201
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
202
|
Recent advances in photoinduced catalysis for water splitting and environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
203
|
Kim I, Jo N, Yang MY, Kim J, Jun H, Lee GY, Shin T, Kim SO, Nam YS. Directed Nanoscale Self-Assembly of Natural Photosystems on Nitrogen-Doped Carbon Nanotubes for Solar-Energy Harvesting. ACS APPLIED BIO MATERIALS 2019; 2:2109-2115. [DOI: 10.1021/acsabm.9b00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | | | | | - Taeho Shin
- Department of Chemistry, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | | | | |
Collapse
|
204
|
Suslichenko IS, Tikhonov AN. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett 2019; 593:788-798. [PMID: 30896038 DOI: 10.1002/1873-3468.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 11/09/2022]
Abstract
In photosynthetic systems of oxygenic type, plastoquinone (PQ) molecules are reduced by photosystem II (PSII). The turnover of PQ determines the rate of PSII operation. PQ molecules are present in surplus with respect to PSII. In this work, using the pulse amplitude modulation-fluorometry technique, we quantified photo-reducible PQ pools in chloroplasts of two contrasting ecotypes of Tradescantia, acclimated either to low light (~ 100 μmol photons·m-2 ·s-1 , LL) or to high light (~ 1000 μmol photons·m-2 ·s-1 , HL). The LL-grown plants are characterized by higher capacity of rapidly reducible PQ pool ([PQ]0 /[PSII] ≈ 8) as compared to HL-grown plants of both species ([PQ]0 /[PSII] ≈ 4). The elevated content of PQ in LL plants favours photosynthetic electron flow at low-solar irradiance.
Collapse
Affiliation(s)
| | - Alexander N Tikhonov
- Faculty of Physics, M.V.Lomonosov Moscow State University, Russia.,N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
205
|
Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, Li M. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. NATURE PLANTS 2019; 5:273-281. [PMID: 30850819 DOI: 10.1038/s41477-019-0380-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
During oxygenic photosynthesis, photosystems I and II (PSI and PSII) are essential for light-driven electron transport. Excitation energy transfer in PSI occurs extremely quickly, making it an efficient energy converter. In the alga Chlamydomonas reinhardtii (Cr), multiple units of light-harvesting complex I (LHCI) bind to the PSI core and function as peripheral antennae, forming a PSI-LHCI supercomplex. CrPSI-LHCI shows significantly larger antennae compared with plant PSI-LHCI while maintaining highly efficient energy transfer from LHCI to PSI. Here, we report structures of CrPSI-LHCI, solved by cryo-electron microscopy, revealing that up to ten LHCIs are associated with the PSI core. The structures provide detailed information about antenna organization and pigment arrangement within the supercomplexes. Highly populated and closely associated chlorophylls in the antennae explain the high efficiency of light harvesting and excitation energy transfer in CrPSI-LHCI.
Collapse
Affiliation(s)
- Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
206
|
Zhuang K, Kong F, Zhang S, Meng C, Yang M, Liu Z, Wang Y, Ma N, Meng Q. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. THE NEW PHYTOLOGIST 2019; 221:1998-2012. [PMID: 30307037 DOI: 10.1111/nph.15532] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/04/2018] [Indexed: 05/26/2023]
Abstract
In plants, the chilling response involves decreased photosynthetic capacity and increased starch accumulation in chloroplasts. However, the mechanisms that modulate these processes remain unclear. We found that the SlWHY1 gene is significantly induced by chilling stress (4°C) in tomato. Three SlWHY1 overexpression (OE) lines grew better than the wild type (WT) under chilling stress; the OE plants retained intact photosynthetic grana lamellae and showed enhanced hydrolysis of starch. By contrast, RNAi lines that inhibited SlWHY1 were more affected than the corresponding WT cultivar. Their grana lamellae were damaged and starch content increased. The psbA gene encodes the key photosystem II (PSII) protein D1. We show that SlWHY1 binds to the upstream region (A/GTTACCCT/A) of SlpsbA and enhances the de novo synthesis of D1 in chloroplasts. Additionally, SlWHY1 regulates the expression of the starch-degrading enzyme α-amylase (SlAMY3-L) and the starch synthesis-related enzyme isoamylase gene (SlISA2) in the nucleus, thus modulating the starch content in chloroplasts. We demonstrate that SlWHY1 enhances the resistance of tomato to chilling stress by maintaining the function of PSII and degrading starch. Thus, overexpression of WHY1 may be an effective strategy for enhancing resistance to chilling stress of chilling-sensitive crops in agricultural production.
Collapse
Affiliation(s)
- Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Song Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhuangbin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
207
|
Nama S, Madireddi SK, Yadav RM, Subramanyam R. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. PHOTOSYNTHESIS RESEARCH 2019; 139:387-400. [PMID: 29982908 DOI: 10.1007/s11120-018-0551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/30/2018] [Indexed: 05/19/2023]
Abstract
Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m-2 s-1 with faster growth and more biomass production when compared to cells at 50 µmol m-2 s-1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein-pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII-LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.
Collapse
Affiliation(s)
- Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
208
|
Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN. Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves. PHOTOSYNTHESIS RESEARCH 2019. [PMID: 29516232 DOI: 10.1007/s11120-018-0494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin-dependent rate of electron transfer from plastoquinol (PQH2) to [Formula: see text] (via the Cyt b6f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2 ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2 ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2 ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Avercheva
- Faculty of Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
- Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
209
|
Tokutsu R, Fujimura-Kamada K, Yamasaki T, Matsuo T, Minagawa J. Isolation of photoprotective signal transduction mutants by systematic bioluminescence screening in Chlamydomonas reinhardtii. Sci Rep 2019; 9:2820. [PMID: 30808958 PMCID: PMC6391533 DOI: 10.1038/s41598-019-39785-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
In photosynthetic organisms, photoprotection to avoid overexcitation of photosystems is a prerequisite for survival. Green algae have evolved light-inducible photoprotective mechanisms mediated by genes such as light-harvesting complex stress-related (LHCSR). Studies on the light-dependent regulation of LHCSR expression in the green alga Chlamydomonas reinhardtii have revealed that photoreceptors for blue light (phototropin) and ultraviolet light perception (UVR8) play key roles in initiating photoprotective signal transduction. Although initial light perception via phototropin or UVR8 is known to result in increased LHCSR3 and LHCSR1 gene expression, respectively, the mechanisms of signal transduction from the input (light perception) to the output (gene expression) remain unclear. In this study, to further elucidate the signal transduction pathway of the photoprotective response of green algae, we established a systematic screening protocol for UV-inducible LHCSR1 gene expression mutants using a bioluminescence reporter assay. Following random mutagenesis screening, we succeeded in isolating mutants deficient in LHCSR1 gene and protein expression after UV illumination. Further characterization revealed that the obtained mutants could be separated into 3 different phenotype groups, the “UV-specific”, “LHCSR1-promoter/transcript-specific” and “general photoprotective” mutant groups, which provided further insight into photoprotective signal transduction in C. reinhardtii.
Collapse
Affiliation(s)
- Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan. .,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Konomi Fujimura-Kamada
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, 2-5-1 Akebono-cho, Kochi, 780-8520, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan. .,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
210
|
Nagakawa H, Takeuchi A, Takekuma Y, Noji T, Kawakami K, Kamiya N, Nango M, Furukawa R, Nagata M. Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochem Photobiol Sci 2019; 18:309-313. [PMID: 30633290 DOI: 10.1039/c8pp00426a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we improved the hydrogen production efficiency by combining photosystem I with an artificial light harvesting dye, Lumogen Red. In the reaction system, Lumogen Red allows light absorption and energy transfer to photosystem I by Förster resonance energy transfer; therefore, the Pt nanoparticles act as active sites for hydrogen generation.
Collapse
Affiliation(s)
- Haruki Nagakawa
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-cho, Shinjuku-ku, Tokyo, 162-0826, Japan.,Photocatalyst Group, Research and Development Department, Local Independent Administrative Agency Kanagawa Institute of industrial Science and TEChnology (KISTEC), Japan
| | - Ayano Takeuchi
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-cho, Shinjuku-ku, Tokyo, 162-0826, Japan
| | - Yuya Takekuma
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-cho, Shinjuku-ku, Tokyo, 162-0826, Japan.,Photocatalyst Group, Research and Development Department, Local Independent Administrative Agency Kanagawa Institute of industrial Science and TEChnology (KISTEC), Japan
| | - Tomoyasu Noji
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Keisuke Kawakami
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Nobuo Kamiya
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Mamoru Nango
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Rei Furukawa
- The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo, 182-8585, Japan
| | - Morio Nagata
- Department of Industrial Chemistry, Graduate School of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-cho, Shinjuku-ku, Tokyo, 162-0826, Japan.
| |
Collapse
|
211
|
Sun Y, Fan M, He Y. Transcriptome Analysis of Watermelon Leaves Reveals Candidate Genes Responsive to Cucumber green mottle mosaic virus Infection. Int J Mol Sci 2019; 20:ijms20030610. [PMID: 30708960 PMCID: PMC6387395 DOI: 10.3390/ijms20030610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/02/2023] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus, which cause diseases in cucurbits, especially watermelon. In watermelon, symptoms develop on the whole plant, including leaves, stems, peduncles, and fruit. To better understand the molecular mechanisms of watermelon early responses to CGMMV infection, a comparative transcriptome analysis of 24 h CGMMV-infected and mock-inoculated watermelon leaves was performed. A total of 1641 differently expressed genes (DEGs) were identified, with 886 DEGs upregulated and 755 DEGs downregulated after CGMMV infection. A functional analysis indicated that the DEGs were involved in photosynthesis, plant⁻pathogen interactions, secondary metabolism, and plant hormone signal transduction. In addition, a few transcription factor families, including WRKY, MYB, HLH, bZIP and NAC, were responsive to the CGMMV-induced stress. To confirm the high-throughput sequencing results, 15 DEGs were validated by qRT-PCR analysis. The results provide insights into the identification of candidate genes or pathways involved in the responses of watermelon leaves to CGMMV infection.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
212
|
Bennett TH, Vaughn MD, Davari SA, Park K, Mukherjee D, Khomami B. Jolly green MOF: confinement and photoactivation of photosystem I in a metal-organic framework. NANOSCALE ADVANCES 2019; 1:94-104. [PMID: 36132458 PMCID: PMC9473227 DOI: 10.1039/c8na00093j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI) is a ∼1000 kDa transmembrane protein that enables photoactivated charge separation with ∼1 V driving potential and ∼100% quantum efficiency during the photosynthetic process. Although such properties make PSI a potential candidate for integration into bio-hybrid solar energy harvesting devices, the grand challenge in orchestrating such integration rests on rationally designed 3D architectures that can organize and stabilize PSI in the myriad of harsh conditions in which it needs to function. The current study investigates the optical response and photoactive properties of PSI encapsulated in a highly stable nanoporous metal-organic framework (ZIF-8), denoted here as PSI@ZIF-8. The ZIF-8 framework provides a unique scaffold with a robust confining environment for PSI while protecting its precisely coordinated chlorophyll networks from denaturing agents. Significant blue shifts in the fluorescence emissions from UV-vis measurements reveal the successful confinement of PSI in ZIF-8. Pump-probe spectroscopy confirms the photoactivity of the PSI@ZIF-8 composites by revealing the successful internal charge separation and external charge transfer of P700 + and FB - even after exposure to denaturing agents and organic solvents. This work provides greater fundamental understanding of confinement effects on pigment networks, while significantly broadening the potential working environments for PSI-integrated bio-hybrid materials.
Collapse
Affiliation(s)
- Tyler H Bennett
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| | | | - Seyyed Ali Davari
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
| | - Kiman Park
- Department of Chemistry, University of Tennessee Knoxville Tennessee 37996 USA
| | - Dibyendu Mukherjee
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| | - Bamin Khomami
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Department of Mechanical, Aerospace, & Biomedical Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- Sustainable Energy Education & Research Center (SEERC), University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
213
|
Netzer-El SY, Caspy I, Nelson N. Crystal Structure of Photosystem I Monomer From Synechocystis PCC 6803. FRONTIERS IN PLANT SCIENCE 2019; 9:1865. [PMID: 30662446 PMCID: PMC6328476 DOI: 10.3389/fpls.2018.01865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/04/2018] [Indexed: 05/25/2023]
Abstract
A single histidine addition to the C-terminus of PsaL of Synechocystis sp. PCC 6803 was previously reported by our lab to shift the trimer-to-monomer ratio of PSI in favor of the monomeric form. P700 re-reduction and NADP+ photo-reduction measurements of the PsaLHIS strain show no effect on PSI activity in comparison to the WT trimeric PSI. Crystal structure of the PsaLHIS monomeric PSI reveals several alterations that occurred in the trimerisation site of PSI, primarily a deformation of the C-terminus of PsaL and loss of chlorophyll a and β-carotene molecules.
Collapse
|
214
|
Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_42] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
215
|
Zaharieva I, Dau H. Energetics and Kinetics of S-State Transitions Monitored by Delayed Chlorophyll Fluorescence. FRONTIERS IN PLANT SCIENCE 2019; 10:386. [PMID: 30984228 PMCID: PMC6450259 DOI: 10.3389/fpls.2019.00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/13/2019] [Indexed: 05/21/2023]
Abstract
Understanding energetic and kinetic parameters of intermediates formed in the course of the reaction cycle (S-state cycle) of photosynthetic water oxidation is of high interest and could support the rationale designs of artificial systems for solar fuels. We use time-resolved measurements of the delayed chlorophyll fluorescence to estimate rate constants, activation energies, free energy differences, and to discriminate between the enthalpic and the entropic contributions to the decrease of the Gibbs free energy of the individual transitions. Using a joint-fit simulation approach, kinetic parameters are determined for the reaction intermediates in the S-state transitions in buffers with different pH in H2O and in D2O.
Collapse
Affiliation(s)
| | - Holger Dau
- *Correspondence: Ivelina Zaharieva, Holger Dau,
| |
Collapse
|
216
|
Abstract
The utilization of light energy to power organic-chemical transformations is a fundamental strategy of the terrestrial energy cycle. Inspired by the elegance of natural photosynthesis, much interdisciplinary research effort has been devoted to the construction of simplified cell mimics based on artificial vesicles to provide a novel tool for biocatalytic cascade reactions with energy-demanding steps. By inserting natural or even artificial photosynthetic systems into liposomes or polymersomes, the light-driven proton translocation and the resulting formation of electrochemical gradients have become possible. This is the basis for the conversion of photonic into chemical energy in form of energy-rich molecules such as adenosine triphosphate (ATP), which can be further utilized by energy-dependent biocatalytic reactions, e.g. carbon fixation. This review compares liposomes and polymersomes as artificial compartments and summarizes the types of light-driven proton pumps that have been employed in artificial photosynthesis so far. We give an overview over the methods affecting the orientation of the photosystems within the membranes to ensure a unidirectional transport of molecules and highlight recent examples of light-driven biocatalysis in artificial vesicles. Finally, we summarize the current achievements and discuss the next steps needed for the transition of this technology from the proof-of-concept status to preparative applications.
Collapse
|
217
|
Li Y, Feng X, Wang A, Yang Y, Fei J, Sun B, Jia Y, Li J. Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angew Chem Int Ed Engl 2018; 58:796-800. [PMID: 30474178 DOI: 10.1002/anie.201812582] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 11/07/2022]
Abstract
Prototypes of natural biosystems provide opportunities for artificial biomimetic systems to break the limits of natural reactions and achieve output control. However, mimicking unique natural structures and ingenious functions remains a challenge. Now, multiple biochemical reactions were integrated into artificially designed compartments via molecular assembly. First, multicompartmental silica nanoparticles with hierarchical structures that mimic the chloroplasts were obtained by a templated synthesis. Then, photoacid generators and ATPase-liposomes were assembled inside and outside of silica compartments, respectively. Upon light illumination, protons produced by a photoacid generator in the confined space can drive the liposome-embedded enzyme ATPase towards ATP synthesis, which mimics the photophosphorylation process in vitro. The method enables fabrication of bioinspired nanoreactors for photobiocatalysis and provides insight for understanding sophisticated biochemical reactions.
Collapse
Affiliation(s)
- Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiyun Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Yunnan Normal University, Faculty of Chemistry and Chemical Engineering, Kunming, 650050, China
| | - Anhe Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingbing Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academic of Sciences, Beijing, 100049, China
| |
Collapse
|
218
|
Li Y, Feng X, Wang A, Yang Y, Fei J, Sun B, Jia Y, Li J. Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology Beijing 100190 China
| | - Xiyun Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Yunnan Normal UniversityFaculty of Chemistry and Chemical Engineering Kunming 650050 China
| | - Anhe Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Bingbing Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academic of Sciences Beijing 100049 China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academic of Sciences Beijing 100049 China
| |
Collapse
|
219
|
Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview. Cell Biochem Biophys 2018; 77:47-59. [PMID: 30460441 DOI: 10.1007/s12013-018-0861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
In this review, we consider the applications of electron paramagnetic resonance (EPR) methods to the study of the relationships between the electron transport and oxygen-exchange processes in photosynthetic systems of oxygenic type. One of the purposes of this article is to encourage scientists to use the advantageous EPR oximetry approaches to study oxygen-related electron transport processes in photosynthetic systems. The structural organization of the photosynthetic electron transfer chain and the EPR approaches to the measurements of molecular oxygen (O2) with O2-sensitive species (nitroxide spin labels and solid paramagnetic particles) are briefly reviewed. In solution, the collision of O2 with spin probes causes the broadening of their EPR spectra and the reduction of their spin-lattice relaxation times. Based on these effects, tools for measuring O2 concentration and O2 diffusion in biological systems have been developed. These methods, named "spin-label oximetry," include not only nitroxide spin labels, but also other stable-free radicals with narrow EPR lines, as well as particulate probes with EPR spectra sensitive to molecular oxygen (lithium phthalocyanine, coals, and India ink). Applications of EPR approaches for measuring O2 evolution and consumption are illustrated using examples of photosynthetic systems of oxygenic type, chloroplasts in situ (green leaves), and cyanobacteria.
Collapse
|
220
|
Iwai M, Grob P, Iavarone AT, Nogales E, Niyogi KK. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. NATURE PLANTS 2018; 4:904-909. [PMID: 30374090 PMCID: PMC7806276 DOI: 10.1038/s41477-018-0271-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
The photosynthesis machinery in chloroplast thylakoid membranes is comprised of multiple protein complexes and supercomplexes1,2. Here, we show a novel supramolecular organization of photosystem I (PSI) in the moss Physcomitrella patens by single-particle cryo-electron microscopy. The moss-specific light-harvesting complex (LHC) protein Lhcb9 is involved in this PSI supercomplex, which has been shown to have a molecular density similar to that of the green alga Chlamydomonas reinhardtii3. Our results show that the structural organization is unexpectedly different-two rows of the LHCI belt exist as in C. reinhardtii4, but the outer one is shifted toward the PsaK side. Furthermore, one trimeric LHC protein and one monomeric LHC protein position alongside PsaL/K, filling the gap between these subunits and the outer LHCI belt. We provide evidence showing that Lhcb9 is a key factor, acting as a linkage between the PSI core and the outer LHCI belt to form the unique supramolecular organization of the PSI supercomplex in P. patens.
Collapse
Affiliation(s)
- Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Patricia Grob
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA, USA
| | - Eva Nogales
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
221
|
Ren X, Liu Y, Jeong HK, Jeong BR. Supplementary Light Source Affects the Growth and Development of Codonopsis lanceolata Seedlings. Int J Mol Sci 2018; 19:ijms19103074. [PMID: 30297684 PMCID: PMC6212986 DOI: 10.3390/ijms19103074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
Codonopsis lanceolata is widely used in traditional medicine and diets. However, there is no optimal protocol for the commercial production of C. lanceolata seedlings. This study was carried out to find the optimum supplementary light source for the production of C. lanceolata seedlings. Seedlings were grown for four weeks in a glasshouse with an average daily light intensity of 490 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) coming from the sun and a 16-h daily supplementary lighting at 120 μmol·m−2·s−1 PPFD from either high-pressure sodium (HPS), metal halide (MH), far-red (FR), white LED (LED-w), or mixed (white: red: blue = 1:2:1) LEDs (LED-mix). The results showed that the greatest total biomass, stem diameter, ratio of shoot weight to shoot length, root biomass, and ratio of root weight to shoot weight were found in seedlings grown under supplementary LED-mix. Meanwhile, the stomatal properties and soluble sugar contents were improved for seedlings in LED-mix. The contents of starch, total phenols, and flavonoids were the greatest for seedlings in LED-w and LED-mix. The expression of photosynthetic proteins and genes in seedlings was also enhanced by LED-mix. Overall, these results suggest that LED-mix is advantageous to the photosynthetic potential and the accumulation of biomass, carbohydrates and secondary metabolites in C. lanceolata.
Collapse
Affiliation(s)
- Xiuxia Ren
- Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea.
| | - Ya Liu
- Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea.
| | - Hai Kyoung Jeong
- Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea.
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
222
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
223
|
Remelli W, Santabarbara S. Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: Influence on the estimation of Photosystem II maximal quantum efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1207-1222. [PMID: 30297025 DOI: 10.1016/j.bbabio.2018.09.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
The fluorescence emission spectrum of Synechocystis sp. PPC6803 cells, at room temperature, displays: i) significant bandshape variations when collected under open (F0) and closed (FM) Photosystem II reaction centre conditions; ii) a marked dependence on the excitation wavelength both under F0 and FM conditions, due to the enhancement of phycobilisomes (PBS) emission upon their direct excitation. As a consequence: iii) the ratio of the variable and maximal fluorescence (FV/FM), that is a commonly employed indicator of the maximal photochemical quantum efficiency of PSII (Φpc, PSII), displays a significant dependency on both the excitation and the emission (detection) wavelength; iv) the FV/FM excitation/emission wavelength dependency is due, primarily, to the overlap of PSII emission with that of supercomplexes showing negligible changes in quantum yield upon trap closure, i.e. PSI and a PBS fraction which is incapable to transfer the excitation energy efficiently to core complexes. v) The contribution to the cellular emission and the relative absorption-cross section of PSII, PSI and uncoupled PBS are extracted using a spectral decomposition strategy. It is concluded that vi) Φpc, PSII is generally underestimated from the FV/FM measurements in this organism and, the degree of the estimation bias, which can exceed 50%, depends on the measurement conditions. Spectral modelling based on the decomposed emission/cross-section profiles were extended to other processes typically monitored from steady-state fluorescence measurements, in the presence of an actinic illumination, in particular non-photochemical quenching. It is suggested that vii) the quenching extent is generally underestimated in analogy to FV/FM but that viii) the location of quenching sites can be discriminated based on the combined excitation/emission spectral analysis.
Collapse
Affiliation(s)
- William Remelli
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milano, Italy.
| |
Collapse
|
224
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
225
|
Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 2018; 360:1109-1113. [PMID: 29880686 DOI: 10.1126/science.aat1156] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo-electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peng Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| |
Collapse
|
226
|
Lee Y, Gorka M, Golbeck JH, Anna JM. Ultrafast Energy Transfer Involving the Red Chlorophylls of Cyanobacterial Photosystem I Probed through Two-Dimensional Electronic Spectroscopy. J Am Chem Soc 2018; 140:11631-11638. [DOI: 10.1021/jacs.8b04593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yumin Lee
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jessica M. Anna
- Deparment of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
227
|
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P. Organization of Plant Photosystem II and Photosystem I Supercomplexes. Subcell Biochem 2018; 87:259-286. [PMID: 29464563 DOI: 10.1007/978-981-10-7757-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic.
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Dmitry Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
228
|
Liu Y, Daye J, Jenson D, Fong S. Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments. Bioelectrochemistry 2018; 124:22-27. [PMID: 29990598 DOI: 10.1016/j.bioelechem.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
The photoelectrochemical electrode has been intensively studied in recent years as a means of generating electricity from light through the use of intact thylakoid membranes or highly purified photosystem II. PSII-enriched thylakoid membrane fragments (PSII-BBY), also have the potential to construct the photoelectrochemical anode. In this study, we examined the feasibility of utilizing PSII-BBY preparations to construct a relatively inexpensive photoelectrochemical anode with a comparable current density and a reasonable stability. Intact thylakoid membrane based photoelectrochemical electrode was also constructed to compare with the PSII-BBY based photoelectrochemical electrode with respect to the protein activity and current density. In addition, the practicability of replacing the popular gold nanoparticle modified gold slide with multi-walled carbon nanotube modified indium tin oxide coated slides was tested. In order to understand the surface change during slide surface modification, an atomic force microscope (AFM) was used to image the topography of the slide. Above all, we observed a current density of 20.44 ± 1.58 μA/cm2 when PSII-BBY was used to construct the photoelectrochemical anode. Moreover, the PSII-BBY based photoelectrochemical anode showed high stability over time with the current decreasing at a rate of 0.78%/h.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States
| | - John Daye
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States
| | - David Jenson
- Department of Chemistry, Virginia Commonwealth University, United States
| | - Stephen Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States.
| |
Collapse
|
229
|
Zhang B, Zhang C, Liu C, Jing Y, Wang Y, Jin L, Yang L, Fu A, Shi J, Zhao F, Lan W, Luan S. Inner Envelope CHLOROPLAST MANGANESE TRANSPORTER 1 Supports Manganese Homeostasis and Phototrophic Growth in Arabidopsis. MOLECULAR PLANT 2018; 11:943-954. [PMID: 29734003 DOI: 10.1016/j.molp.2018.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen during photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast remains unknown. Here, we report the characterization of Arabidopsis CMT1 (Chloroplast Manganese Transporter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPF0016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmt1-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxygen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In support of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumulation in the yeast cells of Mn2+-uptake deficient mutant (Δsmf1). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.
Collapse
Affiliation(s)
- Bin Zhang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Chi Zhang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Congge Liu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yanping Jing
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuan Wang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ling Jin
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Yang
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jisen Shi
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
230
|
Reis GSM, de Almeida AAF, Mangabeira PAO, dos Santos IC, Pirovani CP, Ahnert D. Mechanical stress caused by wind on leaves of Theobroma cacao: Photosynthetic, molecular, antioxidative and ultrastructural responses. PLoS One 2018; 13:e0198274. [PMID: 29949591 PMCID: PMC6021058 DOI: 10.1371/journal.pone.0198274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/16/2018] [Indexed: 12/03/2022] Open
Abstract
Theobroma cacao is cultivated in the shade, in a so-called 'Cabruca' system, in intercropped with Erithryna or other tree species of economic value, and in full sun as a monoculture in irrigated or chemically-irrigated systems. Since it is a species quite intolerant to wind, it is practically impossible to implant cacao crops under full exposure to the sun, or in areas of frequent winds, without the protection of windbreaks, using arboreal species around the area of culture in the form of box. Wind can cause mechanical stimuli in plants, affecting their growth and development. The objective of this work was to evaluate the photosynthetic changes in mature leaves and the molecular, biochemical and ultrastructural changes in young and mature leaves of the CCN 51 cloned genotype of T. cacao subjected to intermittent (IW) and constant (CW) wind, with velocities of 2.5, 3.5 and 4.5 m s-1, during 3, 6 and 12 h of exposure. It was verified that CW and IW, considering different exposure times, interfered directly in stomatal conductance (gs), transpiration (E) and water use efficiency (WUE), causing a reduction of the photosynthetic rate (A) in mature leaves. In addition, the pulvinus and blade of young and mature leaves, exposed to IW and CW with different exposure times (3 and 12 h), showed marked macroscopic and microscopic mechanical injuries resulting from the constant leaf movement. At both speeds, there was rupture of the cell nuclear membrane in pulvinus and the mesophyll tissues, mainly in the young leaves. On the other hand, in young and mature leaves exposed to CW and IW at different speeds and exposure times, there was lipid peroxidation, increased activity of guaiacol (GPX) and ascorbate (APX) peroxidases in most treatments; and altered expression of transcripts of psba and psbo genes related to the phothosynthetic apparatus and Cu-Zn-sod and per genes related to antioxidative enzymes at the rate of 4.5 m s-1. Younger leaves were more intolerant to mechanical stress caused by the wind, since presented greater macro and microscopic damages and, consequently, greater molecular, biochemical and ultrastructural changes. High wind speeds can seriously compromise the development of young leaves of T. cacao plants and affect their productivity.
Collapse
Affiliation(s)
- Graciele Santos Monteiro Reis
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
- * E-mail:
| | - Pedro Antônio Oliveira Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Ivanildes Conceição dos Santos
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Ilhéus, BA, Brazil
| |
Collapse
|
231
|
Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nat Commun 2018; 9:2439. [PMID: 29934511 PMCID: PMC6015050 DOI: 10.1038/s41467-018-04823-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
In oxygenic photosynthesis, light energy is converted into redox energy by two photosystems (PSI and PSII). PSI forms one of the largest multiprotein complexes in thylakoid membranes consisting of a core complex, peripheral light-harvesting complexes (LHCIs) and cofactors. Although the high-resolution structure of the PSI–LHCI complex has been determined, the assembly process remains unclear due to the rapid nature of the assembly process. Here we show that two conserved chloroplast-encoded auxiliary factors, Ycf3 and Ycf4, form modules that mediate PSI assembly. The first module consists of the tetratricopeptide repeat protein Ycf3 and its interacting partner, Y3IP1, and mainly facilitates the assembly of reaction center subunits. The second module consists of oligomeric Ycf4 and facilitates the integration of peripheral PSI subunits and LHCIs into the PSI reaction center subcomplex. We reveal that these two modules are major mediators of the PSI–LHCI assembly process. Photosystem I is a large multiprotein complex embedded in the chloroplast thylakoid membrane. Here the authors provide evidence for a modular assembly process, whereby Ycf3 facilitates assembly of the reaction center, while Ycf4 incorporates peripheral core and light harvesting complex subunits to the reaction center.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. .,JST-CREST, Tokyo, Japan.
| |
Collapse
|
232
|
Wang YX, Hu Y, Zhu YF, Baloch AW, Jia XM, Guo AX. Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics 2018; 19:461. [PMID: 29902966 PMCID: PMC6003109 DOI: 10.1186/s12864-018-4846-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
Background Iron (Fe) is an essential micronutrient for plants. Utilization of Fe deficiency-tolerant rootstock is an effective strategy to prevent Fe deficiency problems in fruit trees production. Malus halliana is an apple rootstock that is resistant to Fe deficiency; however, few molecular studies have been conducted on M. halliana. Results To evaluate short-term molecular response of M. halliana leaves under Fe deficiency condition, RNA sequencing (RNA-Seq) analyses were conducted at 0 (T1), 0.5 (T2) and 3 d (T3) after Fe-deficiency stress, and the timepoints were determined with a preliminary physiological experiment. In all, 6907, 5328, and 3593 differentially expressed genes (DEGs) were identified in pairs of T2 vs. T1, T3 vs. T1, and T3 vs. T2. Several of the enriched DEGs were related to heme binding, Fe ion binding, thylakoid membranes, photosystem II, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism and carotenoid biosynthesis under Fe deficiency, which suggests that Fe deficiency mainly affects the photosynthesis of M. halliana. Additionally, we found that Fe deficiency induced significant down-regulation in genes involved in photosynthesis at T2 when seedlings were treated with Fe-deficient solution for 0.5 d, indicating that there was a rapid response of M. halliana to Fe deficiency. A strong up-regulation of photosynthesis genes was detected at T3, which suggested that M. halliana was able to recover photosynthesis after prolonged Fe starvation. A similar expression pattern was found in pigment regulation, including genes for coding chlorophyllide a oxygenase (CAO), β-carotene hydroxylase (β-OHase), zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED). Our results suggest that pigment regulation plays an important role in the Fe deficiency response. In addition, we verified sixteen genes related to photosynthesis-antenna protein, porphyrin and chlorophyll metabolism and carotenoid biosynthesis pathways using quantitative real-time PCR (qRT-PCR) to ensure the accuracy of transcriptome data. Photosynthetic parameters, Chl fluorescence parameters and the activity of Chlase were also determined. Conclusions This study broadly characterizes a molecular mechanism in which pigment and photosynthesis-related regulations play indispensable roles in the response of M. halliana to short-term Fe deficiency and provides a basis for future analyses of the key genes involved in the tolerance of Fe deficiency. Electronic supplementary material The online version of this article (10.1186/s12864-018-4846-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Ya Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan-Fang Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Abdul Wahid Baloch
- Department of Plant Breeding & Genetics, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Xu-Mei Jia
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ai-Xia Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
233
|
Petrova AA, Trubitsin BV, Boskhomdzhieva BK, Semenov AY, Tikhonov AN. Cyclic electron transfer around Photosystem I mediated by 2,3-dichloro-1,4-naphtoquinone and ascorbate. FEBS Lett 2018; 592:2220-2226. [PMID: 29885280 DOI: 10.1002/1873-3468.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 11/07/2022]
Abstract
In this work, we investigated electron transport around the photosynthetic pigment-protein complex of Photosystem I (PS I) mediated by external high-potential electron carrier 2,3-dichloro-1,4-naphtoquinone (Cl2 NQ) and ascorbate. It has been demonstrated that the oxidized species of Cl2 NQ and ascorbate serve as intermediates capable of accepting electrons from the iron-sulfur cluster FX of PS I. Reduced species of Cl2 NQ and ascorbate are oxidized by photooxidized PS I primary donor P700+ and/or by molecular oxygen. We have found the synergistic effect of Cl2 NQ and ascorbate on the rate of P700+ reduction. Accelerated electron flow to P700+, observed in the presence of both Cl2 NQ and ascorbate, is explained by an increase in the reduced species of Cl2 NQ due to electron transfer from ascorbate.
Collapse
Affiliation(s)
- Anastasia A Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Baina K Boskhomdzhieva
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Russia.,N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Russia.,N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
234
|
|
235
|
Saper G, Kallmann D, Conzuelo F, Zhao F, Tóth TN, Liveanu V, Meir S, Szymanski J, Aharoni A, Schuhmann W, Rothschild A, Schuster G, Adir N. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat Commun 2018; 9:2168. [PMID: 29867170 PMCID: PMC5986869 DOI: 10.1038/s41467-018-04613-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 05/04/2018] [Indexed: 01/26/2023] Open
Abstract
Oxygenic photosynthetic organisms perform solar energy conversion of water and CO2 to O2 and sugar at a broad range of wavelengths and light intensities. These cells also metabolize sugars using a respiratory system that functionally overlaps the photosynthetic apparatus. In this study, we describe the harvesting of photocurrent used for hydrogen production from live cyanobacteria. A non-harmful gentle physical treatment of the cyanobacterial cells enables light-driven electron transfer by an endogenous mediator to a graphite electrode in a bio-photoelectrochemical cell, without the addition of sacrificial electron donors or acceptors. We show that the photocurrent is derived from photosystem I and that the electrons originate from carbohydrates digested by the respiratory system. Finally, the current is utilized for hydrogen evolution on the cathode at a bias of 0.65 V. Taken together, we present a bio-photoelectrochemical system where live cyanobacteria produce stable photocurrent that can generate hydrogen. Biologically ### produced electrical currents and hydrogen are new energy sources. Here, the authors find that low presser microfluidizer treatment produced cyanobacterium that can utilize electrons from respiratory and photosynthesis to promote current and hydrogen generation, without the addition of exogenous electron mediators.
Collapse
Affiliation(s)
- Gadiel Saper
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Dan Kallmann
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Fangyuan Zhao
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Tünde N Tóth
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel.,Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Varda Liveanu
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jedrzej Szymanski
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.,Leibniz Institute of Plant Genetics and Crop Research (IPK), Network Analysis and Modelling, OT Gatersleben, 06466, Seeland, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Avner Rothschild
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel.,Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel
| | - Gadi Schuster
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel. .,Faculty of Biology, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel.
| | - Noam Adir
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel. .,Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 32000, Haifa, Israel.
| |
Collapse
|
236
|
Feifel SC, Stieger KR, Hejazi M, Wang X, Ilbert M, Zouni A, Lojou E, Lisdat F. Dihemic c4-type cytochrome acting as a surrogate electron conduit: Artificially interconnecting a photosystem I supercomplex with electrodes. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
237
|
Biohybrid solar cells: Fundamentals, progress, and challenges. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
238
|
Keren N, Paltiel Y. Photosynthetic Energy Transfer at the Quantum/Classical Border. TRENDS IN PLANT SCIENCE 2018; 23:497-506. [PMID: 29625851 DOI: 10.1016/j.tplants.2018.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices.
Collapse
Affiliation(s)
- Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
239
|
Xingxing C, Jiuyang L, Huan Z, Fudong L, Shuya Z, Min X, Ke R, Yuhua W, Aigen F. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. PHOTOSYNTHESIS RESEARCH 2018; 136:139-146. [PMID: 29098572 PMCID: PMC5895690 DOI: 10.1007/s11120-017-0450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Proper biogenesis and maintenance of photosynthetic thylakoid membrane complexes are essential for the photosynthetic light reactions. A thylakoid lumenal protein, Psb27, plays a vital role in assembly or/and maintenance of photosystem II (PSII). In cyanobacteria, it is a small lipoprotein docked to the lumenal side of PSII, and functions in the assembly of the Mn4Ca cluster and in the PSII repair cycle. However, Psb27 from Arabidopsis thaliana is not a lipoprotein, and it is involved in PSII repair and acclimation to fluctuating light stress, suggesting a functional divergence between Arabidopsis Psb27 and cyanobacterial Psb27s. To gain a better understanding of Psb27 from higher plants, we determined the crystal structure of Arabidopsis Psb27 by X-ray crystallography at a resolution of 1.85 Å. The structure of Arabidopsis Psb27 is a four-helix bundle, similar to its orthologues from cyanobacteria. However, there are several structural differences between Arabidopsis Psb27 and cyanobacterial Psb27s concerning the overall molecular shape, the N- and C-terminal structures, and the surface charge. These differences suggest that Psb27 from higher plants and cyanobacteria may function differently.
Collapse
Affiliation(s)
- Cheng Xingxing
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Liu Jiuyang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Huan
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Li Fudong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Shuya
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Xu Min
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Ruan Ke
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Wang Yuhua
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Fu Aigen
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| |
Collapse
|
240
|
Dann M, Leister D. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0380. [PMID: 28808099 DOI: 10.1098/rstb.2016.0380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
Abstract
Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
241
|
Guan X, Chen S, Voon CP, Wong KB, Tikkanen M, Lim BL. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors. FRONTIERS IN PLANT SCIENCE 2018; 9:410. [PMID: 29670639 PMCID: PMC5893904 DOI: 10.3389/fpls.2018.00410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuai Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chia Pao Voon
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Bo Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mikko Tikkanen
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
242
|
Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, Liu A. High-Frequency/High-Field Electron Paramagnetic Resonance and Theoretical Studies of Tryptophan-Based Radicals. J Phys Chem A 2018; 122:3170-3176. [PMID: 29488750 DOI: 10.1021/acs.jpca.7b12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan-based free radicals have been implicated in a myriad of catalytic and electron transfer reactions in biology. However, very few of them have been trapped so that biophysical characterizations can be performed in a high-precision context. In this work, tryptophan derivative-based radicals were studied by high-frequency/high-field electron paramagnetic resonance (HFEPR) and quantum chemical calculations. Radicals were generated at liquid nitrogen temperature with a photocatalyst, sacrificial oxidant, and violet laser. The precise g-anisotropies of l- and d-tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-fluorotryptophan, and 7-hydroxytryptophan were measured directly by HFEPR. Quantum chemical calculations were conducted to predict both neutral and cationic radical spectra for comparison with the experimental data. The results indicate that under the experimental conditions, all radicals formed were cationic. Spin densities of the radicals were also calculated. The various line patterns and g-anisotropies observed by HFEPR can be understood in terms of spin-density populations and the positioning of oxygen atom substitution on the tryptophan ring. The results are considered in the light of the tryptophan and 7-hydroxytryptophan diradical found in the biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States.,Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Teruaki Koto
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| | - James R Terrell
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Alexander Kozhanov
- Department of Physics and Astronomy , Georgia State University , Atlanta , Georgia 30303 , United States
| | - J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas , San Antonio , Texas 78249 , United States
| |
Collapse
|
243
|
Sato T, Shimoda Y, Matsuda K, Tanaka A, Ito H. Mg-dechelation of chlorophyll a by Stay-Green activates chlorophyll b degradation through expressing Non-Yellow Coloring 1 in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:94-102. [PMID: 29425814 DOI: 10.1016/j.jplph.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
The first step in chlorophyll a degradation is the extraction of the central Mg. This reaction is catalyzed by Mg-dechelatase encoded by Stay-Green (SGR) in land plants. SGR extracts Mg from chlorophyll a but not from chlorophyll b, and chlorophyll b must be converted to chlorophyll a before degradation. The first reaction of the chlorophyll b to chlorophyll a conversion is catalyzed by chlorophyll b reductase. Non-Yellow Coloring 1 (NYC1) and NYC1 like (NOL) are isozymes of chlorophyll b reductase. When SGR was transiently overexpressed in Arabidopsis, both chlorophyll a and b were degraded, suggesting that the chlorophyll b to chlorophyll a conversion is activated by SGR overexpression. To examine the involvement of chlorophyll b reductases in SGR-induced chlorophyll b degradation, SGR was transiently overexpressed in nyc1, nol, and nyc1 nol double mutants by dexamethasone treatment. It was found that in the wild type and nol mutant, chlorophyll a and b were degraded and all the chlorophyll-binding proteins decreased. Meanwhile, in nyc1 and nyc1 nol mutants, chlorophyll b degradation was suppressed and the light-harvesting complex of photosystem II remained. The mRNA and protein levels of NYC1 increased after SGR overexpression in wild type plants. These results suggest that Mg-dechelation of chlorophyll a by SGR activates chlorophyll b degradation by inducing the expression of NYC1. This is an effective regulation of a metabolic pathway.
Collapse
Affiliation(s)
- Tomoaki Sato
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Kaori Matsuda
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan.
| |
Collapse
|
244
|
Pamu R, Sandireddy VP, Kalyanaraman R, Khomami B, Mukherjee D. Plasmon-Enhanced Photocurrent from Photosystem I Assembled on Ag Nanopyramids. J Phys Chem Lett 2018; 9:970-977. [PMID: 29405719 DOI: 10.1021/acs.jpclett.7b03255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plasmonic metal nanostructures have been known to tune optoelectronic properties of fluorophores. Here, we report the first-ever experimental observation of plasmon-induced photocurrent enhancements from Photosystem I (PSI) immobilized on Fischer patterns of silver nanopyramids (Ag-NP). To this end, the plasmonic peaks of Ag-NP were tuned to match the PSI absorption peaks at ∼450 and ∼680 nm wavelengths. Specifically, the plasmon-enhanced photocurrents indicate enhancement factors of ∼6.5 and ∼5.8 as compared to PSI assembly on planar Ag substrates for nominal excitation wavelengths of 660 and 470 nm, respectively. The comparable enhancement factors from both 470 and 660 nm excitations, in spite of a significantly weaker plasmon absorption peak at ∼450 nm for the Ag-NP structures, can be rationalized by previously reported excessive plasmon-induced fluorescence emission losses from PSI in the red region as compared to the blue region of the excitation wavelengths.
Collapse
Affiliation(s)
- Ravi Pamu
- Department of Mechanical, Aerospace, and Biomedical Engineering; ‡Department of Chemical and Biomolecular Engineering; §Department of Material Science and Engineering; ∥Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); ⊥Sustainable Energy Education and Research Center (SEERC), University of Tennessee , Knoxville, Tennessee 37996, United States
| | - V Prasad Sandireddy
- Department of Mechanical, Aerospace, and Biomedical Engineering; ‡Department of Chemical and Biomolecular Engineering; §Department of Material Science and Engineering; ∥Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); ⊥Sustainable Energy Education and Research Center (SEERC), University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Ramki Kalyanaraman
- Department of Mechanical, Aerospace, and Biomedical Engineering; ‡Department of Chemical and Biomolecular Engineering; §Department of Material Science and Engineering; ∥Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); ⊥Sustainable Energy Education and Research Center (SEERC), University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Bamin Khomami
- Department of Mechanical, Aerospace, and Biomedical Engineering; ‡Department of Chemical and Biomolecular Engineering; §Department of Material Science and Engineering; ∥Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); ⊥Sustainable Energy Education and Research Center (SEERC), University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Dibyendu Mukherjee
- Department of Mechanical, Aerospace, and Biomedical Engineering; ‡Department of Chemical and Biomolecular Engineering; §Department of Material Science and Engineering; ∥Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); ⊥Sustainable Energy Education and Research Center (SEERC), University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
245
|
Li Y, Fei J, Li G, Xie H, Yang Y, Li J, Xu Y, Sun B, Xia J, Fu X, Li J. Supramolecular Assembly of Photosystem II and Adenosine Triphosphate Synthase in Artificially Designed Honeycomb Multilayers for Photophosphorylation. ACS NANO 2018; 12:1455-1461. [PMID: 29361225 DOI: 10.1021/acsnano.7b07841] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant thylakoids have a typical stacking structure, which is the site of photosynthesis, including light-harvesting, water-splitting, and adenosine triphosphate (ATP) production. This stacking structure plays a key role in exchange of substances with extremely high efficiency and minimum energy consumption through photosynthesis. Herein we report an artificially designed honeycomb multilayer for photophosphorylation. To mimic the natural thylakoid stacking structure, the multilayered photosystem II (PSII)-ATP synthase-liposome system is fabricated via layer-by-layer (LbL) assembly, allowing the three-dimensional distributions of PSII and ATP synthase. Under light illumination, PSII splits water into protons and generates a proton gradient for ATP synthase to produce ATP. Moreover, it is found that the ATP production is extremely associated with the numbers of PSII layers. With such a multilayer structure assembled via LbL, one can better understand the mechanism of PSII and ATP synthase integrated in one system, mimicking the photosynthetic grana structure. On the other hand, such an assembled system can be considered to improve the photophosphorylation.
Collapse
Affiliation(s)
- Yue Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
- College of Life Science, Jilin University , Changchun 130012, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academic of Sciences , Beijing 100049, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University , Changchun 130024, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jieling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Youqian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academic of Sciences , Beijing 100049, China
| | - Bingbing Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academic of Sciences , Beijing 100049, China
| | - Jiarui Xia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academic of Sciences , Beijing 100049, China
| | - Xueqi Fu
- College of Life Science, Jilin University , Changchun 130012, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academic of Sciences , Beijing 100049, China
| |
Collapse
|
246
|
Structure of the plant photosystem I. Biochem Soc Trans 2018; 46:285-294. [PMID: 29487228 DOI: 10.1042/bst20170299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022]
Abstract
Plant photosystem I (PSI) is one of the most intricate membrane complexes in nature. It comprises two complexes, a reaction center and light-harvesting complex (LHC), which together form the PSI-LHC supercomplex. The crystal structure of plant PSI was solved with two distinct crystal forms. The first, crystallized at pH 6.5, exhibited P21 symmetry; the second, crystallized at pH 8.5, exhibited P212121 symmetry. The surfaces involved in binding plastocyanin and ferredoxin are identical in both forms. The crystal structure at 2.6 Å resolution revealed 16 subunits, 45 transmembrane helices, and 232 prosthetic groups, including 143 chlorophyll a, 13 chlorophyll b, 27 β-carotene, 7 lutein, 2 xanthophyll, 1 zeaxanthin, 20 monogalactosyl diglyceride, 7 phosphatidyl diglyceride, 5 digalactosyl diglyceride, 2 calcium ions, 2 phylloquinone, and 3 iron sulfur clusters. The model reveals detailed interactions, providing mechanisms for excitation energy transfer and its modulation in one of nature's most efficient photochemical machine.
Collapse
|
247
|
Santabarbara S, Tibiletti T, Remelli W, Caffarri S. Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis. Phys Chem Chem Phys 2018; 19:9210-9222. [PMID: 28319223 DOI: 10.1039/c7cp00554g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns-1 interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns-1, likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns-1), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns-1), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro di Studio per la Biologia Cellulare e Molecolare delle Piante, Via Celoria 26, 20133 Milan, Italy.
| | - Tania Tibiletti
- Aix Marseille Univ, CEA, CNRS UMR7265 BVME, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France
| | - William Remelli
- Photosynthesis Research Unit, Centro di Studio per la Biologia Cellulare e Molecolare delle Piante, Via Celoria 26, 20133 Milan, Italy.
| | - Stefano Caffarri
- Aix Marseille Univ, CEA, CNRS UMR7265 BVME, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France
| |
Collapse
|
248
|
de Sousa TP, de Souza ACA, de Filippi MCC, Lanna AC, Cortês MV, Pinheiro HA, da Silva GB. Bioagents and silicon promoting fast early upland rice growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3657-3668. [PMID: 0 DOI: 10.1007/s11356-017-0753-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/14/2017] [Indexed: 05/26/2023]
|
249
|
Tang C, Yang C, Yu H, Tian S, Huang X, Wang W, Cai P. Electromagnetic Radiation Disturbed the Photosynthesis of Microcystis aeruginosa at the Proteomics Level. Sci Rep 2018; 8:479. [PMID: 29323219 PMCID: PMC5764990 DOI: 10.1038/s41598-017-18953-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022] Open
Abstract
Photosynthesis of Microcystis aeruginosa under Electromagnetic Radiation (1.8 GHz, 40 V/m) was studied by using the proteomics. A total of 30 differentially expressed proteins, including 15 up-regulated and 15 down-regulated proteins, were obtained in this study. The differentially expressed proteins were significantly enriched in the photosynthesis pathway, in which the protein expression levels of photosystems II cytochrome b559 α subunit, cytochrome C550, PsbY, and F-type ATP synthase (a, b) decreased. Our results indicated that electromagnetic radiation altered the photosynthesis-related protein expression levels, and aimed at the function of photosynthetic pigments, photosystems II potential activity, photosynthetic electron transport process, and photosynthetic phosphorylation process of M. aeruginosa. Based on the above evidence, that photoreaction system may be deduced as a target of electromagnetic radiation on the photosynthesis in cyanobacteria; the photoreaction system of cyanobacteria is a hypothetical "shared target effector" that responds to light and electromagnetic radiation; moreover, electromagnetic radiation does not act on the functional proteins themselves but their expression processes.
Collapse
Affiliation(s)
- Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China.,University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Hui Yu
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Shen Tian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Xiaomei Huang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China.,University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Weiyi Wang
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P.R. China.,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P.R. China. .,Xiamen Key Laboratory of Physical Environment, 1799 Jimei Road, Xiamen, 361021, P.R. China.
| |
Collapse
|
250
|
Hussein R, Ibrahim M, Chatterjee R, Coates L, Müh F, Yachandra VK, Yano J, Kern J, Dobbek H, Zouni A. Optimizing Crystal Size of Photosystem II by Macroseeding: Toward Neutron Protein Crystallography. CRYSTAL GROWTH & DESIGN 2018; 18:85-94. [PMID: 29962903 PMCID: PMC6020701 DOI: 10.1021/acs.cgd.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photosystem II (PSII) catalyzes the photo-oxidation of water to molecular oxygen and protons. The water splitting reaction occurs inside the oxygen-evolving complex (OEC) via a Mn4CaO5 cluster. To elucidate the reaction mechanism, detailed structural information for each intermediate state of the OEC is required. Despite the current high-resolution crystal structure of PSII at 1.85 Å and other efforts to follow the structural changes of the Mn4CaO5 cluster using X-ray free electron laser (XFEL) crystallography in addition to spectroscopic methods, many details about the reaction mechanism and conformational changes in the catalytic site during water oxidation still remain elusive. In this study, we present a rarely found successful application of the conventional macroseeding method to a large membrane protein like the dimeric PSII core complex (dPSIIcc). Combining microseeding with macroseeding crystallization techniques allowed us to reproducibly grow large dPSIIcc crystals with a size of ~3 mm. These large crystals will help improve the data collected from spectroscopic methods like polarized extended X-ray absorption fine structure (EXAFS) and single crystal electron paramagnetic resonance (EPR) techniques and are a prerequisite for determining a three-dimensional structure using neutron diffraction.
Collapse
Affiliation(s)
- Rana Hussein
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- Corresponding Authors: (R.H.) Phone; +49 30 2093 47933; . (A.Z.) Phone: +49 30 2093 47930;
| | - Mohamed Ibrahim
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leighton Coates
- Neutron Scattering Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Frank Müh
- Institute of Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- Corresponding Authors: (R.H.) Phone; +49 30 2093 47933; . (A.Z.) Phone: +49 30 2093 47930;
| |
Collapse
|