201
|
Identification and expression analysis of miRNAs in germination and seedling growth of Tibetan hulless barley. Genomics 2021; 113:3735-3749. [PMID: 34517091 DOI: 10.1016/j.ygeno.2021.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023]
Abstract
Germination and seedling growth are crucial for plant development and agricultural production. While, the regulatory mechanisms during these processes in Tibetan hulless barley (Hordeum vulgare L. var. nudum) are not well understood. Given the regulatory roles of microRNAs (miRNAs) in crop plants and the irreplaceability of barley in the highland area of China, we herein presented a genome-wide survey of miRNAs to reveal a potential regulatory network in the early developmental stages of two Tibetan hulless barleys, from which a total of 156 miRNAs was identified including 35 known and 121 novel ones. Six of the identified novel miRNAs were further experimentally validated. According to the evolutionary analysis, miR156, miR166, miR168, and miR171 were conserved across Tibetan hulless barleys and eight other seed plants. Expression profiles of ten known miRNAs showed that they were involved in phytohormone signaling, carbohydrate and lipid metabolism, as well as juvenile-adult transition during barley development. Moreover, a total of 1280 genes targeted by 101 miRNAs were predicted from both barley libraries. Three genes (PLN03212, MATE eukaryotic, and GRAS) were validated via the RNA ligase-mediated 5'-rapid amplification of cDNA ends (RLM-5' RACE) to be the targets of hvu-miR159a, hvu-miR166a, and hvu-miR171-3p, respectively. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of putative targets, the most abundant pathways were related to "metabolism". These results revealed that miRNA-target pairs participating in the regulation of multigene expression and the embryonic development of Tibetan hulless barleys were controlled by complex mechanisms involving the concordant expression of different miRNAs and feedback loops among miRNAs as well as their targets. The study provides insight into the regulatory network of barley miRNAs for better understanding of miRNA functions during germination and seedling growth.
Collapse
|
202
|
Martinson EO, Werren JH, Egan SP. Tissue-specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasite-specific organ. Mol Ecol 2021; 31:3228-3240. [PMID: 34510608 DOI: 10.1111/mec.16159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2021] [Indexed: 01/12/2023]
Abstract
Every organism on Earth depends on interactions with other organisms to survive. In each of these interactions, an organism must utilize the limited toolbox of genes and proteins it possesses to successfully manipulate or cooperate with another species, but it can also co-opt the genome machinery of its partner to expand its available tools. Insect-induced plant galls are an extreme example of this, wherein an insect hijacks the plant's genome to direct the initiation and development of galls consisting of plant tissue. However, previous transcriptomic studies have not evaluated individual tissues within a gall to determine the full extent to which a galling insect manipulates its host plant. Here we demonstrate that the cynipid wasp Dryocosmus quercuspalustris creates a complex parasite-specific organ from red oak tissue via massive changes in host gene expression. Our results show that the gall wasp is not merely modifying oak leaf tissue but creating extensive changes in gene expression between galled and ungalled tissue (differential expression in 28% of genes) and distinct gall tissue types (20% of genes). The outer gall tissue shows increases in various plant defence systems, which is consistent with its predicted functional role of protecting the wasp larva. The inner larval capsule shows suppression of large parts of the plant innate immune system and evidence for the wasp utilizing the plant's RNA interference mechanisms, which may be a potential mechanism for the wasp's control on gall growth.
Collapse
Affiliation(s)
- Ellen O Martinson
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Biology Department, University of Rochester, Rochester, New York, USA
| | - John H Werren
- Biology Department, University of Rochester, Rochester, New York, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
203
|
Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, Nakajima M, Tamai I. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/ SLCO2B1 in Caco-2 Cells. Drug Metab Dispos 2021; 49:803-809. [PMID: 34162689 DOI: 10.1124/dmd.121.000380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/SLCO2B1 and that the 3'-untranslated region (3'UTR) is required for the response to APNPs. Here, we investigated the involvement of microRNAs (miRNAs) in APNPs in suppressing OATP2B1 expression to demonstrate that APNP macromolecules directly interact with intestinal tissues. Using in silico analysis, seven apple miRNAs were predicted as candidate miRNAs that interact with the SLCO2B1-3'UTR. The APNP-mediated decrease in luciferase activity of pGL3/SLCO2B1-3'UTR was abrogated by inhibitors of mdm-miR-160a-e, -7121a-c, or -7121d-h. Each miRNA mimic reduced the endogenous expression of SLCO2B1 mRNA in Caco-2 cells. The luciferase activity of the truncated pGL3/SLCO2B1-3'UTR, which contains approximately 200 bp around each miRNA recognition element (MRE), was decreased by the miR-7121d-h mimic but decreased little by the other mimics. APNP also reduced the luciferase activity of truncated pGL3/SLCO2B1-3'UTR containing an MRE for miR-7121d-h. Thus, we demonstrated that mdm-miR-7121d-h contributes to the APNP-mediated downregulation of intestinal OATP2B1. Accordingly, plant macromolecules, such as miRNAs, may directly interact with intestinal tissues via nanoparticles. SIGNIFICANCE STATEMENT: This study demonstrates that mdm-miR7121d-h contained in apple-derived nanoparticles downregulated the mRNA expression of SLCO2B1 by interacting with SLCO2B1-3'-untranslated region directly and that SLCO2B1 mRNA might also be decreased by mdm-miR160a-e and -7121a-c indirectly. This finding that the specific apple-derived microRNAs influence human intestinal transporters provides a novel concept that macromolecules in foods directly interact with and affect the intestinal function of the host.
Collapse
Affiliation(s)
- Hisakazu Komori
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Daichi Fujita
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yuma Shirasaki
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Qiunan Zhu
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yui Iwamoto
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
204
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021; 29:100920. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
205
|
Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, Soto‐Suárez M, San Segundo B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1798-1811. [PMID: 33780108 PMCID: PMC8428829 DOI: 10.1111/pbi.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Ferran Sánchez‐Sanuy
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Rosany Camargo‐Ramírez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Jorge Gómez‐Ariza
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Donald Danforth Plant Science Center975 N Warson RoadSt. LouisMO63132USA
| | - Lidia Campos‐Soriano
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| | - Mauricio Soto‐Suárez
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
- Present address:
Corporación Colombiana de Investigación Agropecuaria. AGROSAVIAKm 14 vía Mosquera‐BogotáMosquera250047Colombia
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)C/ de la Vall Moronta, CRAG BuildingBarcelona08193Spain
| |
Collapse
|
206
|
Yang J, Meng J, Liu X, Hu J, Zhu Y, Zhao Y, Jia G, He H, Yuan T. Integrated mRNA and small RNA sequencing reveals a regulatory network associated with flower color in oriental hybrid lily. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:103-114. [PMID: 34091210 DOI: 10.1016/j.plaphy.2021.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins are one of the main components of pigments, that are responsible for a wide range of colors in plants. To clarify the regulatory mechanism of anthocyanin biosynthesis in oriental hybrid lily, UPLC/MS analysis was performed to identify the pigments in two cultivars (white and pink). Four major anthocyanins were identified in pink cultivar, and no anthocyanins were detected in white cultivar. Transcriptome and small RNA sequencing (sRNAseq) analyses were performed using tepal tissues at two floral developmental stages from the two cultivars. In total, 55,698 transcripts were assembled, among which 233 were annotated as putative anthocyanin-related transcripts. Differential expression analysis and qRT-PCR results confirmed that most of the anthocyanin-related structural genes had higher expression levels in pink cultivar than in white cultivar. Conversely, LhANR showed a significantly high expression level in white cultivar. Annotated transcription factors (TFs), including MYB activators, MYB repressors and bHLHs, that putatively inhibit or enhance the expression of anthocyanin-related genes were identified. LhMYBA1, an anthocyanin activator, was isolated, and its heterologous expression resulted in a remarkably high level of anthocyanin accumulation. Additionally, 73 differentially expressed microRNAs (miRNAs), including 23 known miRNAs, were detected through sRNAseq. The miRNA target prediction showed that several anthocyanin-related genes might be targeted by miRNAs. Expression profile analysis revealed that these miRNAs showed higher expression levels at later floral developmental stages in white cultivar than in pink cultivar. The results indicated that anthocyanin deficiency in white cultivar might be influenced by multiple levels of suppressive mechanisms, including mRNAs and sRNAs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaolin Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junshu Hu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuntao Zhu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yiran Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Guixia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Hengbin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
207
|
Yang J, Zhang N, Zhang J, Jin X, Zhu X, Ma R, Li S, Lui S, Yue Y, Si H. Knockdown of MicroRNA160a/b by STTM leads to root architecture changes via auxin signaling in Solanum tuberosum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:939-949. [PMID: 34247108 DOI: 10.1016/j.plaphy.2021.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.
Collapse
Affiliation(s)
- Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinlin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xin Jin
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Lui
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yun Yue
- Gansu Pharmaceutical Investment Group Co., Ltd, Lanzhou, 730030, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
208
|
Arora S, Chaudhary B. Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium). PLANTA 2021; 254:62. [PMID: 34459999 DOI: 10.1007/s00425-021-03711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 05/15/2023]
Abstract
Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
209
|
Exploration of wheat yellow mosaic virus-responsive miRNAs and their targets in wheat by miRNA and degradome sequencing. J Biosci 2021. [DOI: 10.1007/s12038-021-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
210
|
Šečić E, Kogel KH, Ladera-Carmona MJ. Biotic stress-associated microRNA families in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153451. [PMID: 34119743 DOI: 10.1016/j.jplph.2021.153451] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Plants and animals utilize various regulatory mechanisms for control of gene expression during development in different tissues and cell types. About 30 years ago, a new mechanism of gene regulation, termed RNA interference (RNAi), was discovered and proved revolutionary for the mechanistic understanding of gene regulation. Noncoding RNAs, including short, 21-24 nucleotide (nt) long microRNAs (miRNAs), endogenously-generated from MIR genes, are key components of RNAi processes, by post-transcriptionally controlling transcripts with antisense complementarity through either translational repression or mRNA degradation. Since their discovery, important roles in regulation of ontogenetic development, cell differentiation, proliferation, and apoptosis in eukaryotes have been elucidated. In plants, miRNAs are known regulatory elements of basic endogenous functions and responses to the environmental stimuli. While the role of miRNAs in regulation of nutrient uptake, circadian clock and general response to abiotic stress is already well understood, a comprehensive understanding of their immune-regulatory roles in response to various biotic stress factors has not yet been achieved. This review summarizes the current understanding of the function of miRNAs and their targets in plants during interaction with microbial pathogens and symbionts. Additionally, we provide a consensus conclusion regarding the typical induction or repression response of conserved miRNA families to pathogenic and beneficial fungi, bacteria, and oomycetes, as well as an outlook of agronomic application of miRNAs in plants. Further investigation of plant miRNAs responsive to microbes, aided with novel sequencing and bioinformatics approaches for discovery and prediction in non-model organisms holds great potential for development of new forms of plant protection.
Collapse
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Maria Jose Ladera-Carmona
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| |
Collapse
|
211
|
Zhou H, Hussain SS, Shi BJ. One vector-based method to verify predicted plant miRNAs, target sequences, and function modes. Biotechnol Bioeng 2021; 118:3105-3116. [PMID: 34002369 DOI: 10.1002/bit.27821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Many microRNAs (miRNAs) have been predicted from small RNA sequencing data, but little was experimentally verified due to the lack of effective methods. Here, we developed a simple and reliable dual gene expression cassette vector-based method to verify predicted plant miRNAs. We cloned osa-miR528 as a known miRNA, hvu-miRX as a predicted miRNA and TaDREB3 open reading frame as a non-miRNA into the first gene expression cassette and fused their complementary or noncomplementary sequences as predicted target or nontarget sequences with the 3' untranslated region of green fluorescent protein (GFP) in the second one. When these constructs were bombarded into plant cells, only the construct containing both osa-miR528 or hvu-miRX and its complementary sequence did not generate green fluorescence. Stem-loop reverse-transcription polymerase chain reaction detected mature osa-miR528 or mature hvu-miRX in the cells, while northern analysis showed that GFP messenger RNA from the construct containing both osa-miR528 or hvu-miRX and its complementary sequence was degraded. Taken together, the results indicate that hvu-miRX is an authentic miRNA like osa-miR528, miRNA's complementary sequence is its target sequence, and both osa-miR528 and hvu-miRX silenced the GFP expression via a cleavage mode. Our method thus facilitates the verification of predicted plant miRNAs, target sequences, and function modes.
Collapse
Affiliation(s)
- Hui Zhou
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Syed S Hussain
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Bu-Jun Shi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
212
|
|
213
|
Peng B, Zhao X, Wang Y, Li C, Li Y, Zhang D, Shi Y, Song Y, Wang L, Li Y, Wang T. Genome-wide association studies of leaf angle in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:50. [PMID: 37309541 PMCID: PMC10236034 DOI: 10.1007/s11032-021-01241-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/04/2021] [Indexed: 06/14/2023]
Abstract
Compact plant-type with small leaf angle has increased canopy light interception, which is conducive to the photosynthesis of the population and higher population yield at high density planting in maize. In this study, a panel of 285 diverse maize inbred lines genotyped with 56,000 SNPs was used to investigate the genetic basis of leaf angle across 3 consecutive years using a genome-wide association study (GWAS). The leaf angle showed broad phenotypic variation and high heritability across different years. Population structure analysis subdivided the panel into four subgroups that correspond to the four major empirical germplasm origins in China, i.e., Tangsipingtou, Reid, Lancaster and P. When tested with the optimal GWAS model, we found that the Q + K model was the best in reducing false positive. In total, 96 SNPs accounting for 5.54-10.44% of phenotypic variation were significantly (P < 0.0001) associated with leaf angle across three years. According to the linkage disequilibrium decay distance, 96 SNPs were binned into 43 QTLs for leaf angle. Seven major QTLs with R2 > 8% stably detected in at least 2 years, and BLUP values were clustered in four genomic regions (bins 2.01, 2.07, 5.06, and 10.04). Seven important candidate genes, Zm00001d001961, Zm00001d006348, Zm00001d006463, Zm00001d017618, Zm00001d024919, Zm00001d025018, and Zm00001d025033 were predicted for the seven stable major QTLs, respectively. The markers identified in this study can be used for molecular breeding for leaf angle, and the candidate genes would contribute to further understanding of the genetic basis of leaf angle. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01241-0.
Collapse
Affiliation(s)
- Bo Peng
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences/Tianjin Key Laboratory of Crop Genetics and Breeding, 300384 Tianjin, China
| | - Xiaolei Zhao
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences/Tianjin Key Laboratory of Crop Genetics and Breeding, 300384 Tianjin, China
| | - Yi Wang
- Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences/Tianjin Key Laboratory of Crop Genetics and Breeding, 300384 Tianjin, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lei Wang
- Handan Academy of Agricultural Sciences, Handan, 056001 Hebei China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
214
|
Li H, Yu TT, Ning YS, Li H, Zhang WW, Yang HQ. Hydrogen Sulfide Alleviates Alkaline Salt Stress by Regulating the Expression of MicroRNAs in Malus hupehensis Rehd. Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:663519. [PMID: 34381471 PMCID: PMC8350742 DOI: 10.3389/fpls.2021.663519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is an excellent apple rootstock and ornamental tree, but its tolerance to salt stress is weak. Our previous study showed that hydrogen sulfide (H2S) could alleviate damage in M. hupehensis roots under alkaline salt stress. However, the molecular mechanism of H2S mitigation alkaline salt remains to be elucidated. MicroRNAs (miRNAs) play important regulatory roles in plant response to salt stress. Whether miRNAs are involved in the mitigation of alkaline salt stress mediated by H2S remains unclear. In the present study, through the expression analysis of miRNAs and target gene response to H2S and alkaline salt stress in M. hupehensis roots, 115 known miRNAs (belonging to 37 miRNA families) and 15 predicted novel miRNAs were identified. In addition, we identified and analyzed 175 miRNA target genes. We certified the expression levels of 15 miRNAs and nine corresponding target genes by real-time quantitative PCR (qRT-PCR). Interestingly, H2S pretreatment could specifically induce the downregulation of mhp-miR408a expression, and upregulated mhp-miR477a and mhp-miR827. Moreover, root architecture was improved by regulating the expression of mhp-miR159c and mhp-miR169 and their target genes. These results suggest that the miRNA-mediated regulatory network participates in the process of H2S-mitigated alkaline salt stress in M. hupehensis roots. This study provides a further understanding of miRNA regulation in the H2S mitigation of alkaline salt stress in M. hupehensis roots.
Collapse
|
215
|
The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22157907. [PMID: 34360673 PMCID: PMC8347404 DOI: 10.3390/ijms22157907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.
Collapse
|
216
|
Wang J, Zhang Q, You X, Hou X. Transcriptome and Small RNA Combined Sequencing Analysis of Cold Tolerance in Non-heading Chinese Cabbage. Front Genet 2021; 12:605292. [PMID: 34367230 PMCID: PMC8334874 DOI: 10.3389/fgene.2021.605292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Non-heading Chinese cabbage (Brassica rapa ssp. chinensis) is an important leaf vegetable grown worldwide. However, there has currently been not enough transcriptome and small RNA combined sequencing analysis of cold tolerance, which hinders further functional genomics research. Results In this study, 63.43 Gb of clean data was obtained from the transcriptome analysis. The clean data of each sample reached 6.99 Gb, and the basic percentage of Q30 was 93.68% and above. The clean reads of each sample were sequence aligned with the designated reference genome (Brassica rapa, IVFCAASv1), and the efficiency of the alignment varied from 81.54 to 87.24%. According to the comparison results, 1,860 new genes were discovered in Pak-choi, of which 1,613 were functionally annotated. Among them, 13 common differentially expressed genes were detected in all materials, including seven upregulated and six downregulated. At the same time, we used quantitative real-time PCR to confirm the changes of these gene expression levels. In addition, we sequenced miRNA of the same material. Our findings revealed a total of 34,182,333 small RNA reads, 88,604,604 kinds of small RNAs, among which the most common size was 24 nt. In all materials, the number of common differential miRNAs is eight. According to the corresponding relationship between miRNA and its target genes, we carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the set of target genes on each group of differentially expressed miRNAs. Through the analysis, it is found that the distributions of candidate target genes in different materials are different. We not only used transcriptome sequencing and small RNA sequencing but also used experiments to prove the expression levels of differentially expressed genes that were obtained by sequencing. Sequencing combined with experiments proved the mechanism of some differential gene expression levels after low-temperature treatment. Conclusion In all, this study provides a resource for genetic and genomic research under abiotic stress in Pak-choi.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qinxue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
217
|
The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays Biochem 2021; 64:919-930. [PMID: 32885814 DOI: 10.1042/ebc20200006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
In plants, post-transcriptional gene silencing (PTGS) tightly regulates development, maintains genome stability and protects plant against foreign genes. PTGS can be triggered by virus infection, transgene, and endogenous transcript, thus commonly serves as an RNA-based immune mechanism. Accordingly, based on the initiating factors, PTGS can be divided into viral-PTGS, transgene-PTGS, and endo-gene-PTGS. Unlike the intensely expressed invading transgenes and viral genes that frequently undergo PTGS, most endogenous genes do not trigger PTGS, except for a few that can produce endogenous small RNAs (sRNAs), including microRNA (miRNA) and small interfering RNA (siRNA). Different lengths of miRNA and siRNA, mainly 21-, 22- or 24-nucleotides (nt) exert diverse functions, ranging from target mRNA degradation, translational inhibition, or DNA methylation and chromatin modifications. The abundant 21-nt miRNA or siRNA, processed by RNase-III enzyme DICER-LIKE 1 (DCL1) and DCL4, respectively, have been well studied in the PTGS pathways. By contrast, the scarceness of endogenous 22-nt sRNAs that are primarily processed by DCL2 limits their research, although a few encouraging studies have been reported recently. Therefore, we review here our current understanding of diverse PTGS pathways triggered by a variety of sRNAs and summarize the distinct features of the 22-nt sRNA mediated PTGS.
Collapse
|
218
|
Yang X, Dong W, Ren W, Zhao Q, Wu F, He Y. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. THE PLANT CELL 2021; 33:1980-1996. [PMID: 33764452 PMCID: PMC8290291 DOI: 10.1093/plcell/koab090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for correspondence:
| |
Collapse
|
219
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
220
|
Öztürk Gökçe ZN, Aksoy E, Bakhsh A, Demirel U, Çalışkan S, Çalışkan ME. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Funct Integr Genomics 2021; 21:489-502. [PMID: 34241734 DOI: 10.1007/s10142-021-00793-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small, non-coding RNAs that are responsible for regulation of gene expression during plant growth and development. Although there are many studies on miRNAs in other plants, little work has been done to understand the role of miRNAs in abiotic stress tolerance in potatoes. This study investigates changes in miRNA profiles of two different potato cultivars (tolerant, Unica and susceptible, Russet Burbank) in response to heat, drought and their combination. Transcriptomic studies revealed that miRNA profiles depend on the susceptibility and tolerance of the cultivar and also the stress conditions. Large number of miRNAs were expressed in Unica, whereas Russet Burbank indicated lesser number of changes in miRNA expression. Physiological and transcriptional results clearly supported that Unica cultivar is tolerant to combined drought and heat stress compared to Russet Burbank. Moreover, psRNATarget analysis predicted that major miRNAs identified were targeting genes playing important roles in response to drought and heat stress and their important roles in genetic and post-transcriptional regulation, root development, auxin responses and embryogenesis were also observed. This study focused on eight miRNAs (Novel_8, Novel_9, Novel_105, miR156d-3p, miR160a-5p, miR162a-3p, miR172b-3p and miR398a-5p) and their putative targets where results indicate that they may play a vital role at different post-transcriptional levels against drought and heat stresses. We suggest that miRNA overexpression in plants can lead to increased tolerance against abiotic stresses; furthermore, there should be more emphasis on the studies to investigate the role of miRNAs in combined abiotic stress in plants.
Collapse
Affiliation(s)
- Zahide Neslihan Öztürk Gökçe
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey.
| | - Emre Aksoy
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Allah Bakhsh
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Ufuk Demirel
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Sevgi Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Mehmet Emin Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| |
Collapse
|
221
|
Clepet C, Devani RS, Boumlik R, Hao Y, Morin H, Marcel F, Verdenaud M, Mania B, Brisou G, Citerne S, Mouille G, Lepeltier JC, Koussevitzky S, Boualem A, Bendahmane A. The miR166-SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. MOLECULAR PLANT 2021; 14:1185-1198. [PMID: 33964458 DOI: 10.1016/j.molp.2021.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Fruit set is inhibited by adverse temperatures, with consequences on yield. We isolated a tomato mutant producing fruits under non-permissive hot temperatures and identified the causal gene as SlHB15A, belonging to class III homeodomain leucine-zipper transcription factors. SlHB15A loss-of-function mutants display aberrant ovule development that mimics transcriptional changes occurring in fertilized ovules and leads to parthenocarpic fruit set under optimal and non-permissive temperatures, in field and greenhouse conditions. Under cold growing conditions, SlHB15A is subjected to conditional haploinsufficiency and recessive dosage sensitivity controlled by microRNA 166 (miR166). Knockdown of SlHB15A alleles by miR166 leads to a continuum of aberrant ovules correlating with parthenocarpic fruit set. Consistent with this, plants harboring an Slhb15a-miRNA166-resistant allele developed normal ovules and were unable to set parthenocarpic fruit under cold conditions. DNA affinity purification sequencing and RNA-sequencing analyses revealed that SlHB15A is a bifunctional transcription factor expressed in the ovule integument. SlHB15A binds to the promoters of auxin-related genes to repress auxin signaling and to the promoters of ethylene-related genes to activate their expression. A survey of tomato genetic biodiversity identified pat and pat-1, two historical parthenocarpic mutants, as alleles of SlHB15A. Taken together, our findings demonstrate the role of SlHB15A as a sentinel to prevent fruit set in the absence of fertilization and provide a mean to enhance fruiting under extreme temperatures.
Collapse
Affiliation(s)
- Christian Clepet
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Ravi Sureshbhai Devani
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Rachid Boumlik
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Yanwei Hao
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Fabien Marcel
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Brahim Mania
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Gwilherm Brisou
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | | | | | | | | | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRAE, CNRS, Université Paris-Saclay, Orsay 91405, France.
| |
Collapse
|
222
|
Chand Jha U, Nayyar H, Mantri N, Siddique KHM. Non-Coding RNAs in Legumes: Their Emerging Roles in Regulating Biotic/Abiotic Stress Responses and Plant Growth and Development. Cells 2021; 10:cells10071674. [PMID: 34359842 PMCID: PMC8306516 DOI: 10.3390/cells10071674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
Noncoding RNAs, including microRNAs (miRNAs), small interference RNAs (siRNAs), circular RNA (circRNA), and long noncoding RNAs (lncRNAs), control gene expression at the transcription, post-transcription, and translation levels. Apart from protein-coding genes, accumulating evidence supports ncRNAs playing a critical role in shaping plant growth and development and biotic and abiotic stress responses in various species, including legume crops. Noncoding RNAs (ncRNAs) interact with DNA, RNA, and proteins, modulating their target genes. However, the regulatory mechanisms controlling these cellular processes are not well understood. Here, we discuss the features of various ncRNAs, including their emerging role in contributing to biotic/abiotic stress response and plant growth and development, in addition to the molecular mechanisms involved, focusing on legume crops. Unravelling the underlying molecular mechanisms and functional implications of ncRNAs will enhance our understanding of the coordinated regulation of plant defences against various biotic and abiotic stresses and for key growth and development processes to better design various legume crops for global food security.
Collapse
MESH Headings
- Fabaceae/genetics
- Fabaceae/growth & development
- Fabaceae/metabolism
- Food Security
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Humans
- MicroRNAs/classification
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Organ Specificity
- Protein Biosynthesis
- RNA, Circular/classification
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Plant/classification
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Species Specificity
- Stress, Physiological/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne 3083, Australia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
223
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
224
|
Xu TL, Sun YW, Feng XY, Zhou XN, Zheng B. Development of miRNA-Based Approaches to Explore the Interruption of Mosquito-Borne Disease Transmission. Front Cell Infect Microbiol 2021; 11:665444. [PMID: 34235091 PMCID: PMC8256169 DOI: 10.3389/fcimb.2021.665444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.
Collapse
Affiliation(s)
- Tie-Long Xu
- Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Ya-Wen Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
| | - Xin-Yu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
225
|
Barut Z, Cabbar AT, Yilmaz SG, Akdeniz FT, Simsek MA, Capar B, Degertekin M, Dalan AB, Yerebakan H, Isbir T. Investigation of Circulating miRNA-133, miRNA-26, and miRNA-378 as Candidate Biomarkers for Left Ventricular Hypertrophy. In Vivo 2021; 35:1605-1610. [PMID: 33910842 DOI: 10.21873/invivo.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Left ventricular hypertrophy (LVH) involves increased muscular mass of the left ventricle due to increased cardiomyocyte size and is caused by cardiomyopathies. Several microRNAs (miRNAs) have been implicated in processes that contribute to heart disease. This study aimed to examine miRNA-133, miRNA-26 and miRNA-378 as candidate biomarkers to define prognosis in patients with LVH. PATIENTS AND METHODS The study group consisted of 70 patients who were diagnosed with LVH and 16 unaffected individuals who served as the control group. Real-time polymerase chain reaction (RT-PCR) was used to analyze serum miRNA-133, miRNA-26, and miRNA-378 expression levels in LVH patients and the control group. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capability of miRNA-378. RESULTS When crossing threshold (CT) values were compared between patient and control samples, we found that there were no statistically significant differences in miRNA-133 and miRNA-26 CT values, while the miRNA-378 expression was significantly increased in LVH patients. ROC analysis demonstrated that the expression levels of miRNA-378 (AUC=0.484, p=0.0013) were significantly different between groups. CONCLUSION We observed a statistically significant relationship between miRNA-378 expression levels and LVH, suggesting that circulating miRNA-378 may be used as a novel biomarker to distinguish patients who have LVH from those who do not.
Collapse
Affiliation(s)
- Zerrin Barut
- Department of Basic Medical Science, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Ayca Turer Cabbar
- Department of Cardiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Seda Gulec Yilmaz
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatma Tuba Akdeniz
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mustafa Aytek Simsek
- Department of Cardiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Betul Capar
- Department of Molecular Medicine, Institute of Health Sciences, Yeditepe University, Istanbul, Turkey
| | - Muzaffer Degertekin
- Department of Cardiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Altay Burak Dalan
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Halit Yerebakan
- Department of Cardiovascular Surgery, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Turgay Isbir
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey;
| |
Collapse
|
226
|
Hu Z, Nie Z, Yan C, Huang H, Ma X, Wang Y, Ye N, Tuskan GA, Yang X, Yin H. Transcriptome and Degradome Profiling Reveals a Role of miR530 in the Circadian Regulation of Gene Expression in Kalanchoë marnieriana. Cells 2021; 10:1526. [PMID: 34204368 PMCID: PMC8233840 DOI: 10.3390/cells10061526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Crassulacean acid metabolism (CAM) is an important photosynthetic pathway for plant adaptation to dry environments. CAM plants feature a coordinated interaction between mesophyll and epidermis functions that involves refined regulations of gene expression. Plant microRNAs (miRNAs) are crucial post-transcription regulators of gene expression, however, their roles underlying the CAM pathway remain poorly investigated. Here, we present a study characterizing the expression of miRNAs in an obligate CAM species Kalanchoë marnieriana. Through sequencing of transcriptome and degradome in mesophyll and epidermal tissues under the drought treatments, we identified differentially expressed miRNAs that were potentially involved in the regulation of CAM. In total, we obtained 84 miRNA genes, and eight of them were determined to be Kalanchoë-specific miRNAs. It is widely accepted that CAM pathway is regulated by circadian clock. We showed that miR530 was substantially downregulated in epidermal peels under drought conditions; miR530 targeted two tandem zinc knuckle/PLU3 domain encoding genes (TZPs) that were potentially involved in light signaling and circadian clock pathways. Our work suggests that the miR530-TZPs module might play a role of regulating CAM-related gene expression in Kalanchoë.
Collapse
Affiliation(s)
- Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Chao Yan
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, China;
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
227
|
Li Y, Luo W, Sun Y, Chang H, Ma K, Zhao Z, Lu L. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet 2021; 60:127-152. [PMID: 34117971 DOI: 10.1007/s10528-021-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.
Collapse
Affiliation(s)
- Yaoyao Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Huaicheng Chang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
228
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
229
|
Yusuf NHM, Latip MA, Kumar VS. Artificial microRNA derived from the precursors of Ananas comosus, Arabidopsis thaliana, and Oryza sativa effectively silences endogenous genes in MD2 pineapple. PLANT GENE 2021; 26:100289. [DOI: 10.1016/j.plgene.2021.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
230
|
Chen S, Wu J, Zhang Y, Zhao Y, Xu W, Li Y, Xie J. Genome-Wide Analysis of Coding and Non-coding RNA Reveals a Conserved miR164-NAC-mRNA Regulatory Pathway for Disease Defense in Populus. Front Genet 2021; 12:668940. [PMID: 34122520 PMCID: PMC8195341 DOI: 10.3389/fgene.2021.668940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to plant defense responses by increasing the overall genetic diversity; however, their origins and functional importance in plant defense remain unclear. Here, we employed Illumina sequencing technology to assess how miRNA and messenger RNA (mRNA) populations vary in the Chinese white poplar (Populus tomentosa) during a leaf black spot fungus (Marssonina brunnea) infection. We sampled RNAs from infective leaves at conidia germinated stage [12 h post-inoculation (hpi)], infective vesicles stage (24 hpi), and intercellular infective hyphae stage (48 hpi), three essential stages associated with plant colonization and biotrophic growth in M. brunnea fungi. In total, 8,938 conserved miRNA-target gene pairs and 3,901 Populus-specific miRNA-target gene pairs were detected. The result showed that Populus-specific miRNAs (66%) were more involved in the regulation of the disease resistance genes. By contrast, conserved miRNAs (>80%) target more whole-genome duplication (WGD)-derived transcription factors (TFs). Among the 1,023 WGD-derived TF pairs, 44.9% TF pairs had only one paralog being targeted by a miRNA that could be due to either gain or loss of a miRNA binding site after the WGD. A conserved hierarchical regulatory network combining promoter analyses and hierarchical clustering approach uncovered a miR164–NAM, ATAF, and CUC (NAC) transcription factor–mRNA regulatory module that has potential in Marssonina defense responses. Furthermore, analyses of the locations of miRNA precursor sequences reveal that pseudogenes and transposon contributed a certain proportion (∼30%) of the miRNA origin. Together, these observations provide evolutionary insights into the origin and potential roles of miRNAs in plant defense and functional innovation.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
231
|
Wei S, Chen Y, Hou J, Yang Y, Yin T. Aux/IAA and ARF Gene Families in Salix suchowensis: Identification, Evolution, and Dynamic Transcriptome Profiling During the Plant Growth Process. FRONTIERS IN PLANT SCIENCE 2021; 12:666310. [PMID: 34122487 PMCID: PMC8188177 DOI: 10.3389/fpls.2021.666310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone auxin plays a pivotal role in the regulation of plant growth and development, including vascular differentiation and tree growth. The auxin/indole-3-acetic acid (Aux/IAA) and auxin response transcription factor (ARF) genes are key components of plant auxin signaling. To gain more insight into the regulation and functional features of Aux/IAA and ARF genes during these processes, we identified 38 AUX/IAA and 34 ARF genes in the genome of Salix suchowensis and characterized their gene structures, conserved domains, and encoded amino acid compositions. Phylogenetic analysis of some typical land plants showed that the Aux/IAA and ARF genes of Salicaceae originated from a common ancestor and were significantly amplified by the ancestral eudicot hexaploidization event and the "salicoid" duplication that occurred before the divergence of poplar and willow. By analyzing dynamic transcriptome profiling data, some Aux/IAA and ARF genes were found to be involved in the regulation of plant growth, especially in the initial plant growth process. Additionally, we found that the expression of several miR160/miR167-ARFs was in agreement with canonical miRNA-ARF interactions, suggesting that miRNAs were possibly involved in the regulation of the auxin signaling pathway and the plant growth process. In summary, this study comprehensively analyzed the sequence features, origin, and expansion of Aux/IAA and ARF genes, and the results provide useful information for further studies on the functional involvement of auxin signaling genes in the plant growth process.
Collapse
Affiliation(s)
- Suyun Wei
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yingnan Chen
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Hou
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
232
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
233
|
Dong W, Ren W, Wang X, Mao Y, He Y. MicroRNA319a regulates plant resistance to Sclerotinia stem rot. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3540-3553. [PMID: 33606883 DOI: 10.1093/jxb/erab070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
MicroRNA319a (miR319a) controls cell division arrest in plant leaves by inhibiting the expression of TCP (TEOSINTE BRANCHED 1/CYCLOIDEA/PCF) family genes. However, it is unclear whether miR319a influences infection by necrotrophic pathogens and host susceptibility. In this study, we revealed that miR319a affects plant resistance to stem rot disease caused by Sclerotinia sclerotiorum. In Brassica rapa plants infected with S. sclerotiorum, miR319a levels increased while the expression levels of several BraTCP genes significantly decreased compared with those of uninfected plants. Overexpression of BraMIR319a in B. rapa increased the susceptibility of the plants to S. sclerotiorum and aggravated stem rot disease, whereas overexpression of BraTCP4-1 promoted plant resistance. RNA sequencing data revealed a potential relationship between miR319a and pathogen-related WRKY genes. Chromatin immunoprecipitation, electrophoretic mobility shift, and reporter transaction assays showed that BraTCP4-1 could bind to the promoters of WRKY75, WRKY70, and WRKY33 and directly activate these pathogen-related genes. Moreover, the expression levels of WRKY75, WRKY70, and WRKY33 in plants overexpressing BraMIR319a decreased significantly, whereas those of plants overexpressing BraTCP4-1 increased significantly, relative to the wild type. These results suggest that miR319a and its target gene BraTCP4 control stem rot resistance through pathways of WRKY genes.
Collapse
Affiliation(s)
- Weiguo Dong
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfei Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
234
|
Lunardon A, Kariuki SM, Axtell MJ. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1087-1104. [PMID: 33655542 DOI: 10.1111/tpj.15221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach, as they have the advantage of producing just a single functional small RNA, which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5'-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3'-end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time polymerase chain reaction, is also discussed.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samwel Muiruri Kariuki
- International Institute of Tropical Agriculture, Nairobi, PO Box 30709-00100, Kenya
- Department of Plant Sciences, Kenyatta University, Nairobi, PO Box 43844-00100, Kenya
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
235
|
Bian X, Yu P, Dong L, Zhao Y, Yang H, Han Y, Zhang L. Regulatory role of non-coding RNA in ginseng rusty root symptom tissue. Sci Rep 2021; 11:9211. [PMID: 33911151 PMCID: PMC8080638 DOI: 10.1038/s41598-021-88709-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Ginseng rusty root symptom (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng and significantly affects the ginseng industry. The regulatory mechanism of non-coding RNA (ncRNA) remains unclear in the course of disease. This study explored the long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in GRS tissues and healthy ginseng (HG) tissues and performed functional enrichment analysis of the screened differentially expressed ncRNAs. Considering the predictive and regulatory effects of ncRNAs on mRNAs, we integrated ncRNA and mRNA data to analyze and construct relevant regulatory networks. A total of 17,645 lncRNAs, 245 circRNAs, and 299 miRNAs were obtained from HG and GRS samples, and the obtained ncRNAs were characterized, including the classification of lncRNAs, length and distribution of circRNA, and the length and family affiliations of miRNAs. In the analysis of differentially expressed ncRNA target genes, we found that lncRNAs may be involved in the homeostatic process of ginseng tissues and that lncRNAs, circRNAs, and miRNAs are involved in fatty acid-related regulation, suggesting that alterations in fatty acid-related pathways may play a key role in GRS. Besides, differentially expressed ncRNAs play an essential role in regulating transcriptional translation processes, primary metabolism such as starch and sucrose, and secondary metabolism such as alkaloids in ginseng tissues. Finally, we integrated the correlations between ncRNAs and mRNAs, constructed corresponding interaction networks, and identified ncRNAs that may play critical roles in GRS. These results provide a basis for revealing GRS's molecular mechanism and enrich our understanding of ncRNAs in ginseng.
Collapse
Affiliation(s)
- Xingbo Bian
- State Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China
| | - Pengcheng Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China
| | - Ling Dong
- State Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China
| | - He Yang
- State Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China
| | - Yongzhong Han
- Jilin Provincial Ginseng and Pilose Antler Office, Changchun, China
| | - Lianxue Zhang
- State Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China. .,College of Chinese Medicinal Materials, Jilin Agricultural University, ChangchunJilin, 130118, China.
| |
Collapse
|
236
|
Transcriptome and MiRNAomics Analyses Identify Genes Associated with Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2021; 22:ijms22094684. [PMID: 33925234 PMCID: PMC8124215 DOI: 10.3390/ijms22094684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is important for large-scale hybrid seed production. Rearrangements in the mitochondrial DNA (mtDNA) for the cotton (Gossypium hirsutum L.) CMS line J4A were responsible for pollen abortion. However, the expression patterns of nuclear genes associated with pollen abortion and the molecular basis of CMS for J4A are unknown, and were the objectives of this study by comparing J4A with the J4B maintainer line. Cytological evaluation of J4A anthers showed that microspore abortion occurs during meiosis preventing pollen development. Changes in enzyme activity of mitochondrial respiratory chain complex IV and mitochondrial respiratory chain complex V and the content of ribosomal protein and ATP during anther abortion were observed for J4A suggesting insufficient synthesis of ATP hindered pollen production. Additionally, levels of sucrose, starch, soluble sugar, and fructose were significantly altered in J4A during the meiosis stage, suggesting reduced sugar metabolism contributed to sterility. Transcriptome and miRNAomics analyses identified 4461 differentially expressed mRNAs (DEGs) and 26 differentially expressed microRNAs (DEMIs). Pathway enrichment analysis indicated that the DEMIs were associated with starch and sugar metabolism. Six deduced target gene regulatory pairs that may participate in CMS were identified, ghi-MIR7484-10/mitogen-activated protein kinase kinase 6 (MAPKK6), ghi-undef-156/agamous-like MADS-box protein AGL19 (AGL19), ghi-MIR171-1-22/SNF1-related protein kinase regulatory subunit gamma-1 and protein trichome birefringence-like 38, and ghi-MIR156-(8/36)/WRKY transcription factor 28 (WRKY28). Overall, a putative CMS mechanism involving mitochondrial dysfunction, the ghi-MIR7484-10/MAPKK6 network, and reduced glucose metabolism was suggested, and ghi-MIR7484-10/MAPKK6 may be related to abnormal microspore meiosis and induction of excessive sucrose accumulation in anthers.
Collapse
|
237
|
Zhang J, Li J, Ni Y, Jiang Y, Jiao Z, Li H, Wang T, Zhang P, Han M, Li L, Liu H, Li Q, Niu J. Key wheat GRF genes constraining wheat tillering of mutant dmc. PeerJ 2021; 9:e11235. [PMID: 33889451 PMCID: PMC8038642 DOI: 10.7717/peerj.11235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Tillering is a key agronomy trait for wheat (Triticum aestivum L.) production. Previously, we have reported a dwarf-monoculm wheat mutant (dmc) obtained from cultivar Guomai 301 (wild type, WT), and found growth regulating factors (GRFs) playing important roles in regulating wheat tillering. This study is to systematically investigate the roles of all the wheat GRFs (T. aestivum GRFs, TaGRFs) in regulating tillering, and screen out the key regulators. A total of 30 TaGRFs were identified and their physicochemical properties, gene structures, conserved domains, phylogenetic relationships and tissue expression profiles were analyzed. The expression levels of all the TaGRFs were significantly lower in dmc than those in WT at early tillering stage, and the abnormal expressions of TaGRF2-7(A, B, D), TaGRF5-7D, TaGRF10-6(A, B, D) and TaGRF11-2A were major causes constraining the tillering of dmc. The transcriptions of TaGRFs were significantly affected by exogenous indole acetic acid (IAA) and gibberellin acid (GA3) applications, which suggested that TaGRFs as well as IAA, GA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of GRF genes in wheat.
Collapse
Affiliation(s)
- Jing Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Yumei Jiang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Ting Wang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Peipei Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Mengyao Han
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Lei Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Hongjie Liu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Qiaoyun Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| |
Collapse
|
238
|
Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. PLANTS 2021; 10:plants10050826. [PMID: 33919185 PMCID: PMC8143135 DOI: 10.3390/plants10050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.
Collapse
|
239
|
Morán-Diez ME, Martínez de Alba ÁE, Rubio MB, Hermosa R, Monte E. Trichoderma and the Plant Heritable Priming Responses. J Fungi (Basel) 2021; 7:jof7040318. [PMID: 33921806 PMCID: PMC8072925 DOI: 10.3390/jof7040318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
There is no doubt that Trichoderma is an inhabitant of the rhizosphere that plays an important role in how plants interact with the environment. Beyond the production of cell wall degrading enzymes and metabolites, Trichoderma spp. can protect plants by inducing faster and stronger immune responses, a mechanism known as priming, which involves enhanced accumulation of dormant cellular proteins that function in intracellular signal amplification. One example of these proteins is the mitogen-activated protein kinases (MAPK) that are triggered by the rise of cytosolic calcium levels and cellular redox changes following a stressful challenge. Transcription factors such as WRKYs, MYBs, and MYCs, play important roles in priming as they act as regulatory nodes in the transcriptional network of systemic defence after stress recognition. In terms of long-lasting priming, Trichoderma spp. may be involved in plants epigenetic regulation through histone modifications and replacements, DNA (hypo)methylation, and RNA-directed DNA methylation (RdDM). Inheritance of these epigenetic marks for enhanced resistance and growth promotion, without compromising the level of resistance of the plant’s offspring to abiotic or biotic stresses, seems to be an interesting path to be fully explored.
Collapse
|
240
|
Chen Y, Inzé D, Vanhaeren H. Post-translational modifications regulate the activity of the growth-restricting protease DA1. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3352-3366. [PMID: 33587751 DOI: 10.1093/jxb/erab062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Plants are a primary food source and can form the basis for renewable energy resources. The final size of their organs is by far the most important trait to consider when seeking increased plant productivity. Being multicellular organisms, plant organ size is mainly determined by the coordination between cell proliferation and cell expansion. The protease DA1 limits the duration of cell proliferation and thereby restricts final organ size. Since its initial identification as a negative regulator of organ growth, various transcriptional regulators of DA1, but also interacting proteins, have been identified. These interactors include cleavage substrates of DA1, and also proteins that modulate the activity of DA1 through post-translational modifications, such as ubiquitination, deubiquitination, and phosphorylation. In addition, many players in the DA1 pathway display conserved phenotypes in other dicot and even monocot species. In this review, we provide a timely overview of the complex, but intriguing, molecular mechanisms that fine-tune the activity of DA1 and therefore final organ size. Moreover, we lay out a roadmap to identify and characterize substrates of proteases and frame the substrate cleavage events in their biological context.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hannes Vanhaeren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
241
|
Silencing lung cancer genes using miRNAs identified by 7mer-seed matching. Comput Biol Chem 2021; 92:107483. [PMID: 33932780 DOI: 10.1016/j.compbiolchem.2021.107483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
Lung cancer (LC) is the main cause of cancer-associated deaths in both men and women globally with a very high mortality rate. The microRNAs (miRNAs) are a class of noncoding RNAs consisting of 18-25 nucleotides. They inhibit translation of protein through binding to complementary target mRNAs. The non-coding miRNAs are recognized as potent biomarkers for detection, development and treatment of malignancy. In this study, we screened a set of 12 genes over expressed in small cell lung cancer, non small cell lung cancer and the genes involved in both categories and their binding sites for human miRNAs as no work was reported yet. Screening of human miRNAs revealed that a few genes showed numerous miRNA binding sites. Free energy values of mRNA sequences revealed that they might acquire compact folded structure causing complexity for miRNAs to interact. GC content in the target site was relatively higher than that of their flanks. It was observed through analysis of cosine similarity metric and compAI parameters that the genes related to lung cancer were encoded with non optimal codons and thus might be translationally less efficient for producing polypeptides. Gene ontology analysis was carried out to understand the diverse functions of these 12 genes.
Collapse
|
242
|
Wang X, Miao X, Chen G, Cui Y, Sun F, Fan J, Gao Z, Meng C. Identification of microRNAs involved in astaxanthin accumulation responding to high light and high sodium acetate (NaAC) stresses in Haematococcus pluvialis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
243
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
244
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
245
|
Yang X, Zhang L, Yang Y, Schmid M, Wang Y. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int J Mol Sci 2021; 22:ijms22062913. [PMID: 33805611 PMCID: PMC7999934 DOI: 10.3390/ijms22062913] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved diverse molecular mechanisms that enable them to respond to a wide range of pathogens. It has become clear that microRNAs, a class of short single-stranded RNA molecules that regulate gene expression at the transcriptional or post-translational level, play a crucial role in coordinating plant-pathogen interactions. Specifically, miRNAs have been shown to be involved in the regulation of phytohormone signals, reactive oxygen species, and NBS-LRR gene expression, thereby modulating the arms race between hosts and pathogens. Adding another level of complexity, it has recently been shown that specific lncRNAs (ceRNAs) can act as decoys that interact with and modulate the activity of miRNAs. Here we review recent findings regarding the roles of miRNA in plant defense, with a focus on the regulatory modes of miRNAs and their possible applications in breeding pathogen-resistance plants including crops and trees. Special emphasis is placed on discussing the role of miRNA in the arms race between hosts and pathogens, and the interaction between disease-related miRNAs and lncRNAs.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lichun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Markus Schmid
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yanwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62338105
| |
Collapse
|
246
|
Chen JF, Zhao ZX, Li Y, Li TT, Zhu Y, Yang XM, Zhou SX, Wang H, Zhao JQ, Pu M, Feng H, Fan J, Zhang JW, Huang YY, Wang WM. Fine-Tuning Roles of Osa-miR159a in Rice Immunity Against Magnaporthe oryzae and Development. RICE (NEW YORK, N.Y.) 2021; 14:26. [PMID: 33677712 PMCID: PMC7937009 DOI: 10.1186/s12284-021-00469-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice. An increasing number of microRNAs (miRNAs) have been reported to fine-tune rice immunity against M. oryzae and coordinate with growth and development. RESULTS Here, we showed that rice microRNA159a (Osa-miR159a) played a positive role in rice resistance to M. oryzae. The expression of Osa-miR159a was suppressed in a susceptible accession at 12, 24, and 48 h post-inoculation (hpi); it was upregulated in a resistant accession of M. oryzae at 24 hpi. The transgenic rice lines overexpressing Osa-miR159a were highly resistant to M. oryzae. In contrast, the transgenic lines expressing a short tandem target mimic (STTM) to block Osa-miR159a showed enhanced susceptibility. Knockout mutations of the target genes of Osa-miR159a, including OsGAMYB, OsGAMYBL, and OsZF, led to resistance to M. oryzae. Alteration of the expression of Osa-miR159a impacted yield traits including pollen and grain development. CONCLUSIONS Our results indicated that Osa-miR159a positively regulated rice immunity against M. oryzae by downregulating its target genes. Proper expression of Osa-miR159a was critical for coordinating rice blast resistance with grain development.
Collapse
Affiliation(s)
- Jin-Feng Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting-Ting Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shi-Xin Zhou
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Pu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Feng
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
247
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
248
|
Jin LF, Yarra R, Yin XX, Liu YZ, Cao HX. Identification and function prediction of iron-deficiency-responsive microRNAs in citrus leaves. 3 Biotech 2021; 11:121. [PMID: 33628708 PMCID: PMC7873142 DOI: 10.1007/s13205-021-02669-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Iron is a critical micronutrient for growth and development of plants and its deficiency limiting the crop productivity. MicroRNAs (miRNAs) play vital roles in adaptation of plants to various nutrient deficiencies. However, the role of miRNAs and their target genes related to Fe-deficiency is limited. In this study, we identified Fe-deficiency-responsive miRNAs from citrus. In Fe-deficiency conditions, about 50 and 31 miRNAs were up-regulated and down-regulated, respectively. The differently expressed miRNAs might play critical roles in contributing the Fe-deficiency tolerance in citrus plants. The miRNAs-mediated Fe-deficiency tolerance in citrus plants might related to the enhanced stress tolerance by decreased expression of miR172; regulation of S homeostasis by decreased expression of miR395; inhibition of plant growth by increased expression of miR319 and miR477; regulation of Cu homeostasis as well as activation of Cu/Zn superoxide dismutase activity due to decreased expression of miR398 and miR408 and regulation of lignin accumulation by decreased expression of miR397 and miR408. The identified miRNAs in present study laid a foundation to understand the Fe-deficiency adaptive mechanisms in citrus plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02669-z.
Collapse
Affiliation(s)
- Long-Fei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339 Hainan China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339 Hainan China
| | - Xin-Xing Yin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339 Hainan China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yong-Zhong Liu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hong-Xing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339 Hainan China
| |
Collapse
|
249
|
He P, Zhang Y, Li H, Fu X, Shang H, Zou C, Friml J, Xiao G. GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:548-562. [PMID: 32981232 PMCID: PMC7955886 DOI: 10.1111/pbi.13484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/04/2023]
Abstract
The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease resistance and yield. Although many genes regulating leaf development have been identified in the past years, the precise regulatory architecture underlying the generation of diverse leaf shapes remains to be elucidated. We used cotton as a reference model to probe the genetic framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that the GhARF16-1 and GhKNOX2-1 genes might be potential regulators of leaf shape. We functionally characterized the auxin-responsive factor ARF16-1 acting upstream of GhKNOX2-1 to determine leaf morphology in cotton. The transcription of GhARF16-1 was significantly higher in lobed-leaved cotton than in smooth-leaved cotton. Furthermore, the overexpression of GhARF16-1 led to the up-regulation of GhKNOX2-1 and resulted in more and deeper serrations in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2-1. We found that GhARF16-1 specifically bound to the promoter of GhKNOX2-1 to induce its expression. The heterologous expression of GhARF16-1 and GhKNOX2-1 in Arabidopsis led to lobed and curly leaves, and a genetic analysis revealed that GhKNOX2-1 is epistatic to GhARF16-1 in Arabidopsis, suggesting that the GhARF16-1 and GhKNOX2-1 interaction paradigm also functions to regulate leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which auxin, through the key component ARF16-1 and its downstream-activated gene KNOX2-1, determines leaf morphology in eudicots.
Collapse
Affiliation(s)
- Peng He
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Yuzhou Zhang
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Hongbin Li
- College of Life SciencesKey Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of EducationShihezi UniversityShiheziChina
| | - Xuan Fu
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| | - Haihong Shang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Key Laboratory of Biological and Genetic Breeding of CottonThe Ministry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Changsong Zou
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Guanghui Xiao
- College of Life SciencesShaanxi Normal UniversityXi’anChina
| |
Collapse
|
250
|
Li P, Su T, Zhang D, Wang W, Xin X, Yu Y, Zhao X, Yu S, Zhang F. Genome-wide analysis of changes in miRNA and target gene expression reveals key roles in heterosis for Chinese cabbage biomass. HORTICULTURE RESEARCH 2021; 8:39. [PMID: 33642594 PMCID: PMC7917107 DOI: 10.1038/s41438-021-00474-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 05/12/2023]
Abstract
Heterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|