201
|
Rusetskaya NY, Loginova NY, Pokrovskaya EP, Chesovskikh YS, Titova LE. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. BIOMEDITSINSKAIA KHIMIIA 2023; 69:333-352. [PMID: 38153050 DOI: 10.18097/pbmc20236906333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 μM or 68 μg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 μM or 113 μg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
Collapse
Affiliation(s)
- N Yu Rusetskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - N Yu Loginova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - E P Pokrovskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu S Chesovskikh
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Titova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
202
|
Roberts R, Huckstepp RT. Innate Sleep Apnea in Spontaneously Hypertensive Rats Is Associated With Microvascular Rarefaction and Neuronal Loss in the preBötzinger Complex. Stroke 2023; 54:3141-3152. [PMID: 38011231 PMCID: PMC10769171 DOI: 10.1161/strokeaha.123.044732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Sleep apnea (SA) is a major threat to physical health and carries a significant economic burden. These impacts are worsened by its interaction with, and induction of, its comorbidities. SA holds a bidirectional relationship with hypertension, which drives atherosclerosis/arteriolosclerosis, ultimately culminating in vascular dementia. METHODS To enable a better understanding of these sequelae of events, we investigated innate SA and its effects on cognition in adult-aged spontaneously hypertensive rats, which have a range of cardiovascular disorders: plethysmography and electroencephalographic/electromyographic recordings were used to assess sleep-wake state, breathing parameters, and sleep-disordered breathing; immunocytochemistry was used to assess vascular and neural health; the forced alteration Y maze and Barnes maze were used to assess short- and long-term memories, respectively; and an anesthetized preparation was used to assess baroreflex sensitivity. RESULTS Spontaneously hypertensive rats displayed a higher degree of sleep-disordered breathing, which emanates from poor vascular health leading to a loss of preBötzinger Complex neurons. These rats also display small vessel white matter disease, a form of vascular dementia, which may be exacerbated by the SA-induced neuroinflammation in the hippocampus to worsen the related deficits in both long- and short-term memories. CONCLUSIONS Therefore, we postulate that hypertension induces SA through vascular damage in the respiratory column, culminating in neuronal loss in the inspiratory oscillator. This induction of SA, which, in turn, will independently exacerbate hypertension and neural inflammation, increases the rate of vascular dementia.
Collapse
Affiliation(s)
- Reno Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
203
|
Hayashi T, Lim KRQ, Kovacs A, Mann DL. Recurrent Adrenergic Stress Provokes Persistent Myocarditis in PD-1-Deficient Mice. JACC Basic Transl Sci 2023; 8:1503-1517. [PMID: 38205352 PMCID: PMC10774592 DOI: 10.1016/j.jacbts.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 01/12/2024]
Abstract
It is unclear how the immune system initiates effective tissue repair responses without also simultaneously activating adaptive immune responses to self-antigens released by damaged or necrotic cells. We studied the role of repetitive adrenergic mediated stress on cardiac injury wild-type and programmed death-1-deficient (PD-1-/-) mice treated with 3 intraperitoneal low doses of isoproterenol followed by an intraperitoneal injection of high-dose ISO 7 days later (ISOprimed/ISOinjury). Repetitive adrenergic stress in ISOprimed/ISOinjury PD-1-/- mice resulted in a persistent dysregulated myocardial inflammatory response characterized by the expansion of autoreactive effector CD8+ T cells, increased cardiac hypertrophy, mild left ventricular dysfunction, and increased lethality when compared with ISOprimed/ISOinjury wild-type mice.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Community Medicine and Career Development, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Rowel Q. Lim
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
204
|
Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis 2023; 28:1505-1519. [PMID: 37707713 PMCID: PMC10618387 DOI: 10.1007/s10495-023-01888-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Ganghao Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yiping Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
205
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
206
|
Xiong B, Chen X, Tu J, Han Z, Meng X, Sun H. Actinidia eriantha polysaccharide exerts adjuvant activity by targeting linc-AAM. Int J Biol Macromol 2023; 252:126440. [PMID: 37611690 DOI: 10.1016/j.ijbiomac.2023.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity. linc-AAM has been previously proved to facilitate the expression of immune response genes (IRGs) in AEPS-activated RAW264.7 macrophages. However, its role in mediating adjuvant activity of AEPS remains to be elucidated. In this study, bone marrow-derived macrophages (BMDMs) from wide-type (WT) and linc-AAM knockout C57BL/6J mice treated with AEPS were subjected to transcriptome sequencing and bioinformatic analysis. linc-AAM deficiency inhibited M1 and M2 immune responses in BMDMs induced by AEPS. In mechanisms, AEPS facilitated the expression of IRGs and activated BMDMs through NF-κB-linc-AAM-JAK/STAT axis. Furthermore, linc-AAM knockout inhibited cytokine and chemokine production, immune cell recruitment as well as immune cell migration to draining lymph nodes at peritoneal cavity in mice induced by AEPS. More importantly, linc-AAM deletion reduced the adjuvant activity of APES on antigen-specific cellular and humoral immune responses to ovalbumin in mice. This study has for the first time demonstrated the role of lncRNAs in regulating the adjuvant activity of polysaccharides and its mechanisms. These findings expanded current knowledge on the mechanism of action of adjuvant and provide a new target for the design and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Beibei Xiong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jue Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310058, Zhejiang, China
| | - Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiang Meng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
207
|
Mutoh T, Kikuchi H, Jitsuishi T, Kitajo K, Yamaguchi A. Spatiotemporal expression patterns of ZBP1 in the brain of mouse experimental stroke model. J Chem Neuroanat 2023; 134:102362. [PMID: 37952561 DOI: 10.1016/j.jchemneu.2023.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor, functioning as a critical mediator of inflammation and cell death pathways. Since neuroinflammation could occur in response to damage-associated molecular patterns (DAMPs), ZBP1 might be involved in neuroinflammation after stroke. However, the spatiotemporal expression profile of ZBP1 in the post-stroke brain remains to be elucidated. The aim of this study is to demonstrate the spatiotemporal expression patterns of ZBP1 in the post-stroke brain using a mouse photothrombotic stroke model. Real-time PCR assays showed that ZBP1 is induced on days 3-14 post stroke. ZBP1 immunoreactivity was observed in Iba1-positive microglia/macrophages in peri-infarct regions by immunohistochemistry. ZBP1-positive cells were spread in layers surrounding the infarct core by 7-14 days post stroke. Interestingly, ZBP1 immunoreactivity was also detected in CD206-positive border-associated macrophages (BAMs) in the meninges. Furthermore, ZBP1-expressing cells were positive for antibodies against inflammatory mediators such as Toll-like receptor 4 (TLR4), Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF), and receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Morphological analysis with confocal microscopy showed that the co-localization signals of ZBP1 and its adaptor, TRIF, are increased by glucose oxidase (GOx) treatment, which has been reported to induce mitochondrial DNA (mtDNA) release. These results suggest that ZBP1 is induced in peri-infarct microglia/macrophages and may be involved in DAMPs-mediated neuroinflammation involving mtDNA in the post-infarct brain.
Collapse
Affiliation(s)
- Tohru Mutoh
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Kikuchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Neurosurgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Keiko Kitajo
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
208
|
Bai Q, Sun D, Zeng Y, Zhu J, Zhang C, Zhang X, Chen L, Zhou X, Ye L, Tang Y, Liu Y, Morozova-Roche LA. Effect of Proinflammatory S100A9 Protein on Migration and Proliferation of Microglial Cells. J Mol Neurosci 2023; 73:983-995. [PMID: 37947991 DOI: 10.1007/s12031-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease affecting aging population worldwide. Neuroinflammation became a focus of research as one of the major pathologic processes relating to the disease onset and progression. Proinflammatory S100A9 is the central culprit in the amyloid-neuroinflammatory cascade implicated in AD and other neurodegenerative diseases. We studied the effect of S100A9 on microglial BV-2 cell proliferation and migration. The responses of BV-2 cells to S100A9 stimulation were monitored in real-time using live cell microscopy, transcriptome sequencing, immunofluorescence staining, western blot analysis, and ELISA. We observed that a low dose of S100A9 promotes migration and proliferation of BV-2 cells. However, acute inflammatory condition (i.e., high S100A9 doses) causes diminished cell viability; it is uncovered that S100A9 activates TLR-4 and TLR-7 signaling pathways, leading to TNF-α and IL-6 expression, which affect BV-2 cell migration and proliferation in a concentration-dependent manner. Interestingly, the effects of S100A9 are not only inhibited by TNF-α and IL-6 antibodies. The addition of amyloid-β (Aβ) 1-40 peptide resumes the capacities of BV-2 cells to the level of low S100A9 concentrations. Based on these results, we conclude that in contrast to the beneficial effects of low S100A9 dose, high S100A9 concentration leads to impaired mobility and proliferation of immune cells, reflecting neurotoxicity at acute inflammatory conditions. However, the formation of Aβ plaques may be a natural mechanism that rescues cells from the proinflammatory and cytotoxic effects of S100A9, especially considering that inflammation is one of the primary causes of AD.
Collapse
Affiliation(s)
- Qiao Bai
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jie Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyin Zhang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Li Chen
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Xin Zhou
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Liu Ye
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yong Tang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yonggang Liu
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China.
| | | |
Collapse
|
209
|
Wang S, Wang H, Liu J, Zhang X, Yang Y, Lu C, Cai C, Zhao Y, Liang G, Guo X, Li B, Cao G, Gao P. Expression patterns and functional analysis of porcine lnc-34015. Anim Biotechnol 2023; 34:2251-2261. [PMID: 35714975 DOI: 10.1080/10495398.2022.2085112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in immune regulation in humans and animals. The lnc-34015 was discovered to be critical for the development of muscles, based on the muscle transcriptome of pigs; however, the underlying molecular mechanism requires better understanding. Here, the sequence characteristics of lnc-34015 were analyzed and a competitive endogenous RNA regulatory network of lncRNA was predicted. The developmental expression trend and tissue expression profiles of lnc-34015 were investigated using quantitative polymerase chain reaction. The lnc-34015 sequence is overlapped with introns 11 and 12 of CWF19L1, while CWF19L1, PKD2L1, and CHUK were identified as cis-regulatory genes of lnc-34015. Bioinformatics analyses revealed that lnc-34015 binds to 15 microRNAs (miRNAs), including miR-3646, miR-377-3p, and miR-190b-3p, to regulate downstream gene expression. GO and KEGG enrichment results show that lnc-34015 was mainly involved in cell proliferation, stress response, transcriptional regulation, and alternative splicing. The expression trend of lnc-34015 in muscle was similar to that of target genes and opposite to that of miRNAs. The expression of lnc-34015 was significantly higher in the porcine small intestine and IPEC-J2 cells. Our findings suggest that lnc-34015 regulates CHUK, ZBTB20, and XIAP gene expression by competing with endogenous RNAs to regulate porcine inflammatory responses.
Collapse
Affiliation(s)
- Shu Wang
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Haizhen Wang
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Juan Liu
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiaona Zhang
- Beijing Allwegene Technology Company, Transcriptional Regulation Division, Beijing, China
| | - Yang Yang
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Chang Lu
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Chunbo Cai
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yan Zhao
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Guoming Liang
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiaohong Guo
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Bugao Li
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Guoqing Cao
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Pengfei Gao
- Department of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
210
|
Lei YX, Liu Y, Xing LH, Wu YJ, Wang XY, Meng FH, Lou YN, Ma ZG, Yuan L, Yu SX. The pseudokinase MLKL contributes to host defense against Streptococcus pluranimalium infection by mediating NLRP3 inflammasome activation and extracellular trap formation. Virulence 2023; 14:2258057. [PMID: 37743649 PMCID: PMC10732671 DOI: 10.1080/21505594.2023.2258057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Host innate immunity plays a pivotal role in the early detection and neutralization of invading pathogens. Here, we show that pseudokinase mixed lineage kinase-like protein (MLKL) is required for host defence against Streptococcus pluranimalium infection by enhancing NLRP3 inflammasome activation and extracellular trap formation. Notably, Mlkl deficiency leads to increased mortality, increased bacterial colonization, severe destruction of organ architecture, and elevated inflammatory cell infiltration in murine models of S. pluranimalium pulmonary and systemic infection. In vivo and in vitro data provided evidence that potassium efflux-dependent NLRP3 inflammasome signalling downstream of active MLKL confers host protection against S. pluranimalium infection and initiates bacterial killing and clearance. Moreover, Mlkl deficiency results in defects in extracellular trap-mediated bactericidal activity. In summary, this study revealed that MLKL mediates the host defence response to S. pluranimalium, and suggests that MLKL is a potential drug target for preventing and controlling pathogen infection.
Collapse
Affiliation(s)
- Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, China
| | - Li-Hua Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ya-Nan Lou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhao-Guo Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Yuan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
211
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
212
|
Fyntanidou B, Amaniti A, Soulioti E, Zagalioti SC, Gkarmiri S, Chorti A, Loukipoudi L, Ioannidis A, Dalakakis I, Menni AE, Shrewsbury AD, Kotzampassi K. Probiotics in Postoperative Pain Management. J Pers Med 2023; 13:1645. [PMID: 38138872 PMCID: PMC10745134 DOI: 10.3390/jpm13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative pain is the unpleasant sensory and emotional experience after surgery, its origin being both the inflammatory reaction induced by the surgical trauma on the abdominal wall and the splanchnic pain induced by the activation of nociceptors of the viscera, which are highly sensitive to distension, ischemia, and inflammation. Nowadays, it is well recognized that there is a close relationship between the gut microbiome and pain perception, and that microbiome is highly affected by both anesthesia and surgical manipulation. Thus, efforts to restore the disturbed microbiome via supplementation with beneficial bacteria, namely probiotics, seem to be effective. In this article, the knowledge gained mainly from experimental research on this topic is analyzed, the concluding message being that each probiotic strain works in its own way towards pain relief.
Collapse
Affiliation(s)
- Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Aikaterini Amaniti
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Eleftheria Soulioti
- Second Department of Anesthesiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Sofia-Chrysovalantou Zagalioti
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Ioannis Dalakakis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| |
Collapse
|
213
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
214
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
215
|
Dondelinger Y, Priem D, Huyghe J, Delanghe T, Vandenabeele P, Bertrand MJM. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis 2023; 14:755. [PMID: 37980412 PMCID: PMC10657445 DOI: 10.1038/s41419-023-06284-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Plasma membrane permeabilization (PMP) is a defining feature of regulated necrosis. It allows the extracellular release of damage-associated molecular patterns (DAMPs) that trigger sterile inflammation. The pore forming molecules MLKL and GSDMs drive PMP in necroptosis and pyroptosis, respectively, but the process of PMP remains unclear in many other forms of regulated necrosis. Here, we identified NINJ1 as a crucial regulator of PMP and consequent DAMP release during ferroptosis, parthanatos, H2O2-induced necrosis and secondary necrosis. Importantly, the membrane-permeabilizing function of NINJ1 takes place after the metabolic death of the cells and is independent of the pore-forming molecules MLKL, GSDMD and GSDME. During ferroptosis, NINJ1 acts downstream of lipid peroxidation, which suggested a role for reactive oxygen species (ROS) in NINJ1 activation. Reactive oxygen species were however neither sufficient nor required to trigger NINJ1-dependent PMP. Instead, we found that NINJ1 oligomerization is induced by the swelling of the cell and that its permeabilizing potential still requires an addition, and yet to be discovered, activation mechanism.
Collapse
Affiliation(s)
- Yves Dondelinger
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| | - Dario Priem
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Jon Huyghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Tom Delanghe
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Zwijnaarde-Ghent, Belgium.
| |
Collapse
|
216
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
217
|
Balkrishna A, Sharma S, Gohel V, Kumari A, Rawat M, Maity M, Sinha S, Dev R, Varshney A. Renogrit attenuates Vancomycin-induced nephrotoxicity in human renal spheroids and in Sprague-Dawley rats by regulating kidney injury biomarkers and creatinine/urea clearance. PLoS One 2023; 18:e0293605. [PMID: 37939153 PMCID: PMC10631690 DOI: 10.1371/journal.pone.0293605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Vancomycin, is widely used against methicillin-resistant bacterial infections. However, Vancomycin accumulation causes nephrotoxicity which leads to an impairment in the filtration mechanisms of kidney. Traditional herbal medicines hold potential for treatment of drug-induced nephrotoxicity. Herein, we investigated protective properties of plant-based medicine Renogrit against Vancomycin-induced kidney injury. Phytometabolite analysis of Renogrit was performed by UHPLC. Spheroids formed from human proximal tubular cell (HK-2) were used for in vitro evaluation of Vancomycin-induced alterations in cell viability, P-gp functionality, NAG, KIM-1 levels, and mRNA expression of NGAL and MMP-7. The in vivo efficacy of Renogrit against Vancomycin-induced nephrotoxicity was further evaluated in Sprague-Dawley (SD) rats by measurement of BUN, serum creatinine, and their respective clearances. Moreover, eGFR, kidney-to-body weight ratio, GSH/GSSG ratio, KIM-1, NAG levels and mRNA expression of KIM-1 and osteopontin were also analyzed. Changes in histopathology of kidney and hematological parameters were also observed. Renogrit treatment led to an increase in cell viability, normalization of P-gp functionality, decrease in levels of NAG, KIM-1, and reduction in mRNA expression of NGAL and MMP-7. In Vancomycin-challenged SD rats, Renogrit treatment normalized altered kidney functions, histological, and hematological parameters. Our findings revealed that Renogrit holds a clinico-therapeutic potential for alleviating Vancomycin-associated nephrotoxicity.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Sonam Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Ankita Kumari
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
218
|
Lv J, Zhu X, Xing C, Chen Y, Bian H, Yin H, Gu X, Su L. Stimulator of interferon genes (STING): Key therapeutic targets in ischemia/reperfusion injury. Biomed Pharmacother 2023; 167:115458. [PMID: 37699319 DOI: 10.1016/j.biopha.2023.115458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The Stimulator of Interferon Genes (STING) is predominantly expressed in immune cells, including macrophages, natural killer cells, dendritic cells, and T cells, functioning as a pattern recognition receptor. STING activation upon detecting cytosolic DNA released from damaged cells initiates downstream pathways, leading to the production of inflammatory cytokines such as IFNs, IL-6, and TNF-α. Dysregulated STING activation has been implicated in inflammatory and metabolic diseases. Ischemia/reperfusion injury (I/RI) is common in stroke, acute myocardial infarction, organ transplantation, and surgeries for certain end-stage diseases. Recent studies suggest that STING could be a novel therapeutic target for I/RI treatment. In this review, we provide a concise overview of the cGAS-STING signaling pathway's general functions and summarize STING's role in I/RI across various organs, including the heart, liver, kidney, and lung. Moreover, we explore potential therapeutic approaches for I/RI by targeting STING.
Collapse
Affiliation(s)
- Juan Lv
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuhong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Xiaofeng Gu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Li Su
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
219
|
Peng T, Zhang C, Chen WJ, Zhao XF, Wu WB, Yang WJ, Liang RJ. Pyroptosis: the dawn of a new era in endometrial cancer treatment. Front Oncol 2023; 13:1277639. [PMID: 37965452 PMCID: PMC10642841 DOI: 10.3389/fonc.2023.1277639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Endometrial cancer (EC) is a malignancy of the inner epithelial lining of the uterus. While early-stage EC is often curable through surgery, the management of advanced, recurrent and metastatic EC poses significant challenges and is associated with a poor prognosis. Pyroptosis, an emerging form of programmed cell death, is characterized by the cleavage of gasdermin proteins, inducing the formation of extensive gasdermin pores in the cell membrane and the leakage of interleukin-1β (IL-1β) and interleukin-18 (IL-18), consequently causing cell swelling, lysis and death. It has been found to be implicated in the occurrence and progression of almost all tumors. Recent studies have demonstrated that regulating tumor cells pyroptosis can exploit synergies function with traditional tumor treatments. This paper provides an overview of the research progress made in molecular mechanisms of pyroptosis. It then discusses the role of pyroptosis and its components in initiation and progression of endometrial cancer, emphasizing recent insights into the underlying mechanisms and highlighting unresolved questions. Furthermore, it explores the potential value of pyroptosis in the treatment of endometrial cancer, considering its current application in tumor radiotherapy, chemotherapy, targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Tian Peng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wen-Jun Chen
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Bo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Ji Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruo-Jia Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gynaecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
220
|
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol 2023; 14:1279264. [PMID: 37954583 PMCID: PMC10639160 DOI: 10.3389/fimmu.2023.1279264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease caused by disruptions in the body's immune microenvironment. In the early stages of ALF, Kupffer cells (KCs) become depleted and recruit monocytes derived from the bone marrow or abdomen to replace the depleted macrophages entering the liver. These monocytes differentiate into mature macrophages, which are activated in the immune microenvironment of the liver and polarized to perform various functions. Macrophage polarization can occur in two directions: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. Controlling the ratio and direction of M1 and M2 in ALF can help reduce liver injury. However, the liver damage caused by pyroptosis should not be underestimated, as it is a caspase-dependent form of cell death. Inhibiting pyroptosis has been shown to effectively reduce liver damage induced by ALF. Furthermore, macrophage polarization and pyroptosis share common binding sites, signaling pathways, and outcomes. In the review, we describe the role of macrophage polarization and pyroptosis in the pathogenesis of ALF. Additionally, we preliminarily explore the relationship between macrophage polarization and pyroptosis, as well as their effects on ALF.
Collapse
Affiliation(s)
| | - Shi Ouyang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
221
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
222
|
Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol 2023; 14:1274816. [PMID: 37954602 PMCID: PMC10634307 DOI: 10.3389/fimmu.2023.1274816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle is essential for body physical activity, energy metabolism, and temperature maintenance. It has excellent capabilities to maintain homeostasis and to regenerate after injury, which indispensably relies on muscle stem cells, satellite cells (MuSCs). The quiescence, activation, and differentiation of MuSCs are tightly regulated in homeostatic and regenerating muscles. Among the important regulators are intramuscular macrophages, which are functionally heterogeneous with different subtypes present in a spatiotemporal manner to regulate the balance of different MuSC statuses. During chronic injury and aging, intramuscular macrophages often undergo aberrant activation, which in turn disrupts muscle homeostasis and regenerative repair. Growing evidence suggests that the aberrant activation is mainly triggered by altered muscle microenvironment. The trained immunity that affects myeloid progenitors during hematopoiesis may also contribute. Aged immune system may contribute, in part, to the aging-related sarcopenia and compromised skeletal muscle injury repair. As macrophages are actively involved in the progression of many muscle diseases, manipulating their functional activation has become a promising therapeutic approach, which requires comprehensive knowledge of the cellular and molecular mechanisms underlying the diverse activation. To this end, we discuss here the current knowledge of multifaceted role of macrophages in skeletal muscle homeostasis, injury, and repair.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
223
|
Xie D, Guo H, Li M, Jia L, Zhang H, Liang D, Wu N, Yang Z, Tian Y. Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion. Basic Res Cardiol 2023; 118:44. [PMID: 37814087 DOI: 10.1007/s00395-023-01014-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
The spleen contributes importantly to myocardial ischemia/reperfusion (MI/R) injury. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) recruits inflammasomes, initiating inflammatory responses and mediating tissue injury. We hypothesize that myocardial cell-free DNA (cfDNA) activates the splenic NLRP3 inflammasome during early reperfusion, increases systemic inflammatory response, and exacerbates myocardial infarct. Mice were subjected to 40 min of ischemia followed by 0, 1, 5, or 15 min, or 24 h of reperfusion. Splenic leukocyte adoptive transfer was performed by injecting isolated splenocytes to mice with splenectomy performed prior to left coronary artery occlusion. CY-09 (4 mg/kg) was administered 5 min before reperfusion. During post-ischemic reperfusion, splenic protein levels of NLRP3, cleaved caspase-1, and interleukin-1β (IL-1β) were significantly elevated and peaked (2.1 ± 0.2-, 3.4 ± 0.4-, and 3.2 ± 0.2-fold increase respectively, p < 0.05) within 5 min of reperfusion. In myocardial tissue, NLRP3 was not upregulated until 24 h after reperfusion. Suppression by CY09, a specific NLRP3 inflammasome inhibitor, or deficiency of NLRP3 significantly reduced myocardial infarct size (17.3% ± 4.2% and 33.2% ± 1.8% decrease respectively, p < 0.01). Adoptive transfer of NLRP3-/- splenocytes to WT mice significantly decreased infarct size compared to transfer of WT splenocytes (19.1% ± 2.8% decrease, p < 0.0001). NLRP3 was mainly activated at 5 min after reperfusion in CD11b+ and LY6G- splenocytes, which significantly increased during reperfusion (24.8% ± 0.7% vs.14.3% ± 0.6%, p < 0.0001). The circulating cfDNA level significantly increased in patients undergoing cardiopulmonary bypass (CPB) (43.3 ± 5.3 ng/mL, compared to pre-CPB 23.8 ± 3.5 ng/mL, p < 0.01). Mitochondrial cfDNA (mt-cfDNA) contributed to NLRP3 activation in macrophages (2.1 ± 0.2-fold increase, p < 0.01), which was inhibited by a Toll-like receptor 9(TLR9) inhibitor. The NLRP3 inflammasome in splenic monocytes is activated and mediates the inflammatory response shortly after reperfusion onset, exacerbating MI/R injury in mt-cfDNA/TLR9-dependent fashion. The schema reveals splenic NLRP3 mediates the inflammatory response in macrophages and exacerbates MI/R in a mitochondrial cfDNA/ TLR9-dependent fashion.
Collapse
Affiliation(s)
- Dina Xie
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hanliang Guo
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mingbiao Li
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Liqun Jia
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Naishi Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zequan Yang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
224
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
225
|
da Silva PR, Apolinário NDM, da Silva SÂS, Araruna MEC, Costa TB, e Silva YMSDM, da Silva TG, de Moura RO, dos Santos VL. Anti-Inflammatory Activity of N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide Derivative via sGC-NO/Cytokine Pathway. Pharmaceuticals (Basel) 2023; 16:1415. [PMID: 37895886 PMCID: PMC10610422 DOI: 10.3390/ph16101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Nadjaele de Melo Apolinário
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Simone Ângela Soares da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Maria Elaine Cristina Araruna
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Thássia Borges Costa
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Yvnni M. S. de Medeiros e Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil;
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
226
|
Cassatt DR, Winters TA, PrabhuDas M. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:389-395. [PMID: 37702416 PMCID: PMC10599297 DOI: 10.1667/rade-22-00197.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ionizing radiation causes acute damage and loss of bone marrow and peripheral immune cells that can result in high mortality due to reduced resistance to infections and hemorrhage. Besides these acute effects, tissue damage from radiation can trigger inflammatory responses, leading to progressive and chronic tissue damage by radiation-induced loss of immune cell types that are required for resolving tissue injuries. Understanding the mechanisms involved in radiation-induced immune system injury and repair will provide new insights for developing medical countermeasures that help restore immune homeostasis. For these reasons, The Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID) convened a two-day workshop, along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN). This workshop, titled "Immune Dysfunction from Radiation Exposure," was held virtually on September 9-10, 2020; this Commentary provides a high-level overview of what was discussed at the meeting.
Collapse
Affiliation(s)
- David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
227
|
Fan S, Jiang J, Zhang H, Wang C, Kong S, Zhao T, Meng L, Liu Y, Qin J, Rong X, He Z, He Q, He K, Chen K, Lei L, Hai X, Nie H, Ren C. Identification of histone deacetylase inhibitors as neutrophil recruitment modulators in zebrafish using a chemical library screen. Dis Model Mech 2023; 16:dmm050056. [PMID: 37728477 PMCID: PMC10621070 DOI: 10.1242/dmm.050056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Tissue injury-induced neutrophil recruitment is a prerequisite for the initiation and amplification of inflammatory responses. Although multiple proteases and enzymes involved in post-translational modification (PTM) of proteins regulate leukocyte recruitment, an unbiased functional screen of enzymes regulating inflammatory leukocyte recruitment has yet to be undertaken. Here, using a zebrafish tail fin amputation (TFA) model to screen a chemical library consisting of 295 compounds that target proteases and PTM enzymes, we identified multiple histone deacetylase (HDAC) inhibitors that modulate inflammatory neutrophil recruitment. AR-42, a pan-HDAC inhibitor, was shown to inhibit neutrophil recruitment in three different zebrafish sterile tissue injury models: a TFA model, a copper-induced neuromast damage and mechanical otic vesicle injury (MOVI) model, and a sterile murine peritonitis model. RNA sequencing analysis of AR-42-treated fish embryos revealed downregulation of neutrophil-associated cytokines/chemokines, and exogenous supplementation with recombinant human IL-1β and CXCL8 partially restored the defective neutrophil recruitment in AR-42-treated MOVI model fish embryos. We thus demonstrate that AR-42 non-cell-autonomously modulates neutrophil recruitment by suppressing transcriptional expression of cytokines/chemokines, thereby identifying AR-42 as a promising anti-inflammatory drug for treating sterile tissue injury-associated diseases.
Collapse
Affiliation(s)
- Sijia Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jinlong Jiang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Huan Zhang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Cuihong Wang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shang Kong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yang Liu
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Qin
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiuqin Rong
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenting He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qinke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ketong Chen
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ling Lei
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Hai
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
228
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Integrated Machine Learning and Bioinformatic Analyses Constructed a Network Between Mitochondrial Dysfunction and Immune Microenvironment of Periodontitis. Inflammation 2023; 46:1932-1951. [PMID: 37311930 DOI: 10.1007/s10753-023-01851-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Periodontitis is a prevalent and persistent inflammatory condition that impacts the supporting tissues of the teeth, including the gums and bone. Recent research indicates that mitochondrial dysfunction may be involved in the onset and advancement of periodontitis. The current work sought to reveal the interaction between mitochondrial dysfunction and the immune microenvironment in periodontitis. Public data were acquired from MitoCarta 3.0, Mitomap, and GEO databases. Hub markers were screened out by five integrated machine learning algorithms and verified by laboratory experiments. Single-cell sequencing data were utilized to unravel cell-type specific expression levels of hub genes. An artificial neural network model was constructed to discriminate periodontitis from healthy controls. An unsupervised consensus clustering algorithm revealed mitochondrial dysfunction-related periodontitis subtypes. The immune and mitochondrial characteristics were calculated using CIBERSORTx and ssGSEA algorithms. Two hub mitochondria-related markers (CYP24A1 and HINT3) were identified. Single-cell sequencing data revealed that HINT3 was primarily expressed in dendritic cells, while CYP24A1 was mainly expressed in monocytes. The hub genes based artificial neural network model showed robust diagnostic performance. The unsupervised consensus clustering algorithm revealed two distinct mitochondrial phenotypes. The hub genes exhibited a strong correlation with the immune cell infiltration and mitochondrial respiratory chain complexes. The study identified two hub markers that may serve as potential targets for immunotherapy and provided a novel reference for future investigations into the function of mitochondria in periodontitis.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
229
|
Xu W, Yang Y, Li N, Hua J. Interaction between Mesenchymal Stem Cells and Immune Cells during Bone Injury Repair. Int J Mol Sci 2023; 24:14484. [PMID: 37833933 PMCID: PMC10572976 DOI: 10.3390/ijms241914484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Fractures are the most common large organ trauma in humans. The initial inflammatory response promotes bone healing during the initial post-fracture phase, but chronic and persistent inflammation due to infection or other factors does not contribute to the healing process. The precise mechanisms by which immune cells and their cytokines are regulated in bone healing remain unclear. The use of mesenchymal stem cells (MSCs) for cellular therapy of bone injuries is a novel clinical treatment approach. Bone progenitor MSCs not only differentiate into bone, but also interact with the immune system to promote the healing process. We review in vitro and in vivo studies on the role of the immune system and bone marrow MSCs in bone healing and their interactions. A deeper understanding of this paradigm may provide clues to potential therapeutic targets in the healing process, thereby improving the reliability and safety of clinical applications of MSCs to promote bone healing.
Collapse
Affiliation(s)
| | | | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| |
Collapse
|
230
|
Aguilera SB, McCarthy A, Khalifian S, Lorenc ZP, Goldie K, Chernoff WG. The Role of Calcium Hydroxylapatite (Radiesse) as a Regenerative Aesthetic Treatment: A Narrative Review. Aesthet Surg J 2023; 43:1063-1090. [PMID: 37635437 PMCID: PMC11025388 DOI: 10.1093/asj/sjad173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
For decades, a wide variety of natural and synthetic materials have been used to augment human tissue to improve aesthetic outcomes. Dermal fillers are some of the most widely used aesthetic treatments throughout the body. Initially, the primary function of dermal fillers was to restore depleted volume. As biomaterial research has advanced, however, a variety of biostimulatory fillers have become staples in aesthetic medicine. Such fillers often contain a carrying vehicle and a biostimulatory material that induces de novo synthesis of major structural components of the extracellular matrix. One such filler, Radiesse (Merz Aesthetics, Raleigh, NC), is composed of calcium hydroxylapatite microspheres suspended in a carboxymethylcellulose gel. In addition to immediate volumization, Radiesse treatment results in increases of collagen, elastin, vasculature, proteoglycans, and fibroblast populations via a cell-biomaterial-mediated interaction. When injected, Radiesse acts as a cell scaffold and clinically manifests as immediate restoration of depleted volume, improvements in skin quality and appearance, and regeneration of endogenous extracellular matrices. This narrative review contextualizes Radiesse as a regenerative aesthetic treatment, summarizes its unique use cases, reviews its rheological, material, and regenerative properties, and hypothesizes future combination treatments in the age of regenerative aesthetics. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
| | - Alec McCarthy
- Corresponding Author: Dr Alec McCarthy, Medical Affairs North America, Merz Aesthetics, 6501 Six Forks Road, Raleigh, NC 27615, USA. E-mail:
| | | | | | | | | |
Collapse
|
231
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
232
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
233
|
Song X, Huang Q, Yang Y, Ma L, Liu W, Ou C, Chen Q, Zhao T, Xiao Z, Wang M, Jiang Y, Yang Y, Zhang J, Nan Y, Wu W, Ai K. Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta 2 C Modified with Chondroitin Sulfate (TACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301585. [PMID: 37224059 DOI: 10.1002/adma.202301585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Non-invasive localization of lesions and specific targeted therapy are still the main challenges for inflammatory bowel disease (IBD). Ta, as a medical metal element, has been widely used in the treatment of different diseases because of its excellent physicochemical properties but is still far from being explored in IBD. Here, Ta2 C modified with chondroitin sulfate (CS) (TACS) is evaluated as a highly targeted therapy nanomedicine for IBD. Specifically, TACS is modified with dual targeting CS functions due to IBD lesion-specific positive charges and high expression of CD44 receptors. Thanks to the acid stability, sensitive CT imaging function, and strong reactive oxygen species (ROS) elimination ability, oral TACS can accurately locate and delineate IBD lesions through non-invasive CT imaging, and specifically targeted treat IBD effectively because high levels of ROS are a central factor in the progression of IBD. As expected, TACS has much better imaging and therapeutic effects than clinical CT contrast agent and first-line drug 5-aminosalicylic acid, respectively. The mechanism of TACS treatment mainly involves protection of mitochondria, elimination of oxidative stress, inhibiting macrophage M1 polarization, protection of intestinal barrier, and restoration of intestinal flora balance. Collectively, this work provides unprecedented opportunities for oral nanomedicines to targeted therapy of IBD.
Collapse
Affiliation(s)
- Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yuqi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Jinping Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment., Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
234
|
Yang J, Pan Y, Zeng X, Liu S, Chen Z, Cheng K. Discovery of novel aporphine alkaloid derivative as potent TLR2 antagonist reversing macrophage polarization and neutrophil infiltration against acute inflammation. Acta Pharm Sin B 2023; 13:3782-3801. [PMID: 37719381 PMCID: PMC10501872 DOI: 10.1016/j.apsb.2023.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 09/19/2023] Open
Abstract
Toll-like receptor 2 (TLR2) mediated macrophages regulate the protective immune response to infectious microorganisms, but the aberrant activation of macrophages often leads to pathological inflammation, including tissue damage. In this study, we identified antagonists of TLR2 by screening 2100 natural products and subsequently identified Taspine, an aporphine alkaloid, as an excellent candidate. Furthermore, analysis of the 10 steps chemical synthesis route and structural optimization yielded the Taspine derivative SMU-Y6, which has higher activity, better solubility, and improved drug-feasible property. Mechanistic studies and seq-RNA analysis revealed that SMU-Y6 inhibited TLR2 over other TLRs, hindered the formation of TLR2/MyD88 complex, and blocked the downstream NF-κB and MAPK signaling pathway, thus suppressing the release of inflammatory cytokines. SMU-Y6 could stabilize TLR2 and bind to TLR2 protein with a Kd of 0.18 μmol/L. Additionally, SMU-Y6 could efficiently reverse the M1 phenotype macrophage polarization, reduce the production of cytokines as well as infiltration of neutrophiles and alleviate the local inflammation in mice with acute paw edema and colitis. Collectively, we reported the first aporphine alkaloid derivative that selectively inhibits TLR2 with high binding affinity and superior drug-feasible property, thus providing an urgently-needed molecular probe and potential drug candidate for inflammatory and autoimmune disease therapy.
Collapse
Affiliation(s)
- Junjie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510642, China
| |
Collapse
|
235
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
236
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
237
|
Povo-Retana A, Landauro-Vera R, Fariñas M, Sánchez-García S, Alvarez-Lucena C, Marin S, Cascante M, Boscá L. Defining the metabolic signatures associated with human macrophage polarisation. Biochem Soc Trans 2023; 51:1429-1436. [PMID: 37449892 PMCID: PMC10586766 DOI: 10.1042/bst20220504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Macrophages are essential components of the innate immune system that play both homeostatic roles in healthy organs, and host defence functions against pathogens after tissue injury. To accomplish their physiological role, macrophages display different profiles of gene expression, immune function, and metabolic phenotypes that allow these cells to participate in different steps of the inflammatory reaction, from the initiation to the resolution phase. In addition, significant differences exist in the phenotype of macrophages depending on the tissue in which they are present and on the mammalian species. From a metabolic point of view, macrophages are essentially glycolytic cells; however, their metabolic fluxes are dependent on the functional polarisation of these cells. This metabolic and cellular plasticity offers the possibility to interfere with the activity of macrophages to avoid harmful effects due to persistent activation or the release of molecules that delay tissue recovery after injury.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Marco Fariñas
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
238
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
239
|
Cai H, Xiong W, Zhu H, Wang Q, Liu S, Lu Z. Protein O-GlcNAcylation in multiple immune cells and its therapeutic potential. Front Immunol 2023; 14:1209970. [PMID: 37675125 PMCID: PMC10477433 DOI: 10.3389/fimmu.2023.1209970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that involves the addition of O-GlcNAc to serine or threonine residues of nuclear or cytoplasmic proteins, catalyzed by O-GlcNAc transferase (OGT). This modification is highly dynamic and can be reversed by O-GlcNAcase (OGA). O-GlcNAcylation is widespread in the immune system, which engages in multiple physiologic and pathophysiologic processes. There is substantial evidence indicating that both the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation are critically involved in regulating immune cell function. However, the precise role of O-GlcNAcylation in the immune system needs to be adequately elucidated. This review offers a thorough synopsis of the present research on protein O-GlcNAcylation, accentuating the molecular mechanisms that control immune cells' growth, maturation, and performance via this PTM.
Collapse
Affiliation(s)
- Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Qiongxin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
240
|
Liu YJ, Zhong HJ, Wang H, Chong CM, Yang GJ. Editorial: Community series in epigenetics of the immune component of inflammation-volume II. Front Immunol 2023; 14:1266133. [PMID: 37654499 PMCID: PMC10465791 DOI: 10.3389/fimmu.2023.1266133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hai-Jing Zhong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Haitao Wang
- Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD, United States
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
241
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
242
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
243
|
Rizzi A, Di Gioacchino M, Gammeri L, Inchingolo R, Chini R, Santilli F, Nucera E, Gangemi S. The Emerging Role of Innate Lymphoid Cells (ILCs) and Alarmins in Celiac Disease: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. Cells 2023; 12:1910. [PMID: 37508573 PMCID: PMC10378400 DOI: 10.3390/cells12141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Celiac disease (CD) is an intestinal disease that develops in genetically predisposed individuals and is triggered by the ingestion of gluten. CD was considered a Th1-disease. Today, the role of Th17, IL-21, and IL-17A lymphocytes is well known. Inflammation is regulated by the activity of gluten-specific CD4+ T lymphocytes that produce pro-inflammatory cytokines, including IFN-γ, TNF-α, and IL-21, perpetuating the Th1 response. These cytokines determine an inflammatory state of the small intestine, with consequent epithelial infiltration of lymphocytes and an alteration of the architecture of the duodenal mucosa. B cells produce antibodies against tissue transglutaminase and against deamidated gliadin. Although the role of the adaptive immune response is currently known, the evidence about the role of innate immunity cells is still poorly understood. Epithelial damage determines the release of damage-associated molecular patterns (DAMPs), also known as alarmins. Together with the intestinal epithelial cells and the type 1 innate lymphoid cells (ILC1s), alarmins like TSLP, IL-33, and HMGB1 could have a fundamental role in the genesis and maintenance of inflammation. Our study aims to evaluate the evidence in the literature about the role of ILCs and alarmins in celiac disease, evaluating the possible future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
| | - Francesca Santilli
- Center for Advanced Studies and Technology, G. d’Annunzio University, 66100 Chieti, Italy;
| | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.); (R.C.); (E.N.)
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.G.)
| |
Collapse
|
244
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
245
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
246
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
247
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
248
|
Tiwary SK, Hayashi T, Kovacs A, Mann DL. Recurrent Myocardial Injury Leads to Disease Tolerance in a Murine Model of Stress-Induced Cardiomyopathy. JACC Basic Transl Sci 2023; 8:783-797. [PMID: 37547073 PMCID: PMC10401155 DOI: 10.1016/j.jacbts.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 08/08/2023]
Abstract
Whereas the innate immune response to an initial episode of cardiac injury has been studied extensively, the response of the immune system to recurrent cardiac tissue injury is not well understood. Specifically, it is not known whether the immune system adapts to the initial episode of cardiac injury and whether any adaptations that occur lead to immune cell hypo-responsiveness or, alternatively, immune cell hyper-responsiveness. Here, we studied the role of adrenergic-mediated stress using a simple model of reversible stress-induced cardiomyopathy, and show that isoproterenol-induced tissue injury and inflammation are sufficient to protect the heart from the myopathic effects of a subsequent exposure to isoproterenol. Remarkably, pharmacological depletion of macrophages partially attenuated the isoproterenol-induced cytoprotective response, suggesting that immune-mediated tissue repair mechanisms confer tolerance to subsequent tissue damage.
Collapse
Affiliation(s)
| | | | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine and Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine and Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
249
|
Thapa A, Ratajczak J, Kucia M, Ratajczak MZ. External Liver-Derived Complement and Intrinsic Present in Hematopoietic Stem/Progenitor Cells Complosome Modulate Cell Metabolism and Response to Stress. Stem Cell Rev Rep 2023; 19:1177-1184. [PMID: 36976465 PMCID: PMC10366307 DOI: 10.1007/s12015-023-10533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) express receptors for complement cascade (ComC) cleavage fragments C3a and C5a and may respond to inflammation-related cues by sensing pathogen-associated molecular pattern molecules (PAMPs) released by pathogens as well as non-infectious danger associated molecular pattern molecules (DAMPs) or alarmin generated during stress/tissue damage sterile inflammation. To facilitate this HSPCs are equipped with C3a and C5a receptors, C3aR and C5aR, respectively, and express on the outer cell membrane and in cytosol pattern recognition receptors (PPRs) that sense PAMPs and DAMPs. Overall, danger-sensing mechanisms in HSPCs mimic those seen in immune cells, which should not surprise as hematopoiesis and the immune system develop from the same common stem cell precursor. This review will focus on the role of ComC-derived C3a and C5a that trigger nitric oxide synthetase-2 (Nox2) complex to release reactive oxygen species (ROS) that activate important cytosolic PRRs-Nlrp3 inflammasome, which orchestrates responsiveness of HSPCs to stress. Moreover, recent data indicate that in addition to circulating in peripheral blood (PB) activated liver-derived ComC proteins, a similar role plays ComC expressed and intrinsically activated in HSPCs known as "complosome". We postulate that ComC triggered Nox2-ROS-Nlrp3 inflammasome responses, if they occur within non-toxic to cells' "hormetic range of activation", positively regulate HSCs migration, metabolism, and proliferation. This sheds a new light on the immune-metabolic regulation of hematopoiesis.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Janina Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
250
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|