201
|
Uchida N, Takahashi YK, Tanifuji M, Mori K. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 2000; 3:1035-43. [PMID: 11017177 DOI: 10.1038/79857] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Psychophysical studies indicate that structural features of odorants differentially influence their perceived odor. In the olfactory bulb (OB), odorants are represented by ensembles of activated glomeruli. Here we used optical imaging of intrinsic signals to examine how these structural features are represented spatially in the sensory map of the rat OB. We found that the dorsal OB contained two topographically fixed domains; constituent glomeruli in each domain could be activated by odorants with particular functional groups. Within each domain, other structural features such as carbon chain length and branching were represented by local differences in patterns. These results suggest that structural features are categorized into two classes, primary features (functional groups) that characterize each domain, and secondary features that are represented by local positions within each domain. Such hierarchical representations of different structural features correlate well with psychophysical structure-odor relationships.
Collapse
Affiliation(s)
- N Uchida
- Laboratory for Neuronal Recognition Molecules, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
202
|
Abstract
About 10% of mammalian odorant receptors are transcribed in testes, and odorant-receptor proteins have been detected on mature spermatozoa. Testis-expressed odorant receptors (TORs) are hypothesized to play roles in sperm chemotaxis, but they might also be ordinary nasal odorant receptors (NORs) that are expressed gratuitously in testes. Under the sperm-chemotaxis hypothesis, TORs should be subject to intense sexual selection and therefore should show higher rates of amino acid substitution than NORs, but under the gratuitous-expression hypothesis, TORs are misidentified NORs and therefore should evolve like other NORs. To test these predictions, we estimated synonymous and nonsynonymous divergences of orthologous NOR and TOR coding sequences from rat and mouse. Contrary to both hypotheses, TORs are on average more highly conserved than NORs, especially in certain domains of the OR protein. This pattern suggests that some TORs might perform internal nonolfactory functions in testes; for example, they might participate in the regulation of sperm development. However, the pattern is also consistent with a modified gratuitous-expression model in which NORs with specialized ligand specificities are both more highly conserved than typical NORs and more likely to be expressed in testes.
Collapse
Affiliation(s)
- A Branscomb
- Department of Human Genetics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
203
|
Abstract
Our understanding of neural development has advanced dramatically over the past decade. Significant insights have now been obtained into seven fundamental developmental processes: first, induction of the neural plate; second, regionalization of the neural tube along the dorsoventral and anteroposterior axes; third, generation of neurons and glia from multipotential precursors; fourth, apoptotic cell death; fifth, migration of neurons; sixth, guidance of axons to their targets; and seventh, formation of synapses.
Collapse
Affiliation(s)
- T M Jessell
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, 701 West 168th Street, NY, New York 10032, USA.
| | | |
Collapse
|
204
|
Abstract
Major advances have been made during the past two years in understanding how honeybees process olfactory input at the level of their first brain structure dealing with odours, the antennal lobe (the insect analogue of the mammalian olfactory bulb). It is now possible to map physiological responses to morphologically identified olfactory glomeruli, allowing for the creation of a functional atlas of the antennal lobe. Furthermore, the measurement of odour-evoked activity patterns has now been combined with studies of appetitive odour learning. The results show that both genetically determined components and learning-related plasticity shape olfactory processing in the antennal lobe.
Collapse
Affiliation(s)
- C G Galizia
- Institut für Biologie-Neurobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Germany.
| | | |
Collapse
|
205
|
Rawson NE, Eberwine J, Dotson R, Jackson J, Ulrich P, Restrepo D. Expression of mRNAs encoding for two different olfactory receptors in a subset of olfactory receptor neurons. J Neurochem 2000; 75:185-95. [PMID: 10854261 DOI: 10.1046/j.1471-4159.2000.0750185.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence has accumulated to support a model for odorant detection in which individual olfactory receptor neurons (ORNs) express one of a large family of G protein-coupled receptor proteins that are activated by a small number of closely related volatile chemicals. However, the issue of whether an individual ORN expresses one or multiple types of receptor proteins has yet to be definitively addressed. Physiological data indicate that some individual ORNs can be activated by odorants differing substantially in structure and/or perceived quality, suggesting multiple receptors or one nonspecific receptor per cell. In contrast, molecular biological studies favor a scheme with a single, fairly selective receptor per cell. The present studies directly assessed whether individual rat ORNs can express multiple receptors using single-cell PCR techniques with degenerate primers designed to amplify a wide variety of receptor sequences. We found that whereas only a single OR sequence was obtained from most ORNs examined, one ORN produced two distinct receptor sequences that represented different receptor gene families. Double-label in situ hybridization studies indicated that a subset of ORNs co-express two distinct receptor mRNAs. A laminar segregation analysis of the cell nuclei of ORNs labeled with the two OR mRNA probes showed that for one probe, the histogram of the distribution of the cell nuclei along the depth of the epithelium was bimodal, with one peak overlapping the (unimodal) histogram for the other probe. These results are consistent with co-expression of two OR mRNAs in a population of single ORNs.
Collapse
Affiliation(s)
- N E Rawson
- Monell Chemical Senses Center, and. Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
206
|
Hoppe R, Weimer M, Beck A, Breer H, Strotmann J. Sequence analyses of the olfactory receptor gene cluster mOR37 on mouse chromosome 4. Genomics 2000; 66:284-95. [PMID: 10873383 DOI: 10.1006/geno.2000.6205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor multigene family is organized in clusters spread throughout the genome. In the present study, we have sequenced two subregions of the mOR37 gene cluster on mouse chromosome 4. The resulting 100 kb of sequence revealed seven odorant receptor coding regions and one gene fragment. Sequence analyses reveal that the mOR37 gene cluster may represent a rather ancient cluster. The mOR37 genes exhibit a complex intron/exon structure, and some appear to be differentially spliced. All genes in the cluster share conserved sequence motifs 5' of their putative initial exons, which represent potential binding sites for transcription factors. The clustered organization and conserved sequence motifs suggest common expression control mechanisms for these genes.
Collapse
Affiliation(s)
- R Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, Stuttgart, D-70593, Germany
| | | | | | | | | |
Collapse
|
207
|
Zheng C, Feinstein P, Bozza T, Rodriguez I, Mombaerts P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 2000; 26:81-91. [PMID: 10798394 DOI: 10.1016/s0896-6273(00)81140-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Axons of olfactory sensory neurons expressing a given odorant receptor converge to a few glomeruli in the olfactory bulb. We have generated mice with unresponsive olfactory sensory neurons by targeted mutagenesis of a cyclic nucleotide-gated channel subunit gene, OCNC1. When these anosmic mice were crossed with mice in which neurons expressing a given odorant receptor can be visualized by coexpression of an axonal marker, the pattern of convergence was affected for one but not another receptor. In a novel paradigm, termed monoallelic deprivation, axons from channel positive or negative neurons that express the same odorant receptor segregate into distinct glomeruli within the same bulb. Thus, the peripheral olfactory projections are in part influenced by mechanisms that depend on neuronal activity.
Collapse
Affiliation(s)
- C Zheng
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
208
|
Affiliation(s)
- L B Buck
- Howard Hughes Medical Institute, Neurobiology Department, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
209
|
Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D, Hasty P, Chun J, Alt FW. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci U S A 2000; 97:2668-73. [PMID: 10716994 PMCID: PMC15987 DOI: 10.1073/pnas.97.6.2668] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian nonhomologous DNA end joining employs Ku70, Ku80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and DNA ligase IV (Lig4). Herein, we show that Ku70 and Ku80 deficiency but not DNA-PKcs deficiency results in dramatically increased death of developing embryonic neurons in mice. The Ku-deficient phenotype is qualitatively similar to, but less severe than, that associated with XRCC4 and Lig4 deficiency. The lack of a neuronal death phenotype in DNA-PKcs-deficient embryos and the milder phenotype of Ku-deficient versus XRCC4- or Lig4-deficient embryos correlate with relative leakiness of residual end joining in these mutant backgrounds as assayed by a V(D)J recombination end joining assay. We conclude that normal development of the nervous system depends on the four evolutionarily conserved nonhomologous DNA end joining factors.
Collapse
Affiliation(s)
- Y Gu
- Howard Hughes Medical Institute, The Children's Hospital, and Center for Blood Research, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Glusman G, Sosinsky A, Ben-Asher E, Avidan N, Sonkin D, Bahar A, Rosenthal A, Clifton S, Roe B, Ferraz C, Demaille J, Lancet D. Sequence, structure, and evolution of a complete human olfactory receptor gene cluster. Genomics 2000; 63:227-45. [PMID: 10673334 DOI: 10.1006/geno.1999.6030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) gene cluster on human chromosome 17p13.3 was subjected to mixed shotgun automated DNA sequencing. The resulting 412 kb of genomic sequence include 17 OR coding regions, 6 of which are pseudogenes. Six of the coding regions were discovered only upon genomic sequencing, while the others were previously reported as partial sequences. A comparison of DNA sequences in the vicinity of the OR coding regions revealed a common gene structure with an intronless coding region and at least one upstream noncoding exon. Potential gene control regions including specific pyrimidine:purine tracts and Olf-1 sites have been identified. One of the pseudogenes apparently has evolved into a CpG island. Four extensive CpG islands can be discerned within the cluster, not coupled to specific OR genes. The cluster is flanked at its telomeric end by an unidentified open reading frame (C17orf2) with no significant similarity to any known protein. A high proportion of the cluster sequence (about 60%) belongs to various families of interspersed repetitive elements, with a clear predominance of LINE repeats. The OR genes in the cluster belong to two families and seven subfamilies, which show a relatively high degree of intermixing along the cluster, in seemingly random orientations. This genomic organization may be best accounted for by a complex series of evolutionary events.
Collapse
Affiliation(s)
- G Glusman
- Department of Molecular Genetics and The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Pugh E, Lamb T. Chapter 5 Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80008-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
212
|
Affiliation(s)
- F Valverde
- Laboratorio de Neuroanatomía Comparada, Instituto "Santiago Ramón y Cajal," CSIC, 28002 Madrid, Spain.
| |
Collapse
|
213
|
Abstract
The olfactory systems of various species solve the challenging problem of general molecular recognition in widely differing ways. Despite this variety, the molecular receptors are invariably G protein-coupled seven-transmembrane proteins, and are encoded by the largest gene families known to exist in a given animal genome. Receptor gene families have been identified in vertebrates and two invertebrate species, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The complexity of the odorant receptor repertoire is estimated in mouse and rat at 1000 genes, or 1 percent of the genome, surpassing that of the immunoglobulin and T cell receptor genes combined. Two distinct seven-transmembrane gene families may encode in rodents the chemosensory receptors of the vomeronasal organ, which is specialized in the detection of pheromones. Remarkably, these five receptor families have practically no sequence homology among them. Genetic manipulation experiments in mice imply that vertebrate odorant receptors may fulfill a dual role, also serving as address molecules that guide axons of olfactory sensory neurons to their precise target in the brain.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
214
|
|
215
|
Kashiwadani H, Sasaki YF, Uchida N, Mori K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiol 1999; 82:1786-92. [PMID: 10515968 DOI: 10.1152/jn.1999.82.4.1786] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid-responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300-500 microm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In approximately 27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.
Collapse
Affiliation(s)
- H Kashiwadani
- Laboratory for Neuronal Recognition Molecules, Brain Science Institute, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
216
|
Abstract
Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, couple ligand-bound seven transmembrane domain receptors to the regulation of effector proteins and production of intracellular second messengers. G protein signaling mediates the perception of environmental cues in all higher eukaryotic organisms, including yeast, Dictyostelium, plants, and animals. The nematode Caenorhabditis elegans is the first animal to have complete descriptions of its cellular anatomy, cell lineage, neuronal wiring diagram, and genomic sequence. In a recent paper, Jansen et al. used sequence searches of the C. elegans genome database to identify all heterotrimeric G protein genes (20 Galpha, 2 Gbeta, 2 Ggamma). C. elegans encodes one ortholog of each of the four Galpha classes found in metazoans and 16 new Galpha genes. The orthologous genes are widely expressed, whereas 14 of the divergent Galpha genes are almost exclusively expressed in sensory neurons where they may regulate perception and chemotaxis.
Collapse
Affiliation(s)
- T M Wilkie
- Pharmacology Department, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75235-9041, USA.
| |
Collapse
|
217
|
Strotmann J, Hoppe R, Conzelmann S, Feinstein P, Mombaerts P, Breer H. Small subfamily of olfactory receptor genes: structural features, expression pattern and genomic organization. Gene 1999; 236:281-91. [PMID: 10452948 DOI: 10.1016/s0378-1119(99)00275-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Olfactory receptors of the OR37 subfamily are characterized by distinct sequence features and are expressed in neurons segregated in a restricted area of the olfactory epithelium. In the present study, we have characterized the complement of OR37-like genes in the mouse. Five OR37-like genes were identified. They reside within only 60kb of DNA on chromosome 4. About 70kb distant from this cluster, two additional olfactory receptor genes are located, which are members of distinct receptor subfamilies. Phylogenetic analysis demonstrated that the two physically linked receptors are closely related to the OR37 subfamily. Studies of gene expression showed that both genes are also expressed in clustered neuron populations located in the typical OR37 region of the epithelium. These data suggest the involvement of locus-dependent mechanisms for the spatial control of OR gene expression.
Collapse
Affiliation(s)
- J Strotmann
- Institute of Physiology, University Stuttgart-Hohenheim, Garbenstrasse 30, D-70593, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
We have taken advantage of the availability of a large amount of Drosophila genomic DNA sequence in the Berkeley Drosophila Genome Project database ( approximately 1/5 of the genome) to identify a family of novel seven transmembrane domain encoding genes that are putative Drosophila olfactory receptors. Members of the family are expressed in distinct subsets of olfactory neurons, and certain family members are restricted to distinct portions of the olfactory system. This pattern of expression has interesting similarities to and differences from the expression patterns observed for olfactory receptors in vertebrates. The Drosophila olfactory system is simpler than mammalian systems, yet it is complex enough to present a fascinating system in which to study neural information processing. Moreover, the powerful genetic manipulations available in Drosophila, when combined with electrophysiological and behavioral analyses, make this an attractive model system in which to study olfactory discrimination.
Collapse
Affiliation(s)
- Q Gao
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, 02142, USA
| | | |
Collapse
|
219
|
Abstract
We adapted the technique of intrinsic signal imaging to visualize how odorant concentration and structure are represented spatially in the rat olfactory bulb. Most odorants activated one or more glomeruli in the imaged region of the bulb; these optically imaged responses reflected the excitation of underlying neurons. Odorant-evoked patterns were similar across animals and symmetrical in the two bulbs of the same animal. The variable sensitivity of individual glomeruli produced distinct maps for different odorant concentrations. Using a series of homologous aldehydes, we found that glomeruli were tuned to detect particular molecular features and that maps of similar molecules were highly correlated. These characteristics suggest that odorants and their concentrations can be encoded by distinct spatial patterns of glomerular activation.
Collapse
Affiliation(s)
- B D Rubin
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
220
|
Abstract
The sense of smell is highly sophisticated in vertebrates but Homo sapiens ranks low in olfactory performance when compared to other species - why? Olfaction initiates with the interaction of odorants with specific receptors on the surface of olfactory sensory neurons in the nose. The genes encoding odorant receptors form the largest family in the vertebrate genome, numbering as many as 1000 in rodents. It has recently come to light that the repertoire of human odorant receptor genes, unlike in other vertebrates, is riddled with pseudogenes.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University 1230 York Avenue, New York, New York, 10021, USA.
| |
Collapse
|
221
|
Rodriguez I, Feinstein P, Mombaerts P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 1999; 97:199-208. [PMID: 10219241 DOI: 10.1016/s0092-8674(00)80730-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vomeronasal system mediates pheromonal effects in mammals. We have employed gene targeting technology to introduce mutations in a putative pheromone receptor gene, VR2, in the germline of mice. By generating alleles differentially tagged with the histological markers taulacZ and tauGFP, we show that VR2 is monoallelically expressed in a given neuron. Axons of VR2-expressing neurons converge onto numerous glomeruli in the accessory olfactory bulb. The pattern of axonal projections is complex and variable. This wiring diagram is substantially different from that of the main olfactory system. The projection pattern is disrupted by deleting the coding region of VR2, but an unrelated seven-transmembrane protein, the odorant receptor M71, can partially substitute for VR2.
Collapse
Affiliation(s)
- I Rodriguez
- Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|