells with viable, C. trachomatis-infected responder cells both suppressed production of infectious chlamydial progeny and stimulated formation of swollen, aberrantly shaped RBs. In addition, pre-incubation of viral particles with viral glycoprotein D (gD)-specific neutralizing antibody prevented co-infection-induced persistence. Finally, exposure of C. trachomatis-infected cells to a soluble, recombinant HSV-2 gD : Fc fusion protein decreased production of infectious EBs to a degree similar to that observed in co-infected cultures. Thus, we conclude that interaction of HSV gD with the host cell surface is sufficient to trigger a novel host anti-chlamydial response that restricts chlamydial development.
Collapse
Affiliation(s)
- J Vanover
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - J Kintner
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - J Whittimore
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - R V Schoborg
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
216
|
Carey AJ, Timms P, Rawlinson G, Brumm J, Nilsson K, Harris JM, Beagley KW. ORIGINAL ARTICLE: A Multi-Subunit Chlamydial Vaccine Induces Antibody and Cell-Mediated Immunity in Immunized Koalas (Phascolarctos cinereus): Comparison of Three Different Adjuvants. Am J Reprod Immunol 2010; 63:161-72. [DOI: 10.1111/j.1600-0897.2009.00776.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
217
|
Pettengill MA, Lam VW, Ojcius DM. The danger signal adenosine induces persistence of chlamydial infection through stimulation of A2b receptors. PLoS One 2009; 4:e8299. [PMID: 20011598 PMCID: PMC2788228 DOI: 10.1371/journal.pone.0008299] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022] Open
Abstract
Infections with intracellular bacteria such as chlamydiae affect the majority of the world population. Infected tissue inflammation and granuloma formation help contain the short-term expansion of the invading pathogen, leading also to local tissue damage and hypoxia. However, the effects of key aspects of damaged inflamed tissues and hypoxia on continued infection with intracellular bacteria remain unknown. We find that development of Chlamydia trachomatis is reversibly retarded by prolonged exposure of infected cells to extracellular adenosine, a hallmark of hypoxia and advanced inflammation. In epithelial cells, this effect was mediated by the A2b adenosine receptor, unique in the adenosine receptor family for having a hypoxia-inducible factor (HIF1-α) binding site at its promoter region, and was dependent on an increase in the intracellular cAMP levels, but was independent of cAMP-dependent protein kinase (PKA). Further study of adenosine receptor signaling during intracellular bacterial infection could lead to breakthroughs in our understanding of persistent infections with these ubiquitous pathogens.
Collapse
Affiliation(s)
- Matthew A Pettengill
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | | | | |
Collapse
|
218
|
Sessa R, Di Pietro M, Schiavoni G, Macone A, Maras B, Fontana M, Zagaglia C, Nicoletti M, Del Piano M, Morrone S. Chlamydia pneumoniae induces T cell apoptosis through glutathione redox imbalance and secretion of TNF-alpha. Int J Immunopathol Pharmacol 2009; 22:659-68. [PMID: 19822082 DOI: 10.1177/039463200902200311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chlamydia pneumoniae persistent infection has been implicated in the pathogenesis of several chronic inflammatory diseases including atherosclerosis, and we hypothesized that modulation of the apoptosis of macrophages and/or T cells by C. pneumoniae infection may contribute to the development of such diseases. We therefore evaluated apoptosis, cytokine response, and redox status in human primary T cells and macrophages infected with C. pneumoniae. In addition, co-cultures of T cells and macrophages infected with C. pneumoniae were also carried out. Apoptosis, and levels of glutathione (GSH), glutathione disulfide (GSSG), and tumour necrosis factor (TNF)-alpha were measured by flow cytometry, high performance liquid chromatography and enzyme-linked immunosorbent assay. C. pneumoniae induced apoptosis in T cells as well as in co-cultures of T cells and infected macrophages by marked decrease in GSH/GSSG ratio and increased production of TNF-alpha, respectively. The results demonstrate that interaction of C. pneumoniae with T cells and/or macrophages characterized by interference with redox status, and secretion of tumour necrosis factor-alpha culminates in the induction of T cell apoptosis and survival of infected macrophages. In conclusion, the inappropriate T cell response against C. pneumoniae and survival of infected macrophages could explain the persistence of this intracellular obligate pathogen in the host-organism; it may contribute to the development of chronic inflammatory diseases, although further studies are needed to clarify such a complex mechanism.
Collapse
Affiliation(s)
- R Sessa
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Markham AP, Jaafar ZA, Kemege KE, Middaugh CR, Hefty PS. Biophysical characterization of Chlamydia trachomatis CT584 supports its potential role as a type III secretion needle tip protein. Biochemistry 2009; 48:10353-61. [PMID: 19769366 DOI: 10.1021/bi901200y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chlamydia are obligate intracellular bacterial pathogens that cause a variety of diseases. Like many Gram-negative bacteria, they employ type III secretion systems (T3SS) for invasion, establishing and maintaining their unique intracellular niche, and possibly cellular exit. Computational structure prediction indicated that ORF CT584 is homologous to other T3SS needle tip proteins. Tip proteins have been shown to be localized to the extracellular end of the T3SS needle and play a key role in controlling secretion of effector proteins. We have previously demonstrated that T3SS needle tip proteins from different bacteria share many biophysical characteristics. To support the hypothesis that CT584 is a T3SS needle tip protein, biophysical properties of CT584 were explored as a function of pH and temperature, using spectroscopic techniques. Far-UV circular dichroism, Fourier transform infrared spectroscopy, UV absorbance spectroscopy, ANS extrinsic fluorescence, turbidity, right angle static light scattering, and analytical ultracentrifugation were all employed to monitor the secondary, tertiary, quaternary, and aggregation behavior of this protein. An empirical phase diagram approach is also employed to facilitate such comparisons. These analyses demonstrate that CT584 shares many biophysical characteristics with other T3SS needle tip proteins. These data support the hypothesis that CT584 is a member of the same functional family, although future biologic analyses are required.
Collapse
Affiliation(s)
- Aaron P Markham
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
220
|
Huang Z, Chen M, Li K, Dong X, Han J, Zhang Q. Cryo-electron tomography of Chlamydia trachomatis gives a clue to the mechanism of outer membrane changes. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:237-241. [PMID: 19915209 DOI: 10.1093/jmicro/dfp057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Zengwei Huang
- State Key Lab of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
221
|
Skilton RJ, Cutcliffe LT, Barlow D, Wang Y, Salim O, Lambden PR, Clarke IN. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS One 2009; 4:e7723. [PMID: 19893744 PMCID: PMC2769264 DOI: 10.1371/journal.pone.0007723] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB) differentiates into a non-infectious replicative form known as a reticulate body (RB). RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non-infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG) biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. PRINCIPAL FINDINGS Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. CONCLUSIONS We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate measures of genome replication this provides a defined framework to analyse the developmental cycle and to investigate and provide new insights into the effects of antibiotic treatments. Removal of penicillin allows recovery of the normal developmental cycle by 10-20 hrs and the process occurs by budding from aberrant RBs.
Collapse
Affiliation(s)
- Rachel J. Skilton
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Lesley T. Cutcliffe
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - David Barlow
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Yibing Wang
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Omar Salim
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Paul R. Lambden
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
222
|
Engström P, Bailey L, Onskog T, Bergström S, Johansson J. A comparative study of RNA and DNA as internal gene expression controls early in the developmental cycle of Chlamydia pneumoniae. ACTA ACUST UNITED AC 2009; 58:244-53. [PMID: 20002746 DOI: 10.1111/j.1574-695x.2009.00631.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many microbial pathogens invade and proliferate within host cells and the molecular mechanism underlying this behavior is currently being revealed for several bacterial species. Testing clinically relevant antibacterial compounds and elucidating their effects on gene expression requires adequate controls, especially when studying genetically intractable organisms such as Chlamydia spp., for which various gene fusions cannot be constructed. Until now, relative mRNA levels in Chlamydia have been measured using different internal gene expression controls, including 16S rRNA, mRNAs, and DNA. Here, we compared the advantages and disadvantages of various internal expression controls during the early phase of Chlamydia pneumoniae development. The relative abundance of target mRNAs varied using the different internal control RNAs. This was partly due to variation in the transcript stability of the RNA species. Also, seven out of nine of the analyzed RNAs increased fivefold or more between 2 and 14 h postinfection, while the amount of DNA and number of cells remained essentially unaltered. Our results suggest that RNA should not be used as a gene expression control during the early phase of Chlamydia development, and that intrinsic bacterial DNA is preferable for that purpose because it is stable, abundant, and its relative amount is generally correlated with bacterial numbers.
Collapse
Affiliation(s)
- Patrik Engström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
223
|
King M, Poya H, Rao J, Natarajan S, Butch AW, Aziz N, Kok S, Chang MH, Lyons JM, Ault K, Kelly KA. CXCL13 expression in Chlamydia trachomatis infection of the female reproductive tract. Drugs Today (Barc) 2009; 45 Suppl B:125-134. [PMID: 20011704 PMCID: PMC3319045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlamydia trachomatis is the most common cause of acute salpingitis worldwide. The socioeconomic impact of sexually transmitted infections (STI) caused by C. trachomatis is considerable. The purpose of this study was to investigate secretion of a unique chemokine, CXCL13, during the inflammatory process in human fallopian tube tissue in response to infection with C. trachomatis. We employed two models for our experiments: archived fallopian tube paraffin sections from known cases of salpingitis of unknown etiology and human fallopian tube organ culture established from fresh fallopian tube biopsies subsequently infected in vitro with C. trachomatis serovar E. We used immunohistochemistry, microarray analysis and cytometric bead array to study these specimens. In both models, we found that the fallopian tissue infected with C. trachomatis expressed CXCL13 and other characteristics of tertiary lymphoid tissue. In addition, we found that CXCL13 was expressed in multiple cell types, including endothelial cells, demonstrating a mechanism for the lymphoid aggregation seen in fallopian tube tissue during salpingitis and infection with C. trachomatis.
Collapse
Affiliation(s)
- M King
- Division of Neonatology, Department of Pediatrics, David Geffen UCLA Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Dean D. Chlamydia trachomatis today: treatment, detection, immunogenetics and the need for a greater global understanding of chlamydial disease pathogenesis. Drugs Today (Barc) 2009; 45 Suppl B:25-31. [PMID: 20011691 PMCID: PMC3278962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlamydia trachomatis is an important human pathogen causing a myriad of severe and debilitating diseases. While antibiotics have been a mainstay of treatment, there is increasing evidence for potential drug resistance, reinfection and persistent infections that require a reevaluation of treatment strategies. A critical need to address these issues will be a rapid, sensitive and cost-effective diagnostic that can be used for global screening, treatment and test-of-cure of infected individuals instead of empirical therapy that not only drives drug resistance but is not costeffective. This type of diagnostic would allow clinicians and researchers to evaluate the true incidence and prevalence of chlamydial infections in both developed and developing countries. There are extremely limited data on chlamydial sexually transmitted diseases (STDs) in many developing countries, including those in Central and South America. In addition, advancing our understanding of chlamydial disease pathogenesis will require an evaluation of host genetic susceptibility to infection and sequelae. We provide preliminary data on rates of chlamydial STDs and host genetic factors that predispose to infection among adolescent pregnant and nonpregnant commercial sex worker populations residing in Quito, Ecuador.
Collapse
Affiliation(s)
- D Dean
- Children's Global Health Initiative, University of California at San Francisco, San Francisco, USA.
| |
Collapse
|
225
|
Lee Y, Kim H, Kim S, Kim KH, Chung JH. Activation of toll-like receptors 2, 3 or 5 induces matrix metalloproteinase-1 and -9 expression with the involvement of MAPKs and NF-κB in human epidermal keratinocytes. Exp Dermatol 2009; 19:e44-9. [DOI: 10.1111/j.1600-0625.2009.00963.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
226
|
Chlamydia trachomatis alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in HeLa-229 cells. J Biomed Biotechnol 2009; 2009:342032. [PMID: 19688112 PMCID: PMC2727623 DOI: 10.1155/2009/342032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/08/2009] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading cause of diseases related to reproductive health and iron plays important role in chlamydial pathogenesis. Iron homeostasis in chlamydia-infected cells is not clear thus far. This study shows that expression of the transferrin receptor (TfR) is downregulated, whereas expression of the ferritin heavy chain is upregulated in CT-infected HeLa-229 cells. Expression of iron-regulatory protein (IRP)-1 predominates over IRP-2 in infected cells. In infected cells, attenuated binding activity of IRP-iron responsive elements (IREs) is observed using the electrophoretic mobility-shift assay. These results suggest that iron homeostasis is modulated in CT-infected HeLa cells at the interface of acquisition and commensal use of iron.
Collapse
|
227
|
Beeckman DSA, Vanrompay DCG. Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin Microbiol Infect 2009; 15:11-7. [PMID: 19220335 DOI: 10.1111/j.1469-0691.2008.02669.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human psittacosis is a zoonotic infectious disease which is caused by the obligate intracellular bacterium Chlamydophila psittaci. Transmission of the disease usually originates from close contact with infected birds, most frequently in the context of the poultry industry, and from contact with Psittaciformes (cockatoos, parrots, parakeets and lories). Due to a low awareness of the disease and a variable clinical presentation psittacosis is often not recognised as such by general practitioners. This review therefore gives an overview of the epidemiology, symptoms, diagnosis and possible treatments for psittacosis in humans. The current case definition for epidemiological surveillance, as issued by the CDC, is discussed, as well as the possible emergence of Cp. psittaci antibiotic-resistant strains. There is an urgent need for information and for awareness campaigns directed at professional health care workers and the general public. In addition, a broader use of new diagnostic methods in medical laboratories and the development of prophylactics are called for.
Collapse
Affiliation(s)
- D S A Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
228
|
Gérard HC, Whittum-Hudson JA, Carter JD, Hudson AP. Molecular biology of infectious agents in chronic arthritis. Rheum Dis Clin North Am 2009; 35:1-19. [PMID: 19480994 DOI: 10.1016/j.rdc.2009.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Severe and chronic inflammatory arthritis sometimes follows urogenital infection with Chlamydia trachomatis or gastrointestinal infection with enteric bacterial pathogens. A similar clinical entity can be elicited by the respiratory pathogen Chlamydophila (Chlamydia) pneumoniae. Arthritogenesis does not universally require viable enteric bacteria in the joint. In arthritis induced by either of the chlamydial species, organisms are viable and metabolically active in the synovium. They exist in a "persistent" state of infection. Conventional antibiotic treatment of patients with Chlamydia-induced arthritis is largely ineffective. The authors outline the current understanding of the molecular genetic and biologic aspects underlying bacterially-induced joint pathogenesis, available information regarding host-pathogen interaction at that site, and several directions for future study to inform development of more effective therapies.
Collapse
Affiliation(s)
- Hervé C Gérard
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
229
|
Denks K, Spaeth EL, Jõers K, Randoja R, Talpsep T, Ustav M, Kurg R. Coinfection of Chlamydia trachomatis, Ureaplasma urealyticum and human papillomavirus among patients attending STD clinics in Estonia. ACTA ACUST UNITED AC 2009; 39:714-8. [PMID: 17654349 DOI: 10.1080/00365540701199824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Women visiting Estonian STD clinics were subjected to PCR assay for human papillomavirus (HPV), Chlamydia trachomatis and Ureaplasma urealyticum biovar 2. The overall prevalence of coinfection was 8%. The chlamydial infection was found to be associated with HPV, especially with high-risk HPV (OR=2.5, p<0.005) and most significantly in women over 41 y of age. C. trachomatis infection also occurred more frequently in U. urealyticum-infected than in U. urealyticum-free patients (OR=2.6, p=0.02). U. urealyticum infection did not associate with HPV status. The clinical significance of the association between C. trachomatis and U. urelyticum infection remains to be elucidated.
Collapse
Affiliation(s)
- Kärt Denks
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
230
|
Miller JD, Sal MS, Schell M, Whittimore JD, Raulston JE. Chlamydia trachomatis YtgA is an iron-binding periplasmic protein induced by iron restriction. MICROBIOLOGY-SGM 2009; 155:2884-2894. [PMID: 19556290 DOI: 10.1099/mic.0.030247-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that is the causative agent of common sexually transmitted diseases and the leading cause of preventable blindness worldwide. It has been observed that YtgA (CT067) is very immunogenic in patients with chlamydial genital infections. Homology analyses suggested that YtgA is a soluble periplasmic protein and a component of an ATP-binding cassette (ABC) transport system for metals such as iron. Since little is known about iron transport in C. trachomatis, biochemical assays were used to determine the potential role of YtgA in iron acquisition. (59)Fe binding and competition studies revealed that YtgA preferentially binds iron over nickel, zinc or manganese. Western blot and densitometry techniques showed that YtgA concentrations specifically increased 3-5-fold in C. trachomatis, when cultured under iron-starvation conditions rather than under general stress conditions, such as exposure to penicillin. Finally, immuno-transmission electron microscopy provided evidence that YtgA is more concentrated in C. trachomatis during iron restriction, supporting a possible role for YtgA as a component of an ABC transporter.
Collapse
Affiliation(s)
- J D Miller
- Dept of Molecular Biomedical Sciences, School of Veterinary Medicine, N.C. State University, Raleigh, NC 27606, USA
| | - M S Sal
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - M Schell
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J D Whittimore
- Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| | - J E Raulston
- Dept of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA.,Dept of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 3761, USA
| |
Collapse
|
231
|
Beeckman DSA, Meesen G, Van Oostveldt P, Vanrompay D. Digital titration: automated image acquisition and analysis of load and growth of Chlamydophila psittaci. Microsc Res Tech 2009; 72:398-402. [PMID: 19165738 DOI: 10.1002/jemt.20694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, the amount of infective chlamydiae in a given sample is determined by inoculating dilution series into cell cultures and physically counting chlamydial inclusions. This approach is time consuming, tedious, and error prone, mainly when dealing with high titers. Therefore, this paper describes a largely automated technique that was developed to standardize the determination of chlamydial load in vitro. Cells are fixed at 36 h post-inoculation and bacteria visualized using standard immunological detection methods. Consequently, for 81 microscopic fields, an image is recorded at the interpolated focal plane. These images are then automatically processed using an ImageJ plugin and the obtained results are imported into Excel to determine the number of inclusion forming units per mL in the sample. The main advantage of this technique is that no or minimal sample dilution is required, thus minimizing dilution errors. In addition, this technique was employed during the early, middle and late growth stages of the chlamydial developmental cycle and results correlated well (P < 0.01) with 16S rRNA values from previous experiments, thereby proving its suitability to follow chlamydial growth in vitro. The method described is highly suitable for high throughput titration of cell culture inoculated samples and assessment of possible antichlamydial effects of novel compounds throughout the chlamydial growth cycle.
Collapse
Affiliation(s)
- Delphine S A Beeckman
- Faculty of Bioscience Engineering, Department of Molecular Biotechnology (BW14), Ghent University, Coupure Links 653, Gent, Belgium.
| | | | | | | |
Collapse
|
232
|
Fong IW. New perspectives of infections in cardiovascular disease. Curr Cardiol Rev 2009; 5:87-104. [PMID: 20436849 PMCID: PMC2805819 DOI: 10.2174/157340309788166679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 09/27/2008] [Accepted: 09/27/2008] [Indexed: 12/02/2022] Open
Abstract
Infections have been recognized as significant causes of cardiac diseases for many decades. Various microorganisms have been implicated in the etiology of these diseases involving all classes of microbial agents. All components of the heart structure can be affected by infectious agents, i.e. pericardium, myocardium, endocardium, valves, autonomic nervous system, and some evidence of coronary arteries. A new breed of infections have evolved over the past three decades involving cardiac implants and this group of cardiac infectious complications will likely continue to increase in the future, as more mechanical devices are implanted in the growing ageing population. This article will review the progress made in the past decade on understanding the pathobiology of these infectious complications of the heart, through advances in genomics and proteomics, as well as potential novel approach for therapy.An up-to-date, state-of-the-art review and controversies will be outlined for the following conditions: (i) perimyocarditis; (ii) infective endocarditis; (iii) cardiac device infections; (iv) coronary artery disease and potential role of infections.
Collapse
Affiliation(s)
- Ignatius W Fong
- University of Toronto, Division of Infectious Diseases, St. Michaels’ Hospital, 4CC 179 Cardinal Carter Wing, 30 Bond St., Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
233
|
Kiselev AO, Skinner MC, Lampe MF. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. PLoS One 2009; 4:e5191. [PMID: 19367336 PMCID: PMC2666266 DOI: 10.1371/journal.pone.0005191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 11/26/2022] Open
Abstract
Background The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated to date. Methodology/Principal Findings Here we examined the expression and post-translational processing of the protein product of the pmpD gene during the life cycle of C. trachomatis serovars A, D, and L2. Each of these three serovars targets different human organs and tissues and encodes a different pmpD gene nucleotide sequence. Our quantitative real-time reverse transcription polymerase chain reaction results demonstrate that the pmpD gene is up-regulated at 12–24 hours after infection regardless of the Chlamydia serovar. This up-regulation is coincidental with the period of exponential growth and replication of reticulate bodies (RB) of Chlamydia and indicates a probable similarity in function of pmpD in serovars A, D, and L2 of Chlamydia. Using mass spectrometry analysis, we identified the protein products of post-translational processing of PmpD of C. trachomatis serovar L2 and propose a double pathway model for PmpD processing, with one cleavage site between the passenger and autotransporter domains and the other site in the middle of the passenger domain. Notably, when Chlamydia infected culture cells were subjected to low (28°C) temperature, PmpD post-translational processing and secretion was found to be uninhibited in the resulting persistent infection. In addition, confocal microscopy of cells infected with Chlamydia confirms our earlier hypothesis that PmpD is secreted outside Chlamydia and its secretion increases with growth of the chlamydial inclusion. Conclusion/Significance The results of this current study involving multiple Chlamydia serovars support the general consensus that the pmpD gene is maximally expressed at mid infection and provide new information about PmpD as an autotransporter protein which is post-translationally processed and secreted outside Chlamydia during normal and low temperature induced persistent chlamydial infection.
Collapse
Affiliation(s)
- Andrey O. Kiselev
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Megan C. Skinner
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mary F. Lampe
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
234
|
Sessa R, Nicoletti M, Di Pietro M, Schiavoni G, Santino I, Zagaglia C, Del Piano M, Cipriani P. Chlamydia pneumoniae and atherosclerosis: current state and future prospectives. Int J Immunopathol Pharmacol 2009; 22:9-14. [PMID: 19309547 DOI: 10.1177/039463200902200102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlamydia pneumoniae, an intracellular bacterial pathogen, is known as a leading cause of human respiratory tract infections worldwide. Over the last decade, several reports in the literature have suggested that infection with C. pneumoniae may contribute to the pathogenesis of atherosclerosis. In order to play a causative role in chronic disease, C. pneumoniae would need to persist within infected tissue for extended periods of time, thereby stimulating a chronic inflammatory response. C. pneumoniae has been shown to disseminate systemically from the lungs through infected peripheral blood mononuclear cells and to localize in arteries where it may infect endothelial cells, vascular smooth muscle cells, monocytes/macrophages and promote inflammatory atherogenous process. The involvement of C. pneumoniae in atherosclerosis was investigated by seroepidemiological and pathological studies, in vivo and in vitro studies, and in clinical antibiotic treatment trials. This review will provide an update on the role of C. pneumoniae in atherosclerosis focusing on the recent insights and suggesting areas for future research.
Collapse
|
235
|
Pospischil A, Borel N, Chowdhury EH, Guscetti F. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet Microbiol 2009; 135:147-56. [DOI: 10.1016/j.vetmic.2008.09.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
236
|
Dreses-Werringloer U, Bhuiyan M, Zhao Y, Gérard HC, Whittum-Hudson JA, Hudson AP. Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol 2009; 299:187-201. [PMID: 18829386 PMCID: PMC2730674 DOI: 10.1016/j.ijmm.2008.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 04/10/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022] Open
Abstract
Previous studies from this laboratory provided evidence that the intracellular bacterial pathogen Chlamydophila (Chlamydia) pneumoniae is present in the late-onset Alzheimer's disease (AD) brain. Here we report culture of the organism from two AD brain samples, each of which originated from a different geographic region of North America. Culturable organisms were detectable after one and two passages in HEp-2 cells for the two samples. Both isolates, designated Tor-1 and Phi-1, were demonstrated to be authentic C. pneumoniae using PCR assays targeting the C. pneumoniae-specific genes Cpn0695, Cpn1046, and tyrP. Assessment of inclusion morphology and quantitation of infectious yields in epithelial (HEp-2), astrocytic (U-87 MG), and microglial (CHME-5) cell lines demonstrated an active, rather than a persistent, growth phenotype for both isolates in all host cell types. Sequencing of the omp1 gene from each isolate, and directly from DNA prepared from several additional AD brain tissue samples PCR-positive for C. pneumoniae, revealed genetically diverse chlamydial populations. Both brain isolates carry several copies of the tyrP gene, a triple copy in Tor-1, and predominantly a triple copy in Phi-1 with a minor population component having a double copy. This observation indicated that the brain isolates are more closely related to respiratory than to vascular/atheroma strains of C. pneumoniae.
Collapse
Affiliation(s)
- Ute Dreses-Werringloer
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mohammad Bhuiyan
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yinghao Zhao
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Hervé C. Gérard
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Judith A. Whittum-Hudson
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alan P. Hudson
- Dept. of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Medical Research, Dept. of Veterans Affairs Medical Center, John R Street, Detroit, MI, USA
| |
Collapse
|
237
|
Presence of Chlamydophila pneumoniae DNA but not mRNA in stenotic aortic heart valves. Int J Cardiol 2009; 143:57-62. [PMID: 19246110 DOI: 10.1016/j.ijcard.2009.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND The pathogenesis of aortic valve stenosis may involve inflammation and we have previously demonstrated Chlamydophila pneumoniae (C. pneumoniae) DNA in stenotic aortic heart valves. Dissemination of these bacteria is probably mediated by alveolar macrophages. Bacterial DNA alone does not indicate whether the bacteria are viable and replicating. This study aimed to investigate the presence of C. pneumoniae mRNA, a marker of replicating bacteria, and C. pneumoniae DNA in stenotic aortic valves and the prevalence of C. pneumoniae in peripheral blood mononuclear cells (PBMC). METHODS DNA was extracted from heart valves and PBMC and mRNA from heart valves from 76 patients undergoing aortic valve replacement surgery. C. pneumoniae DNA and mRNA were measured by real-time PCR targeting the ompA gene. RESULTS C. pneumoniae DNA was demonstrated in 22% of heart valves and in 5% of PBMC. C. pneumoniae mRNA was not detected in any valve. Patients positive for C. pneumoniae in the valve underwent coronary artery by-pass grafting more often (p=0.01) and suffered from angina pectoris (p=0.02) and arterial hypertension (p=0.03) more often than patients negative for C. pneumoniae in the valve. CONCLUSIONS These findings support a role for C. pneumoniae in the pathogenesis of aortic valve stenosis and indicate that the bacteria disseminate from the respiratory tract long before the patients were in need of surgery and that the valve infection thereafter entered into a persistent and non-replicative state. Moreover, patients positive for C. pneumoniae in the valve more often needed by-pass grafting because of more advanced coronary disease.
Collapse
|
238
|
Dill BD, Dessus-Babus S, Raulston JE. Identification of iron-responsive proteins expressed by Chlamydia trachomatis reticulate bodies during intracellular growth. Microbiology (Reading) 2009; 155:210-219. [DOI: 10.1099/mic.0.022731-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection. In this study, chlamydial proteins in iron-restricted, infected HEC-1B cells were radiolabelled during mid-developmental cycle growth, harvested, and separated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of ∼250 radiolabelled protein species visualized, densitometric analysis revealed 25 proteins that increased in expression under iron restriction compared to iron-sufficient control samples; ten protein species identified by mass spectrometry are involved in the oxidative damage response (alkyl hydroperoxide reductase, 6-phosphogluconolactonase and acyl carrier protein synthase), transcription (RNA polymerase subunit alpha and transcription anti-termination factors NusA and NusG), protein modification (peptide deformylase and trigger factor), and virulence (Chlamydia protein associating with death domains, CADD). Transcript-level expression patterns of ahpC, devB, cadd, fabF and ct538 were measured by quantitative RT-PCR throughout the developmental cycle, and each gene examined demonstrated a significant but small mid-cycle increase in transcript level in iron-restricted cultures compared to iron-replete controls. Taken together, these data suggest that the primary response of chlamydiae to reduced iron availability is to increase expression of proteins involved in protection against oxidative damage via iron-catalysed generation of reactive oxygen species and adaptation to stress by increasing expression of transcriptional machinery and other stress-responsive proteins.
Collapse
Affiliation(s)
- Brian D. Dill
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1700, USA
| | - Sophie Dessus-Babus
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1700, USA
| | - Jane E. Raulston
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1700, USA
| |
Collapse
|
239
|
Park N, Yamanaka K, Tran D, Chandrangsu P, Akers JC, de Leon JC, Morrissette NS, Selsted ME, Tan M. The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. J Antimicrob Chemother 2009; 63:115-23. [PMID: 18957395 PMCID: PMC2721699 DOI: 10.1093/jac/dkn436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/12/2008] [Accepted: 09/24/2008] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In the course of studies to identify novel treatment strategies against the pathogenic bacterium, Chlamydia, we tested the carrier peptide, Pep-1, for activity against an intracellular infection. METHODS Using a cell culture model of Chlamydia trachomatis infection, the effect of Pep-1 was measured by incubating the peptide with extracellular chlamydiae prior to infection, or by adding Pep-1 to the medium at varying times after infection, and assaying for inhibition of inclusion formation. RESULTS Pep-1 had a concentration-dependent effect on chlamydial growth with 100% inhibition of inclusion formation at 8 mg/L peptide. There was a window of susceptibility during the chlamydial developmental cycle with a maximal effect when treatment was begun within 12 h of infection. Pep-1 treatment caused a severe reduction in the production of infectious progeny even when started later, when the effect on inclusion formation was minimal. Furthermore, electron micrographs showed a paucity of progeny elementary bodies (EBs) in the inclusion. In contrast, pre-incubation of EBs with Pep-1 prior to infection did not affect inclusion formation. Taken together, these findings indicate that the antichlamydial effect was specific for the intracellular stage of chlamydial infection. By comparison, Pep-1 had no antimicrobial activity against Escherichia coli and Staphylococcus aureus or the obligate intracellular parasite, Toxoplasma gondii. CONCLUSIONS Pep-1 has antichlamydial activity by preventing intracellular chlamydial growth and replication but has no effect on extracellular chlamydiae.
Collapse
Affiliation(s)
- Narae Park
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Kinrin Yamanaka
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Dat Tran
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Pete Chandrangsu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Johnny C. Akers
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Jessica C. de Leon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-4025, USA
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-4025, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
- Department of Medicine, University of California, Irvine, CA 92697-4025, USA
| |
Collapse
|
240
|
Klos A, Thalmann J, Peters J, Gérard HC, Hudson AP. The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced. FEMS Microbiol Lett 2008; 291:120-6. [PMID: 19077059 DOI: 10.1111/j.1574-6968.2008.01446.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Expression of specific bacterial genes is differentially regulated during persistent, vs. active, chlamydial infection. Transcript patterns were examined using real-time reverse transcriptase-PCR in four in vitro models of persistence for Chlamydia pneumoniae strain CWL 029, using HeLa cells and normal human monocytes as host. Differential expression of genes encoding cell division proteins was variable when persistence was induced by interferon-gamma, penicillin G, or deferoxamine mesylate treatment, and in the monocyte model of persistence. Expression of genes encoding hsp60s and those specifying sigma-factors also was variable among models. These in vitro observations indicate that chlamydial persistence is not characterizable by a single transcript profile under all circumstances, supporting the idea that persistent infection in vivo is a complex, flexible strategy that promotes long-term survival of these organisms. Each model system studied here can provide information regarding the molecular characteristics of persistent C. pneumoniae infection. However, we do not know which aspect(s) of which model correspond to in vivo disease or other contexts.
Collapse
Affiliation(s)
- Andreas Klos
- Department of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
241
|
Abstract
Intrauterine infections represent a significant threat to fetal well-being and pregnancy outcome. Recent studies suggest that non-immune cells of the maternal-fetal interface can actively recognize and respond to microbes through pattern recognition receptors, in order to control pathogens that may compromise the pregnancy. However, these same innate immune responses may inadvertently lead to excessive inflammation or apoptosis at the maternal-fetal interface. Thus, pattern recognition receptors may play a key role in infection-related pregnancy complications. This review discusses what is currently known about the role of Toll-like receptors and NOD-like receptors in controlling infections at the maternal-fetal interface, and what impact their function may have on pregnancy.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
242
|
Huston WM, Theodoropoulos C, Mathews SA, Timms P. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol 2008; 8:190. [PMID: 18986550 PMCID: PMC2585093 DOI: 10.1186/1471-2180-8-190] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/06/2008] [Indexed: 11/10/2022] Open
Abstract
Background Chlamydia trachomatis, an obligate intracellular human pathogen, is the most prevalent bacterial sexually transmitted infection worldwide and a leading cause of preventable blindness. HtrA is a virulence and stress response periplasmic serine protease and molecular chaperone found in many bacteria. Recombinant purified C. trachomatis HtrA has been previously shown to have both activities. This investigation examined the physiological role of Chlamydia trachomatis HtrA. Results The Chlamydia trachomatis htrA gene complemented the lethal high temperature phenotype of Escherichia coli htrA- (>42°C). HtrA levels were detected to increase by western blot and immunofluorescence during Chlamydia heat shock experiments. Confocal laser scanning microscopy revealed a likely periplasmic localisation of HtrA. During penicillin induced persistence of Chlamydia trachomatis, HtrA levels (as a ratio of LPS) were initially less than control acute cultures (20 h post infection) but increased to more than acute cultures at 44 h post infection. This was unlike IFN-γ persistence where lower levels of HtrA were observed, suggesting Chlamydia trachomatis IFN-γ persistence does not involve a broad stress response. Conclusion The heterologous heat shock protection for Escherichia coli, and increased HtrA during cell wall disruption via penicillin and heat shock, indicates an important role for HtrA during high protein stress conditions for Chlamydia trachomatis.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, 60 Musk Ave, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | | | | | | |
Collapse
|
243
|
Wizel B, Nyström-Asklin J, Cortes C, Tvinnereim A. Role of CD8(+)T cells in the host response to Chlamydia. Microbes Infect 2008; 10:1420-30. [PMID: 18790073 PMCID: PMC2640455 DOI: 10.1016/j.micinf.2008.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/12/2008] [Indexed: 11/25/2022]
Abstract
Chlamydia infections constitute a major public health problem. Although multiple arms of the immune system participate in the control of Chlamydia in infected hosts, T lymphocytes are essential. This review focuses on the roles that CD8(+)T cells may play in immunoprotection and immunopathology following recognition of Chlamydia-infected cells.
Collapse
Affiliation(s)
- Benjamin Wizel
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | | | | | | |
Collapse
|
244
|
Villegas E, Camacho A, Carrillo JA, Sorlózano A, Rojas J, Gutiérrez J. Emerging strategies in the diagnosis, prevention and treatment ofChlamydophila pneumoniaeinfections. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.10.1175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
245
|
Towsey M, Timms P, Hogan J, Mathews SA. The cross-species prediction of bacterial promoters using a support vector machine. Comput Biol Chem 2008; 32:359-66. [DOI: 10.1016/j.compbiolchem.2008.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 05/01/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
|
246
|
Sessa R, Cipriani P, Di Pietro M, Schiavoni G, Santino I, Del Piano M. Chlamydia Pneumoniae and Chronic Diseases with a Great Impact on Public Health. Int J Immunopathol Pharmacol 2008; 21:1041-3. [DOI: 10.1177/039463200802100431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chlamydia pneumoniae is recognised as a common cause of respiratory tract infections and has recently been implicated in several extrapulmonary chronic diseases, with great impact on public health, such as atherosclerosis, multiple sclerosis and Alzheimer's disease. The involvement of C. pneumoniae in such diseases may be correlated to characteristic features of this pathogen, including intracellular growth and ability to induce persistent forms. C. pneumoniae persistent forms are inherently more suited to evade the host immune response and are more difficult to eradicate by antibiotics. Our preliminary experimental findings show that interaction of C. pneumoniae with macrophages and/or T cells characterized by interference with TNF-α production, and redox state, culminates in the induction of T cell apoptosis and survival of infected macrophages. Based on our evidence, the poor cooperation between T cells and macrophages could lead to an inappropriate immune response against C. pneumoniae that may therefore promote the development of extrapulmonary chronic diseases.
Collapse
Affiliation(s)
- R. Sessa
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | - P. Cipriani
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | - M. Di Pietro
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | - G. Schiavoni
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | - I. Santino
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | - M. Del Piano
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
247
|
Harkinezhad T, Geens T, Vanrompay D. Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences. Vet Microbiol 2008; 135:68-77. [PMID: 19054633 DOI: 10.1016/j.vetmic.2008.09.046] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The first part of the present review gives an overview on the history of infectious agents of the order Chlamydiales and the general infection biology of Chlamydophila (C.) psittaci, the causative agent of psittacosis. In the second part, the classification of C. psittaci strains, as well as issues of epidemiology of avian chlamydiosis., disease transmission routes, clinical disease, public health significance, present legislation and recommendations for prevention and control are reviewed.
Collapse
Affiliation(s)
- Taher Harkinezhad
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
248
|
Caro MR, Buendía AJ, Del Rio L, Ortega N, Gallego MC, Cuello F, Navarro JA, Sanchez J, Salinas J. Chlamydophila abortus infection in the mouse: a useful model of the ovine disease. Vet Microbiol 2008; 135:103-11. [PMID: 18945558 DOI: 10.1016/j.vetmic.2008.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chlamydophila (C.) abortus is an obligate intracellular bacterium able to colonize the placenta of several species of mammals, which may induce abortion in the last third of pregnancy. The infection affects mainly small ruminants resulting in major economic losses in farming industries worldwide. Furthermore, its zoonotic risk has been reported in pregnant farmers or abattoir workers. Mouse models have been widely used to study both the pathology of the disease and the role of immune cells in controlling infection. Moreover, this animal experimental model has been considered a useful tool to evaluate new vaccine candidates and adjuvants that could prevent abortion and reduce fetal death. Future studies using these models will provide and reveal information about the precise mechanisms in the immune response against C. abortus and will increase the knowledge about poorly understood issues such as chlamydial persistence.
Collapse
Affiliation(s)
- M R Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Campus de Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Sessa R, Santino I, Di Pietro M, Schiavoni G, Ripa C, Galdiero M, Iannone M, Izzo L, Mingazzini PI, Bolognese A, Del Piano M. No evidence of involvement of Chlamydia pneumoniae in lung cancer by means of quantitative real-time polymerase chain reaction. Int J Immunopathol Pharmacol 2008; 21:415-20. [PMID: 18547487 DOI: 10.1177/039463200802100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chlamydia pneumoniae, an obligate intracellular pathogen, is well-known as etiological agent of acute respiratory infections; the repeated or prolonged exposure to chlamydial antigens may promote the persistence of C. pneumoniae in the respiratory tract leading to chronic diseases, such as chronic obstructive pulmonary disease and asthma. The predilection of C. pneumoniae to cause respiratory tract infections combined with its persistent nature suggest that it might play a role in lung cancer. The aim of our study is to evaluate the involvement of C. pneumoniae in pathogenesis of lung cancer. We therefore investigated the presence of C. pneumoniae DNA in tumor lung tissues by using real-time PCR assay. Simultaneously, tumor and healthy tissues from the same patient with primary carcinoma lung were analyzed. C. pneumoniae DNA was not detected in a single lung tumor tissue by means of an highly sensitive, and specific real-time PCR assay based on FRET hybridization probes. In conclusion, this study does not support the involvement of C. pneumoniae in the pathogenesis of lung cancer, suggesting that further investigations are needed to clarify other potential causative factors for the development of this malignancy.
Collapse
Affiliation(s)
- R Sessa
- Department of Public Health Sciences, Sapienza University Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Lee Y, Kim H, Kim S, Shin MH, Kim YK, Kim KH, Chung JH. Myeloid differentiation factor 88 regulates basal and UV-induced expressions of IL-6 and MMP-1 in human epidermal keratinocytes. J Invest Dermatol 2008; 129:460-7. [PMID: 18719610 DOI: 10.1038/jid.2008.261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloid differentiation factor 88 (MyD88) is known as an adaptor protein for the Toll-like receptor (TLR) family and participates in signal transduction by binding to the cytoplasmic Toll/IL-1 receptor (TIR) domains of activated TLR. In this study, we demonstrated that expression of MyD88 is increased in photoaged skin compared with intrinsic aged human skin of the same elderly individuals, and that acute UV irradiation increases MyD88 expression in human skin in vivo. To investigate the effects of these high levels of MyD88 in photoaged skin and acutely UV-irradiated skin, human epidermal keratinocytes were infected with adenovirus expressing wild-type (MyD88wt), dominant-positive (MyD88DeltaC), and dominant-negative (MyD88DeltaN) MyD88 forms. Overexpression of MyD88wt and MyD88DeltaC, but not of MyD88DeltaN, increased the basal expressions of IL-6 and matrix metalloproteinase-1 (MMP-1) in human epidermal keratinocytes. Moreover, overexpression of MyD88DeltaN prevented UV-induced expressions of IL-6 and MMP-1 by inhibiting UV-induced activation of NF-kappaB and activating protein-1. These results suggest that MyD88 is important in IL-6 and MMP-1 expressions in both acutely UV-irradiated skin and in chronically sun-exposed human skin.
Collapse
Affiliation(s)
- Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|