201
|
Read LR, Raynard SJ, Rukść A, Baker MD. Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res 2004; 32:1184-96. [PMID: 14978260 PMCID: PMC373412 DOI: 10.1093/nar/gkh280] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 01/17/2023] Open
Abstract
Homologous recombination (HR) is important in repairing errors of replication and other forms of DNA damage. In mammalian cells, potential templates include the homologous chromosome, and after DNA replication, the sister chromatid. Previous work has shown that the mammalian recombination machinery is organized to suppress interchromosomal recombination while preserving intrachromosomal HR. In the present study, we investigated spontaneous intrachromosomal HR in mouse hybridoma cell lines in which variously numbered tandem repeats of the mu heavy chain constant (C mu) region reside at the haploid, chromosomal immunoglobulin mu heavy chain locus. This organization provides the opportunity to investigate recombination between homologous gene repeats in a well-defined chromosomal locus under conditions in which recombinants are conveniently recovered. This system revealed several features about the mammalian intrachromosomal HR process: (i) the frequency of HR was high (recombinants represented as much as several percent of the total of recombinants and non-recombinants); (ii) the recombination process appeared to be predominantly non-reciprocal, consistent with the possibility of gene conversion; (iii) putative gene conversion tracts were long (up to 13.4 kb); (iv) the recombination process occurred with precision, initiating and terminating within regions of shared homology. The results are discussed with respect to mammalian intrachromosomal HR involving interactions both within and between sister chromatids.
Collapse
Affiliation(s)
- Leah R Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
202
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|
203
|
Greig D, Travisano M, Louis EJ, Borts RH. A role for the mismatch repair system during incipient speciation in Saccharomyces. J Evol Biol 2003; 16:429-37. [PMID: 14635842 DOI: 10.1046/j.1420-9101.2003.00546.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cause of reproductive isolation between biological species is a major issue in the field of biology. Most explanations of hybrid sterility require either genetic incompatibilities between nascent species or gross physical imbalances between their chromosomes, such as rearrangements or ploidy changes. An alternative possibility is that genomes become incompatible at a molecular level, dependent on interactions between primary DNA sequences. The mismatch repair system has previously been shown to contribute to sterility in a hybrid between established yeast species by preventing successful meiotic crossing-over leading to aneuploidy. This system could also promote or reinforce the formation of new species in a similar manner, by making diverging genomes incompatible in meiosis. To test this possibility we crossed yeast strains of the same species but from diverse historical or geographic sources. We show that these crosses are partially sterile and present evidence that the mismatch repair system is largely responsible for this sterility.
Collapse
Affiliation(s)
- D Greig
- The Galton Laboratory, Department of Biology, University College London, London, UK
| | | | | | | |
Collapse
|
204
|
Balakirev ES, Ayala FJ. Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster. J Genet 2003; 82:115-31. [PMID: 15133190 DOI: 10.1007/bf02715813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have investigated nucleotide polymorphism at the beta-esterase gene cluster including the Est-6 gene and psiEst-6 putative pseudogene in four samples of Drosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplotype structure is revealed in both Est-6 and psiEst-6. Total nucleotide diversity is twice in psiEst-6 as in Est-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within the beta-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected within Est-6 and, to a much greater extent, within psiEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for the beta-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the beta-esterase gene cluster. However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and psiEst-6 may play an important role in the evolution of the beta-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene. Est-6 and psiEst-6 may represent an indivisible intergenic complex ('intergene') in which each single component (Est-6 or psiEst-6) cannot separately carry out the full functional role.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA
| | | |
Collapse
|
205
|
Richardson C, Jasin M. Recombination between two chromosomes: implications for genomic integrity in mammalian cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:553-60. [PMID: 12760073 DOI: 10.1101/sqb.2000.65.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA
| | | |
Collapse
|
206
|
Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F, Lacroix E. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 2003; 31:2952-62. [PMID: 12771221 PMCID: PMC156710 DOI: 10.1093/nar/gkg375] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.
Collapse
|
207
|
McCulloch RD, Read LR, Baker MD. Strand invasion and DNA synthesis from the two 3' ends of a double-strand break in Mammalian cells. Genetics 2003; 163:1439-47. [PMID: 12702687 PMCID: PMC1462519 DOI: 10.1093/genetics/163.4.1439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of the crossover products recovered following transformation of mammalian cells with a sequence insertion ("ends-in") gene-targeting vector revealed a novel class of recombinant. In this class of recombinants, a single vector copy has integrated into an ectopic genomic position, leaving the structure of the cognate chromosomal locus unaltered. Thus, in this respect, the recombinants resemble simple cases of random vector integration. However, the important difference is that the two paired 3' vector ends have acquired endogenous, chromosomal sequences flanking both sides of the vector-borne double-strand break (DSB). In some cases, copying was extensive, extending >16 kb into nonhomologous flanking DNA. The results suggest that mammalian homologous recombination events can involve strand invasion and DNA synthesis by both 3' ends of the DSB. These DNA interactions are a central, predicted feature of the DSBR model of recombination.
Collapse
Affiliation(s)
- Richard D McCulloch
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
208
|
Abstract
To examine the evolutionary influence of gene conversion on DNA base composition, I analysed an exhaustive dataset of histone paralogous genes from human and mouse. I show that those gene copies that belong to subfamilies of very similar sequences (presumably undergoing gene conversion) have a higher GC content than unique gene copies (presumably not undergoing gene conversion). Thus, it seems that gene conversion is a biased process that tends to increase the DNA GC content, a conclusion that has implications for the evolution of isochores in vertebrates.
Collapse
Affiliation(s)
- Nicolas Galtier
- CNRS UMR 5000-Génome, Populations, Interactions, Université Montpellier 2-CC63, Place E. Bataillon, 34095, Montpellier, France.
| |
Collapse
|
209
|
Abstract
Gene therapy and the production of mutated cell lines or model animals both require the development of efficient, controlled gene-targeting strategies. Classical approaches are based on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. The low frequency of homologous recombination in mammalian cells leads to inefficient targeting. Here, we review the limiting steps of classical approaches and the new strategies developed to improve the efficiency of homologous recombination in gene-targeting experiments.
Collapse
Affiliation(s)
- Elodie Biet
- UMR 2027 CNRS-Institut Curie, bâtiment 110, 15, rue Georges-Clémenceau, 91405 Orsay, France
| | | | | |
Collapse
|
210
|
Honma M, Izumi M, Sakuraba M, Tadokoro S, Sakamoto H, Wang W, Yatagai F, Hayashi M. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:288-298. [PMID: 14673874 DOI: 10.1002/em.10201] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal double-strand breaks (DSBs) in mammalian cells are usually repaired through either of two pathways: end-joining (EJ) or homologous recombination (HR). To clarify the relative contribution of each pathway and the ensuing genetic changes, we developed a system to trace the fate of DSBs that occur in an endogenous single-copy human gene. Lymphoblastoid cell lines TSCE5 and TSCER2 are heterozygous (+/-) or compound heterozygous (-/-), respectively, for the thymidine kinase gene (TK), and we introduced an I-SceI endonuclease site into the gene. EJ for a DSB at the I-SceI site results in TK-deficient mutants in TSCE5 cells, while HR between the alleles produces TK-proficient revertants in TSCER2 cells. We found that almost all DSBs were repaired by EJ and that HR rarely contributes to the repair in this system. EJ contributed to the repair of DSBs 270 times more frequently than HR. Molecular analysis of the TK gene showed that EJ mainly causes small deletions limited to the TK gene. Seventy percent of the small deletion mutants analyzed showed 100- to 4,000-bp deletions with a 0- to 6-bp homology at the joint. Another 30%, however, were accompanied by complicated DNA rearrangements, presumably the result of sister-chromatid fusion. HR, on the other hand, always resulted in non-crossing-over gene conversion without any loss of genetic information. Thus, although HR is important to the maintenance of genomic stability in DNA containing DSBs, almost all chromosomal DSBs in human cells are repaired by EJ.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Schindelhauer D, Schwarz T. Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. Genome Res 2002; 12:1815-26. [PMID: 12466285 PMCID: PMC187568 DOI: 10.1101/gr.451502] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Assuming that patterns of sequence variants within highly homogeneous centromeric tandem repeat arrays can tell us which molecular turnover mechanisms are presently at work, we analyzed the alpha-satellite tandem repeat array DXZ1 of one human X chromosome. Here we present accurate snapshots from this dark matter of the genome. We demonstrate stable and representative cloning of the array in a P1 artificial chromosome (PAC) library, use samples of higher-order repeats subcloned from five unmapped PACs (120-160 kb) to identify common variants, and show that such variants are presently in a fixed transition state. To characterize patterns of variant spread throughout homogeneous array segments, we use a novel partial restriction and pulsed-field gel electrophoresis mapping approach. We find an older large-scale (35-50 kb) duplication event supporting the evolutionarily important unequal crossing-over hypothesis, but generally find independent variant occurrence and a paucity of potential de novo mutations within segments of highest homogeneity (99.1%-99.3%). Within such segments, a highly nonrandom variant clustering within adjacent higher-order repeats was found in the absence of haplotypic repeats. Such variant clusters are hardly explained by interchromosomal, fixation-driving mechanisms and likely reflect a fast, localized, intrachromosomal sequence conversion mechanism.
Collapse
Affiliation(s)
- Dirk Schindelhauer
- Institute of Human Genetics, Technical University of Munich, Munich, Germany.
| | | |
Collapse
|
212
|
Raynard SJ, Baker MD. Incorporation of large heterologies into heteroduplex DNA during double-strand-break repair in mouse cells. Genetics 2002; 162:977-85. [PMID: 12399405 PMCID: PMC1462280 DOI: 10.1093/genetics/162.2.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the formation and repair of large (>1 kb) insertion/deletion (I/D) heterologies during double-strand-break repair (DSBR) was investigated using a gene-targeting assay that permits efficient recovery of sequence insertion events at the haploid chromosomal immunoglobulin (Ig) mu-locus in mouse hybridoma cells. The results revealed that (i) large I/D heterologies were generated on one or both sides of the DSB and, in some cases, formed symmetrically in both homology regions; (ii) large I/D heterologies did not negatively affect the gene targeting frequency; and (iii) prior to DNA replication, the large I/D heterologies were rectified.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
213
|
Akyüz N, Boehden GS, Süsse S, Rimek A, Preuss U, Scheidtmann KH, Wiesmüller L. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 2002; 22:6306-17. [PMID: 12167722 PMCID: PMC134001 DOI: 10.1128/mcb.22.17.6306-6317.2002] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) arise spontaneously after the conversion of DNA adducts or single-strand breaks by DNA repair or replication and can be introduced experimentally by expression of specific endonucleases. Correct repair of DSBs is central to the maintenance of genomic integrity in mammalian cells, since errors give rise to translocations, deletions, duplications, and expansions, which accelerate the multistep process of tumor progression. For p53 direct regulatory roles in homologous recombination (HR) and in non-homologous end joining (NHEJ) were postulated. To systematically analyze the involvement of p53 in DSB repair, we generated a fluorescence-based assay system with a series of episomal and chromosomally integrated substrates for I-SceI meganuclease-triggered repair. Our data indicate that human wild-type p53, produced either stably or transiently in a p53-negative background, inhibits HR between substrates for conservative HR (cHR) and for gene deletions. NHEJ via microhomologies flanking the I-SceI cleavage site was also downregulated after p53 expression. Interestingly, the p53-dependent downregulation of homology-directed repair was maximal during cHR between sequences with short homologies. Inhibition was minimal during recombination between substrates that support reporter gene reconstitution by HR and NHEJ. p53 with a hotspot mutation at codon 281, 273, 248, 175, or 143 was severely defective in regulating DSB repair (frequencies elevated up to 26-fold). For the transcriptional transactivation-inactive variant p53(138V) a defect became apparent with short homologies only. These results suggest that p53 plays a role in restraining DNA exchange between imperfectly homologous sequences and thereby in suppressing tumorigenic genome rearrangements.
Collapse
Affiliation(s)
- Nuray Akyüz
- Universitätsfrauenklinik, D-89075 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
214
|
Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol Cell 2002; 10:387-95. [PMID: 12191483 DOI: 10.1016/s1097-2765(02)00595-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
XRCC3 is a RAD51 paralog that functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). XRCC3 mutation causes severe chromosome instability. We find that XRCC3 mutant cells display radically altered HR product spectra, with increased gene conversion tract lengths, increased frequencies of discontinuous tracts, and frequent local rearrangements associated with HR. These results indicate that XRCC3 function is not limited to HR initiation, but extends to later stages in formation and resolution of HR intermediates, possibly by stabilizing heteroduplex DNA. The results further demonstrate that HR defects can promote genomic instability not only through failure to initiate HR (leading to nonhomologous repair) but also through aberrant processing of HR intermediates. Both mechanisms may contribute to carcinogenesis in HR-deficient cells.
Collapse
Affiliation(s)
- Mark A Brenneman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
215
|
Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci U S A 2002; 99:3758-63. [PMID: 11904432 PMCID: PMC122597 DOI: 10.1073/pnas.052545899] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2000] [Indexed: 01/22/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), composed of Ku70, Ku80, and the catalytic subunit (DNA-PKcs), is involved in repairing double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). Certain proteins involved in NHEJ are also involved in DSB repair by homologous recombination (HR). To test the effects of DNA-PKcs on DSB-induced HR, we integrated neo direct repeat HR substrates carrying the I-SceI recognition sequence into DNA-PKcs-defective Chinese hamster ovary (V3) cells. The DNA-PKcs defect was complemented with a human DNA-PKcs cDNA. DSB-induced HR frequencies were 1.5- to 3-fold lower with DNA-PKcs complementation. In complemented and uncomplemented strains, all products arose by gene conversion without associated crossover, and average conversion tract lengths were similar. Suppression of DSB-induced HR in complemented cells probably reflects restoration of NHEJ, consistent with competition between HR and NHEJ during DSB repair. Interestingly, spontaneous HR rates were 1.6- to >3.5-fold lower with DNA-PKcs complementation. DNA-PKcs may suppress spontaneous HR through NHEJ of spontaneous DSBs, perhaps at stalled or blocked replication forks. Because replication protein A (RPA) is involved in both replication and HR, and is phosphorylated by DNA-PKcs, it is possible that the suppression of spontaneous HR by DNA-PKcs reflects regulation of replication-dependent HR by DNA-PKcs, perhaps by means of phosphorylation of RPA.
Collapse
Affiliation(s)
- Chris Allen
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
216
|
Limoli CL, Giedzinski E, Bonner WM, Cleaver JE. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci U S A 2002; 99:233-8. [PMID: 11756691 PMCID: PMC117544 DOI: 10.1073/pnas.231611798] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2001] [Indexed: 01/08/2023] Open
Abstract
UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (gamma-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal the presence of DNA damage, in particular, double-strand breaks (DSBs). This finding suggests that UV damage leads to the formation of DSBs during the course of replication arrest. After UV irradiation, XPV cells showed a fluence-dependent increase in the yield of gamma-H2AX foci that paralleled the production of Mre11 foci. The percentage of foci-positive cells increased rapidly (10-15%) up to fluences of 10 J.(-2) before saturating at higher fluences. Frequencies of gamma-H2AX and Mre11 foci both reached maxima at 4 h after UV irradiation. This pattern contrasts sharply to the situation observed after x-irradiation, where peak levels of gamma-H2AX foci were found to precede the formation of Mre11 foci by several hours. The nuclear distributions of gamma-H2AX and Mre11 were found to colocalize spatially after UV- but not x-irradiation. UV-irradiated XPV cells showed a one-to-one correspondence between Mre11 and gamma-H2AX foci-positive cells. These results show that XPV cells develop DNA DSBs during the course of UV-induced replication arrest. These UV-induced foci occur in cells that are unable to carry out efficient bypass replication of UV damage and may contribute to further genetic variation.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, San Francisco, CA 94103-0806,USA.
| | | | | | | |
Collapse
|
217
|
Quintana PJ, Neuwirth EA, Grosovsky AJ. Interchromosomal gene conversion at an endogenous human cell locus. Genetics 2001; 158:757-67. [PMID: 11404339 PMCID: PMC1461692 DOI: 10.1093/genetics/158.2.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To examine the relationship between gene conversion and reciprocal exchange at an endogenous chromosomal locus, we developed a reversion assay in a thymidine kinase deficient mutant, TX545, derived from the human lymphoblastoid cell line TK6. Selectable revertants of TX545 can be generated through interchromosomal gene conversion at the site of inactivating mutations on each tk allele or by reciprocal exchange that alters the linkage relationships of inactivating polymorphisms within the tk locus. Analysis of loss of heterozygosity (LOH) at intragenic polymorphisms and flanking microsatellite markers was used to initially evaluate allelotypes in TK(+) revertants for patterns associated with either gene conversion or crossing over. The linkage pattern in a subset of convertants was then unambiguously established, even in the event of prereplicative recombinational exchanges, by haplotype analysis of flanking microsatellite loci in tk(-/-) LOH mutants collected from the tk(+/-) parental convertant. Some (7/38; 18%) revertants were attributable to easily discriminated nonrecombinational mechanisms, including suppressor mutations within the tk coding sequence. However, all revertants classified as a recombinational event (28/38; 74%) were attributed to localized gene conversion, representing a highly significant preference (P < 0.0001) over gene conversion with associated reciprocal exchange, which was never observed.
Collapse
Affiliation(s)
- P J Quintana
- Division of Occupational and Environmental Health, Graduate School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
218
|
Baker MD, Birmingham EC. Evidence for biased holliday junction cleavage and mismatch repair directed by junction cuts during double-strand-break repair in mammalian cells. Mol Cell Biol 2001; 21:3425-35. [PMID: 11313468 PMCID: PMC100264 DOI: 10.1128/mcb.21.10.3425-3435.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.
Collapse
Affiliation(s)
- M D Baker
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
219
|
Gonzalez IL, Sylvester JE. Human rDNA: Evolutionary Patterns within the Genes and Tandem Arrays Derived from Multiple Chromosomes. Genomics 2001; 73:255-63. [PMID: 11350117 DOI: 10.1006/geno.2001.6540] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human rDNA forms arrays on five chromosome pairs and is homogenized by concerted evolution through recombination and gene conversion (loci RNR1, RNR2, RNR3, RNR4, RNR5, OMIM: 180450). Homogenization is not perfect, however, so that it becomes possible to study its efficiency within genes, within arrays, and between arrays by measuring and comparing DNA sequence variation. Previous studies with randomly cloned genomic DNA fragments showed that different parts of the gene evolve at different rates but did not allow comparison of rDNA sequences derived from specific chromosomes. We have now cloned and sequenced rDNA fragments from specific acrocentric chromosomes to (1) study homogenization along the rDNA and (2) compare homogenization within chromosomes and between homologous and nonhomologous chromosomes. Our results show high homogeneity among regulatory and coding regions of rDNA on all chromosomes, a surprising homogeneity among adjacent distal non-rDNA sequences, and the existence of one to three very divergent intergenic spacer classes within each array.
Collapse
Affiliation(s)
- I L Gonzalez
- A. I. DuPont Hospital for Children, Wilmington, Delaware 19899, USA.
| | | |
Collapse
|
220
|
Elliott B, Jasin M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 2001; 21:2671-82. [PMID: 11283247 PMCID: PMC86898 DOI: 10.1128/mcb.21.8.2671-2682.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.
Collapse
Affiliation(s)
- B Elliott
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
221
|
Gregory JJ, Wagner JE, Verlander PC, Levran O, Batish SD, Eide CR, Steffenhagen A, Hirsch B, Auerbach AD. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci U S A 2001; 98:2532-7. [PMID: 11226273 PMCID: PMC30172 DOI: 10.1073/pnas.051609898] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Accepted: 12/22/2000] [Indexed: 11/18/2022] Open
Abstract
Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815-2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte-macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein-Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte-macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.
Collapse
Affiliation(s)
- J J Gregory
- Laboratory of Human Genetics and Hematology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Li J, Read LR, Baker MD. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol Cell Biol 2001; 21:501-10. [PMID: 11134338 PMCID: PMC86609 DOI: 10.1128/mcb.21.2.501-510.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2000] [Accepted: 10/18/2000] [Indexed: 11/20/2022] Open
Abstract
In this study, the mechanism of mammalian gene replacement was investigated. The system is based on detecting homologous recombination between transferred vector DNA and the haploid, chromosomal immunoglobulin mu-delta region in a murine hybridoma cell line. The backbone of the gene replacement vector (pCmuCdeltapal) consists of pSV2neo sequences bounded on one side by homology to the mu gene constant (Cmu) region and on the other side by homology to the delta gene constant (Cdelta) region. The Cmu and Cdelta flanking arms of homology were marked by insertions of an identical 30-bp palindrome which frequently escapes mismatch repair when in heteroduplex DNA (hDNA). As a result, intermediates bearing unrepaired hDNA generate mixed (sectored) recombinants following DNA replication and cell division. To monitor the presence and position of sectored sites and, hence, hDNA formation during the recombination process, the palindrome contained a unique NotI site that replaced an endogenous restriction enzyme site at each marker position in the vector-borne Cmu and Cdelta regions. Gene replacement was studied under conditions which permitted the efficient recovery of the product(s) of individual recombination events. Analysis of marker segregation patterns in independent recombinants revealed that extensive hDNA was formed within the Cmu and Cdelta regions. In several recombinants, palindrome markers in the Cmu and Cdelta regions resided on opposite DNA strands (trans configuration). These results are consistent with the mammalian gene replacement reaction involving two crossing-over events in homologous flanking DNA.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
223
|
Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001; 21:289-97. [PMID: 11113203 PMCID: PMC88802 DOI: 10.1128/mcb.21.1.289-297.2001] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chimeric nucleases that are hybrids between a nonspecific DNA cleavage domain and a zinc finger DNA recognition domain were tested for their ability to find and cleave their target sites in living cells. Both engineered DNA substrates and the nucleases were injected into Xenopus laevis oocyte nuclei, in which DNA cleavage and subsequent homologous recombination were observed. Specific cleavage required two inverted copies of the zinc finger recognition site in close proximity, reflecting the need for dimerization of the cleavage domain. Cleaved DNA molecules were activated for homologous recombination; in optimum conditions, essentially 100% of the substrate recombined, even though the DNA was assembled into chromatin. The original nuclease has an 18-amino-acid linker between the zinc finger and cleavage domains, and this enzyme cleaved in oocytes at paired sites separated by spacers in the range of 6 to 18 bp, with a rather sharp optimum at 8 bp. By shortening the linker, we found that the range of effective site separations could be narrowed significantly. With no intentional linker between the binding and cleavage domains, only binding sites exactly 6 bp apart supported efficient cleavage in oocytes. We also showed that two chimeric enzymes with different binding specificities could collaborate to stimulate recombination when their individual sites were appropriately placed. Because the recognition specificity of zinc fingers can be altered experimentally, this approach holds great promise for inducing targeted recombination in a variety of organisms.
Collapse
Affiliation(s)
- M Bibikova
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Jakupciak JP, Wells RD. Gene conversion (recombination) mediates expansions of CTG[middle dot]CAG repeats. J Biol Chem 2000; 275:40003-13. [PMID: 11005819 DOI: 10.1074/jbc.m007153200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic recombination is a robust mechanism for expanding CTG.CAG triplet repeats involved in the etiology of hereditary neurological diseases (Jakupciak, J. P., and Wells, R. D. (1999) J. Biol. Chem. 274, 23468-23479). This two-plasmid recombination system in Escherichia coli with derivatives of pUC19 and pACYC184 was used to investigate the effect of triplet repeat orientation on recombination and extent of expansions; tracts of 36, 50, 80, and 36, 100, and 175 repeats in length, respectively, in all possible permutations of length and in both orientations (relative to the unidirectional replication origins) revealed little or no effect of orientation of expansions. The extent of expansions was generally severalfold the length of the progenitor tract and frequently exceeded the combined length of the two tracts in the cotransformed plasmids. Expansions were much more frequent than deletions. Repeat tracts bearing two G-to-A interruptions (polymorphisms) within either 171- or 219-base pair tracts substantially reduced the expansions compared with uninterrupted repeat tracts of similar lengths. Gene conversion, rather than crossing over, was the recombination mechanism. Prior studies showed that DNA replication, repair, and tandem duplication also mediated genetic instabilities of the triplet repeat sequence. However, gene conversion (recombinational repair) is by far the most powerful expansion mechanism. Thus, we propose that gene conversion is the likely expansion mechanism for myotonic dystrophy, spinocerebellar ataxia type 8, and fragile X syndrome.
Collapse
Affiliation(s)
- J P Jakupciak
- Institute of Biosciences and Technology, Center for Genome Research, Texas A & M University, Texas Medical Center, Houston, Texas 77030, USA
| | | |
Collapse
|
225
|
Abstract
The "ends-out" or omega (Omega)-form gene replacement vector is used routinely to perform targeted genome modification in a variety of species and has the potential to be an effective vehicle for gene therapy. However, in mammalian cells, the frequency of this reaction is low and the mechanism unknown. Understanding molecular features associated with gene replacement is important and may lead to an increase in the efficiency of the process. In this study, we investigated gene replacement in mammalian cells using a powerful assay system that permits efficient recovery of the product(s) of individual recombination events at the haploid, chromosomal mu-delta locus in a murine hybridoma cell line. The results showed that (i) heteroduplex DNA (hDNA) is formed during mammalian gene replacement; (ii) mismatches in hDNA are usually efficiently repaired before DNA replication and cell division; (iii) the gene replacement reaction occurs with fidelity; (iv) the presence of multiple markers in one homologous flanking arm in the replacement vector did not affect the efficiency of gene replacement; and (v) in comparison to a genomic fragment bearing contiguous homology to the chromosomal target, gene targeting was only slightly inhibited by internal heterology (pSV2neo sequences) in the replacement vector.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics and Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
226
|
Yesland K, Fonzi WA. Allele-specific gene targeting in Candida albicans results from heterology between alleles. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2097-2104. [PMID: 10974097 DOI: 10.1099/00221287-146-9-2097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is asexual and diploid. Thus, introduction of recessive mutations requires targeted gene replacement of two alleles to effect expression of a recessive phenotype. This is often performed by recycling of a URA3 marker gene that is flanked by direct repeats of hisG. After targeting to a locus, recombination between the repeats excises URA3 leaving a single copy of hisG in the disrupted allele. The remaining functional allele is targeted in a second transformation with the same URA3 marked construct. Replacement can be highly biased toward one allele. At the PHR1 locus, there was an approximately 50-fold preference for replacement of the disrupted versus the functional allele in a heterozygous mutant. This preference was reduced six- to eightfold when the transforming DNA lacked the hisG repeats. Nonetheless, there remained a sixfold preference for targeting a particular allele of PHR1 and this was evident even in transformations of the parental strain containing two wild-type alleles of PHR1. Both wild-type alleles were cloned and nucleotide sequence comparison revealed 24 heterologies over a 2 kb region. Using restriction site polymorphisms to distinguish alleles, it was observed that transformation with the cloned DNA of allele PHR1-1 preferentially targeted allele 1 of the genome. Transformations with PHR1-2 exhibited the reciprocal specificity. In both these instances, heterology was present in the flanking regions of the transforming DNA. When the transforming DNA was chosen from a region 100% identical in both alleles, alleles 1 and 2 were targeted with equal frequency. It is concluded that sequence heterology between alleles results in an inherent allele specificity in targeted recombination events.
Collapse
Affiliation(s)
- Kyle Yesland
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW, Washington, DC 20007-2197, USA1
| | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW, Washington, DC 20007-2197, USA1
| |
Collapse
|
227
|
Abstract
Mismatch repair (MMR) proteins play a critical role in maintaining the mitotic stability of eukaryotic genomes. MMR proteins repair errors made during DNA replication and in their absence, mutations accumulate at elevated rates. In addition, MMR proteins inhibit recombination between non-identical DNA sequences, and hence prevent genome rearrangements resulting from interactions between repetitive elements. This review provides an overview of the anti-mutator and anti-recombination functions of MMR proteins in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- B D Harfe
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
228
|
Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 2000; 20:3147-56. [PMID: 10757799 PMCID: PMC85609 DOI: 10.1128/mcb.20.9.3147-3156.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
Tumorigenesis is known to result from multiple genetic changes. Although endogenous and environmental insults can damage DNA, cellular mechanisms exist to repair various forms of damage or to kill those cells irreparably damaged. Hence, the accumulation of numerous genetic changes that would lead to cancer in normal cells is extremely rare. Nevertheless, disruption of a DNA repair pathway has the potential to expedite tumorigenesis by resulting in a cell that is hypermutable. Multiple pathways exist to repair the various forms of DNA damage that can cause mutagenesis. Recent studies have demonstrated a key role for homologous recombination in DNA repair, in particular in the repair chromosomal double-strand breaks. This review summarizes those studies and discusses how disruption of homologous recombination pathways can create genetic instability.
Collapse
Affiliation(s)
- M Jasin
- Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
230
|
Li J, Baker MD. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting. J Mol Biol 2000; 295:505-16. [PMID: 10623542 DOI: 10.1006/jmbi.1999.3400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined homologous recombination in mammalian cells using a gene targeting assay in which the introduction of a double-strand-break (DSB) in the vector-borne region of homology to the chromosome resulted in targeted vector integration. The vector-borne DSB was flanked with small palindromic insertions that, when encompassed within heteroduplex DNA (hDNA) formed during targeted vector integration, were capable of avoiding the activity of the mismatch repair (MMR) system. When used in conjunction with an isolation procedure in which the product(s) of each targeted vector integration event were retained for molecular analysis, information about recombination mechanisms was obtained. The examination of marker segregation patterns in independent recombinants revealed the following, (i) hDNA tracts could form simultaneously on each side of the DSB and in both participating homologous regions. Clonal analysis of sectored recombinants revealed that, in the homologous repeats generated by the recombination event, vector-borne palindrome and chromosomal markers were linked in the expected way in each strand of the hDNA intermediate, (ii) hDNA tracts were subject to MMR processing that occurred on opposite sides of the DSB, and (iii) in the majority of recombinants, the vector-borne marker was replaced with the corresponding marker from the chromosome. Bidirectional hDNA formation and MMR processing of both sides of the DSB are consistent with the double-strand-break repair (DSBR) model of recombination.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
231
|
Nicolás AL, Munz PL, Falck-Pedersen E, Young CS. Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease. Virology 2000; 266:211-24. [PMID: 10612676 DOI: 10.1006/viro.1999.0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study DNA double-strand break (DSB) repair in mammalian cells, the Saccharomyces cerevisiae HO endonuclease gene, or its recognition site, was cloned into the adenovirus E3 or E1 regions. Analysis of DNA from human A549 cells coinfected with the E3::HO gene and site viruses showed that HO endonuclease was active and that broken viral genomes were detectable 12 h postinfection, increasing with time up to approximately 30% of the available HO site genomes. Leftward fragments of approximately 30 kbp, which contain the packaging signal, but not rightward fragments of approximately 6 kbp, were incorporated into virions, suggesting that broken genomes were not held together tightly after cleavage. There was no evidence for DSB repair in E3::HO virus coinfections. In contrast, such evidence was obtained in E1::HO virus coinfections of nonpermissive cells, suggesting that adenovirus proteins expressed in the permissive E3::HO coinfection can inhibit mammalian DSB repair. To test the inhibitory role of E4 proteins, known to suppress genome concatemer formation late in infection (Weiden and Ginsberg, 1994), A549 cells were coinfected with E3::HO viruses lacking the E4 region. The results strongly suggest that the E4 protein(s) inhibits DSB repair.
Collapse
Affiliation(s)
- A L Nicolás
- Department of Microbiology, Columbia University, New York, New York, 10032, USA
| | | | | | | |
Collapse
|
232
|
Tremblay A, Jasin M, Chartrand P. A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol Cell Biol 2000; 20:54-60. [PMID: 10594008 PMCID: PMC85044 DOI: 10.1128/mcb.20.1.54-60.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 10(5) copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the T(F) family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.
Collapse
Affiliation(s)
- A Tremblay
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
233
|
Lin Y, Lukacsovich T, Waldman AS. Multiple pathways for repair of DNA double-strand breaks in mammalian chromosomes. Mol Cell Biol 1999; 19:8353-60. [PMID: 10567560 PMCID: PMC84924 DOI: 10.1128/mcb.19.12.8353] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To study repair of DNA double-strand breaks (DSBs) in mammalian chromosomes, we designed DNA substrates containing a thymidine kinase (TK) gene disrupted by the 18-bp recognition site for yeast endonuclease I-SceI. Some substrates also contained a second defective TK gene sequence to serve as a genetic donor in recombinational repair. A genomic DSB was induced by introducing endonuclease I-SceI into cells containing a stably integrated DNA substrate. DSB repair was monitored by selection for TK-positive segregants. We observed that intrachromosomal DSB repair is accomplished with nearly equal efficiencies in either the presence or absence of a homologous donor sequence. DSB repair is achieved by nonhomologous end-joining or homologous recombination, but rarely by nonconservative single-strand annealing. Repair of a chromosomal DSB by homologous recombination occurs mainly by gene conversion and appears to require a donor sequence greater than a few hundred base pairs in length. Nonhomologous end-joining events typically involve loss of very few nucleotides, and some events are associated with gene amplification at the repaired locus. Additional studies revealed that precise religation of DNA ends with no other concomitant sequence alteration is a viable mode for repair of DSBs in a mammalian genome.
Collapse
Affiliation(s)
- Y Lin
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
234
|
Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13:2633-8. [PMID: 10541549 PMCID: PMC317094 DOI: 10.1101/gad.13.20.2633] [Citation(s) in RCA: 1120] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homology-directed repair of DNA damage has recently emerged as a major mechanism for the maintenance of genomic integrity in mammalian cells. The highly conserved strand transferase, Rad51, is expected to be critical for this process. XRCC3 possesses a limited sequence similarity to Rad51 and interacts with it. Using a novel fluorescence-based assay, we demonstrate here that error-free homology-directed repair of DNA double-strand breaks is decreased 25-fold in an XRCC3-deficient hamster cell line and can be restored to wild-type levels through XRCC3 expression. These results establish that XRCC3-mediated homologous recombination can reverse DNA damage that would otherwise be mutagenic or lethal.
Collapse
Affiliation(s)
- A J Pierce
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | |
Collapse
|
235
|
Nickoloff JA, Sweetser DB, Clikeman JA, Khalsa GJ, Wheeler SL. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics 1999; 153:665-79. [PMID: 10511547 PMCID: PMC1460766 DOI: 10.1093/genetics/153.2.665] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.
Collapse
Affiliation(s)
- J A Nickoloff
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
236
|
Mengiste T, Paszkowski J. Prospects for the precise engineering of plant genomes by homologous recombination. Biol Chem 1999; 380:749-58. [PMID: 10494824 DOI: 10.1515/bc.1999.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The targeting of chromosomal genes via homologous recombination (HR) is an essential tool of reverse genetics as applied for the functional assay of genes within complex genomes. However, in higher plants, foreign DNA integrates almost exclusively at random, non-homologous sites. A variety of environmental parameters known to influence levels of HR do not increase targeting frequencies when combined in gene-targeting experiments. The identification of cellular factors that may control the level of chromosomal HR in plant somatic cells is required. Plant genes encoding proteins similar to those involved in HR in other organisms can be found in the expanding sequence databases. Evidence for evolutionary conservation should help to decipher mechanisms of plant HR and possibly detect limiting factors. At present, however, only one genetic locus influencing levels of chromosomal recombination in plants has been well defined. Here we summarise current knowledge of HR and the status of gene targeting (GT) in plants, focusing on genetic approaches to molecular factors regulating HR levels.
Collapse
Affiliation(s)
- T Mengiste
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
237
|
Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P. Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 1999; 152:1111-22. [PMID: 10388829 PMCID: PMC1460644 DOI: 10.1093/genetics/152.3.1111] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids.
Collapse
Affiliation(s)
- T A Kavanagh
- Department of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Sprung CN, Reynolds GE, Jasin M, Murnane JP. Chromosome healing in mouse embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96:6781-6. [PMID: 10359789 PMCID: PMC21992 DOI: 10.1073/pnas.96.12.6781] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition of new telomeres to the ends of broken chromosomes, termed chromosome healing, has been extensively studied in unicellular organisms; however, its role in the mammalian cell response to double-strand breaks is unknown. A system for analysis of chromosome healing, which involves the integration of plasmid sequences immediately adjacent to a telomere, has been established in mouse embryonic stem cells. This "marked" telomere contains a neo gene for positive selection in G418, an I-SceI endonuclease recognition sequence for introducing double-strand breaks, and a herpes simplex virus thymidine kinase gene for negative selection with ganciclovir for cells that have lost the telomere. Transient expression of the I-SceI endonuclease results in terminal deletions involving telomeric repeat sequences added directly onto the end of the broken chromosome. The sites of addition of the new telomeres contain short regions of complementarity to telomeric repeat sequences. The most common site of addition is the last A of the ATAA 3' overhang generated by the I-SceI endonuclease, without the loss of a single nucleotide from the end of the chromosome. The next most frequent site involved 5 bp of complementarity, which occurred after the loss of four nucleotides from the end of the chromosome. The new telomeres are generally much shorter than in the parental cell line, and most increase in size with time in culture. These results demonstrate that chromosome healing is a mechanism for repair of chromosome breaks in mammalian cells.
Collapse
Affiliation(s)
- C N Sprung
- Radiation Oncology Research Laboratory, University of California, San Francisco, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA
| | | | | | | |
Collapse
|
239
|
Abstract
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting. In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp. The hDNA was efficiently repaired prior to DNA replication. The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
240
|
Högstrand K, Böhme J. DNA damage caused by etoposide and gamma-irradiation induces gene conversion of the MHC in a mouse non-germline testis cell line. Mutat Res 1999; 423:155-69. [PMID: 10029693 DOI: 10.1016/s0027-5107(98)00239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have explored the effects of gamma-irradiation and etoposide on the gene conversion frequency between the endogenous major histocompatibility complex class II genes Abk and Ebd in a mouse testis cell line of non-germline origin with a polymerase chain reaction assay. Both gamma-rays and etoposide were shown to increase the gene conversion frequency with up to 15-fold compared to untreated cells. Etoposide, which is an agent that stabilise a cleavable complex between DNA and DNA topoisomerase II, shows an increased induction of gene conversion events with increased dose of etoposide. Cells treated with gamma-rays, which induce strand breaks, had an increased gene conversion frequency when they were subjected to low doses of irradiation, but increasing doses of irradiation did not lead to an increase of gene conversion events, which might reflect differences in the repair process depending on the extent and nature of the DNA damage. These results where DNA damage was shown to be able to induce gene conversion of endogenous genes in mouse testis cells suggests that the DNA repair system could be involved in the molecular genetic mechanism that results in gene conversion in higher eukaryotes like mammals.
Collapse
Affiliation(s)
- K Högstrand
- Department of Immunology, The Wenner-Gren Institute, University of Stockholm, S-10691, Stockholm, Sweden.
| | | |
Collapse
|
241
|
Schimenti JC. Mice and the role of unequal recombination in gene-family evolution. Am J Hum Genet 1999; 64:40-5. [PMID: 9915941 PMCID: PMC1377700 DOI: 10.1086/302220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
242
|
Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 1998; 12:3831-42. [PMID: 9869637 PMCID: PMC317271 DOI: 10.1101/gad.12.24.3831] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To directly determine whether recombinational repair of double-strand breaks (DSBs) can occur between heterologous chromosomes and lead to chromosomal rearrangements in mammalian cells, we employed an ES cell system to analyze recombination between repeats on heterologous chromosomes. We found that recombination is induced at least 1000-fold following the introduction of a DSB in one repeat. Most (98%) recombinants repaired the DSB by gene conversion in which a small amount of sequence information was transferred from the unbroken chromosome onto the broken chromosome. The remaining recombinants transferred a larger amount of information, but still no chromosomal aberrations were apparent. Thus, mammalian cells are capable of searching genome-wide for sequences that are suitable for DSB repair. The lack of crossover events that would have led to translocations supports a model in which recombination is coupled to replication.
Collapse
Affiliation(s)
- C Richardson
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021 USA
| | | | | |
Collapse
|
243
|
Terwilliger JD, Weiss KM. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 1998; 9:578-94. [PMID: 9889136 DOI: 10.1016/s0958-1669(98)80135-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the past year, data about the level and nature of linkage disequilibrium between alleles of tightly linked SNPs have started to become available. Furthermore, increasing evidence of allelic heterogeneity at the loci predisposing to complex disease has been observed, which has lead to initial attempts to develop methods of linkage disequilibrium detection allowing for this difficulty. It has also become more obvious that we will need to think carefully about the types of populations we need to analyze in an attempt to identify these elusive genes, and it is becoming clear that we need to carefully re-evaluate the prognosis of the current paradigm with regard to its robustness to the types of problems that are likely to exist.
Collapse
Affiliation(s)
- J D Terwilliger
- Columbia University Department of Psychiatry Columbia and Genome Center 60, Haven Avenue #15-C New York NY 10032 USA. joseph.
| | | |
Collapse
|
244
|
Chen W, Jinks-Robertson S. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol 1998; 18:6525-37. [PMID: 9774668 PMCID: PMC109238 DOI: 10.1128/mcb.18.11.6525] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences in Saccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.
Collapse
Affiliation(s)
- W Chen
- Graduate Program in Genetics and Molecular Biology and Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
245
|
Nickoloff JA, Spirio LN, Reynolds RJ. A comparison of calcium phosphate coprecipitation and electroporation. Implications for studies on the genetic effects of DNA damage. Mol Biotechnol 1998; 10:93-101. [PMID: 9819809 DOI: 10.1007/bf02760857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plasmid-based transfection assays provide a rapid means to measure homologous and nonhomologous recombination in mammalian cells. Often it is of interest to examine the stimulation of recombination by DNA damage induced by radiation, genotoxic chemicals, or nucleases. Transfection is frequently performed by using calcium phosphate coprecipitation (CPP), because this method is well suited for handling large sample sets, and it does not require expensive reagents or equipment. Alternative transfection methods include lipofection, microinjection, and electroporation. Since DNA strand breaks are known to stimulate both homologous and nonhomologous recombination, the induction of nonspecific damage during transfection would increase background recombination levels and thereby reduce the sensitivity of assays designed to detect the stimulation of recombination by experimentally induced DNA damage. In this article, we compare the stimulatory effects of nuclease-induced double-strand breaks (DSBs) on homologous and nonhomologous recombination for molecules transfected by CPP and by electroporation. Although electroporation yielded fewer transfectants, both nonhomologous and homologous recombination were stimulated by nuclease-induced DSBs to a greater degree than with CPP. Ionizing radiation is an effective agent for inducing DNA strand breaks, but previous studies using CPP generally showed little or no stimulation of homologous recombination among plasmids damaged with ionizing radiation. By contrast, we found clear dose-dependent enhancement of recombination with irradiated plasmids transfected using electroporation. Thus, electroporation provides a higher signal-to-noise ratio for transfection-based studies of damage-induced recombination, possibly reflecting less nonspecific damage to plasmid DNA during transfection of mammalian cells.
Collapse
Affiliation(s)
- J A Nickoloff
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque 87131, USA.
| | | | | |
Collapse
|
246
|
Donoho G, Jasin M, Berg P. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 1998; 18:4070-8. [PMID: 9632791 PMCID: PMC108991 DOI: 10.1128/mcb.18.7.4070] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1998] [Accepted: 04/28/1998] [Indexed: 02/07/2023] Open
Abstract
To investigate the effects of in vivo genomic DNA double-strand breaks on the efficiency and mechanisms of gene targeting in mouse embryonic stem cells, we have used a series of insertion and replacement vectors carrying two, one, or no genomic sites for the rare-cutting endonuclease I-SceI. These vectors were introduced into the hypoxanthine phosphoribosyltransferase (hprt) gene to produce substrates for gene-targeting (plasmid-to-chromosome) or intrachromosomal (direct repeat) homologous recombination. Recombination at the hprt locus is markedly increased following transfection with an I-SceI expression plasmid and a homologous donor plasmid (if needed). The frequency of gene targeting in clones with an I-SceI site attains a value of 1%, 5,000-fold higher than that in clones with no I-SceI site. The use of silent restriction site polymorphisms indicates that the frequencies with which donor plasmid sequences replace the target chromosomal sequences decrease with distance from the genomic break site. The frequency of intrachromosomal recombination reaches a value of 3.1%, 120-fold higher than background spontaneous recombination. Because palindromic insertions were used as polymorphic markers, a significant number of recombinants exhibit distinct genotypic sectoring among daughter cells from a single clone, suggesting the existence of heteroduplex DNA in the original recombination product.
Collapse
Affiliation(s)
- G Donoho
- Department of Biochemistry, Beckman Center for Molecular and Genetic Medicine, Stanford University Medical School, Stanford, California 94305, USA
| | | | | |
Collapse
|
247
|
Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 1998; 95:5172-7. [PMID: 9560248 PMCID: PMC20233 DOI: 10.1073/pnas.95.9.5172] [Citation(s) in RCA: 489] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammalian cells have been presumed to repair potentially lethal chromosomal double-strand breaks (DSBs) in large part by processes that do not require homology to the break site. This contrasts with Saccharomyces cerevisiae where the major DSB repair pathway is homologous recombination. Recently, it has been determined that DSBs in genomic DNA in mammalian cells can stimulate homologous recombination as much as 3 or 4 orders of magnitude, suggesting that homology-directed repair may play an important role in the repair of chromosomal breaks. To determine whether mammalian cells use recombinational repair at a significant level, we have analyzed the spectrum of repair events at a defined chromosomal break by using direct physical analysis of repair products. When an endonuclease-generated DSB is introduced into one of two direct repeats, homologous repair is found to account for 30-50% of observed repair events. Both noncrossover and deletional homologous repair products are detected, at approximately a 1:3 ratio. These results demonstrate the importance of homologous recombination in the repair of DSBs in mammalian cells. In the remaining observed repair events, DSBs are repaired by nonhomologous processes. The nonhomologous repair events generally result in small deletions or insertions at the break site, although a small fraction of events result in larger chromosomal rearrangements. Interestingly, in two insertions, GT repeats were integrated at one of the broken chromosome ends, suggesting that DSB repair can contribute to the spread of microsatellite sequences in mammalian genomes.
Collapse
Affiliation(s)
- F Liang
- Cell Biology Program, Sloan-Kettering Institute and Cornell University Graduate School of Medical Sciences, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|