201
|
Abstract
Double-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair relies on the RecBCD and RecA proteins, the combined ability of which to initiate recombination and form joint-molecule intermediates is well understood. To shed light on subsequent events, we exploited the I-SceI homing endonuclease of yeast to make breaks at I-SceI cleavage sites engineered into the chromosome. We show that survival depends on RecA and RecBCD, and that subsequent events can proceed via either of two pathways, one dependent on the RuvABC Holliday junction resolvase and the other on RecG helicase. Both pathways rely on PriA, presumably to facilitate DNA replication. We discuss the possibility that classical Holliday junctions may not be essential intermediates in repair and consider alternative pathways for RecG-dependent separation of joint molecules formed by RecA.
Collapse
Affiliation(s)
- Tom R Meddows
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
202
|
Grompone G, Sanchez N, Dusko Ehrlich S, Michel B. Requirement for RecFOR-mediated recombination in priA mutant. Mol Microbiol 2004; 52:551-62. [PMID: 15066040 DOI: 10.1111/j.1365-2958.2004.03997.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Restart of arrested replication forks is an important process and PriA, the main Escherichia coli replication restart protein, is essential for viability under any condition that increases the frequency of fork arrest. In priA mutant, replication forks are arrested by spontaneously occurring roadblocks and blocked replication forks persist as a result of the defect in replication restart. In the present work, we analysed how recombination proteins contribute to the viability of the priA mutant. RecFOR-mediated homologous recombination occurs in a large fraction of priA mutant cells, indicating a frequent formation of DNA single strand gaps and their recombinational repair. This high level of homologous recombination renders the proteins that resolve Holliday junctions recombination intermediates essential for viability. When homologous recombination is blocked at early steps by recFOR or recA inactivation, exonuclease V-mediated DNA degradation is required for full viability of priA mutants, indicating that unrepaired gaps are broken and that DNA degradation of the broken DNA allows the formation of viable cells. Models for the formation of single strand DNA gaps consequently to a replication restart defect and for gap processing are proposed.
Collapse
Affiliation(s)
- Gianfranco Grompone
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert 78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
203
|
Hishida T, Han YW, Fujimoto S, Iwasaki H, Shinagawa H. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Proc Natl Acad Sci U S A 2004; 101:9573-7. [PMID: 15210950 PMCID: PMC470716 DOI: 10.1073/pnas.0403584101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli RuvA and RuvB protein complex promotes branch migration of Holliday junctions during recombinational repair and homologous recombination and at stalled replication forks. The RuvB protein belongs to the AAA(+) (ATPase associated with various cellular activities) ATPase family and forms a hexameric ring in an ATP-dependent manner. Studies on the oligomeric AAA(+) class ATPases suggest that a conserved arginine residue is located in close proximity to the ATPase site of the adjacent subunit and plays an essential role during ATP hydrolysis. This study presents direct evidence that Arg-174 of RuvB allosterically stimulates the ATPase of the adjacent subunit in a RuvB hexamer. RuvBR174A shows a dominant negative phenotype for DNA repair in vivo and inhibits the branch migration catalyzed by wild-type RuvB. A dominant negative phenotype was also observed with RuvBK68A (Walker A mutation). RuvB K68A-R174A double mutant demonstrates a more severe dominant negative effect than the single mutants RuvB K68A or R174A. Moreover, although RuvB K68A and R174A are totally defective in ATPase activity, ATPase activity is restored when these two mutant proteins are mixed at a 1:1 ratio. These results suggest that each of the two mutants has distinct functional defects and that restoration of the ATPase activity is brought by complementary interaction between the mutant subunits in the heterohexamers. This study demonstrates that R174 plays an intermolecular catalytic role during ATP hydrolysis by RuvB. This role may be a general feature of the oligomeric AAA/AAA(+) ATPases.
Collapse
Affiliation(s)
- Takashi Hishida
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
204
|
Dennis C, Fedorov A, Käs E, Salomé L, Grigoriev M. RuvAB-directed branch migration of individual Holliday junctions is impeded by sequence heterology. EMBO J 2004; 23:2413-22. [PMID: 15167893 PMCID: PMC423290 DOI: 10.1038/sj.emboj.7600249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/29/2004] [Indexed: 11/09/2022] Open
Abstract
The Holliday junction, the key intermediate of recombination, is generated by strand exchange resulting in a covalent connection between two recombining DNA molecules. Translocation of a Holliday junction along DNA, or branch migration, progressively exchanges one DNA strand for another and determines the amount of information that is transferred between two recombining partners. In Escherichia coli, the RuvAB protein complex promotes rapid and unidirectional branch migration of Holliday junctions. We have studied translocation of Holliday junctions using a quantitative biochemical system together with a 'single-molecule' branch migration assay. We demonstrate that RuvAB translocates the junctions through identical DNA sequences in a processive manner with a broad distribution of individual branch migration rates. However, when the complex encounters short heterologous sequences, translocation of the Holliday junctions is impeded. We conclude that translocation of the junctions through a sequence heterology occurs with a probability of bypass being determined both by the length of the heterologous region and the lifetime of the stalled RuvAB complex.
Collapse
Affiliation(s)
- Cynthia Dennis
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
| | - Andrei Fedorov
- Centre d'Etude Spatiale des Rayonnements, UPR 8002 CNRS, Toulouse, France
| | - Emmanuel Käs
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Toulouse, France
| | - Mikhail Grigoriev
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
- Laboratoire de Biologie Mol Eucaryote, UMR 5099 CNRS, Institut d'Exploration Fonctionelle des Génomes, 118 route de Narbonne, 31062 Toulouse, France. Tel.: +33 5 61 33 58 08; Fax: +33 5 61 33 58 86; E-mail:
| |
Collapse
|
205
|
Pouget N, Dennis C, Turlan C, Grigoriev M, Chandler M, Salomé L. Single-particle tracking for DNA tether length monitoring. Nucleic Acids Res 2004; 32:e73. [PMID: 15155821 PMCID: PMC419628 DOI: 10.1093/nar/gnh073] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a simple single-particle tracking approach for monitoring the length of DNA molecules in tethered particle motion experiments. In this method, the trajectory of a submicroscopic bead tethered by a DNA molecule to a glass surface is determined by videomicroscopy coupled to image analysis. The amplitude of motion of the bead is measured by the standard deviation of the distribution of successive positions of the bead in a given time interval. We were able to describe theoretically the variation of the equilibrium value of the amplitude of the bead motion with the DNA tether length for the entire applicable DNA length range (up to approximately 3500 bp). The sensitivity of the approach was illustrated by the evidence obtained for conformational changes introduced into a Holliday junction by the binding of the Escherichia coli RuvA protein. An advantage of this method is that the trajectory of the tethered bead, rather than its averaged motion, is measured, allowing analysis of the conformational dynamics of DNA chains at the single-molecule level.
Collapse
Affiliation(s)
- Noëlle Pouget
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
206
|
Gartner W, Rossbacher J, Zierhut B, Daneva T, Base W, Weissel M, Waldhäusl W, Pasternack MS, Wagner L. The ATP-dependent helicase RUVBL1/TIP49a associates with tubulin during mitosis. ACTA ACUST UNITED AC 2004; 56:79-93. [PMID: 14506706 DOI: 10.1002/cm.10136] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RUVBL1/TIP49a/Pontin52 is a recently identified multi-functional protein with 2 ATP binding (WALKER) sites, which is essential for cell proliferation. We recovered and identified RUVBL1/TIP49a as a tubulin-binding protein from Triton X-100 lysates of U937 promonocytic cells by protein affinity chromatography and tryptic peptide microsequencing. Performing co-immunoprecipitation using newly generated RUVBL1/TIP49a-specific antibodies (mAb and rabbit polyclonal Ab) and RUVBL1/TIP49a-GST fusion protein-pull down assays we demonstrate co-precipitation of alpha- and gamma tubulin with RUVBL1/TIP49a. Confocal immunoflourescence microscopy reveals that RUVBL1/TIP49a was present not only in the nucleus, as expected, but was also concentrated at the centrosome and at the mitotic spindle in colocalization with tubulin. The topology of RUVBL1/TIP49a at the mitotic spindle varied, depending on the mitotic stage. The protein was localized at the centrosome and at the polar and astral microtubules in metaphase, and was detectable at the zone of polar tubule interdigitation in anaphase B and telophase. During cytokinesis the protein reappeared at the area of decondensing chromosomes. Whereas preincubation of U937 cells with colcemid resulted in inhibition of mitotic spindle formation with subsequent loss of RUVBL1/TIP49a mitotic spindle staining, no relevant influence of colcemid on RUVBL1/TIP49a-tubulin binding was observed. An agonistic effect of RUVBL1/TIP49a on in vitro tubulin assembly is demonstrated. Our results reveal a new functional aspect of RUVBL1/TIP49a.
Collapse
Affiliation(s)
- Wolfgang Gartner
- Department of Medicine III, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Affiliation(s)
- Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA.
| | | |
Collapse
|
208
|
Briggs GS, Mahdi AA, Weller GR, Wen Q, Lloyd RG. Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B Biol Sci 2004; 359:49-59. [PMID: 15065656 PMCID: PMC1693295 DOI: 10.1098/rstb.2003.1364] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies in Escherichia coli indicate that the interconversion of DNA replication fork and Holliday junction structures underpins chromosome duplication and helps secure faithful transmission of the genome from one generation to the next. It facilitates interplay between DNA replication, recombination and repair, and provides means to rescue replication forks stalled by lesions in or on the template DNA. Insight into how this interconversion may be catalysed has emerged from genetic, biochemical and structural studies of RecG protein, a member of superfamily 2 of DNA and RNA helicases. We describe how a single molecule of RecG might target a branched DNA structure and translocate a single duplex arm to drive branch migration of a Holliday junction, interconvert replication fork and Holliday junction structures and displace the invading strand from a D loop formed during recombination at a DNA end. We present genetic evidence suggesting how the latter activity may provide an efficient pathway for the repair of DNA double-strand breaks that avoids crossing over, thus facilitating chromosome segregation at cell division.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
209
|
Loot C, Turlan C, Chandler M. Host processing of branched DNA intermediates is involved in targeted transposition of IS911. Mol Microbiol 2004; 51:385-93. [PMID: 14756780 DOI: 10.1046/j.1365-2958.2003.03850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A simplified system using bacterial insertion sequence IS911 has been developed to investigate targeted insertion next to DNA sequences resembling IS ends. We show here that these IR-targeted events occur by an unusual mechanism. In the circular IS911 transposition intermediate the two IRs are abutted to form an IR/IR junction. IR-targeted insertion involves transfer of a single end of the junction to the target IR to generate a branched DNA structure. The single-end transfer (SET) intermediate, but not the final insertion product, can be detected in an in vitro reaction. SET intermediates must be processed by the bacterial host to obtain the final insertion products. Sequence analysis of these IR-targeted insertion products and of those obtained in vivo revealed high levels of DNA sequence conversion in which mutations from one IR were transferred to another. These sequence changes cannot be explained by the classic transposition pathway. A model is presented in which the four-way Holliday-like junction created by SET is processed by host-mediated branch migration, resolution, repair and replication. This pathway resembles those described for processing other branched DNA structures such as stalled replication forks.
Collapse
Affiliation(s)
- Celine Loot
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse, France
| | | | | |
Collapse
|
210
|
Abstract
Werner syndrome (WS) is one of three heritable human genetic instability/cancer predisposition syndromes that result from mutations in a member of the gene family encoding human RecQ helicases. Cellular defects are a prominent part of the WS phenotype. Here we review recent work to identify in vivo functions of the WS protein and discuss how loss of function leads to cellular defects. These new results provide clues to the origin of cell lineage-specific defects in WS patients and suggest a broader role for Werner protein function in determining disease risk in the general population.
Collapse
Affiliation(s)
- Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
211
|
Hollingsworth NM, Brill SJ. The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 2004; 18:117-25. [PMID: 14752007 PMCID: PMC1851908 DOI: 10.1101/gad.1165904] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
212
|
Liu Y, Masson JY, Shah R, O'Regan P, West SC. RAD51C is required for Holliday junction processing in mammalian cells. Science 2004; 303:243-6. [PMID: 14716019 DOI: 10.1126/science.1093037] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During genetic recombination and the recombinational repair of chromosome breaks, DNA molecules become linked at points of strand exchange. Branch migration and resolution of these crossovers, or Holliday junctions (HJs), complete the recombination process. Here, we show that extracts from cells carrying mutations in the recombination/repair genes RAD51C or XRCC3 have reduced levels of HJ resolvase activity. Moreover, depletion of RAD51C from fractionated human extracts caused a loss of branch migration and resolution activity, but these functions were restored by complementation with a variety of RAD51 paralog complexes containing RAD51C. We conclude that the RAD51 paralogs are involved in HJ processing in human cells.
Collapse
Affiliation(s)
- Yilun Liu
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | |
Collapse
|
213
|
Yoon D, Wang Y, Stapleford K, Wiesmüller L, Chen J. p53 Inhibits Strand Exchange and Replication Fork Regression Promoted by Human Rad51. J Mol Biol 2004; 336:639-54. [PMID: 15095978 DOI: 10.1016/j.jmb.2003.12.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 12/12/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
We explore the effects of p53 on strand exchange as well as regression of stalled replication forks promoted by human Rad51. We have found that p53 specifically inhibits strand exchange mediated by human Rad51, but not by Escherichia coli RecA. In addition, we provide in vitro evidence that human Rad51 can promote regression of a stalled replication fork, and p53 also inhibits this fork regression. Furthermore, we show that two cancer-related p53 mutant proteins cannot inhibit strand exchange and fork regression catalyzed by human Rad51. The results establish a direct functional link between p53 and human Rad51, and reveal that one of p53's functions in genome stabilization may be to prevent detrimental genome rearrangements promoted by human Rad51. Thus, the results support the hypothesis that p53 contributes to genome stability by a transcription-independent modulation of homologous recombination.
Collapse
Affiliation(s)
- Dennis Yoon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
214
|
Olasz F, Fischer T, Szabó M, Nagy Z, Kiss J. Gene conversion in transposition of Escherichia coli element IS30. J Mol Biol 2004; 334:967-78. [PMID: 14643660 DOI: 10.1016/j.jmb.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mobile element IS30 has dual target specificity, since it can integrate adjacent to the inverted repeat (IR) of another IS30 copy or into hot-spot sequences characterized by a well-defined consensus showing no similarity to the ends of the element. The result of such integrations into these targets is different, as gene conversion events take place frequently during insertion next to an IR end, while this phenomenon has never been observed in targeting hot-spot sequences. Conversion events in IR-targeting cannot be explained exclusively by the activity of the transposase, but suggest the involvement of the homologous recombination and repair machinery of the host cell. Here, we show that the homology between the donor and target sequences is required for conversion and the starting point of the process is the site of integration. The frequency of conversion depends on the distance of mutations from the end of the targeted element. Remarkable bias is found in the role of donor and target DNA, since generally the donor sequence is converted depending on the target. Conversion was shown to occur also without formation of transposition products. All these data are consistent with the idea of the establishment, migration and resolution of a Holliday-like cruciform structure, which can be responsible for conversion events. To explain the variety of conversion products in IR-targeting, a molecular model has been proposed and discussed.
Collapse
Affiliation(s)
- Ferenc Olasz
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4., H-2100 Gödöllo, Hungary.
| | | | | | | | | |
Collapse
|
215
|
Wu L, Hickson ID. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 2004; 426:870-4. [PMID: 14685245 DOI: 10.1038/nature02253] [Citation(s) in RCA: 854] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 11/26/2003] [Indexed: 11/09/2022]
Abstract
Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that exists to repair DNA double-stranded breaks and damaged replication forks. Whereas crossing over is required in meiosis, in mitotic cells it can be associated with detrimental loss of heterozygosity. BLM forms an evolutionarily conserved complex with human topoisomerase IIIalpha (hTOPO IIIalpha), which can break and rejoin DNA to alter its topology. Inactivation of homologues of either protein leads to hyper-recombination in unicellular organisms. Here, we show that BLM and hTOPO IIIalpha together effect the resolution of a recombination intermediate containing a double Holliday junction. The mechanism, which we term double-junction dissolution, is distinct from classical Holliday junction resolution and prevents exchange of flanking sequences. Loss of such an activity explains many of the cellular phenotypes of Bloom's syndrome. These results have wider implications for our understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Bloom Syndrome/enzymology
- Crossing Over, Genetic
- DNA Helicases/metabolism
- DNA Topoisomerases, Type I/metabolism
- DNA, Cruciform/chemistry
- DNA, Cruciform/genetics
- DNA, Cruciform/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Humans
- Models, Genetic
- RecQ Helicases
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
216
|
Méndez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2004; 25:1158-67. [PMID: 14635251 DOI: 10.1002/bies.10370] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.
Collapse
Affiliation(s)
- Juan Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
217
|
Ayora S, Carrasco B, Doncel-Perez E, Doncel E, Lurz R, Alonso JC. Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA. Proc Natl Acad Sci U S A 2003; 101:452-7. [PMID: 14701911 PMCID: PMC327168 DOI: 10.1073/pnas.2533829100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis RecU protein is involved in homologous recombination, DNA repair, and chromosome segregation. Purified RecU binds preferentially to three- and four-strand junctions when compared to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) ( approximately 10- and approximately 40-fold lower efficiency, respectively). RecU cleaves mobile four-way junctions but fails to cleave a linear dsDNA with a putative cognate site, a finding consistent with a similar genetic defect observed for genes classified within the epsilon epistatic group (namely ruvA, recD, and recU). In the presence of Mg(2+), RecU also anneals a circular ssDNA and a homologous linear dsDNA with a ssDNA tail and a linear ssDNA and a homologous supercoiled dsDNA substrate. These results suggest that RecU, which cleaves recombination intermediates with high specificity, might also help in their assembly.
Collapse
Affiliation(s)
- Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
218
|
Heyer WD, Ehmsen KT, Solinger JA. Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 2003; 28:548-57. [PMID: 14559184 DOI: 10.1016/j.tibs.2003.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Holliday junction is a key recombination intermediate whose resolution generates crossovers. Interplay between recombination, repair and replication has moved the Holliday junction to the center stage of nuclear DNA metabolism. Holliday junction resolvases in the eukaryotic nucleus have long eluded identification. The endonucleases Mus81/Mms4-Eme1 and XPF-MEI-9/MUS312 are structurally related to the archaeal resolvase Hjc and were found to be involved in crossover formation in budding yeast and flies, respectively. Although these endonucleases might represent one class of eukaryotic resolvases, their substrate preference opens up the possibility that junctions other than classical Holliday junctions might contribute to crossovers. Holliday junction resolution to non-crossover products can also be achieved topologically, for example, by the action of RecQ-like DNA helicases combined with topoisomerase III.
Collapse
Affiliation(s)
- Wolf Dietrich Heyer
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, CA 95616-8665, USA.
| | | | | |
Collapse
|
219
|
Görzer I, Schüller C, Heidenreich E, Krupanska L, Kuchler K, Wintersberger U. The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes. Mol Microbiol 2003; 50:1155-71. [PMID: 14622406 DOI: 10.1046/j.1365-2958.2003.03759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutational analysis of the essential nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4p, was performed. The five residues chosen for substitution were amino acids conserved between actin and Act3p/Arp4p, the tertiary structure of which most probably resembles that of actin. Two thermosensitive (ts) mutants, a single and a double point mutant, and one lethal double point mutant were obtained. Both ts mutants were formamide-sensitive which supports a structural relatedness of Act3p/Arp4p to actin; they were also hypersensitive against hydroxyurea and ultraviolet irradiation pointing to a possible role of Act3p/Arp4p in DNA replication and repair. Their 'suppressor of Ty' (SPT) phenotype, observed with another ts mutant of Act3p/Arp4p before, suggested involvement of Act3p/Arp4p in transcription regulation. Accordingly, genome-wide expression profiling revealed misregulated transcription in a ts mutant of a number of genes, among which increased expression of various stress-responsive genes (many of them requiring Msn2p/Msn4p for induction) was the most salient result. This provides an explanation for the mutant's enhanced resistance to severe thermal and oxidative stress. Thus, Act3p/Arp4p takes an important part in the repression of stress-induced genes under non-stress conditions.
Collapse
Affiliation(s)
- Irene Görzer
- Division of Molecular Genetics, Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
220
|
Shea ME, Hiasa H. The RuvAB Branch Migration Complex Can Displace Topoisomerase IV·Quinolone·DNA Ternary Complexes. J Biol Chem 2003; 278:48485-90. [PMID: 13679378 DOI: 10.1074/jbc.m304217200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolone antimicrobial drugs target both DNA gyrase and topoisomerase IV (Topo IV) and convert these essential enzymes into cellular poisons. Topoisomerase poisoning results in the inhibition of DNA replication and the generation of double-strand breaks. Double-strand breaks are repaired by homologous recombination. Here, we have investigated the interaction between the RuvAB branch migration complex and the Topo IV.quinolone.DNA ternary complex. A strand-displacement assay is employed to assess the helicase activity of the RuvAB complex in vitro. RuvAB-catalyzed strand displacement requires both RuvA and RuvB proteins, and it is stimulated by a 3'-non-hybridized tail. Interestingly, Topo IV.quinolone.DNA ternary complexes do not inhibit the translocation of the RuvAB complex. In fact, Topo IV.quinolone.DNA ternary complexes are reversed and displaced from the DNA upon their collisions with the RuvAB complex. These results suggest that the RuvAB branch migration complex can actively remove quinolone-induced covalent topoisomerase.DNA complexes from DNA and complete the homologous recombination process in vivo.
Collapse
Affiliation(s)
- Molly E Shea
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
221
|
Lee YC, Flora R, McCafferty JA, Gor J, Tsaneva IR, Perkins SJ. A Tetramer–Octamer Equilibrium in Mycobacterium leprae and Escherichia coli RuvA by Analytical Ultracentrifugation. J Mol Biol 2003; 333:677-82. [PMID: 14568529 DOI: 10.1016/j.jmb.2003.08.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.2-0.5 mg/ml in 0.1 M NaCl with a dissociation constant of 4 muM, and is octameric at higher concentrations. The same experiments in 0.3 M NaCl showed that MleRuvA is a tetramer up to 3.5 mg/ml, indicating that salt bridges are involved in octamer formation. Sedimentation equilibrium experiments with EcoRuvA showed that it was tetrameric at low concentration in both salt buffers but the protein was insoluble at high-protein concentrations in 0.1 M NaCl. It is concluded that free RuvA exists in an equilibrium between tetrameric and octameric forms in the typical concentration range and buffer found in bacterial cells.
Collapse
Affiliation(s)
- Yie Chia Lee
- Department of Biochemistry and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
222
|
Hishida T, Iwasaki H, Han YW, Ohnishi T, Shinagawa H. Uncoupling of the ATPase activity from the branch migration activity of RuvAB protein complexes containing both wild-type and ATPase-defective RuvB proteins. Genes Cells 2003; 8:721-30. [PMID: 12940820 DOI: 10.1046/j.1365-2443.2003.00670.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Escherichia coli RuvAB promotes branch migration of Holliday junctions during recombination repair and homologous recombination. RuvB forms a hexameric ring through which duplex DNA passes and is translocated in an ATP-dependent manner. ATPase-deficient RuvB mutant K68A has a mutation in the Walker A motif and exerts a dominant-negative effect on in vivo repair of UV-induced DNA damage. In this study, we examined RuvAB-dependent branch migration in the presence of a mutant RuvB, K68A. RESULTS Mixing K68A with wild-type RuvB resulted in the formation of heterohexamers that showed unique properties of DNA binding, ATPase, and branch migration activities different from those of either wild-type or mutant homohexamers. RuvB heterohexamers inhibited branch migration and caused Holliday junctions to accumulate during RecA-mediated strand exchange. In the presence of RuvA, RuvB heterohexamers had Holliday junction-dependent ATPase activity, but did not promote branch migration. CONCLUSIONS These results suggest that functional cooperation among the subunits in the hexamers is required for branch migration, but inclusion of inactive subunits is tolerated for ATP hydrolysis. Therefore, we propose that an essential ATP hydrolysis-dependent functional cooperation is induced in RuvB hexamer subunits during RuvAB-mediated branch migration.
Collapse
Affiliation(s)
- Takashi Hishida
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
223
|
Gichner T. Differential genotoxicity of ethyl methanesulphonate, N-ethyl-N-nitrosourea and maleic hydrazide in tobacco seedlings based on data of the Comet assay and two recombination assays. Mutat Res 2003; 538:171-9. [PMID: 12834766 DOI: 10.1016/s1383-5718(03)00117-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine if mutagen-induced DNA damage is correlated with the frequency of induced recombination events. The alkylating agents ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU), and the plant growth regulator and herbicide maleic hydrazide (MH) were compared in tobacco seedlings for their ability to induce DNA damage measured by the Comet assay, and recombination activity measured by the GUS gene reactivation assay, and by the somatic twin sectors assay. While EMS and ENU induced a dose-dependent increase in DNA damage in leaf nuclei, MH had no significant effect. By contrast, MH induced a 6-fold higher frequency of homologous recombination as expressed by the GUS assay and a 2.8-fold higher frequency of somatic twin sectors than after EMS treatments.
Collapse
Affiliation(s)
- Tomás Gichner
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
224
|
Yang Q, Lishanski A, Yang W, Hatcher S, Seet H, Gregg JP. Allele-specific Holliday junction formation: a new mechanism of allelic discrimination for SNP scoring. Genome Res 2003; 13:1754-64. [PMID: 12840050 PMCID: PMC403749 DOI: 10.1101/gr.997703] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here a new mechanism for allelic discrimination--allele-specific Holliday Junction formation. The Holliday Junction (HJ) is a unique DNA structure that can be formed in a sequence-nonspecific manner by routine PCR. To cause the PCR-based HJ formation to occur in an allele-specific manner, the PCR primers are manipulated such that an extra mismatch next to a SNP of interest is introduced between a target and a reference amplicon and a GC-clamp is added. Based on this new mechanism, novel SNP genotyping methods were developed, including a homogeneous fluorescence polarization (FP) competition assay that requires neither labeled primers/probes nor expensive enzymes/substrates. Using this novel genotyping technology, we were able to convert >95% of SNP sequences into genotyping assays that work well under a universal set of assay conditions and achieved 100% accuracy in clinical samples.
Collapse
|
225
|
Rutkai E, Dorgai L, Sirot R, Yagil E, Weisberg RA. Analysis of insertion into secondary attachment sites by phage lambda and by int mutants with altered recombination specificity. J Mol Biol 2003; 329:983-96. [PMID: 12798688 DOI: 10.1016/s0022-2836(03)00442-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When phage lambda lysogenizes a cell that lacks the primary bacterial attachment site, integrase catalyzes insertion of the phage chromosome into one of many secondary sites. Here, we characterize the secondary sites that are preferred by wild-type lambda and by lambda int mutants with altered insertion specificity. The sequences of these secondary sites resembled that of the primary site: they contained two imperfect inverted repeats flanking a short spacer. The imperfect inverted repeats of the primary site bind integrase, while the 7 bp spacer, or overlap region, swaps strands with a complementary sequence in the phage attachment site during recombination. We found substantial sequence conservation in the imperfect inverted repeats of secondary sites, and nearly perfect conservation in the leftmost three bases of the overlap region. By contrast, the rightmost bases of the overlap region were much more variable. A phage with an altered overlap region preferred to insert into secondary sites with the corresponding bases. We suggest that this difference between the left and right segments is a result of the defined order of strand exchanges during integrase-promoted recombination. This suggestion accounts for the unexpected segregation pattern of the overlap region observed after insertion into several secondary sites. Some of the altered specificity int mutants differed from wild-type in secondary site preference, but we were unable to identify simple sequence motifs that account for these differences. We propose that insertion into secondary sites is a step in the evolutionary change of phage insertion specificity and present a model of how this might occur.
Collapse
Affiliation(s)
- Edit Rutkai
- Bay Zoltán Institute for Biotechnology, Derkovits Faser 2, H-6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
226
|
Abstract
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability and cell survival. Homologous recombination provides an efficient and faithful pathway of repair, especially in replicating cells, in which it plays a major role in tumour avoidance. Many of the enzymes that are involved in recombination have been isolated, and the details of this pathway are now being unravelled at the molecular level.
Collapse
Affiliation(s)
- Stephen C West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
227
|
Abstract
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.
Collapse
Affiliation(s)
- Jill S Bradshaw
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Ave., 61801-3709, USA
| | | |
Collapse
|
228
|
Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem 2003; 278:14647-56. [PMID: 12576485 DOI: 10.1074/jbc.m213220200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Saccharomyces cerevisiae, two highly conserved proteins, Rvb1p/Tih1p and Rvb2p/Tih2p, have been demonstrated to be major components of the chromatin-remodeling INO80 complex. The mammalian orthologues of these two proteins have been shown to physically associate with the TATA-binding protein (TBP) in vitro but not clearly in vivo. Here we show that yeast proteins interact with TBP under both conditions. To assess the functional importance of these interactions, we examined the effect of mutating both TIH2/RVB2 and SPT15, which encodes TBP, on yeast cell growth. Intriguingly, only those spt15 mutations that affected the ability of TBP to bind to the TATA box caused synthetic growth defects in a tih2-ts160 background. This suggests that Tih2p might be important in recruiting TBP to the promoter. A DNA microarray technique was used to identify genes differentially expressed in the tih2-ts160 strain grown at the restrictive temperature. Only 34 genes were significantly and reproducibly affected; some up-regulated and others down-regulated. We compared the transcription of several of these Tih2p target genes in both wild type and various mutant backgrounds. We found that the transcription of some genes depends on functions possessed by both Tih2p and TBP and that these functions are substantially impaired in the spt15/tih2-ts160 double mutants that confer synthetic growth defects.
Collapse
Affiliation(s)
- Hidezumi Ohdate
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
RecQ helicases are highly conserved from bacteria to man. Germline mutations in three of the five known family members in humans give rise to debilitating disorders that are characterized by, amongst other things, a predisposition to the development of cancer. One of these disorders--Bloom's syndrome--is uniquely associated with a predisposition to cancers of all types. So how do RecQ helicases protect against cancer? They seem to maintain genomic stability by functioning at the interface between DNA replication and DNA repair.
Collapse
Affiliation(s)
- Ian D Hickson
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
230
|
Fujitani Y, Kobayashi I. Asymmetric random walk in a reaction intermediate of homologous recombination. J Theor Biol 2003; 220:359-70. [PMID: 12468285 DOI: 10.1006/jtbi.2003.3167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At an intermediate step of the homologous recombination between two double-stranded DNA molecules, a point (often called Holliday structure) connecting two strands coming from two recombining partners migrates along the homologous region. Assuming random walk of a connecting point, we previously explained the dependence of recombination frequency on the homology length observed in vivo. In this model, the random walk was assumed to be symmetric in that the forward transition rate equals the backward one. According to observations in vitro, however, catalysed migration appears unidirectional. Taking into account possible asymmetry, we thus reformulate our random walk model to reexamine the observations in vivo. We also derive some theoretical results to analyse dynamic processes observed in vitro.
Collapse
Affiliation(s)
- Youhei Fujitani
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku, Yokohama 223-8522, Japan.
| | | |
Collapse
|
231
|
Boehmer PE, Villani G. Herpes simplex virus type-1: a model for genome transactions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:139-71. [PMID: 14604012 DOI: 10.1016/s0079-6603(03)75005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many respects, HSV-1 is the prototypic herpes virus. However, HSV-1 also serves as an excellent model system to study genome transactions, including DNA replication, homologous recombination, and the interaction of DNA replication enzymes with DNA damage. Like eukaryotic chromosomes, the HSV-1 genome contains multiple origins of replication. Replication of the HSV-1 genome is mediated by the concerted action of several virus-encoded proteins that are thought to assemble into a multiprotein complex. Several host-encoded factors have also been implicated in viral DNA replication. Furthermore, replication of the HSV-1 genome is known to be closely associated with homologous recombination that, like in many cellular organisms, may function in recombinational repair. Finally, recent data have shed some light on the interaction of essential HSV-1 replication proteins, specifically its DNA polymerase and DNA helicases, with damaged DNA.
Collapse
Affiliation(s)
- Paul E Boehmer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
232
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
233
|
Beam CE, Saveson CJ, Lovett ST. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 2002; 184:6836-44. [PMID: 12446634 PMCID: PMC135464 DOI: 10.1128/jb.184.24.6836-6844.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.
Collapse
Affiliation(s)
- Cynthia E Beam
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
234
|
Qin S, Parthun MR. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 2002; 22:8353-65. [PMID: 12417736 PMCID: PMC134061 DOI: 10.1128/mcb.22.23.8353-8365.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.
Collapse
Affiliation(s)
- Song Qin
- Molecular, Cellular and Developmental Biology Program. Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
235
|
Abstract
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
236
|
Dickman MJ, Ingleston SM, Sedelnikova SE, Rafferty JB, Lloyd RG, Grasby JA, Hornby DP. The RuvABC resolvasome. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5492-501. [PMID: 12423347 DOI: 10.1046/j.1432-1033.2002.03250.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RuvABC resolvasome of Escherichia coli catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have quantified the interaction of the RuvA protein with synthetic Holliday junctions and have shown that the binding of the protein is highly structure-specific, and leads to the formation of a complex containing two tetramers of RuvA per Holliday junction. Our data are consistent with two tetramers of RuvA binding to the DNA recombination intermediate in a co-operative manner. Once formed this complex prevents the binding of RuvC to the Holliday junction. However, the formation of a RuvAC complex can be observed following sequential addition of the RuvC and RuvA proteins. Moreover, by examining the DNA recognition properties of a mutant RuvA protein (E55R, D56K) we show that the charge on the central pin is critical for directing the structure-specific binding by RuvA.
Collapse
Affiliation(s)
- Mark J Dickman
- Transgenomic Research Laboratory, Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
A synthetic cruciform DNA (X-DNA) was used for screening cellular extracts of Saccharomyces cerevisiae for X-DNA-binding activity. Three X-DNA-binding proteins with apparent molecular mass of 28kDa, 26kDa and 24kDa, estimated by SDS-PAGE, were partially purified. They were identified as N-terminal fragments originating from the same putative protein, encoded by the open reading frame YHR146W, which we named CRP1 (cruciform DNA-recognising protein 1). Expression of CRP1 in Escherichia coli showed that Crp1p is subject to efficient proteolysis at one specific site. Cleavage leads to an N-terminal subpeptide of approximately 160 amino acid residues that is capable of binding specifically X-DNA with an estimated dissociation constant (K(d)) of 800nM, and a C-terminal subpeptide of approximately 305 residues without intrinsic X-DNA-binding activity. The N-terminal subpeptide is of a size similarly to that of the fragments identified in yeast, suggesting that the same cleavage process occurs in the yeast and the E.coli background. This makes the action of a site-specific protease unlikely and favours the possibility of an autoproteolytic activity of Crp1p. The DNA-binding domain of Crp1p was mapped to positions 120-141. This domain can act autonomously as an X-DNA-binding peptide and provides a new, lysine-rich DNA-binding domain different from those of known cruciform DNA-binding proteins (CBPs). As reported earlier for several other CBPs, Crp1p exerts an enhancing effect on the cleavage of X-DNA by endonuclease VII from bacteriophage T4.
Collapse
Affiliation(s)
- Ulrich Rass
- Institut für Genetik der Universität zu Köln, Zülpicher Strasse 47, Köln, Germany.
| | | |
Collapse
|
238
|
Constantinou A, Chen XB, McGowan CH, West SC. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J 2002; 21:5577-85. [PMID: 12374758 PMCID: PMC129086 DOI: 10.1093/emboj/cdf554] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Revised: 08/19/2002] [Accepted: 08/30/2002] [Indexed: 11/14/2022] Open
Abstract
Enzymatic activities that cleave Holliday junctions are required for the resolution of recombination intermediates and for the restart of stalled replication forks. Here we show that human cell-free extracts possess two distinct endonucleases that can cleave Holliday junctions. The first cleaves Holliday junctions in a structure- and sequence-specific manner, and associates with an ATP-dependent branch migration activity. Together, these activities promote branch migration/resolution reactions similar to those catalysed by the Escherichia coli RuvABC resolvasome. Like RuvC-mediated resolution, the products can be religated. The second, containing Mus81 protein, cuts Holliday junctions but the products are mostly non-ligatable. Each nuclease has a defined substrate specificity: the branch migration-associated resolvase is highly specific for Holliday junctions, whereas the Mus81-associated endonuclease is one order of magnitude more active upon replication fork and 3'-flap structures. Thus, both nucleases are capable of cutting Holliday junctions formed during recombination or through the regression of stalled replication forks. However, the Mus81-associated endonuclease may play a more direct role in replication fork collapse by catalysing the cleavage of stalled fork structures.
Collapse
Affiliation(s)
| | - Xiao-Bo Chen
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| | - Clare H. McGowan
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| | - Stephen C. West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK and
Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA Corresponding author e-mail:
| |
Collapse
|
239
|
Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ. Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 2002; 22:6971-8. [PMID: 12242278 PMCID: PMC139822 DOI: 10.1128/mcb.22.20.6971-6978.2002] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Revised: 07/05/2002] [Accepted: 07/12/2002] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WRN) is an uncommon autosomal recessive disease whose phenotype includes features of premature aging, genetic instability, and an elevated risk of cancer. We used three different experimental strategies to show that WRN cellular phenotypes of limited cell division potential, DNA damage hypersensitivity, and defective homologous recombination (HR) are interrelated. WRN cell survival and the generation of viable mitotic recombinant progeny could be rescued by expressing wild-type WRN protein or by expressing the bacterial resolvase protein RusA. The dependence of WRN cellular phenotypes on RAD51-dependent HR pathways was demonstrated by using a dominant-negative RAD51 protein to suppress mitotic recombination in WRN and control cells: the suppression of RAD51-dependent recombination led to significantly improved survival of WRN cells following DNA damage. These results define a physiological role for the WRN RecQ helicase protein in RAD51-dependent HR and identify a mechanistic link between defective recombination resolution and limited cell division potential, DNA damage hypersensitivity, and genetic instability in human somatic cells.
Collapse
Affiliation(s)
- Yannick Saintigny
- Departments of Pathology. Biostatistics. Genome Sciences, University of Washington, Seattle, Washington 98195-7705, USA
| | | | | | | | | |
Collapse
|
240
|
Kaplan DL, O'Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell 2002; 10:647-57. [PMID: 12408831 DOI: 10.1016/s1097-2765(02)00642-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DnaB is a ring-shaped, hexameric helicase that unwinds the E. coli DNA replication fork while encircling one DNA strand. This report demonstrates that DnaB can also encircle both DNA strands and then actively translocate along the duplex. With two strands positioned inside its central channel, DnaB translocates with sufficient force to displace proteins tightly bound to DNA with no resultant DNA unwinding. Thus, DnaB may clear proteins from chromosomal DNA. Furthermore, while encircling two DNA strands, DnaB can drive branch migration of a synthetic Holliday junction with heterologous duplex arms, suggesting that DnaB may be directly involved in DNA recombination in vivo. DnaB binds to just one DNA strand during branch migration. T7 phage gp4 protein also drives DNA branch migration, suggesting this activity generalizes to other ring-shaped helicases.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
241
|
Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K. Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Mol Cell 2002; 10:671-81. [PMID: 12408833 DOI: 10.1016/s1097-2765(02)00641-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present the X-ray structure of the RuvA-RuvB complex, which plays a crucial role in ATP-dependent branch migration. Two RuvA tetramers form the symmetric and closed octameric shell, where four RuvA domain IIIs spring out in the two opposite directions to be individually caught by a single RuvB. The binding of domain III deforms the protruding beta hairpin in the N-terminal domain of RuvB and thereby appears to induce a functional and less symmetric RuvB hexameric ring. The model of the RuvA-RuvB junction DNA ternary complex, constructed by fitting the X-ray structure into the averaged electron microscopic images of the RuvA-RuvB junction, appears to be more compatible with the branch migration mode of a fixed RuvA-RuvB interaction than with a rotational interaction mode.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zahradka D, Zahradka K, Petranović M, Dermić D, Brcić-Kostić K. The RuvABC resolvase is indispensable for recombinational repair in sbcB15 mutants of Escherichia coli. J Bacteriol 2002; 184:4141-7. [PMID: 12107131 PMCID: PMC135221 DOI: 10.1128/jb.184.15.4141-4147.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RuvABC proteins of Escherichia coli play an important role in the processing of Holliday junctions during homologous recombination and recombinational repair. Mutations in the ruv genes have a moderate effect on recombination and repair in wild-type strains but confer pronounced recombination deficiency and extreme sensitivity to DNA-damaging agents in a recBC sbcBC background. Genetic analysis presented in this work revealed that the (Delta)ruvABC mutation causes an identical DNA repair defect in UV-irradiated recBC sbcBC, sbcBC, and sbcB strains, indicating that the sbcB mutation alone is responsible for the extreme UV sensitivity of recBC sbcBC ruv derivatives. In experiments with gamma irradiation and in conjugational crosses, however, sbcBC (Delta)ruvABC and sbcB (Delta)ruvABC mutants displayed higher recombination proficiency than the recBC sbcBC (Delta)ruvABC strain. The frequency of conjugational recombination observed with the sbcB (Delta)ruvABC strain was quite similar to that of the (Delta)ruvABC single mutant, indicating that the sbcB mutation does not increase the requirement for RuvABC in a recombinational process starting from preexisting DNA ends. The differences between the results obtained in three experimental systems used suggest that in UV-irradiated cells, the RuvABC complex might act in an early stage of recombinational repair. The results of this work are discussed in the context of recent recombination models which propose the participation of RuvABC proteins in the processing of Holliday junctions made from stalled replication forks. We suggest that the mutant SbcB protein stabilizes these junctions and makes their processing highly dependent on RuvABC resolvase.
Collapse
Affiliation(s)
- Davor Zahradka
- Department of Molecular Genetics, Ruder Bosković Institute, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
243
|
Abstract
Chromosomal duplication faces many blocks to replication fork progression that could destabilize the genome and prove fatal if not overcome. Overcoming such blocks requires interplay between DNA replication, recombination and repair. The RecG protein of Escherichia coli promotes rescue of damaged forks by catalysing their unwinding and conversion to Holliday junctions. Subsequent processing of this structure allows repair or bypass of the fork block, enabling replication to resume without recourse to potentially mutagenic translesion synthesis or recombination. Such direct rescue of stalled forks might help safeguard genome integrity in all organisms.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK NG7 2UH.
| | | |
Collapse
|
244
|
Bolt EL, Lloyd RG. Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Mol Cell 2002; 10:187-98. [PMID: 12150918 DOI: 10.1016/s1097-2765(02)00560-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RusA endonuclease cleaves Holliday junctions by introducing paired strand incisions 5' to CC dinucleotides. Coordinated catalysis is achieved when both subunits of the homodimer interact simultaneously with cleavage sites located symmetrically. This requirement confers Holliday junction specificity. Uncoupled catalysis occurs when binding interactions are disturbed. Genetic studies indicate that uncoupling occurs rarely in vivo, and DNA cleavage is therefore restricted to Holliday junctions. We exploited the specificity of RusA to identify the DNA substrates targeted by the RuvAB and RecG branch-migration proteins in vivo. We present evidence that replication restart in UV-irradiated cells relies on the processing of stalled replication forks by RecG helicase and of Holliday junctions by the RuvABC resolvasome, and that RuvAB alone may not promote repair.
Collapse
Affiliation(s)
- Edward L Bolt
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, United Kingdom
| | | |
Collapse
|
245
|
Grompone G, Seigneur M, Ehrlich SD, Michel B. Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 2002; 44:1331-9. [PMID: 12028381 DOI: 10.1046/j.1365-2958.2002.02962.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain replication mutations lead in Escherichia coli to a specific reaction named replication fork reversal: at blocked forks, annealing of the nascent strands and pairing of the template strands form a four-way junction. RuvABC-catalysed resolution of this Holliday junction causes chromosome double-strand breaks (DSBs) in a recBC context and therefore creates a requirement for the recombination proteins RecBC for viability. In the present work, two mutants were tested for replication fork reversal: a dnaEts mutant and a dnaNts mutant, affected in the alpha (polymerase) and beta (processivity clamp) subunits of DNA polymerase III holoenzyme respectively. In the dnaEts recB strain, RuvABC-dependent DSBs caused by the dnaEts mutation occurred at 37 degrees C or 42 degrees C, indicating the occurrence of replication fork reversal upon partial or complete inactivation of the DNA polymerase alpha subunit. DSB formation was independent of RecA, RecQ and the helicase function of PriA. In the dnaNts recB mutant, RuvABC-dependent DSB caused by the dnaNts mutation occurred only at semi-permissive temperature, 37 degrees C, indicating the occurrence of replication fork reversal in conditions in which the remaining activity of the beta clamp is sufficient for viability. In contrast, the dnaNts mutation did not cause chromosome breakage at 42 degrees C, a temperature at which DnaN is totally inactive and the dnaNts mutant is inviable. We propose that a residual activity of the DNA polymerase III beta clamp is required for replication fork reversal in the dnaNts mutant.
Collapse
Affiliation(s)
- Gianfranco Grompone
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
| | | | | | | |
Collapse
|
246
|
van den Bosch M, Lohman PHM, Pastink A. DNA double-strand break repair by homologous recombination. Biol Chem 2002; 383:873-92. [PMID: 12222678 DOI: 10.1515/bc.2002.095] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.
Collapse
Affiliation(s)
- Michael van den Bosch
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
247
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
248
|
Abstract
Chlamydomonas is a biflagellate unicellular green alga that has proven especially amenable for the analysis of microtubule (MT)-based molecular motors, notably dyneins. These enzymes form the inner and outer arms of the flagellum and are also required for intraflagellar transport. Dyneins have masses of approximately 1-2 MDa and consist of up to 15 different polypeptides. Nucleotide binding/hydrolysis and MT motor activity are associated with the heavy chains, and we detail here our current model for the substructural organization of these approximately 520-kDa proteins. The remaining polypeptides play a variety of roles in dynein function, including attachment of the motor to cargo, regulation of motor activity in response to specific inputs, and their necessity for the assembly and/or stability of the entire complex. The combination of genetic, physiological, structural, and biochemical approaches has made the Chlamydomonas flagellum a very powerful model system in which to dissect the function of these fascinating molecular motors.
Collapse
Affiliation(s)
- L M DiBella
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | |
Collapse
|
249
|
Oakley TJ, Hickson ID. Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair (Amst) 2002; 1:175-207. [PMID: 12509252 DOI: 10.1016/s1568-7864(02)00002-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of genome stability is important not only for cell viability, but also for the suppression of neoplastic transformation in higher eukaryotes. It has long been recognised that a common feature of cancer cells is genomic instability. Although the so-called three 'Rs' of genome maintenance, DNA replication, recombination and repair, have historically been studied in isolation, a wealth of recent evidence indicates that these processes are intimately interrelated and interdependent. In this article, we will focus on challenges to the maintenance of genome integrity that arise during the S-phase of the cell cycle, and the possible roles that RecQ helicases and topoisomerase III play in the maintenance of genome integrity during the process of DNA replication.
Collapse
Affiliation(s)
- Thomas J Oakley
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
250
|
Prabhu VP, Simons AM, Iwasaki H, Gai D, Simmons DT, Chen J. p53 blocks RuvAB promoted branch migration and modulates resolution of Holliday junctions by RuvC. J Mol Biol 2002; 316:1023-32. [PMID: 11884140 DOI: 10.1006/jmbi.2001.5408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.
Collapse
Affiliation(s)
- Vidya P Prabhu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|