201
|
Tadayon N, Ramazani A. A review on the syntheses of Dronabinol and Epidiolex as classical cannabinoids with various biological activities including those against SARS-COV2. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [PMCID: PMC7907797 DOI: 10.1007/s13738-021-02212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very important psychoactive phytocannabinoid from Cannabis Δ9 tetrahydrocannabinol (Δ9-THC) and its non-psychotropic member is cannabidiol (CBD). These compounds have a variety of pharmacological activities. THC has been approved for the treatment of nausea caused by chemotherapy, multiple sclerosis and chronic and neuropathic pain and research is underway to use it to treat stimulation of dementia, anorexia nervous and Tourette’s syndrome. CBD has therapeutic benefits in Epilepsy, neuroprotective, cancer, inflammatory and anxiety. Recognizing candidate drugs efficiently in the new SARS-CoV2 disease 2019 (Covid-19) is crucial. Cannabidiol and Δ9-tetrahydrocannabinol have immunomodulatory and anti-inflammatory effects. They can reduce the uncontrolled cytokine production of acute lung injury. Although THD and CBD can be extracted from natural sources due to the disadvantages of this method such as difficulty in purification, cultivation, etc. It has been proven that chemical-synthesis methods of these two compounds can solve these problems. This review briefly summarizes the chemical-synthetic strategies of Dronabinol and Epidiolex from THC and CBD.
Collapse
Affiliation(s)
- Neda Tadayon
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, 45371-38791 Zanjan, Iran
- Department of Agronomy, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, 45371-38791 Zanjan, Iran
- Department of Animal Science, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, 45371-38791 Zanjan, Iran
| |
Collapse
|
202
|
de Ceglia M, Decara J, Gaetani S, Rodríguez de Fonseca F. Obesity as a Condition Determined by Food Addiction: Should Brain Endocannabinoid System Alterations Be the Cause and Its Modulation the Solution? Pharmaceuticals (Basel) 2021; 14:ph14101002. [PMID: 34681224 PMCID: PMC8538206 DOI: 10.3390/ph14101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is a complex disorder, and the number of people affected is growing every day. In recent years, research has confirmed the hypothesis that food addiction is a determining factor in obesity. Food addiction is a behavioral disorder characterized by disruptions in the reward system in response to hedonic eating. The endocannabinoid system (ECS) plays an important role in the central and peripheral control of food intake and reward-related behaviors. Moreover, both obesity and food addiction have been linked to impairments in the ECS function in various brain regions integrating peripheral metabolic signals and modulating appetite. For these reasons, targeting the ECS could be a valid pharmacological therapy for these pathologies. However, targeting the cannabinoid receptors with inverse agonists failed when used in clinical contexts as a consequence of the induction of affective disorders. In this context, new classes of drugs acting either on CB1 and/or CB2 receptors or on synthetic and degradation enzymes of endogenous cannabinoids are being studied. However, further investigation is necessary to find safe and effective treatments that can exert anti-obesity effects, normalizing reward-related behaviors without causing important adverse mood effects.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| |
Collapse
|
203
|
Sisk LM, Rapuano KM, Conley MI, Greene AS, Horien C, Rosenberg MD, Scheinost D, Constable RT, Glatt CE, Casey BJ, Gee DG. Genetic variation in endocannabinoid signaling is associated with differential network-level functional connectivity in youth. J Neurosci Res 2021; 100:731-743. [PMID: 34496065 DOI: 10.1002/jnr.24946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system is an important regulator of emotional responses such as fear, and a number of studies have implicated endocannabinoid signaling in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is associated with enhanced endocannabinoid signaling in the brain, has been identified across species as a potential protective factor from anxiety. In particular, adults with the variant FAAH 385A allele have greater fronto-amygdala connectivity and lower anxiety symptoms. Whether broader network-level differences in connectivity exist, and when during development this neural phenotype emerges, remains unknown and represents an important next step in understanding how the FAAH C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain Cognitive Development Study℠ (10.04 ± 0.62 years old; 44.23% female, 55.77% male) and a cross-validated, data-driven approach to examine associations between genetic variation and large-scale resting-state brain networks. Our findings revealed a distributed brain network, comprising functional connections that were both significantly greater (95% CI for p values = [<0.001, <0.001]) and lesser (95% CI for p values = [0.006, <0.001]) in A-allele carriers relative to non-carriers. Furthermore, there was a significant interaction between genotype and the summarized connectivity of functional connections that were greater in A-allele carriers, such that non-carriers with connectivity more similar to A-allele carriers (i.e., greater connectivity) had lower anxiety symptoms (β = -0.041, p = 0.030). These findings provide novel evidence of network-level changes in neural connectivity associated with genetic variation in endocannabinoid signaling and suggest that genotype-associated neural differences may emerge at a younger age than genotype-associated differences in anxiety.
Collapse
Affiliation(s)
- Lucinda M Sisk
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - May I Conley
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | | | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Charles E Glatt
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - B J Casey
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
204
|
Gomes-de-Souza L, Bianchi PC, Costa-Ferreira W, Tomeo RA, Cruz FC, Crestani CC. CB 1 and CB 2 receptors in the bed nucleus of the stria terminalis differently modulate anxiety-like behaviors in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110284. [PMID: 33609604 DOI: 10.1016/j.pnpbp.2021.110284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is implicated in anxiety, but the brain sites involved are not completely understood. The bed nucleus of the stria terminalis (BNST) has been related to anxiety and responses to aversive threats. Besides, endocannabinoid neurotransmission acting via CB1 receptors was identified in the BNST. However, the presence of CB2 receptors and the role of BNST endocannabinoid system in anxiety-like behaviors have never been reported. Therefore, this study investigated the presence of CB1 and CB2 receptors in the BNST and their role in anxiety-like behaviors. For this, gene expression of the endocannabinoid receptors was evaluated in samples from anterior and posterior BNST. Besides, behaviors were evaluated in the elevated plus-maze (EPM) in unstressed rats (trait anxiety-like behavior) and after exposure to restraint stress (restraint-evoked anxiety-like behavior) in rats treated with either the CB1 receptor antagonist AM251 or the CB2 receptor antagonist JTE907 into the anterior BNST. The presence of CB1 and CB2 receptors gene expression was identified in anterior and posterior divisions of the BNST. Bilateral microinjection of AM251 into the anterior BNST dose-dependently increased EPM open arms exploration in unstressed animals and inhibited the anxiety-like behavior in the EPM evoked by restraint. Conversely, intra-BNST microinjection of JTE907 decreased EPM open arms exploration in a dose-dependent manner and inhibited restraint-evoked behavioral changes in the EPM. Taken together, these results indicate that CB1 and CB2 receptors present in the BNST are involved in control of anxiety-like behaviors, and control by the latter is affected by previous stress experience.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Paula C Bianchi
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Rodrigo A Tomeo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
205
|
Kantonen T, Karjalainen T, Pekkarinen L, Isojärvi J, Kalliokoski K, Kaasinen V, Hirvonen J, Nuutila P, Nummenmaa L. Cerebral μ-opioid and CB 1 receptor systems have distinct roles in human feeding behavior. Transl Psychiatry 2021; 11:442. [PMID: 34453034 PMCID: PMC8397789 DOI: 10.1038/s41398-021-01559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Eating behavior varies greatly between individuals, but the neurobiological basis of these trait-like differences in feeding remains poorly understood. Central μ-opioid receptors (MOR) and cannabinoid CB1 receptors (CB1R) regulate energy balance via multiple neural pathways, promoting food intake and reward. Because obesity and eating disorders have been associated with alterations in the brain's opioid and endocannabinoid signaling, the variation in MOR and CB1R system function could potentially underlie distinct eating behavior phenotypes. In this retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR availability was associated with increased external eating-individuals with low MORs reported being more likely to eat in response to environment's palatable food cues. CB1R availability was associated with multiple eating behavior traits. We conclude that although MORs and CB1Rs overlap anatomically in brain regions regulating food reward, they have distinct roles in mediating individual feeding patterns. Central MOR system might provide a pharmacological target for reducing individual's excessive cue-reactive eating behavior.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland. .,Clinical Neurosciences, University of Turku, Turku, Finland.
| | - Tomi Karjalainen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Janne Isojärvi
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Kari Kalliokoski
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
206
|
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA. Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse 2021; 75:e22218. [PMID: 34255372 DOI: 10.1002/syn.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Collapse
Affiliation(s)
- Kyle A Windisch
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Lennox Gergoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sydney Warwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
207
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
208
|
Gomes-de-Souza L, Costa-Ferreira W, Mendonça MM, Xavier CH, Crestani CC. Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats. Sci Rep 2021; 11:16133. [PMID: 34373508 PMCID: PMC8352993 DOI: 10.1038/s41598-021-95401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil
| | - Michelle M Mendonça
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos H Xavier
- Institute of Biological Sciences, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, São Paulo, Brazil.
- Laboratory of Pharmacology, Department of Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Rodovia Araraquara-Jau Km 01 (Campus Universitário), Campus Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
209
|
van Velzen R, Schranz ME. Origin and Evolution of the Cannabinoid Oxidocyclase Gene Family. Genome Biol Evol 2021; 13:evab130. [PMID: 34100927 PMCID: PMC8521752 DOI: 10.1093/gbe/evab130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis is an ancient crop representing a rapidly increasing legal market, especially for medicinal purposes. Medicinal and psychoactive effects of Cannabis rely on specific terpenophenolic ligands named cannabinoids. Recent whole-genome sequencing efforts have uncovered variation in multiple genes encoding the final steps in cannabinoid biosynthesis. However, the origin, evolution, and phylogenetic relationships of these cannabinoid oxidocyclase genes remain unclear. To elucidate these aspects, we performed comparative genomic analyses of Cannabis, related genera within the Cannabaceae family, and selected outgroup species. Results show that cannabinoid oxidocyclase genes originated in the Cannabis lineage from within a larger gene expansion in the Cannabaceae family. Localization and divergence of oxidocyclase genes in the Cannabis genome revealed two main syntenic blocks, each comprising tandemly repeated cannabinoid oxidocyclase genes. By comparing these blocks with those in genomes from closely related species, we propose an evolutionary model for the origin, neofunctionalization, duplication, and diversification of cannabinoid oxidocycloase genes. Based on phylogenetic analyses, we propose a comprehensive classification of three main clades and seven subclades that are intended to aid unequivocal referencing and identification of cannabinoid oxidocyclase genes. Our data suggest that cannabinoid phenotype is primarily determined by the presence/absence of single-copy genes. Although wild populations of Cannabis are still unknown, increased sampling of landraces and wild/feral populations across its native geographic range is likely to uncover additional cannabinoid oxidocyclase sequence variants.
Collapse
Affiliation(s)
- Robin van Velzen
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- Bedrocan International, Veendam, The Netherlands
| | - M Eric Schranz
- Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
210
|
Boczek T, Zylinska L. Receptor-Dependent and Independent Regulation of Voltage-Gated Ca 2+ Channels and Ca 2+-Permeable Channels by Endocannabinoids in the Brain. Int J Mol Sci 2021; 22:ijms22158168. [PMID: 34360934 PMCID: PMC8348342 DOI: 10.3390/ijms22158168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The activity of specific populations of neurons in different brain areas makes decisions regarding proper synaptic transmission, the ability to make adaptations in response to different external signals, as well as the triggering of specific regulatory pathways to sustain neural function. The endocannabinoid system (ECS) appears to be a very important, highly expressed, and active system of control in the central nervous system (CNS). Functionally, it allows the cells to respond quickly to processes that occur during synaptic transmission, but can also induce long-term changes. The endocannabinoids (eCBs) belong to a large family of bioactive lipid mediators that includes amides, esters, and ethers of long-chain polyunsaturated fatty acids. They are produced “on demand” from the precursors located in the membranes, exhibit a short half-life, and play a key role as retrograde messengers. eCBs act mainly through two receptors, CB1R and CB2R, which belong to the G-protein coupled receptor superfamily (GPCRs), but can also exert their action via multiple non-receptor pathways. The action of eCBs depends on Ca2+, but eCBs can also regulate downstream Ca2+ signaling. In this short review, we focus on the regulation of neuronal calcium channels by the most effective members of eCBs-2-arachidonoylglycerol (2-AG), anandamide (AEA) and originating from AEA-N-arachidonoylglycine (NAGly), to better understand the contribution of ECS to brain function under physiological conditions.
Collapse
|
211
|
Peters KZ, Zlebnik NE, Cheer JF. Cannabis exposure during adolescence: A uniquely sensitive period for neurobiological effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:95-120. [PMID: 34801175 DOI: 10.1016/bs.irn.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is a crucial developmental period where neural circuits are refined and the brain is especially vulnerable to external insults. The endocannabinoid (eCB) system undergoes changes during adolescence which affect the way in which it modulates the development of other systems, in particular dopamine circuits, which show protracted development into adolescence. Given the rise of cannabis use by adolescents and young people, as well as variants containing increasingly higher concentrations of THC, it is now crucial to understand the unique effects of adolescent exposure to cannabis on the developing brain and it might shape future adult vulnerabilities to conditions such as psychosis, schizophrenia, addiction and more. Here we discuss the development of the eCB system across the lifespan, how CB1 receptors modulate dopamine release and potential neurobiological and behavioral effects of adolescent THC exposure on the developing brain such as alterations in excitatory/inhibitory balance during this developmental period.
Collapse
Affiliation(s)
- K Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom.
| | - N E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
212
|
Lovecchio F, Langhans MT, Bennett T, Steinhaus M, Premkumar A, Cunningham M, Farmer J, Albert T, Huang R, Katsuura Y, Qureshi S, Schwab F, Sandhu H, Kim HJ, Lafage V, Iyer S. Prevalence of Cannabidiol Use in Patients With Spine Complaints: Results of an Anonymous Survey. Int J Spine Surg 2021; 15:663-668. [PMID: 34285125 DOI: 10.14444/8087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cannabidiol (CBD) is a cannabis derivative that has been popularized as a medicinal product with analgesic and anti-inflammatory effects. Given the anecdotal observations that several patients have reported use of CBD for spine-related pain, this study was designed to characterize CBD consumption patterns and perceived effects in patients with spine-related complaints. METHODS The study design was a cross-sectional survey. Over a 4-week period, an anonymous paper survey was administered to all patients presenting for evaluation by 1 of 9 spine surgeons at a single institution. Surveys were given upon registration for the office visit and collected by the office manager or nurse before evaluation by the surgeon. Patients were included regardless of surgical status (ie, preoperative, postoperative, or nonoperative) or region of pathology (lumbar, thoracic, or cervical). The survey consisted of multiple-choice questions on patient patterns of CBD use. RESULTS Out of 300 surveys, 214 (71%) were completed. CBD use for spine-related pain was reported by 54 (25.2%) patients. CBD was initially used for potential relief of back pain (66.7%), neck pain (37.0%), leg pain (35.2%), and/or arm pain (9.3%). Users also sought improvements in insomnia (25.9%) and mood (18.5%). Oil was the most popular formulation (64.8%). CBD was most often consumed 2-5 times (40.7%) or 6-10 times (31.5%) per week. The most common source of initial recommendation for CBD was friends or family (75.9%). Reported benefits were pain relief (46.3%), improved sleep (33.3%), and reduced anxiety (20.4%); however, 24.1% of patients reported no benefit from CBD use. The most reported side effect was fatigue (7.4%). Most users (63.0%) would recommend CBD to a friend for pain relief. CONCLUSION CBD is already used by many patients, and further high-quality research on this supplement is essential. LEVEL OF EVIDENCE 4. CLINICAL RELEVANCE CBD is a commonly used by spine patients as an off label treatment.
Collapse
Affiliation(s)
| | - Mark T Langhans
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Tianna Bennett
- Hospital for Special Surgery, Spine Service, New York, New York
| | | | - Ajay Premkumar
- Hospital for Special Surgery, Spine Service, New York, New York
| | | | - James Farmer
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Todd Albert
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Russel Huang
- Hospital for Special Surgery, Spine Service, New York, New York
| | | | - Sheeraz Qureshi
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Frank Schwab
- Hospital for Special Surgery, Spine Service, New York, New York
| | | | - Han Jo Kim
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Virginie Lafage
- Hospital for Special Surgery, Spine Service, New York, New York
| | - Sravisht Iyer
- Hospital for Special Surgery, Spine Service, New York, New York
| |
Collapse
|
213
|
Marzęda P, Drozd M, Wróblewska-Łuczka P, Łuszczki JJ. Cannabinoids and their derivatives in struggle against melanoma. Pharmacol Rep 2021; 73:1485-1496. [PMID: 34264513 PMCID: PMC8599338 DOI: 10.1007/s43440-021-00308-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/26/2023]
Abstract
Abstract Melanoma is one of the most aggressive malignances in human. Recently developed therapies improved overall survival rate, however, the treatment of melanoma still remains a challenging issue. This review attempts to summarize recent advances in studies on cannabinoids used in the setting of melanoma treatment. Searches were carried out in PubMed, Google Scholar, Scopus, Research Gate. Conclusions after analysis of available data suggest that cannabinoids limit number of metastasis, and reduce growth of melanoma. The findings indicate that cannabinoids induce apoptosis, necrosis, autophagy, cell cycle arrest and exert significant interactions with tumor microenvironment. Cannabinoids should be rather considered as a part of multi-targeted anti-tumor therapy instead of being standalone agent. Moreover, cannabinoids are likely to improve quality of life in patients with cancer, due to different supportive effects, like analgesia and/or anti-emetic effects. In this review, it was pointed out that cannabinoids may be potentially useful in the melanoma therapy. Nevertheless, due to limited amount of data, great variety of cannabinoids available and lack of clinical trials, further studies are required to determine an exact role of cannabinoids in the treatment of melanoma. Graphic abstract ![]()
Collapse
Affiliation(s)
- Paweł Marzęda
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Małgorzata Drozd
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
| |
Collapse
|
214
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
215
|
Yeung BG, Ma MW, Scolaro JA, Nelson AM. Cannabis Exposure Decreases Need for Blood Pressure Support During General Anesthesia in Orthopedic Trauma Surgery. Cannabis Cannabinoid Res 2021; 7:328-335. [PMID: 34227872 PMCID: PMC9225405 DOI: 10.1089/can.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: As cannabis use continues to increase in popularity, it is important to investigate how it impacts public health in all sectors of the population, including patients undergoing anesthetic management. This retrospective study focuses on the orthopedic trauma population presenting through an emergency department (ED) and receiving a urine drug screen (UDS) with subsequent urgent surgical intervention. We aimed to evaluate differences in response to general anesthesia in patients with exposure to THC, a major cannabinoid, compared to controls that screened negative for THC. Materials and Methods: All ED visits at UC Irvine, a level 1 trauma center between November 4, 2017 and January 7, 2020, were evaluated in this study. Only adult patients who received a UDS and underwent urgent orthopedic trauma surgery within 48 h of ED visit were included in this study. Additional inclusion criteria required an anesthesia time greater than 1 h as well as anesthesia induction and intubation while in the operating room. Overall, we analyzed a total of 221 adult patients. Discussion: When adjusting for demographic variability, there were statistically significant differences in response to general anesthesia between these two groups. The THC-positive (THC(+)) group was less likely to receive intraoperative vasopressors, had higher mean arterial blood pressure and mean diastolic blood pressure, needed less total fluid input and had a lower overall fluid balance. Chronic exposure to THC has been shown to downregulate cannabinoid 1 receptors and cause alterations in endocannabinoid tone. These are two potential mechanisms by which the THC(+) group in our study may have become more resistant to the typically observed hypotensive effects of general anesthesia. Conclusion: The present study suggests that prior use of cannabis, objectively assessed by urinalysis, results in a decreased need for blood pressure support during general anesthesia. The physiological basis for this phenomenon is unclear, but possible causes might include the downregulation of vascular cannabinoid receptor 1 and/or altered endocannabinoid levels after exposure to cannabis.
Collapse
Affiliation(s)
- Brent G Yeung
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| | - Michael W Ma
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| | - John A Scolaro
- Department of Orthopaedic Surgery, University of California-Irvine, Orange, California, USA
| | - Ariana M Nelson
- Department of Anesthesiology and Perioperative Care and University of California-Irvine, Orange, California, USA
| |
Collapse
|
216
|
Bersani G, Pacitti F, Iannitelli A, Caroti E, Quartini A, Xenos D, Marconi M, Cuoco V, Bigio B, Bowles NP, Weisz F, Fanelli F, Di Lallo VD, Belluomo I, Nicoletti F, Nasca C. Inverse correlation between plasma 2-arachidonoylglycerol levels and subjective severity of depression. Hum Psychopharmacol 2021; 36:e2779. [PMID: 33559925 DOI: 10.1002/hup.2779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Endocannabinoids have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and might represent potential targets for therapeutic intervention. Objectives of the study were: (1) to measure plasma levels of endocannabinoids in a group of antidepressant-free depressed outpatients; (2) to explore their relationship with the severity of depressive symptoms as subjectively perceived by the patients; and (3) to investigate the effect of the selective serotonin reuptake inhibitor escitalopram on endocannabinoid levels. METHODS We measured plasma levels of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anadamide), in 12 drug-free outpatients diagnosed with MDD and in 12 matched healthy controls. In the patient group, endocannabinoids plasma levels were assessed at baseline and after 2 months of treatment with escitalopram. RESULTS Baseline plasma levels of the two endocannabinoids did not differ between depressed patients and healthy controls. However, there was a significant inverse correlation between 2-arachidonoylglycerol levels and the severity of subjectively perceived depressive symptoms. Treatment with escitalopram did not change endocannabinoid levels in depressed patients, although it caused the expected improvement of depressive symptoms. CONCLUSIONS Our results suggest that 2-arachidonylglycerol, the most abundant endocannabinoid in the central nervous system, might act to mitigate depressive symptoms, and raise the interesting possibility that 2-arachidonylglycerol and anandamide are differentially regulated in patients affected by MDD. Also, our data suggest but do not prove that the endocannabinoid system is not regulated by serotonergic transmission, at least in depressed patients.
Collapse
Affiliation(s)
- Giuseppe Bersani
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Francesca Pacitti
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Angela Iannitelli
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Caroti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Adele Quartini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Dionysios Xenos
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michela Marconi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Valentina Cuoco
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Benedetta Bigio
- The Rockefeller University, Center for Clinical & Translational Science, New York, New York, USA
| | - Nicole P Bowles
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Filippo Weisz
- Department of Physiology and Pharmacology "V. Erspamer", University of Rome "Sapienza", Rome, Italy
| | - Flaminia Fanelli
- University of Bologna, Centre for Applied Biomedical Research, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valentina D Di Lallo
- University of Bologna, Centre for Applied Biomedical Research, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Ilaria Belluomo
- University of Bologna, Centre for Applied Biomedical Research, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer", University of Rome "Sapienza", Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
- Department of Physiology and Pharmacology "V. Erspamer", University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
217
|
Sullivan RM, Wallace AL, Wade NE, Swartz AM, Lisdahl KM. Cannabis Use and Brain Volume in Adolescent and Young Adult Cannabis Users: Effects Moderated by Sex and Aerobic Fitness. J Int Neuropsychol Soc 2021; 27:607-620. [PMID: 34261557 PMCID: PMC8288486 DOI: 10.1017/s135561772100062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Studies examining the impact of adolescent and young adult cannabis use on structural outcomes have been heterogeneous. One already-identified moderator is sex, while a novel potential moderator is extent of aerobic fitness. Here, we sought to investigate the associations of cannabis use, sex, and aerobic fitness levels on brain volume. Second, we explored brain-behavior relationships to interpret these findings. METHODS Seventy-four adolescents and young adults (36 cannabis users and 38 controls) underwent 3 weeks of monitored cannabis abstinence, aerobic fitness testing, structural neuroimaging, and neuropsychological testing. Linear regressions examined cannabis use and its interaction with sex and aerobic fitness on whole-brain cortical volume and subcortical regions of interests. RESULTS No main-effect differences between cannabis users and nonusers were observed; however, cannabis-by-sex interactions identified differences in frontal, temporal, and paracentral volumes. Female cannabis users generally exhibited greater volume while male users exhibited less volume compared to same-sex controls. Positive associations between aerobic fitness and frontal, parietal, cerebellum, and caudate volumes were observed. Cannabis-by-fitness interaction was linked with left superior temporal volume. Preliminary brain-behavior correlations revealed that abnormal volumes were not advantageous in either male or female cannabis users. CONCLUSIONS Aerobic fitness was linked with greater brain volume and sex moderated the effect of cannabis use on volume; preliminary brain-behavior correlations revealed that differences in cannabis users were not linked with advantageous cognitive performance. Implications of sex-specific subtleties and mechanisms of aerobic fitness require large-scale investigation. Furthermore, present findings and prior literature on aerobic exercise warrant examinations of aerobic fitness interventions that aimed at improving neurocognitive health in substance-using youth.
Collapse
Affiliation(s)
| | | | - Natasha E. Wade
- Department of Psychiatry, University of California, San Diego
| | - Ann M. Swartz
- Department of Kinesiology, University of Wisconsin-Milwaukee
| | | |
Collapse
|
218
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
219
|
Radhakrishnan R, Ranganathan M, Skosnik PD, D'Souza DC. Exocannabinoids, Endocannabinoids, and Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:600-602. [PMID: 34099185 DOI: 10.1016/j.bpsc.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Rajiv Radhakrishnan
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Patrick D Skosnik
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
220
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
221
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex Differences in a Rat Model of Peripheral Neuropathic Pain and Associated Levels of Endogenous Cannabinoid Ligands. FRONTIERS IN PAIN RESEARCH 2021; 2:673638. [PMID: 35295501 PMCID: PMC8915733 DOI: 10.3389/fpain.2021.673638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a major unmet clinical need affecting 10% of the world population, the majority of whom suffer from co-morbid mood disorders. Sex differences have been reported in pain prevalence, perception and response to analgesics. However, sexual dimorphism in chronic neuropathic pain and the associated neurobiology, are still poorly understood. The lack of efficacy and the adverse effects associated with current pharmacological treatments, further underline the need for new therapeutic targets. The endocannabinoid system (ECS) is a lipid signalling system which regulates a large number of physiological processes, including pain. The aim of this study was to investigate sexual dimorphism in pain-, anxiety- and depression-related behaviours, and concomitant alterations in supraspinal and spinal endocannabinoid levels in the spared nerve injury (SNI) animal model of peripheral neuropathic pain. Sham or SNI surgery was performed in adult male and female Sprague-Dawley rats. Mechanical and cold allodynia was tested weekly using von Frey and acetone drop tests, respectively. Development of depression-related behaviours was analysed using sucrose splash and sucrose preference tests. Locomotor activity and anxiety-related behaviours were assessed with open field and elevated plus maze tests. Levels of endocannabinoid ligands and related N-acylethanolamines in supraspinal regions of the descending inhibitory pain pathway, and spinal cord, were analysed 42 days post-surgery. SNI surgery induced allodynia in rats of both sexes. Female-SNI rats exhibited earlier onset and greater sensitivity to cold and mechanical allodynia than their male counterparts. In male rats, SNI induced a significant reduction of rearing, compared to sham controls. Trends for depressive-like behaviours in females and for anxiety-like behaviours in males were observed after SNI surgery but did not reach statistical significance. No concomitant alterations in levels of endogenous cannabinoid ligands and related N-acylethanolamines were observed in the regions analysed. Our results demonstrate differential development of SNI-induced nociceptive behaviour between male and female rats suggesting important sexually dimorphic modifications in pain pathways. SNI had no effect on depression- or anxiety-related behaviours in animals of either sex, or on levels of endocannabinoid ligands and related N-acylethanolamines across the regions involved in the descending modulation of nociception at the time points investigated.
Collapse
|
222
|
Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res 2021; 62:100090. [PMID: 34087197 PMCID: PMC8243525 DOI: 10.1016/j.jlr.2021.100090] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Sepsis, defined as the dysregulated immune response to an infection leading to organ dysfunction, is one of the leading causes of mortality around the globe. Despite the significant progress in delineating the underlying mechanisms of sepsis pathogenesis, there are currently no effective treatments or specific diagnostic biomarkers in the clinical setting. The perturbation of cell signaling mechanisms, inadequate inflammation resolution, and energy imbalance, all of which are altered during sepsis, are also known to lead to defective lipid metabolism. The use of lipids as biomarkers with high specificity and sensitivity may aid in early diagnosis and guide clinical decision making. In addition, identifying the link between specific lipid signatures and their role in sepsis pathology may lead to novel therapeutics. In this review, we discuss the recent evidence on dysregulated lipid metabolism both in experimental and human sepsis focused on bioactive lipids, fatty acids, and cholesterol as well as the enzymes regulating their levels during sepsis. We highlight not only their potential roles in sepsis pathogenesis but also the possibility of using these respective lipid compounds as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel P Pike
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
223
|
Nass SR, Steele FF, Ware TB, Libby AH, Hsu KL, Kinsey SG. Monoacylglycerol Lipase Inhibition Using JZL184 Attenuates Paw Inflammation and Functional Deficits in a Mouse Model of Inflammatory Arthritis. Cannabis Cannabinoid Res 2021; 6:233-241. [PMID: 34042520 DOI: 10.1089/can.2020.0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Patients with rheumatoid arthritis (RA) experience joint swelling and cartilage destruction resulting in chronic pain, functional disability, and compromised joint function. Current RA treatments, including glucocorticoid receptor agonists, produce adverse side effects and lack prolonged treatment efficacy. Cannabinoids (i.e., cannabis-like signaling molecules) exert anti-inflammatory and analgesic effects with limited side effects compared to traditional immunosuppressants, making them excellent targets for the development of new arthritic therapeutics. Monoacylglycerol lipase (MAGL) inhibition reduces inflammation in mouse models of acute inflammation, through cannabinoid receptor dependent and independent pathways. The current study investigated the efficacy of inhibiting synthetic and catabolic enzymes that regulate the endocannabinoid 2-arachidonoylglycerol (2-AG) in blocking paw inflammation, pain-related behaviors, and functional loss caused by collagen-induced arthritis (CIA). Methods: Male DB1A mice subjected to CIA were administered the glucocorticoid agonist dexamethasone (DEX), MAGL inhibitor JZL184 (8 or 40 mg/kg, s.c.), alone or in combination, or diacylglycerol lipase β (DAGLβ) inhibitor KT109 (40 mg/kg, s.c.). CIA-induced deficits were assayed by arthritic clinical scoring, paw thickness measurements, and behavioral tests of pain and paw function. Results: DEX or dual administration with JZL184 reduced paw thickness and clinical scores, and JZL184 dose-dependently attenuated grip strength and balance beam deficits caused by CIA. Traditional measures of pain-induced behaviors (hyperalgesia and allodynia) were inconsistent. The antiarthritic effects of JZL184 (40 mg/kg) were largely blocked by coadministration of the CB2 antagonist SR144528, and the DAGLβ inhibitor KT109 had no effect on CIA, indicating that these effects likely occurred through CB2 activation. Conclusions: MAGL inhibition reduced paw inflammation and pain-depressed behavioral signs of arthritis, likely through an endocannabinoid mechanism requiring CB2. These data support the development of MAGL as a target for therapeutic treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Floyd F Steele
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,School of Nursing, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
224
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
225
|
Grillo A, Fezza F, Chemi G, Colangeli R, Brogi S, Fazio D, Federico S, Papa A, Relitti N, Di Maio R, Giorgi G, Lamponi S, Valoti M, Gorelli B, Saponara S, Benedusi M, Pecorelli A, Minetti P, Valacchi G, Butini S, Campiani G, Gemma S, Maccarrone M, Di Giovanni G. Selective Fatty Acid Amide Hydrolase Inhibitors as Potential Novel Antiepileptic Agents. ACS Chem Neurosci 2021; 12:1716-1736. [PMID: 33890763 DOI: 10.1021/acschemneuro.1c00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy is the most common form of epilepsy, and current antiepileptic drugs are ineffective in many patients. The endocannabinoid system has been associated with an on-demand protective response to seizures. Blocking endocannabinoid catabolism would elicit antiepileptic effects, devoid of psychotropic effects. We herein report the discovery of selective anandamide catabolic enzyme fatty acid amide hydrolase (FAAH) inhibitors with promising antiepileptic efficacy, starting from a further investigation of our prototypical inhibitor 2a. When tested in two rodent models of epilepsy, 2a reduced the severity of the pilocarpine-induced status epilepticus and the elongation of the hippocampal maximal dentate activation. Notably, 2a did not affect hippocampal dentate gyrus long-term synaptic plasticity. These data prompted our further endeavor aiming at discovering new antiepileptic agents, developing a new set of FAAH inhibitors (3a-m). Biological studies highlighted 3h and 3m as the best performing analogues to be further investigated. In cell-based studies, using a neuroblastoma cell line, 3h and 3m could reduce the oxinflammation state by decreasing DNA-binding activity of NF-kB p65, devoid of cytotoxic effect. Unwanted cardiac effects were excluded for 3h (Langendorff perfused rat heart). Finally, the new analogue 3h reduced the severity of the pilocarpine-induced status epilepticus as observed for 2a.
Collapse
Affiliation(s)
- Alessandro Grillo
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Filomena Fezza
- Department of Experimental Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00121 Rome, Italy
| | - Giulia Chemi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Domenico Fazio
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Stefano Federico
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Papa
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, 15261 Pennsylvania, United States
| | - Gianluca Giorgi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, 28081 North Carolina, United States
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, 28081 North Carolina, United States
- Department of Food and Nutrition, Kyung Hee University, 02447 Seoul, South Korea
| | - Stefania Butini
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
226
|
Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci Rep 2021; 11:8690. [PMID: 33888802 PMCID: PMC8062478 DOI: 10.1038/s41598-021-88099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Antibiotic resistance is a serious public health problem throughout the world. Overcoming methicillin and multidrug-resistant Staphylococcus aureus (MRSA/MDRSA) infections has become a challenge and there is an urgent need for new therapeutic approaches. We have previously demonstrated that the endocannabinoid Anandamide (AEA) can sensitize MRSA to antibiotics. Here we have studied the mechanism of action using a MDRSA clinical isolate that are sensitized by AEA to methicillin and norfloxacin. We found that AEA treatment halts the growth of both antibiotic-sensitive and antibiotic-resistant S. aureus. The AEA-treated bacteria become elongated and the membranes become ruffled with many protrusions. AEA treatment also leads to an increase in the percentage of bacteria having a complete septum, suggesting that the cell division is halted at this stage. The latter is supported by cell cycle analysis that shows an accumulation of bacteria in the G2/M phase after AEA treatment. We further observed that AEA causes a dose-dependent membrane depolarization that is partly relieved upon time. Nile red staining of the bacterial membranes indicates that AEA alters the membrane structures. Importantly, 4'-6-diamidino-2-phenylindole (DAPI) accumulation assay and ethidium bromide efflux (EtBr) assay unveiled that AEA leads to a dose-dependent drug accumulation by inhibiting drug efflux. In conclusion, our study demonstrates that AEA interferes with cell division, alters the membrane properties of MDRSA, and leads to increased intracellular drug retention, which can contribute to the sensitization of MDRSA to antibiotics.
Collapse
|
227
|
Grenier P, Sunavsky A, Olmstead MC. Morphine Induces Upregulation of Neuronally Expressed CB2 Receptors in the Spinal Dorsal Horn of Rats. Cannabis Cannabinoid Res 2021; 6:137-147. [PMID: 33912678 DOI: 10.1089/can.2020.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Cannabinoid receptors play a key role in regulating numerous physiological processes, including immune function and reward signaling. Originally, endocannabinoid contributions to central nervous system processes were attributed to CB1 receptors, but technological advances have confirmed the expression of CB2 receptors in both neurons and glia throughout the brain. Mapping of these receptors is less extensive than for CB1 receptors, and it is still not clear how CB2 receptors contribute to processes that involve endocannabinoid signaling. Objectives: The goal of our study was to assess the effects of peripheral nerve injury and chronic morphine administration, two manipulations that alter endocannabinoid system function, on CB2 receptor expression in the spinal dorsal horn of rats. Methods: Twenty-four male Sprague Dawley rats were assigned to chronic constriction injury (CCI), sham surgery, or pain naïve groups, with half of each group receiving once daily injections of morphine (5 mg/kg) for 10 days. On day 11, spinal cords were isolated and prepared for fluorescent immunohistochemistry. Separate sections from the deep and superficial dorsal horn were stained for neuronal nuclei (NeuN), CD11b, or 4',6-diamidino-2-phenylindole (DAPI) to mark neurons, microglia, and cell nuclei, respectively. Double labeling was used to assess colocalization of CB2 receptors with NeuN or microglial markers. Quantification of mean pixel intensity for each antibody was assessed using a fluorescent microscope, and CB2 receptor expressing cells were also counted manually. Results: Surgery increased DAPI cell counts in the deep and superficial dorsal horn, with CCI rats displaying increased CD11b labeling ipsilateral to the nerve injury. Surgery also decreased NeuN labeling in both regions, an effect that was blocked by morphine administration. CB2 receptors were expressed, predominantly, on NeuN-labeled cells with significant increases in CB2 receptor labeling across all surgery groups in both deep and superficial areas following morphine administration. Conclusions: Our findings provide supporting evidence for the expression of CB2 receptors on neurons and reveal upregulation of receptor expression in the dorsal spinal cord following surgery and chronic morphine administration, with the latter producing a larger effect. Synergistic effects of morphine-cannabinoid treatments, therefore, may involve CB2-mu opioid receptor interactions, pointing to novel therapeutic treatments for a variety of medical conditions.
Collapse
Affiliation(s)
- Patrick Grenier
- Department of Psychology, Queen's University, Kingston, Canada
| | - Adam Sunavsky
- Department of Psychology, Queen's University, Kingston, Canada
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| |
Collapse
|
228
|
Mohr F, Hurrle T, Burggraaff L, Langer L, Bemelmans MP, Knab M, Nieger M, van Westen GJP, Heitman LH, Bräse S. Synthesis and SAR evaluation of coumarin derivatives as potent cannabinoid receptor agonists. Eur J Med Chem 2021; 220:113354. [PMID: 33915369 DOI: 10.1016/j.ejmech.2021.113354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
We report the development and extensive structure-activity relationship evaluation of a series of modified coumarins as cannabinoid receptor ligands. In radioligand, and [35S]GTPγS binding assays the CB receptor binding affinities and efficacies of the new ligands were determined. Furthermore, we used a ligand-based docking approach to validate the empirical observed results. In conclusion, several crucial structural requirements were identified. The most potent coumarins like 3-butyl-7-(1-butylcyclopentyl)-5-hydroxy-2H-chromen-2-one (36b, Ki CB2 13.7 nM, EC50 18 nM), 7-(1-butylcyclohexyl)-5-hydroxy-3-propyl-2H-chromen-2-one (39b, Ki CB2 6.5 nM, EC50 4.51 nM) showed a CB2 selective agonistic profile with low nanomolar affinities.
Collapse
Affiliation(s)
- Florian Mohr
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Lindsey Burggraaff
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Lukas Langer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martijn P Bemelmans
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Maximilian Knab
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen Aukio 1), 00014, Finland
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
229
|
Evidence for the Endocannabinoid System as a Therapeutic Target in the Treatment of Cannabis Use Disorder. CURRENT ADDICTION REPORTS 2021; 7:545-552. [PMID: 33816054 DOI: 10.1007/s40429-020-00342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of Review Cannabis use disorder (CUD) is highly prevalent. Psychotherapy alone is not adequately effective, with few individuals achieving abstinence. Pharmacotherapeutic supplementation may improve efficacy, and the endocannabinoid system presents a target specifically dysregulated by heavy cannabis use. This review compiles current literature evaluating endocannabinoid modulation as a treatment strategy for CUD, with implications for future research. Recent Findings Cannabinoid receptor agonists have been found to reduce cannabis withdrawal symptoms without a notable effect on relapse, and antagonists can produce severe psychiatric symptoms. Fatty acid amide hydrolase inhibitors and cannabidiol demonstrate the most promising efficacy in treating CUD thus far, but research with these compounds is still preliminary. Summary Components of the endocannabinoid system may serve as unique treatment targets with differential efficacy for the treatment of cannabis use disorder as a whole. Further research is needed exploring novel methods for targeting endocannabinoid dysfunction in CUD.
Collapse
|
230
|
Piggott VM, Lloyd SC, Matchynski JI, Perrine SA, Conti AC. Traumatic Stress, Chronic Ethanol Exposure, or the Combination, Alter Cannabinoid System Components in Reward and Limbic Regions of the Mouse Brain. Molecules 2021; 26:2086. [PMID: 33917316 PMCID: PMC8038692 DOI: 10.3390/molecules26072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.
Collapse
Affiliation(s)
- Veronica M. Piggott
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Scott C. Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James I. Matchynski
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shane A. Perrine
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
231
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
232
|
Antipsychotic potential of the type 1 cannabinoid receptor positive allosteric modulator GAT211: preclinical in vitro and in vivo studies. Psychopharmacology (Berl) 2021; 238:1087-1098. [PMID: 33442771 DOI: 10.1007/s00213-020-05755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Antipsychotics help alleviate the positive symptoms associated with schizophrenia; however, their debilitating side effects have spurred the search for better treatment options. Novel compounds can be screened for antipsychotic potential in neuronal cell cultures and following acute N-methyl-D-aspartate (NMDA) receptor blockade with non-competitive antagonists such as MK-801 in rodent behavioral models. Given the known interactions between NMDA receptors and type 1 cannabinoid receptors (CB1R), compounds that modulate CB1Rs may have therapeutic potential for schizophrenia. OBJECTIVES This study assessed whether the CB1R positive allosteric modulator GAT211, when compared to ∆9-tetrahydrocannabinol (THC), has potential to reduce psychiatric behavioral phenotypes following acute MK-801 treatment in rats, and block hyperdopaminergic signalling associated with those behaviors. METHODS The effects of GAT211 and THC on cellular signaling were compared in Neuro2a cells, and behavioral effects of GAT211 and THC on altered locomotor activity and prepulse inhibition of the acoustic startle response caused by acute MK-801 treatment were assessed in male, Long Evans rats. RESULTS GAT211 limited dopamine D2 receptor-mediated extracellular regulated kinase (ERK) phosphorylation in Neuro2a cells, whereas THC did not. As expected, acute MK-801 (0.15 mg/kg) produced a significant increase in locomotor activity and impaired PPI. GAT211 treatment alone (0.3-3.0 mg/kg) dose-dependently reduced locomotor activity and the acoustic startle response. GAT211 (3.0 mg/kg) also prevented hyperlocomotion caused by MK-801 but did not significantly affect PPI impairments. CONCLUSION Taken together, these findings support continued preclinical research regarding the usefulness of CB1R positive allosteric modulators as antipsychotics.
Collapse
|
233
|
Delayed on- and off-retinal responses of cones pathways in regular cannabis users: An On-Off flash electroretinogram case-control study. J Psychiatr Res 2021; 136:312-318. [PMID: 33636687 DOI: 10.1016/j.jpsychires.2021.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
The retina is considered a useful area for investigating synaptic transmission abnormalities in neuropsychiatric disorders, including as a result of using cannabis, the most widely consumed illicit substance in the developed world. The impact of regular cannabis use on retinal function has already been evaluated, using pattern and flash electroretinogram (ERG) to demonstrate a delay in ganglion and bipolar cell response. Using multifocal ERG, it was showed that the delay to be preferentially located in the central retina. ERG tests do not separately examine the impact of cannabis on the On and Off pathways. The purpose of this study is to assess On and Off pathway function using On-Off ERG. We conducted an On-Off ERG test in 42 regular cannabis users and 26 healthy controls. The protocol was compliant with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Amplitude and peak time were measured for the a-, b- and d-waves. Results in the regular cannabis users showed a significant increase in the latencies of both the b- and the d-wave (p = 0.020, p = 0.022, respectively, Mann-Whitney U test), with no change in the wave amplitudes. A-wave peak time and amplitude were unchanged. These findings are reflective of an effect of regular cannabis use on the On and Off pathways and are consistent with previous findings which also identified increases in retinal neuron response times. We confirm here that regular cannabis use impacts the post-receptoral cones pathway at the level of bipolar cells, affecting the On and Off pathways.
Collapse
|
234
|
Rosen S, Diaz R, Garacci Z, Kumar VCS, Thyarala SR, Hillard CJ, Venkatesan T. Hot-Water Bathing Improves Symptoms in Patients with Cyclic Vomiting Syndrome and Is Modulated by Chronic Cannabis Use. Dig Dis Sci 2021; 66:1153-1161. [PMID: 32472256 DOI: 10.1007/s10620-020-06343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/12/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cyclic vomiting syndrome (CVS) is a chronic functional GI disorder; a characteristic compulsive "hot-water bathing" pattern is reported to alleviate symptoms during an acute episode. There is limited data on this bathing pattern: proposed mechanisms include core temperature increase via effects on cannabinoid type 1 receptors in the brain, skin transient receptor potential vanilloid 1 receptor stimulation, and blood flow shift from viscera to skin. AIMS We thus sought to characterize the hot-water bathing pattern in patients with CVS and identify differences between heavy cannabis users in comparison to occasional and non-users. METHODS We conducted a cross-sectional study of 111 patients with CVS at a single tertiary referral center. Questionnaires regarding clinical characteristics, hot-water bathing, and cannabis use were administered. Patients were classified based on cannabis usage into regular cannabis users (≥ 4 times/week), and occasional + non-users (< 4 times/week and no current use). RESULTS A total of 81 (73%) respondents reported the hot-water bathing behavior during an episode. The majority (> 80%) noted a marked improvement in nausea, vomiting, abdominal pain and symptoms associated with panic. Regular cannabis users were more likely to use "very-hot" water (50% vs. 16%, p = 0.01) and time to relief of symptoms was longer (> 10 min) in this group, compared to the rest of the cohort. CONCLUSIONS Hot-water bathing relieves both GI and symptoms related to panic in most patients which appear to be modulated by chronic cannabis use. These findings can help inform future physiologic studies in CVS pathogenesis.
Collapse
Affiliation(s)
- Sheldon Rosen
- Division of Gastroenterology and Hepatology, University of Washington, Seattle, WA, USA
| | - Robert Diaz
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhuping Garacci
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vishnu Charan Suresh Kumar
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shashank R Thyarala
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thangam Venkatesan
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
235
|
Bouquet E, Pain S, Eiden C, Jouanjus E, Richard N, Fauconneau B, Pérault-Pochat MC. Adverse events of recreational cannabis use reported to the French addictovigilance network (2012-2017). Br J Clin Pharmacol 2021; 87:3925-3937. [PMID: 34282851 DOI: 10.1111/bcp.14812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS To describe the adverse events (AEs) of recreational cannabis use in France between 2012 and 2017. METHODS AEs related to recreational cannabis use, alone or in combination with alcohol and/or tobacco reported to the French Addictovigilance Network were analysed (excluding cannabidiol and synthetic cannabinoids). RESULTS Reporting of AEs tripled between 2012 (n = 179, 6.3%, 95% confidence interval [CI] = 5.4-7.2) and 2017 (n = 562, 10.1%, 95% CI = 9.3-10.9), reaching 2217 cases. They concerned mainly men (76.4%) and users aged between 18 and 34 years (18-25: 30.9%; 26-34: 26.3%, range: 12-84 years). Cannabis was mainly inhaled (71.6%) and exposure was most often chronic (64.2%). Many types of AEs were reported: psychiatric (51.2%), neurological (15.6%), cardiac (7.8%) and gastrointestinal (7.7%), including unexpected AEs (n = 34, 1.1%). The most common effect was dependence, ranging from 10.1% (95% CI = 7.9-12.3) to 20.3% (95% CI = 17.3-23.2) over the study period. Cannabinoid hyperemesis syndrome (n = 87, 2.8%) emerged from 2015. Deaths accounted for 0.2% of all AEs (4 men and 3 women aged on average 35 years). A chronic pattern of cannabis use was reported in 4 of them (intracranial hypertension in the context of lung cancer, suicide, cerebral haematoma, neonatal death with concomitant chronic alcohol use), while in the other cases the toxicological analysis identified cannabis use (ruptured aneurysm and unknown aetiology). CONCLUSION This study showed a multitude of AEs related to recreational cannabis use, including unexpected AEs and deaths. It highlights the problem of dependence and the emergence of cannabinoid hyperemesis syndrome.
Collapse
Affiliation(s)
- Emilie Bouquet
- Addictovigilance Center, Department of Clinical Pharmacology, Poitiers University Hospital, France
| | - Stéphanie Pain
- Addictovigilance Center, Department of Clinical Pharmacology, Poitiers University Hospital, France.,INSERM U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France
| | - Céline Eiden
- Addictovigilance Center, Montpellier University Hospital, France
| | - Emilie Jouanjus
- Addictovigilance Center, Toulouse University Hospital, France
| | - Nathalie Richard
- French National Agency for Medicines and Health Products Safety (ANSM), Saint-Denis, France
| | - Bernard Fauconneau
- Addictovigilance Center, Department of Clinical Pharmacology, Poitiers University Hospital, France
| | - Marie-Christine Pérault-Pochat
- Addictovigilance Center, Department of Clinical Pharmacology, Poitiers University Hospital, France.,INSERM U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France
| | | |
Collapse
|
236
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
237
|
Li J, Seidlitz J, Suckling J, Fan F, Ji GJ, Meng Y, Yang S, Wang K, Qiu J, Chen H, Liao W. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun 2021; 12:1647. [PMID: 33712584 PMCID: PMC7955076 DOI: 10.1038/s41467-021-21943-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD. The correlation between brain structural changes in major depressive disorder (MDD) and gene expression is unclear. Here, the authors explore the correlation between cell type-specific gene expression changes and cortical structural difference in individuals with major depressive disorder.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jakob Seidlitz
- Children's Hospital of Philadelphia, Department of Child and Adolescent Psychiatry and Behavioral Science, Philadelphia, PA, USA.,University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - John Suckling
- University of Cambridge, Department of Psychiatry, Cambridge, UK
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Kai Wang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, P.R. China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China. .,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China. .,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| |
Collapse
|
238
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
239
|
Peters KZ, Cheer JF, Tonini R. Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends Neurosci 2021; 44:464-477. [PMID: 33674134 DOI: 10.1016/j.tins.2021.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and endocannabinoids (ECs) are key neuromodulators involved in many aspects of motivated behavior, including reward processing, reinforcement learning, and behavioral flexibility. Among the longstanding views about possible relationships between these neuromodulators is the idea of DA and 5-HT acting as opponents. This view has been challenged by emerging evidence that 5-HT supports reward seeking via activation of DA neurons in the ventral tegmental area. Adding an extra layer of complexity to these interactions, the endocannabinoid system is uniquely placed to influence dopaminergic and serotonergic neurotransmission. In this review we discuss how these three neuromodulatory systems interact at the cellular and circuit levels. Technological advances that facilitate precise identification and control of genetically targeted neuronal populations will help to achieve a better understanding of the complex relationship between these essential systems, and the potential relevance for motivated behavior.
Collapse
Affiliation(s)
- Kate Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA.
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy.
| |
Collapse
|
240
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
241
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
242
|
Dvorakova M, Kubik-Zahorodna A, Straiker A, Sedlacek R, Hajkova A, Mackie K, Blahos J. SGIP1 is involved in regulation of emotionality, mood, and nociception and modulates in vivo signalling of cannabinoid CB 1 receptors. Br J Pharmacol 2021; 178:1588-1604. [PMID: 33491188 PMCID: PMC8795748 DOI: 10.1111/bph.15383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/06/2020] [Accepted: 01/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose Src homology 3‐domain growth factor receptor‐bound 2‐like endophilin interacting protein 1 (SGIP1) interacts with cannabinoid CB1 receptors. SGIP1 is abundantly and principally expressed within the nervous system. SGIP1 and CB1 receptors co‐localize in axons and presynaptic boutons. SGIP1 interferes with the internalization of activated CB1 receptors in transfected heterologous cells. Consequently, the transient association of CB1 receptors with β‐arrestin2 is enhanced and prolonged, and CB1 receptor‐mediated ERK1/2 signalling is decreased. Because of these actions, SGIP1 may modulate affect, anxiety, pain processing, and other physiological processes controlled by the endocannabinoid system (ECS). Experimental Approach Using a battery of behavioural tests, we investigated the consequences of SGIP1 deletion in tasks regulated by the ECS in SGIP1 constitutive knockout (SGIP1−/−) mice. Key Results In SGIP1−/− mice, sensorimotor gating, exploratory levels, and working memory are unaltered. SGIP1−/− mice have decreased anxiety‐like behaviours. Fear extinction to tone is facilitated in SGIP1−/− females. Several cannabinoid tetrad behaviours are altered in the absence of SGIP1. SGIP1−/− males exhibit abnormal behaviours on Δ9‐tetrahydrocannabinol withdrawal. SGIP1 deletion also reduces acute nociception, and SGIP1−/− mice are more sensitive to analgesics. Conclusion and Implications SGIP1 was detected as a novel protein associated with CB1 receptors, and profoundly modified CB1 receptor signalling. Genetic deletion of SGIP1 particularly affected behavioural tests of mood‐related assessment and the cannabinoid tetrad. SGIP1−/− mice exhibit decreased nociception and augmented responses to CB1 receptor agonists and morphine. These in vivo findings suggest that SGIP1 is a novel modulator of CB1 receptor‐mediated behaviour.
Collapse
Affiliation(s)
- Michaela Dvorakova
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.,Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Agnieszka Kubik-Zahorodna
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Radislav Sedlacek
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Alena Hajkova
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Jaroslav Blahos
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
243
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
244
|
Carrera J, Tomberlin J, Kurtz J, Karakaya E, Bostanciklioglu M, Albayram O. Endocannabinoid Signaling for GABAergic-Microglia (Mis)Communication in the Brain Aging. Front Neurosci 2021; 14:606808. [PMID: 33613174 PMCID: PMC7887316 DOI: 10.3389/fnins.2020.606808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.
Collapse
Affiliation(s)
- Jorge Carrera
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jensen Tomberlin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - John Kurtz
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Eda Karakaya
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
245
|
Moreno-Luna R, Esteban PF, Paniagua-Torija B, Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E. Heterogeneity of the Endocannabinoid System Between Cerebral Cortex and Spinal Cord Oligodendrocytes. Mol Neurobiol 2021; 58:689-702. [PMID: 33006124 DOI: 10.1007/s12035-020-02148-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
In the last years, regional differences have been reported between the brain and spinal cord oligodendrocytes, which should be considered when designing therapeutic strategies for myelin repair. Promising targets to achieve myelin restoration are the different components of the endocannabinoid system (ECS) that modulate oligodendrocyte biology, but almost all studies have been focused on brain-derived cells. Therefore, we compared the ECS between the spinal cord and cerebral cortex-derived oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs). Cells from both regions express synthesizing and degrading enzymes for the endocannabinoid 2-arachidonoylglycerol, and degrading enzymes increase with maturation, more notably in the spinal cord (monoglyceride lipase-MGLL, alpha/beta hydrolase domain-containing 6-ABHD6, and alpha/beta hydrolase domain-containing 12-ABHD12). In addition, spinal cord OPCs express higher levels of the synthesizing enzymes diacylglycerol lipases alpha (DAGLA) and beta (DAGLB) than cortical ones, DAGLA reaching statistical significance. Cells from both the cortex and spinal cord express low levels of NAEs synthesizing enzymes, except for the glycerophosphodiester phosphodiesterase 1 (GDE-1) but high levels of the degrading enzyme fatty acid amidohydrolase (FAAH) that increases with maturation. Finally, cells from both regions show similar levels of CB1 receptor and GPR55, but spinal cord-derived cells show significantly higher levels of transient receptor potential cation channel V1 (TRPV1) and CB2. Overall, our results show that the majority of the ECS components could be targeted in OPCs and OLs from both the spinal cord and brain, but regional heterogeneity has to be considered for DAGLA, MGLL, ABHD6, ABHD12, GDE1, CB2, or TRPV1.
Collapse
Affiliation(s)
- R Moreno-Luna
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - P F Esteban
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - B Paniagua-Torija
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - A Arevalo-Martin
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - D Garcia-Ovejero
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - E Molina-Holgado
- Laboratory of Neuroinflammation (lab i2 06), Hospital Nacional de Paraplejicos-SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
246
|
Saldaña-Shumaker SL, Grenning AJ, Cunningham CW. Modern approaches to the development of synthetic cannabinoid receptor probes. Pharmacol Biochem Behav 2021; 203:173119. [PMID: 33508249 DOI: 10.1016/j.pbb.2021.173119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The endocannabinoid system, which spans the central and peripheral nervous systems and regulates many biologic processes, is an important target for probe discovery and medications development. Whereas the earliest endocannabinoid receptor probes were derivatives of the non-selective phytocannabinoids isolated from Cannabis species, modern drug discovery techniques have expanded the definitions of what constitutes a CB1R or CB2R cannabinoid receptor ligand. This review highlights recent advances in synthetic cannabinoid receptor chemistry and pharmacology. We provide examples of new CB1R- and CB2R-selective probes, and discuss rational approaches to the design of peripherally-restricted agents. We also describe structural classes of positive- and negative allosteric modulators (PAMs and NAMs) of CB1R and CB2R. Finally, we introduce new opportunities for cannabinoid receptor probe development that have emerged in recent years, including biased agonists that may lead to medications lacking adverse effects.
Collapse
Affiliation(s)
- Savanah L Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| |
Collapse
|
247
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
248
|
Ibarra-Lecue I, Diez-Alarcia R, Urigüen L. Serotonin 2A receptors and cannabinoids. PROGRESS IN BRAIN RESEARCH 2021; 259:135-175. [PMID: 33541675 DOI: 10.1016/bs.pbr.2021.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has proven that both exogenous cannabinoids as well as imbalances in the endocannabinoid system are involved in the onset and development of mental disorders such as anxiety, depression, or schizophrenia. Extensive recent research in this topic has mainly focused on the molecular mechanisms by which cannabinoid agonists may contribute to the pathophysiology of these disorders. Initially, serotonin neurotransmitter garnered most attention due to its relationship to mood disorders and mental diseases, with little attention to specific receptors. To date, the focus has redirected toward the understanding of different serotonin receptors, through a demonstration of its versatile pharmacology and synergy with different modulators. Serotonin 2A receptors are a good example of this phenomenon, and the complex signaling that they trigger appears of high relevance in the context of mental disorders, especially in schizophrenia. This chapter will analyze most relevant attributes of serotonin 2A receptors and the endocannabinoid system, and will highlight the evidence toward the functional bidirectional interaction between these elements in the brain as well as the impact of the endocannabinoid system dysregulation on serotonin 2A receptors functionality.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain.
| |
Collapse
|
249
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
250
|
Portugalov A, Akirav I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int J Mol Sci 2021; 22:ijms22020730. [PMID: 33450928 PMCID: PMC7828431 DOI: 10.3390/ijms22020730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
There have been growing concerns about the protracted effects of cannabis use in adolescents on emotion and cognition outcomes, motivated by evidence of growing cannabis use in adolescents, evidence linking cannabis use to various psychiatric disorders, and the increasingly perceived notion that cannabis is harmless. At the same time, studies suggest that cannabinoids may have therapeutic potential against the impacts of stress on the brain and behavior, and that young people sometimes use cannabinoids to alleviate feelings of depression and anxiety (i.e., “self-medication”). Exposure to early adverse life events may predispose individuals to developing psychopathology in adulthood, leading researchers to study the causality between early life factors and cognitive and emotional outcomes in rodent models and to probe the underlying mechanisms. In this review, we aim to better understand the long-term effects of cannabinoids administered in sensitive developmental periods (mainly adolescence) in rodent models of early life stress. We suggest that the effects of cannabinoids on emotional and cognitive function may vary between different sensitive developmental periods. This could potentially affect decisions regarding the use of cannabinoids in clinical settings during the early stages of development and could raise questions regarding educating the public as to potential risks associated with cannabis use.
Collapse
Affiliation(s)
- Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
- Correspondence:
| |
Collapse
|