201
|
Ran C, Hu J, Liu W, Liu Z, He S, Dan BCT, Diem NN, Ooi EL, Zhou Z. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model. J Nutr 2016; 146:1132-40. [PMID: 27075912 DOI: 10.3945/jn.115.229377] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Essential oils (EOs) are commonly used as animal feed additives. Information is lacking on the mechanisms driving the beneficial effects of EOs in animals, especially the role played by the intestinal microbiota of the host. OBJECTIVE The purpose of this study was to clarify the relative contribution of direct effects of EOs on the physiology and immune system of tilapia and indirect effects mediated by the intestinal microbiota by using a germ-free zebrafish model. METHODS Juvenile hybrid tilapia were fed a control diet or 1 of 4 treatment diets containing 60-800 mg Next Enhance 150 (NE) (an EO product containing equal levels of thymol and carvacrol)/kg for 6 wk. The key humoral and cellular innate immune parameters were evaluated after the feeding period. In another experiment, the gut microbiota of tilapia fed a control or an NE diet (200 mg/kg) for 2 wk were transferred to 3-d postfertilization (dpf) germ-free (GF) zebrafish, and the expression of genes involved in innate immunity and tight junctions was evaluated in zebrafish at 6 dpf. Lastly, NE was directly applied to 3-dpf GF zebrafish at 3 doses ranging from 0.2 to 20 mg/L, and the direct effect of NE on zebrafish was evaluated after 1 and 3 d. RESULTS NE supplementation at 200 mg/kg enhanced phagocytosis activity of head kidney macrophages (×1.36) (P < 0.05) and plasma lysozyme activity (×1.69) of tilapia compared with the control (P < 0.001), indicating an immunostimulatory effect. Compared with those colonized with control microbiota, GF zebrafish colonized with NE microbiota showed attenuated induction of immune response marker genes serum amyloid a (Saa; ×0.62), interleukin 1β (Il1β; ×0.29), and interleukin 8 (Il8; ×0.62) (P < 0.05). NE treatment of GF zebrafish at 2 and 20 mg/L for 1 d upregulated the expression of Il1β (×2.44) and Claudin1 (×1.38), respectively (P < 0.05), whereas at day 3 the expression of Occludin2 was higher (×3.30) in the 0.2-mg NE/L group compared with the GF control (P < 0.05). CONCLUSION NE may affect the immunity of tilapia through a combination of factors, i.e., primarily through a direct effect on host tissue (immune-stimulating) but also an indirect effect mediated by microbial changes (immune-relieving).
Collapse
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Hu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenshu Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural, Science, Nanchang, Jiangxi, China; and
| | - Zhi Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suxu He
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bui Chau Truc Dan
- Novus Aqua Research Center, Novus International, Inc., St. Charles, MO
| | - Nguyen Ngoc Diem
- Novus Aqua Research Center, Novus International, Inc., St. Charles, MO
| | - Ei Lin Ooi
- Novus Aqua Research Center, Novus International, Inc., St. Charles, MO
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China;
| |
Collapse
|
202
|
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016; 8:39. [PMID: 27074706 PMCID: PMC4831151 DOI: 10.1186/s13073-016-0294-z] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.
Collapse
Affiliation(s)
- Amy Langdon
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA
- Clinical Research Training Center, Washington University School of Medicine, Campus Box 8051, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Nathan Crook
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Ave, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences, Washington University School of Medicine, Campus Box 8510, 4515 McKinley Research Building, St. Louis, MO, 63108, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Ave, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in Saint Louis, Campus Box 1097, 1 Brookings Drive, Saint Louis, MO, 63130, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
203
|
Ponziani FR, Scaldaferri F, Petito V, Paroni Sterbini F, Pecere S, Lopetuso LR, Palladini A, Gerardi V, Masucci L, Pompili M, Cammarota G, Sanguinetti M, Gasbarrini A. The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Dig Dis 2016; 34:269-78. [PMID: 27027301 DOI: 10.1159/000443361] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibiotics are mainly used in clinical practice for their activity against pathogens, but they also alter the composition of commensal gut microbial community. Rifaximin is a non-absorbable antibiotic with additional effects on the gut microbiota about which very little is known. It is still not clear to what extent rifaximin can be able to modulate gut microbiota composition and diversity in different clinical settings. Studies based on culture-dependent techniques revealed that rifaximin treatment promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli. Accordingly, our metagenomic analysis carried out on patients with different gastrointestinal and liver diseases highlighted a significant increase in Lactobacilli after rifaximin treatment, persisting in the short time period. This result was independent of the disease background and was not accompanied by a significant alteration of the overall gut microbial ecology. This suggests that rifaximin can exert important eubiotic effects independently of the original disease, producing a favorable gut microbiota perturbation without changing its overall composition and diversity.
Collapse
|
204
|
Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep 2016; 6:23214. [PMID: 26983596 PMCID: PMC4794715 DOI: 10.1038/srep23214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/29/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus.
Collapse
|
205
|
Greer R, Dong X, Morgun A, Shulzhenko N. Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes 2016; 7:126-35. [PMID: 26979110 PMCID: PMC4856449 DOI: 10.1080/19490976.2015.1128625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.
Collapse
Affiliation(s)
- Renee Greer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
206
|
Lundberg R, Toft MF, August B, Hansen AK, Hansen CHF. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes 2016; 7:68-74. [PMID: 26744774 PMCID: PMC4856451 DOI: 10.1080/19490976.2015.1127463] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently investigated the applicability of antibiotic-treated recipient mice for transfer of different gut microbiota profiles. With this addendum we elaborate on perspectives and limitations of using antibiotics as an alternative to germ-free (GF) technology in microbial transplantation studies, and we speculate on the housing effect. It is possible to transfer host phenotypes via fecal transplantation to antibiotic-treated animals, but problems with reproducibility, baseline values, and antibiotic resistance genes should be considered. GF animals maintained in isolators still seem to be the best controlled models for long-term microbial transplantation, but antibiotic-treated recipients are also commonly utilized. We identify a need for systematic experiments investigating the stability of microbial transplantations by addressing 1) the recipient status as either GF, antibiotic-treated or specific pathogen free and 2) different levels of protected housing systems. In addition, the developmental effect of microbes on host physiological functions should be evaluated in the different scenarios.
Collapse
Affiliation(s)
- Randi Lundberg
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark,Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Martin F. Toft
- Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Benjamin August
- Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Axel K. Hansen
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Camilla H. F. Hansen
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
207
|
|
208
|
McDermott FD, Folan DMA, Winter DC, Folan MA, Baird AW. Gnotobiotic Human Colon Ex Vivo. Gastroenterology Res 2015; 8:247-252. [PMID: 27785304 PMCID: PMC5051042 DOI: 10.14740/gr675w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/17/2023] Open
Abstract
Background A novel emulsion with efficacy as an agent for eliminating biofilms was selected. The aim of this study was to examine efficacy and effect of a formulation of ML:8 against commensal bacteria harvested from ex vivo human colonic tissues. Methods Mucosal sheets, obtained at the time of surgery, were exposed for 2 minutes to one of four solutions: Krebs-Hensleit (KH) solution, saline (NaCl; 0.9%), povidone iodine (1%), or ML:8 (2%); n = 4. Lumenal surfaces were swabbed for culture under aerobic or anaerobic conditions. Following treatment, each sheet was mounted in Ussing chambers and voltage clamped. Tissues were challenged with carbachol. Permeability coefficient (Papp) was determined using mannitol fluxes. At the end of each experiment, tissues were examined histologically. Results Similar colony forming units grew in aerobic and anaerobic conditions in both control and NaCl treated tissues. Iodine reduced and ML:8 virtually abolished viable bacteria. Basal electrophysiological parameters were not different between treatments. Transepithelial electrical resistance values did not differ between groups. All tissues responded to carbachol, although this was attenuated in iodine treated tissue. Papp values were slightly elevated in all treated tissues but this did not reach significance. Histopathological assessment revealed no overt damage to tissues. Conclusion Brief exposure to ML:8 reduced culturable bacterial burden from human intestinal tissues harvested at the time of surgical resection. Such gnotobiotic tissues retain structural and functional integrity. This is a novel approach to reduce bacterial burden.
Collapse
Affiliation(s)
- Frank D McDermott
- UCD School of Veterinary Medicine & Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; These authors contributed equally to the study
| | - David M A Folan
- UCD School of Veterinary Medicine & Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; These authors contributed equally to the study
| | - Des C Winter
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Michael A Folan
- UCD School of Veterinary Medicine & Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan W Baird
- UCD School of Veterinary Medicine & Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
209
|
Faria MA. Glyphosate, neurological diseases - and the scientific method. Surg Neurol Int 2015; 6:132. [PMID: 26322242 PMCID: PMC4538578 DOI: 10.4103/2152-7806.162550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- Miguel A Faria
- Clinical Professor of Neurosurgery (ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine; President, www.haciendapub.com , Macon, Georgia, USA
| |
Collapse
|
210
|
Dong X, Yambartsev A, Ramsey SA, Thomas LD, Shulzhenko N, Morgun A. Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists. Bioinform Biol Insights 2015; 9:61-74. [PMID: 25983554 PMCID: PMC4415676 DOI: 10.4137/bbi.s12467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
Omics technologies enable unbiased investigation of biological systems through massively parallel sequence acquisition or molecular measurements, bringing the life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to transform these data into biological knowledge, for example, how to use these data to answer questions such as: Which functional pathways are involved in cell differentiation? Which genes should we target to stop cancer? Network analysis is a powerful and general approach to solve this problem consisting of two fundamental stages, network reconstruction, and network interrogation. Here we provide an overview of network analysis including a step-by-step guide on how to perform and use this approach to investigate a biological question. In this guide, we also include the software packages that we and others employ for each of the steps of a network analysis workflow.
Collapse
Affiliation(s)
- Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Anatoly Yambartsev
- Department of Statistics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Stephen A Ramsey
- School of Electrical Engineering and Computer Science, Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA. ; College of Veterinary Medicine, Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Lina D Thomas
- Department of Statistics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|