201
|
Cheng Y, Liu J, Zhang H, Wang J, Zhao Y, Geng W. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut. PLoS One 2015; 10:e0122072. [PMID: 25836368 PMCID: PMC4383543 DOI: 10.1371/journal.pone.0122072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. METHODOLOGY/PRINCIPAL FINDINGS In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. CONCLUSIONS/SIGNIFICANCE The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.
Collapse
Affiliation(s)
- Yunqing Cheng
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| | - Huidi Zhang
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| | - Ju Wang
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| | - Yixin Zhao
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| | - Wanting Geng
- College of Life Sciences, Jilin Normal University, Siping, Jilin Province 136000, China
| |
Collapse
|
202
|
Baute GJ, Kane NC, Grassa CJ, Lai Z, Rieseberg LH. Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as post-domestication introgression with wild relatives. THE NEW PHYTOLOGIST 2015; 206:830-8. [PMID: 25641359 DOI: 10.1111/nph.13255] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/24/2014] [Indexed: 05/22/2023]
Abstract
The development of modern crops typically involves both selection and hybridization, but to date most studies have focused on the former. In the present study, we explore how both processes, and their interactions, have molded the genome of the cultivated sunflower (Helianthus annuus), a globally important oilseed. To identify genes targeted by selection during the domestication and improvement of sunflower, and to detect post-domestication hybridization with wild species, we analyzed transcriptome sequences of 80 genotypes, including wild, landrace, and modern lines of H. annuus, as well as two cross-compatible wild relatives, Helianthus argophyllus and Helianthus petiolaris. Outlier analyses identified 122 and 15 candidate genes associated with domestication and improvement, respectively. As in several previous studies, genes putatively involved in oil biosynthesis were the most extreme outliers. Additionally, several promising associations were observed with previously mapped quantitative trait loci (QTLs), such as branching. Admixture analyses revealed that all the modern cultivar genomes we examined contained one or more introgressions from wild populations, with every chromosome having evidence of introgression in at least one modern line. Cumulatively, introgressions cover c. 10% of the cultivated sunflower genome. Surprisingly, introgressions do not avoid candidate domestication genes, probably because of the reintroduction of branching.
Collapse
Affiliation(s)
- Gregory J Baute
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
203
|
Krämer U. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 2015; 4:e06100. [PMID: 25807084 PMCID: PMC4373673 DOI: 10.7554/elife.06100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant.
Collapse
Affiliation(s)
- Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
204
|
Leung WY, Marschall T, Paudel Y, Falquet L, Mei H, Schönhuth A, Maoz Moss TY. SV-AUTOPILOT: optimized, automated construction of structural variation discovery and benchmarking pipelines. BMC Genomics 2015; 16:238. [PMID: 25887570 PMCID: PMC4520269 DOI: 10.1186/s12864-015-1376-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many tools exist to predict structural variants (SVs), utilizing a variety of algorithms. However, they have largely been developed and tested on human germline or somatic (e.g. cancer) variation. It seems appropriate to exploit this wealth of technology available for humans also for other species. Objectives of this work included: a) Creating an automated, standardized pipeline for SV prediction. b) Identifying the best tool(s) for SV prediction through benchmarking. c) Providing a statistically sound method for merging SV calls. RESULTS The SV-AUTOPILOT meta-tool platform is an automated pipeline for standardization of SV prediction and SV tool development in paired-end next-generation sequencing (NGS) analysis. SV-AUTOPILOT comes in the form of a virtual machine, which includes all datasets, tools and algorithms presented here. The virtual machine easily allows one to add, replace and update genomes, SV callers and post-processing routines and therefore provides an easy, out-of-the-box environment for complex SV discovery tasks. SV-AUTOPILOT was used to make a direct comparison between 7 popular SV tools on the Arabidopsis thaliana genome using the Landsberg (Ler) ecotype as a standardized dataset. Recall and precision measurements suggest that Pindel and Clever were the most adaptable to this dataset across all size ranges while Delly performed well for SVs larger than 250 nucleotides. A novel, statistically-sound merging process, which can control the false discovery rate, reduced the false positive rate on the Arabidopsis benchmark dataset used here by >60%. CONCLUSION SV-AUTOPILOT provides a meta-tool platform for future SV tool development and the benchmarking of tools on other genomes using a standardized pipeline. It optimizes detection of SVs in non-human genomes using statistically robust merging. The benchmarking in this study has demonstrated the power of 7 different SV tools for analyzing different size classes and types of structural variants. The optional merge feature enriches the call set and reduces false positives providing added benefit to researchers planning to validate SVs. SV-AUTOPILOT is a powerful, new meta-tool for biologists as well as SV tool developers.
Collapse
Affiliation(s)
- Wai Yi Leung
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tobias Marschall
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany. .,Max Planck Institute for Informatics, Saarbrücken, Germany. .,Centrum Wiskunde and Informatica, Amsterdam, The Netherlands.
| | - Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands.
| | - Laurent Falquet
- University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland.
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
205
|
Zhou L, Wang SB, Jian J, Geng QC, Wen J, Song Q, Wu Z, Li GJ, Liu YQ, Dunwell JM, Zhang J, Feng JY, Niu Y, Zhang L, Ren WL, Zhang YM. Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci Rep 2015; 5:9350. [PMID: 25797785 PMCID: PMC4369735 DOI: 10.1038/srep09350] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/02/2015] [Indexed: 12/02/2022] Open
Abstract
Flowering time and seed size are traits related to domestication. However, identification of domestication-related loci/genes of controlling the traits in soybean is rarely reported. In this study, we identified a total of 48 domestication-related loci based on RAD-seq genotyping of a natural population comprising 286 accessions. Among these, four on chromosome 12 and additional two on chromosomes 11 and 15 were associated with flowering time, and four on chromosomes 11 and 16 were associated with seed size. Of the five genes associated with flowering time and the three genes associated with seed size, three genes Glyma11g18720, Glyma11g15480 and Glyma15g35080 were homologous to Arabidopsis genes, additional five genes were found for the first time to be associated with these two traits. Glyma11g18720 and Glyma05g28130 were co-expressed with five genes homologous to flowering time genes in Arabidopsis, and Glyma11g15480 was co-expressed with 24 genes homologous to seed development genes in Arabidopsis. This study indicates that integration of population divergence analysis, genome-wide association study and expression analysis is an efficient approach to identify candidate domestication-related genes.
Collapse
Affiliation(s)
- Ling Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shi-Bo Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Qing-Chun Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA
| | | | - Guang-Jun Li
- College of Life Science, Linyi University, Linyi 276005, China
| | - Yu-Qin Liu
- Crop Research Institute, Linyi Academy of Agricultural Sciences, Linyi 276012, China
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
| | - Jin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ying Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Long Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
206
|
Abstract
Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60 percent) could have more various symbionts than cultivated chickpea (80 percent). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.
Collapse
|
207
|
Chen YH, Gols R, Benrey B. Crop domestication and its impact on naturally selected trophic interactions. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:35-58. [PMID: 25341108 DOI: 10.1146/annurev-ento-010814-020601] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Crop domestication is the process of artificially selecting plants to increase their suitability to human requirements: taste, yield, storage, and cultivation practices. There is increasing evidence that crop domestication can profoundly alter interactions among plants, herbivores, and their natural enemies. Overall, little is known about how these interactions are affected by domestication in the geographical ranges where these crops originate, where they are sympatric with the ancestral plant and share the associated arthropod community. In general, domestication consistently has reduced chemical resistance against herbivorous insects, improving herbivore and natural enemy performance on crop plants. More studies are needed to understand how changes in morphology and resistance-related traits arising from domestication may interact with environmental variation to affect species interactions across multiple scales in agroecosystems and natural ecosystems.
Collapse
Affiliation(s)
- Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, Vermont 05405;
| | | | | |
Collapse
|
208
|
Dong Y, Wang YZ. Seed shattering: from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:476. [PMID: 26157453 PMCID: PMC4478375 DOI: 10.3389/fpls.2015.00476] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the genetic contributors that are involved in the complex regulatory network in the establishment of abscission cell identity. We summarize the recent burgeoning progress in the field of genetic regulation of pod dehiscence and fruit shedding, focusing mainly on the model species A. thaliana with its close relatives and the fleshy fruit species tomato, as well as the genetic basis responsible for the parallel loss of seed shattering in domesticated crops. This review shows how these individual genes are co-opted in the developmental process of the tissues that guarantee seed shattering. Research into the genetic mechanism underlying seed shattering provides a premier prerequisite for the future breeding program for harvest in crops.
Collapse
Affiliation(s)
| | - Yin-Zheng Wang
- *Correspondence: Yin-Zheng Wang, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China,
| |
Collapse
|
209
|
Wilde HD, Gandhi KJK, Colson G. State of the science and challenges of breeding landscape plants with ecological function. HORTICULTURE RESEARCH 2015; 2:14069. [PMID: 26504560 PMCID: PMC4596282 DOI: 10.1038/hortres.2014.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 05/15/2023]
Abstract
Exotic plants dominate esthetically-managed landscapes, which cover 30-40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity.
Collapse
Affiliation(s)
- H Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA 30602, USA
| | - Kamal J K Gandhi
- Daniel B Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Gregory Colson
- Department of Agricultural and Applied Economics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
210
|
Bo K, Ma Z, Chen J, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:25-39. [PMID: 25358412 DOI: 10.1007/s00122-014-2410-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/01/2014] [Indexed: 05/02/2023]
Abstract
Comparative genetic mapping revealed the origin of Xishuangbanna cucumber through diversification selection after domestication. QTL mapping provided insights into the genetic basis of traits under diversification selection during crop evolution. The Xishuangbanna cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan (XIS), is a semi-wild landrace from the tropical southwest China with some unique traits that are very useful for cucumber breeding, such as tolerance to low light, large fruit size, heavy fruit weight, and orange flesh color in mature fruits. In this study, using 124 recombinant inbred lines (RILs) derived from the cross of the XIS cucumber with a cultivated cucumber inbred line, we developed a linkage map with 269 microsatellite (or simple sequence repeat) markers which covered 705.9 cM in seven linkage groups. Comparative analysis of orders of common marker loci or marker-anchored draft genome scaffolds among the wild (C. sativus var. hardwickii), semi-wild, and cultivated cucumber genetic maps revealed that the XIS cucumber shares major chromosomal rearrangements in chromosomes 4, 5, and 7 between the wild and cultivated cucumbers suggesting that the XIS cucumber originated through diversifying selection after cucumber domestication. Several XIS-specific minor structural changes were identified in chromosomes 1 and 6. QTL mapping with the 124 RILs in four environments identified 13 QTLs for domestication and diversifying selection-related traits including 2 for first female flowering time (fft1.1, fft6.1), 5 for mature fruit length (fl1.1, fl3.1, fl4.1, fl6.1, and fl7.1), 3 for fruit diameter (fd1.1, fd4.1, and fd6.1), and 3 for fruit weight (fw2.1, fw4.1, and fw6.1). Six of the 12 QTLs were consistently detected in all four environments. Among the 13 QTLs, fft1.1, fl1.1, fl3.1, fl7.1, fd4.1, and fw6.1 were major-effect QTLs for respective traits with each explaining at least 10 % of the observed phenotypic variations. Results from this study provide insights into the cytological and genetic basis of crop evolution leading to the XIS cucumber. The molecular markers associated with the QTLs should be useful in exploring the XIS cucumber genetic resources for cucumber breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | |
Collapse
|
211
|
Hu G, Koh J, Yoo MJ, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). PLANTA 2014; 240:1237-1251. [PMID: 25156487 DOI: 10.1007/s00425-014-2146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | |
Collapse
|
212
|
Dolferus R. To grow or not to grow: a stressful decision for plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:247-261. [PMID: 25443851 DOI: 10.1016/j.plantsci.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined by growth and developmental processes which are controlled by environmental signals throughout the life cycle of the plant. The use of model systems has allowed us to gradually unravel how plants grow and develop, but our understanding of the flexibility and opportunistic nature of plant development and its capacity to adapt growth to environmental cues is still evolving. There is genetic variability for the capacity to maintain yield and productivity under abiotic stress conditions in crop plants such as cereals. Technological progress in various domains has made it increasingly possible to mine that genetic variability and develop a better understanding about the basic mechanism of plant growth and abiotic stress tolerance. The aim of this paper is not to give a detailed account of all current research progress, but instead to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus will be on abiotic stresses that are most often associated with climate change (drought, heat and cold) and those crops that are most important for human nutrition, the cereals.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO, Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
213
|
Larson G, Fuller DQ. The Evolution of Animal Domestication. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-110512-135813] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Greger Larson
- Durham Evolution and Ancient DNA, Department of Archaeology, Durham University, Durham DH1 3LE, United Kingdom;
| | - Dorian Q. Fuller
- Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom
| |
Collapse
|
214
|
Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet 2014; 10:e1004745. [PMID: 25375861 PMCID: PMC4222645 DOI: 10.1371/journal.pgen.1004745] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues.
Collapse
Affiliation(s)
- Zachary H. Lemmon
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Robert Bukowski
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - John F. Doebley
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
215
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
216
|
Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. AMERICAN JOURNAL OF BOTANY 2014; 101:1791-800. [PMID: 25326621 DOI: 10.3732/ajb.1400116] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genetic diversity of our crop plants has been substantially reduced during the process of domestication and breeding. This reduction in diversity necessarily constrains our ability to expand a crop's range of cultivation into environments that are more extreme than those in which it was domesticated, including into "sustainable" agricultural systems with reduced inputs of pesticides, water, and fertilizers. Conversely, the wild progenitors of crop plants typically possess high levels of genetic diversity, which underlie an expanded (relative to domesticates) range of adaptive traits that may be of agricultural relevance, including resistance to pests and pathogens, tolerance to abiotic extremes, and reduced dependence on inputs. Despite their clear potential for crop improvement, wild relatives have rarely been used systematically for crop improvement, and in no cases, have full sets of wild diversity been introgressed into a crop. Instead, most breeding efforts have focused on specific traits and dealt with wild species in a limited and typically ad hoc manner. Although expedient, this approach misses the opportunity to test a large suite of traits and deploy the full potential of crop wild relatives in breeding for the looming challenges of the 21st century. Here we review examples of hybridization in several species, both intentionally produced and naturally occurring, to illustrate the gains that are possible. We start with naturally occurring hybrids, and then examine a range of examples of hybridization in agricultural settings.
Collapse
Affiliation(s)
- Emily Warschefsky
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - R Varma Penmetsa
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University 12200 SW 8th Street, Miami, Florida 33199 USA Kushlan Center for Tropical Science, Fairchild Tropical Botanic Garden 10901 Old Cutler Road, Coral Gables, Florida 33156 USA
| |
Collapse
|
217
|
Figueredo CJ, Casas A, Colunga-GarcíaMarín P, Nassar JM, González-Rodríguez A. Morphological variation, management and domestication of 'maguey alto' (Agave inaequidens) and 'maguey manso' (A. hookeri) in Michoacán, México. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2014; 10:66. [PMID: 25227277 PMCID: PMC4177152 DOI: 10.1186/1746-4269-10-66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/31/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Agave inaequidens and A. hookeri are anciently used species for producing the fermented beverage 'pulque', food and fiber in central Mexico. A. inaequidens is wild and cultivated and A. hookeri only cultivated, A. inaequidens being its putative wild relative. We analysed purposes and mechanisms of artificial selection and phenotypic divergences between wild and managed populations of A. inaequidens and between them and A. hookeri, hypothesizing phenotypic divergence between wild and domesticated populations of A. inaequidens in characters associated to domestication, and that A. hookeri would be phenotypically similar to cultivated A. inaequidens. METHODS We studied five wild and five cultivated populations of A. inaequidens, and three cultivated populations of A. hookeri. We interviewed agave managers documenting mechanisms of artificial selection, and measured 25 morphological characters. Morphological similarity and differentiation among plants and populations were analysed through multivariate methods and ANOVAs. RESULTS People recognized 2-8 variants of A. inaequidens; for cultivation they select young plants collected in wild areas recognized as producing the best quality mescal agaves. Also, they collect seeds of the largest and most vigorous plants, sowing seeds in plant beds and then transplanting the most vigorous plantlets into plantations. Multivariate methods classified separately the wild and cultivated populations of A. inaequidens and these from A. hookeri, mainly because of characters related with plant and teeth size. The cultivated plants of A. inaequidens are significantly bigger with larger teeth than wild plants. A. hookeri are also significatly bigger plants with larger leaves but lower teeth density and size than A. inaequidens. Some cultivated plants of A. inaequidens were classified as A. hookeri, and nearly 10% of A. hookeri as cultivated A. inaequidens. Wild and cultivated populations of A. inaequidens differed in 13 characters, whereas A. hookeri differed in 23 characters with wild populations and only in 6 characters with cultivated populations of A. inaequidens. CONCLUSIONS Divergence between wild and cultivated populations of A. inaequidens reflect artificial selection. A. hookeri is similar to the cultivated A. inaequidens, which supports the hypothesis that A. hookeri could be the extreme of a domestication gradient of a species complex.
Collapse
Affiliation(s)
- Carmen Julia Figueredo
- />Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 27-3 (Santa María de Guido), Morelia, Michoacán 58190 Mexico
| | - Alejandro Casas
- />Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 27-3 (Santa María de Guido), Morelia, Michoacán 58190 Mexico
| | - Patricia Colunga-GarcíaMarín
- />Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán CP 97200 México
| | - Jafet M Nassar
- />Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Carretera Panamericana km 11, Edo, Miranda Venezuela
| | - Antonio González-Rodríguez
- />Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 27-3 (Santa María de Guido), Morelia, Michoacán 58190 Mexico
| |
Collapse
|
218
|
Abstract
A new study reports the genome of common bean (Phaseolus vulgaris) and genome-wide resequencing data from both wild and domesticated accessions. These data confirm that common bean was domesticated at least twice, in Mesoamerica and South America, and also provide a framework to identify genes that contributed to the phenotypic changes associated with domestication.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
219
|
Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. TRENDS IN PLANT SCIENCE 2014; 19:351-60. [PMID: 24398119 DOI: 10.1016/j.tplants.2013.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 12/10/2013] [Indexed: 05/19/2023]
Abstract
'Domestication syndrome' (DS) denotes differences between domesticated plants and their wild progenitors. Crop plants are dynamic entities; hence, not all parameters distinguishing wild progenitors from cultigens resulted from domestication. In this opinion article, we refine the DS concept using agronomic, genetic, and archaeobotanical considerations by distinguishing crucial domestication traits from traits that probably evolved post-domestication in Near Eastern grain crops. We propose that only traits showing a clear domesticated-wild dimorphism represent the pristine domestication episode, whereas traits showing a phenotypic continuum between wild and domesticated gene pools mostly reflect post-domestication diversification. We propose that our approach may apply to other crop types and examine its implications for discussing the timeframe of plant domestication and for modern plant science and breeding.
Collapse
Affiliation(s)
- Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Ruth Pinhasi van-Oss
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Avi Gopher
- Sonia and Marco Nadler Institute of Archaeology, Tel-Aviv University, Ramat Aviv 6997801, Israel
| | - Yehoshua Saranga
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Itai Ofner
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
220
|
Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, Bent AF. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode. PLANT PHYSIOLOGY 2014; 165:630-647. [PMID: 24733883 PMCID: PMC4044848 DOI: 10.1104/pp.114.235952] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/19/2014] [Indexed: 05/18/2023]
Abstract
Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide-sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance.
Collapse
Affiliation(s)
- David E Cook
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Adam M Bayless
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Kai Wang
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Xiaoli Guo
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Qijian Song
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Jiming Jiang
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| | - Andrew F Bent
- Department of Plant Pathology (D.E.C., A.M.B., X.G., A.F.B.) and Department of Horticulture (K.W., J.J.), University of Wisconsin, Madison, Wisconsin 53706; andSoybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705 (Q.S.)
| |
Collapse
|
221
|
Doust AN, Lukens L, Olsen KM, Mauro-Herrera M, Meyer A, Rogers K. Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc Natl Acad Sci U S A 2014; 111:6178-83. [PMID: 24753598 PMCID: PMC4035984 DOI: 10.1073/pnas.1308940110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.
Collapse
Affiliation(s)
- Andrew N. Doust
- Botany Department, Oklahoma State University, Stillwater, OK 74078
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G2W1; and
| | - Kenneth M. Olsen
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Ann Meyer
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G2W1; and
| | - Kimberly Rogers
- Botany Department, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
222
|
Abstract
It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.
Collapse
|
223
|
Establishing the validity of domestication genes using DNA from ancient chickens. Proc Natl Acad Sci U S A 2014; 111:6184-9. [PMID: 24753608 DOI: 10.1073/pnas.1308939110] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (β-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.
Collapse
|
224
|
Kantar MB, Baute GJ, Bock DG, Rieseberg LH. Genomic variation in Helianthus: learning from the past and looking to the future. Brief Funct Genomics 2014; 13:328-40. [DOI: 10.1093/bfgp/elu004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
225
|
Rensing SA. Gene duplication as a driver of plant morphogenetic evolution. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:43-8. [PMID: 24507493 DOI: 10.1016/j.pbi.2013.11.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 05/19/2023]
Abstract
Most duplicated genes (paralogs) are quickly erased during evolution, and only some are retained. Yet, gene and genome duplications are connected to the evolution of genetic and, in turn, morphological complexity. Plants are especially prone to experience polyploidizations and to enhance their gene repertoire after such events. Genes encoding proteins involved in transcriptional regulation are of especial interest since they are correlated with the occurrence of genome duplication events and with the rise of plant morphological complexity. Here, I review what we know about paralog retention as a driver for morphogenetic evolution of plants. The main focus is on the evolution of plant genes controlling development (morphogenetic transcription factors).
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| |
Collapse
|
226
|
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 2014; 14:840-52. [PMID: 24240513 DOI: 10.1038/nrg3605] [Citation(s) in RCA: 640] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestication is a good model for the study of evolutionary processes because of the recent evolution of crop species (<12,000 years ago), the key role of selection in their origins, and good archaeological and historical data on their spread and diversification. Recent studies, such as quantitative trait locus mapping, genome-wide association studies and whole-genome resequencing studies, have identified genes that are associated with the initial domestication and subsequent diversification of crops. Together, these studies reveal the functions of genes that are involved in the evolution of crops that are under domestication, the types of mutations that occur during this process and the parallelism of mutations that occur in the same pathways and proteins, as well as the selective forces that are acting on these mutations and that are associated with geographical adaptation of crop species.
Collapse
Affiliation(s)
- Rachel S Meyer
- Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, New York University, New York 10003, USA
| | | |
Collapse
|
227
|
Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 2014; 10:e1004073. [PMID: 24391525 PMCID: PMC3879233 DOI: 10.1371/journal.pgen.1004073] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023] Open
Abstract
The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ∼5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution. Ever since Darwin biologists have recognized that comparative study of crop plants and their wild relatives offers a powerful framework for generating insights into the mechanisms that underlie evolutionary change. Here, we study the domestication process in cotton, Gossypium hirsutum, an allopolyploid species (containing two different genomes) which initially was domesticated approximately 5000 years ago, and which primarily is grown for its single-celled seed fibers. Strong directional selection over the millennia was accompanied by transformation of the short, coarse, and brown fibers of wild plants into the long, strong, and fine white fibers of the modern cotton crop plant. To explore the evolutionary genetics of cotton domestication, we conducted transcriptome profiling of developing cotton fibers from multiple accessions of wild and domesticated cottons. Comparative analysis revealed that the domestication process dramatically rewired the transcriptome, affecting more than 5,000 genes, and with a more evenly balanced usage of the duplicated copies arising from genome doubling. We identify many different biological processes that were involved in this transformation, including those leading to a prolongation of fiber elongation and a reallocation of resources toward increased fiber growth in modern forms. The data provide a rich resource for future functional analyses targeting crop improvement and evolutionary objectives.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
228
|
Venglat P, Xiang D, Wang E, Datla R. Genomics of seed development: Challenges and opportunities for genetic improvement of seed traits in crop plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
229
|
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:531-51. [PMID: 24274033 DOI: 10.1146/annurev-arplant-050213-035715] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencing-based genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs.
Collapse
Affiliation(s)
- Xuehui Huang
- National Center for Gene Research, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China; ,
| | | |
Collapse
|
230
|
Dong Y, Yang X, Liu J, Wang BH, Liu BL, Wang YZ. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 2014; 5:3352. [PMID: 24549030 DOI: 10.1038/ncomms4352] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/30/2014] [Indexed: 01/20/2023] Open
Abstract
Loss of seed dispersal is a key agronomical trait targeted by ancient human selection and has been regarded as a milestone of crop domestication. In this study, in the legume crop soybean Glycine max (L.) Merr. which provides vegetable oils and proteins for humans, we show that the key cellular feature of the shattering-resistant trait lies in the excessively lignified fibre cap cells (FCC) with the abscission layer unchanged in the pod ventral suture. We demonstrate that a NAC (NAM, ATAF1/2 and CUC2) gene shattering1-5 (SHAT1-5) functionally activates secondary wall biosynthesis and promotes the significant thickening of FCC secondary walls by expression at 15-fold the level of the wild allele, which is attributed to functional disruption of the upstream repressor. We show that strong artificial selection of SHAT1-5 has caused a severe selective sweep across ~ 116 kb on chromosome 16. This locus and regulation mechanism could be applicable to legume crop improvement.
Collapse
Affiliation(s)
- Yang Dong
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Liu
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Han Wang
- 1] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Ling Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
231
|
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. TRENDS IN PLANT SCIENCE 2013; 18:704-14. [PMID: 24035234 DOI: 10.1016/j.tplants.2013.08.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 05/21/2023]
Abstract
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | |
Collapse
|
232
|
The spectrum of mutations controlling complex traits and the genetics of fitness in plants. Curr Opin Genet Dev 2013; 23:665-71. [DOI: 10.1016/j.gde.2013.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
|
233
|
The domestication and evolutionary ecology of apples. Trends Genet 2013; 30:57-65. [PMID: 24290193 DOI: 10.1016/j.tig.2013.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
Abstract
The cultivated apple is a major fruit crop in temperate zones. Its wild relatives, distributed across temperate Eurasia and growing in diverse habitats, represent potentially useful sources of diversity for apple breeding. We review here the most recent findings on the genetics and ecology of apple domestication and its impact on wild apples. Genetic analyses have revealed a Central Asian origin for cultivated apple, together with an unexpectedly large secondary contribution from the European crabapple. Wild apple species display strong population structures and high levels of introgression from domesticated apple, and this may threaten their genetic integrity. Recent research has revealed a major role of hybridization in the domestication of the cultivated apple and has highlighted the value of apple as an ideal model for unraveling adaptive diversification processes in perennial fruit crops. We discuss the implications of this knowledge for apple breeding and for the conservation of wild apples.
Collapse
|
234
|
Rock CD. Trans-acting small interfering RNA4: key to nutraceutical synthesis in grape development? TRENDS IN PLANT SCIENCE 2013; 18:601-10. [PMID: 23993483 PMCID: PMC3818397 DOI: 10.1016/j.tplants.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/12/2013] [Accepted: 07/31/2013] [Indexed: 05/19/2023]
Abstract
The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased small interfering RNAs (siRNAs) which probably function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient-signaling regulatory networks has applicability to molecular breeding and the development of strategies for engineering healthier foods.
Collapse
Affiliation(s)
- Christopher D Rock
- Department of Biological Sciences, Texas Tech University (TTU), Lubbock, TX 79409-3131, USA.
| |
Collapse
|
235
|
Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. THE NEW PHYTOLOGIST 2013; 200:570-582. [PMID: 23795774 DOI: 10.1111/nph.12381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 05/27/2023]
Abstract
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jin Koh
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Kara Grupp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|