201
|
Kruglov AG, Andersson MA, Mikkola R, Roivainen M, Kredics L, Saris NEL, Salkinoja-Salonen MS. Novel mycotoxin from Acremonium exuviarum is a powerful inhibitor of the mitochondrial respiratory chain complex III. Chem Res Toxicol 2010; 22:565-73. [PMID: 19193189 DOI: 10.1021/tx800317z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel mycotoxin named acrebol, consisting of two closely similar peptaibols (1726 and 1740 Da), was isolated from an indoor strain of the mitosporic ascomycete fungus Acremonium exuviarum. This paper describes the unique mitochondrial toxicity of acrebol, not earlier described for any peptaibol. Acrebol inhibited complex III of the respiratory chain of isolated rat liver mitochondria (1 mg of protein mL(-1)) with an IC(50) of approximately 80 ng mL(-1) (50 nM) after a short preincubation, and 350 ng mL(-1) caused immediate and complete inhibition. Acrebol thus is a complex III inhibitor almost as potent as antimycin A and myxothiazol but completely different in structure. Similarly to myxothiazol but in contrast to antimycin A, acrebol decreased the level of mitochondrial superoxide anion detectable by chemiluminescent probe 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one. Unlike other peptaibols, acrebol in toxic concentrations did not increase the ionic and solute permeability of membranes of isolated rat liver mitochondria, did not induce disturbance of the ionic homeostasis or the osmotic balance of mitochondria, and did not release apoptogenic proteins like cytochrome c from the intermembrane space of mitochondria. In boar spermatozoa, acrebol inhibited the respiratory chain and caused ATP depletion by activation of the oligomycin-sensitive F(0)F(1)-ATPase, which resulted in the inhibition of the progressive movement. In mouse insulinoma MIN-6 cells, whose energy supply solely depends on oxidative phosphorylation, acrebol induced necrosis-like death. The pathophysiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- Alexey G Kruglov
- Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
202
|
Schultz TW. Adverse Outcome Pathways: A Way of Linking Chemical Structure to In Vivo Toxicological Hazards. IN SILICO TOXICOLOGY 2010. [DOI: 10.1039/9781849732093-00346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The concept of adverse outcome pathways is presented here as an organising principle to aid assessment and formation of toxicologically meaningful categories for hazard endpoints, especially chronic health effects where different molecular initiating events and different key biological events lead to the same in vivo outcome. A toxicologically meaningful category can be thought of as a group of chemicals whose human health and/or environmental toxicological properties are likely to be similar or follow a regular pattern for a particular hazard. An adverse outcome pathway is a description of plausible causal linkages, which illustrates how the molecular initiating event, leads to the key biochemical, cellular, physiological, behavioural etc. responses, which characterise the biological cascade across the different levels of biological organisation. The concept of the adverse outcome pathway is discussed in the context of the more stringent mechanism of action approach used in pharmacology. The value of this concept is demonstrated with five examples, each with a different type of molecular initiating event. The pathways concept is also discussed in context of elaborate hazards where the in vivo effects may be cumulative or life stage dependent.
Collapse
Affiliation(s)
- T. W. Schultz
- The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine 2407 River Drive Knoxville TN 37996-4543 USA
| |
Collapse
|
203
|
Zhang Y, Li JH, Ge YS, Liu XR, Jiang FL, Liu Y. Biophysical Studies on the Interactions of a Classic Mitochondrial Uncoupler with Bovine Serum Albumin by Spectroscopic, Isothermal Titration Calorimetric and Molecular Modeling Methods. J Fluoresc 2010; 21:475-85. [DOI: 10.1007/s10895-010-0733-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
204
|
Dykens JA, Will Y. Biomarkers of in Vitro Drug‐Induced Mitochondrial Dysfunction. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
205
|
Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 2010; 5:e12733. [PMID: 20856801 PMCID: PMC2939875 DOI: 10.1371/journal.pone.0012733] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/14/2010] [Indexed: 01/08/2023] Open
Abstract
Background Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. Methodology/Principal Findings Mice were treated with an acute dose of either doxorubicin (DOX) (15 mg/kg) or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) (25 mg/kg). DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO). Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. Conclusions/Significance These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still though ATP loss occurs with activation caspase 3 and these events probably account for the heart damage.
Collapse
|
206
|
Coenzyme Q protects Caenorhabditis elegans GABA neurons from calcium-dependent degeneration. Proc Natl Acad Sci U S A 2010; 107:14460-5. [PMID: 20663955 DOI: 10.1073/pnas.0910630107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are key regulators of cell viability and provide essential functions that protect against neurodegenerative disease. To develop a model for mitochondrial-dependent neurodegeneration in Caenorhabditis elegans, we used RNA interference (RNAi) and genetic ablation to knock down expression of enzymes in the Coenzyme Q (CoQ) biosynthetic pathway. CoQ is a required component of the ATP-producing electron transport chain in mitochondria. We found that reduced levels of CoQ result in a progressive uncoordinated (Unc) phenotype that is correlated with the appearance of degenerating GABA neurons. Both the Unc and degenerative phenotypes emerge during late larval development and progress in adults. Neuron classes in motor and sensory circuits that use other neurotransmitters (dopamine, acetylcholine, glutamate, serotonin) and body muscle cells were less sensitive to CoQ depletion. Our results indicate that the mechanism of GABA neuron degeneration is calcium-dependent and requires activation of the apoptotic gene, ced-4 (Apaf-1). A molecular cascade involving mitochondrial-initiated cell death is also consistent with our finding that GABA neuron degeneration requires the mitochondrial fission gene, drp-1. We conclude that the cell selectivity and developmental progression of CoQ deficiency in C. elegans indicate that this model may be useful for delineating the role of mitochondrial dysfunction in neurodegenerative disease.
Collapse
|
207
|
Nouette-Gaulain K, Bringuier S, Canal-Raffin M, Bernard N, Lopez S, Dadure C, Masson F, Mercier J, Sztark F, Rossignol R, Capdevila X. Time course of mitochondrial metabolism alterations to repeated injections of bupivacaine in rat muscle. Can J Anaesth 2010; 57:836-42. [PMID: 20645041 DOI: 10.1007/s12630-010-9347-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/09/2010] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Bupivacaine-induced myotoxicity is associated with mitochondrial bioenergetic alterations. The impact of the duration of bupivacaine treatment on mitochondrial energy production remains undetermined. Here, we assessed, in vivo, the alteration of mitochondrial metabolism following different durations of bupivacaine exposure (40, 56, or 112 hr) that correspond to 5, 7, or 14 repeated injections of 0.25% bupivacaine, respectively. METHODS Rats were divided randomly into seven different groups: one control group (no catheter); three groups with normal saline injections (1 mL x kg(-1)) every eight hours via a femoral nerve catheter for 40, 56, and 112 hr, respectively; and three groups with 0.25% bupivacaine injections (1 mL x kg(-1)) every eight hours via a femoral nerve catheter for 40, 56, and 112 hr. Psoas and gracilis muscle samples located within the bupivacaine infusion-diffusion space were investigated. To estimate mitochondrial respiratory capacity, the protein content of the mitochondrial respiratory chain apparatus was evaluated by measuring citrate synthase activity. To measure mitochondrial respiratory function, adenosine diphosphate-stimulated oxygen consumption was measured by polarography in saponin-skinned muscle fibres using glutamate-malate or succinate as energy substrates. RESULTS In psoas and gracilis muscles, saline solution had no effect on the two mitochondrial parameters. Bupivacaine induced a significant decrease in the citrate synthase activity in psoas (r(2) = 0.74; P < 0.001) and gracilis muscle (r(2) = 0.52; P < 0.001), and there was a significant decrease in the adenosine diphosphate-stimulated oxygen consumption using glutamate or succinate as substrates in both muscles (P < 0.001). CONCLUSIONS The severity of bupivacaine-induced myotoxicity is closely linked to the duration of bupivacaine exposure in the muscle fibres located close to the catheter tip.
Collapse
Affiliation(s)
- Karine Nouette-Gaulain
- Laboratoire de physiopathologie mitochondriale, Université Victor Segalen Bordeaux 2, 33076, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Veenman L, Alten J, Linnemannstöns K, Shandalov Y, Zeno S, Lakomek M, Gavish M, Kugler W. Potential involvement of F0F1-ATP(synth)ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines : a mechanism for induction of apoptosis via the 18 kDa mitochondrial translocator protein. Apoptosis 2010; 15:753-68. [PMID: 20107899 PMCID: PMC3128697 DOI: 10.1007/s10495-010-0460-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Erucylphosphohomocholine (ErPC3, Erufosine) was reported previously to induce apoptosis in otherwise highly apoptosis-resistant malignant glioma cell lines while sparing their non-tumorigenic counterparts. We also previously found that the mitochondrial 18 kDa Translocator Protein (TSPO) is required for apoptosis induction by ErPC3. These previous studies also suggested involvement of reactive oxygen species (ROS). In the present study we further investigated the potential involvement of ROS generation, the participation of the mitochondrial respiration chain, and the role of the mitochondrial F(O)F(1)-ATP(synth)ase in the pro-apoptotic effects of ErPC3 on U87MG and U118MG human glioblastoma cell lines. For this purpose, cells were treated with the ROS chelator butylated hydroxyanisole (BHA), the mitochondrial respiration chain inhibitors rotenone, antimycin A, myxothiazol, and the uncoupler CCCP. Also oligomycin and piceatannol were studied as inhibitors of the F(O) and F(1) subunits of the mitochondrial F(O)F(1)-ATP(synth)ase, respectively. BHA was able to attenuate apoptosis induction by ErPC3, including mitochondrial ROS generation as determined with cardiolipin oxidation, as well as collapse of the mitochondrial membrane potential (Deltapsi(m)). Similarly, we found that oligomycin attenuated apoptosis and collapse of the Deltapsi(m), normally induced by ErPC3, including the accompanying reductions in cellular ATP levels. Other inhibitors of the mitochondrial respiration chain, as well as piceatannol, did not show such effects. Consequently, our findings strongly point to a role for the F(O) subunit of the mitochondrial F(O)F(1)-ATP(synth)ase in ErPC3-induced apoptosis and dissipation of Deltapsi(m) as well as ROS generation by ErPC3 and TSPO.
Collapse
Affiliation(s)
- Leo Veenman
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Julia Alten
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Karen Linnemannstöns
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Yulia Shandalov
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Sivan Zeno
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Max Lakomek
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Moshe Gavish
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Wilfried Kugler
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
209
|
Bald D, Koul A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol Lett 2010; 308:1-7. [PMID: 20402785 DOI: 10.1111/j.1574-6968.2010.01959.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, poses a global health challenge due to the emergence of drug-resistant strains. Recently, bacterial energy metabolism has come into focus as a promising new target pathway for the development of antimycobacterial drugs. This review summarizes our current knowledge on mycobacterial respiratory energy conversion, in particular, during the physiologically dormant state that is associated with latent or persistent tuberculosis infections. Targeting components of respiratory ATP production, such as type-2 NADH dehydrogenase or ATP synthase, is illustrated as an emerging strategy in the development of novel drugs.
Collapse
Affiliation(s)
- Dirk Bald
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
210
|
Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria. J Control Release 2010; 142:259-66. [DOI: 10.1016/j.jconrel.2009.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/05/2009] [Accepted: 10/09/2009] [Indexed: 12/26/2022]
|
211
|
Garcia AF, Medeiros HCD, Maioli MA, Lima MC, Rocha BA, da Costa FB, Curti C, Groppo M, Mingatto FE. Comparative effects of lantadene A and its reduced metabolite on mitochondrial bioenergetics. Toxicon 2010; 55:1331-7. [PMID: 20152851 DOI: 10.1016/j.toxicon.2010.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/23/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
Lantana (Lantana camara Linn.) is a noxious weed to which certain medicinal properties have been attributed, but its ingestion has been reported to be highly toxic to animals and humans, especially in the liver. The main hepatotoxin in lantana leaves is believed to be the pentacyclic triterpenoid lantadene A (LA), but the precise mechanism by which it induces hepatotoxicity has not yet been established. This work addressed the action of LA and its reduced derivative (RLA) on mitochondrial bioenergetics. At the concentration range tested (5-25 microM), RLA stimulated state-4 respiration, inhibited state-3 respiration, circumvented oligomycin-inhibited state-3 respiration, dissipated membrane potential and depleted ATP in a concentration-dependent manner. However, LA did not stimulate state-4 respiration, nor did it affect the other mitochondrial parameters to the extent of its reduced derivative. The lantadenes didn't inhibit the CCCP-uncoupled respiration but increased the ATPase activity of intact coupled mitochondria. The ATPase activity of intact uncoupled or disrupted mitochondria was not affected by the compounds. We propose, therefore, that RLA acts as a mitochondrial uncoupler of oxidative phosphorylation, a property that arises from the biotransformation (reduction) of LA, and LA acts in other mitochondrial membrane components rather than the ATP synthase affecting the mitochondrial bioenergetics. Such effects may account for the well-documented hepatoxicity of lantana.
Collapse
Affiliation(s)
- Andréa F Garcia
- Laboratório de Bioquímica, Faculdade de Zootecnia, UNESP-Univ Estadual Paulista, Campus Experimental de Dracena, Dracena, SP 17900-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Horii I. Toxic effect onset and evaluations of medicinal drugs - horizon for Darwinian toxicological thought -. J Toxicol Sci 2010; 35:425-35. [DOI: 10.2131/jts.35.425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ikuo Horii
- Showa University (Department of Biochemical Toxicology, School of Pharmaceutical Sciences)
- Pfizer (Global Research & Development, Drug Safety Research & Development)
| |
Collapse
|
213
|
Bonnet U, Bingmann D, Wiltfang J, Scherbaum N, Wiemann M. Modulatory effects of neuropsychopharmaca on intracellular pH of hippocampal neurones in vitro. Br J Pharmacol 2009; 159:474-83. [PMID: 20015293 DOI: 10.1111/j.1476-5381.2009.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The intracellular pH (pHi) of neurones is tightly regulated by, for example, membrane-bound acid-exchangers and loaders. Nevertheless, excessive bioelectric activity lowers steady-state pHi. In turn, even a moderate acidification can inhibit neuronal activity, a process believed to be part of a negative feedback loop controlling neuronal excitation. As moclobemide, an antidepressant, and also some antiepileptic drugs can reduce neuronal pHi in hippocampus slices in vitro, we screened a panel of currently used neuropsychopharmaca for comparable effects. EXPERIMENTAL APPROACH BCECF-AM loaded hippocampal slices were superfused with 16 different neuroleptics, antidepressants and antiepileptics under bicarbonate-buffered conditions. Changes in steady-state pHi of CA3 neurones were measured fluorometrically. KEY RESULTS The antipsychotics haloperidol, clozapine, ziprasidone, and the antidepressants amitriptyline, doxepin, trimipramine, citalopram, mirtazapine, as well as the anticonvulsive drug tiagabine reversibly reduced the steady-state pHi by up to 0.35 pH-units in concentrations of 5-50 microM. In contrast, venlafaxine, the anticonvulsants carbamazepine, clonazepam, gabapentin, lamotrigine, zonisamide, and the mood stabilizer lithium had no effect on neuronal pHi. CONCLUSION AND IMPLICATIONS These data substantiate the view that clinically relevant concentrations of neuroleptics and antidepressants can mediate changes in neuronal pHi, which may contribute to their pharmacological mode of action. Effects on pHi should be taken into account when therapeutic or even harmful effects of these drugs are evaluated.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry and Psychotherapy, LVR-Hospital of Essen, University of Duisburg/Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
214
|
Hovda KE, Guo C, Austin R, McMartin KE. Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Toxicol Lett 2009; 192:365-72. [PMID: 19931368 DOI: 10.1016/j.toxlet.2009.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022]
Abstract
Ethylene glycol exposure can lead to the development of renal failure due to the metabolic formation of calcium oxalate monohydrate (COM) crystals. The renal damage is closely linked to the degree of COM accumulation in the kidney and most likely results from a COM-induced injury to proximal tubule (PT) cells. The present studies have measured the binding and internalization of COM by primary cultures of normal PT cells from humans and from Wistar and Fischer-344 rats in order to examine the roles of these uptake processes in the resulting cytotoxicity. Internalization was determined by incubation of cells with [(14)C]-COM at 37 degrees C, removal of bound COM with an EDTA incubation, followed by solubilization of cells, as well as by transmission electron microscopy of COM-exposed cells. COM crystals were internalized by PT cells in time- and concentration-dependent manners. COM crystals were bound to and internalized by rat cells about five times more than by human cells. Binding and internalization values were similar between PT cells from Wistar and Fischer-344 rats, indicating that a differential uptake of COM does not explain the known strain difference in sensitivity to ethylene glycol renal toxicity. Internalization of COM correlated highly with the degree of cell death, which is greater in rat cells than in human cells. Thus, surface binding and internalization of COM by cells play critical roles in cytotoxicity and explain why rat cells are more sensitive to COM crystals. At the same level of COM accumulation after ethylene glycol exposure or hyperoxaluria in vivo, rats would be more susceptible than humans to COM-induced damage.
Collapse
Affiliation(s)
- Knut Erik Hovda
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
215
|
McMartin K. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol (Phila) 2009; 47:859-69. [PMID: 19852621 DOI: 10.3109/15563650903344793] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Ethylene glycol (EG) poisoning often results in acute renal failure, particularly if treatment with fomepizole or ethanol is delayed because of late presentation or diagnosis. The mechanism has not been established but is thought to result from the production of a toxic metabolite. METHODS A literature review utilizing PubMed identified papers dealing with renal toxicity and EG or oxalate. The list of papers was culled to those relevant to the mechanism and treatment of the renal toxicity associated with either compound. ROLE OF METABOLITES: Although the "aldehyde" metabolites of EG, glycolaldehyde, and glyoxalate, have been suggested as the metabolites responsible, recent studies have shown definitively that the accumulation of calcium oxalate monohydrate (COM) crystals in kidney tissue produces renal tubular necrosis that leads to kidney failure. In vivo studies in EG-dosed rats have correlated the severity of renal damage with the total accumulation of COM crystals in kidney tissue. Studies in cultured kidney cells, including human proximal tubule (HPT) cells, have demonstrated that only COM crystals, not the oxalate ion, glycolaldehyde, or glyoxylate, produce a necrotic cell death at toxicologically relevant concentrations. COM CRYSTAL ACCUMULATION: In EG poisoning, COM crystals accumulate to high concentrations in the kidney through a process involving adherence to tubular cell membranes, followed by internalization of the crystals. MECHANISM OF TOXICITY: COM crystals have been shown to alter membrane structure and function, to increase reactive oxygen species and to produce mitochondrial dysfunction. These processes are likely to be involved in the mechanism of cell death. CONCLUSIONS Accumulation of COM crystals in the kidney is responsible for producing the renal toxicity associated with EG poisoning. The development of a pharmacological approach to reduce COM crystal adherence to tubular cells and its cellular interactions would be valuable as this would decrease the renal toxicity not only in late treated cases of EG poisoning, but also in other hyperoxaluric diseases such as primary hyperoxaluria and kidney stone formation.
Collapse
Affiliation(s)
- Kenneth McMartin
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
216
|
Papyriferic Acid, An Antifeedant Triterpene From Birch Trees, Inhibits Succinate Dehydrogenase From Liver Mitochondria. J Chem Ecol 2009; 35:1252-61. [DOI: 10.1007/s10886-009-9702-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/04/2009] [Accepted: 10/06/2009] [Indexed: 11/26/2022]
|
217
|
Robison MM, Ling X, Smid MPL, Zarei A, Wolyn DJ. Antisense Expression of Mitochondrial ATP Synthase Subunits OSCP (ATP5) and γ (ATP3) Alters Leaf Morphology, Metabolism and Gene Expression in Arabidopsis. ACTA ACUST UNITED AC 2009; 50:1840-50. [DOI: 10.1093/pcp/pcp125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
218
|
Pereira SP, Pereira GC, Moreno AJ, Oliveira PJ. Can Drug Safety be Predicted and Animal Experiments Reduced by Using Isolated Mitochondrial Fractions? Altern Lab Anim 2009; 37:355-65. [DOI: 10.1177/026119290903700406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial toxicity has resulted in the withdrawal of several drugs from the market. One particular example is nefazodone, an anti-depressant withdrawn in the USA due to hepatoxicity caused by drug-induced mitochondrial dysfunction. Drug development and safety testing can involve the use of large numbers of laboratory animals, which, without a decisive pre-screening for mitochondrial toxicity, are often unable to pre-empt higher mortality rates in some patient groups. The use of isolated mitochondria as a screening tool for drug safety can decrease the number of laboratory animals used in pre-clinical studies, thus improving animal welfare and healthcare outcomes and costs. Novel techniques involving high-throughput methods can be used to investigate whether a molecule is a mitochondrial toxicant. Moreover, these screens are mechanistically-based, since the effects of the drug on oxidative phosphorylation, calcium homeostasis and mitochondrial genetics can be assessed. This review is intended to demonstrate that isolated mitochondrial fractions are suitable for predicting drug and general chemical safety in toxicological screenings, thus contributing to the refinement and reduction of animal use in laboratory research.
Collapse
Affiliation(s)
- Susana P. Pereira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Portugal
| | - Gonçalo C. Pereira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Portugal
| | - António J. Moreno
- Institute of Marine Research (IMAR), Department of Zoology, University of Coimbra, Portugal
| | - Paulo J. Oliveira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Portugal
| |
Collapse
|
219
|
Swietach P, Patiar S, Supuran CT, Harris AL, Vaughan-Jones RD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J Biol Chem 2009; 284:20299-310. [PMID: 19458084 PMCID: PMC2740455 DOI: 10.1074/jbc.m109.006478] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Indexed: 12/21/2022] Open
Abstract
We have studied the role of carbonic anhydrase 9 (CA9), a cancer-associated extracellular isoform of the enzyme carbonic anhydrase in multicellular spheroid growths (radius of approximately 300 microm) of human colon carcinoma HCT116 cells. Spheroids were transfected with CA9 (or empty vector) and imaged confocally (using fluorescent dyes) for both intracellular pH (pH(i)) and pH in the restricted extracellular spaces (pH(e)). With no CA9 expression, spheroids developed very low pH(i) (approximately 6.3) and reduced pH(e) (approximately 6.9) at their core, associated with a diminishing gradient of acidity extending out to the periphery. With CA9 expression, core intracellular acidity was less prominent (pH(i) = approximately 6.6), whereas extracellular acidity was enhanced (pH(e) = approximately 6.6), so that radial pH(i) gradients were smaller and radial pH(e) gradients were larger. These effects were reversed by eliminating CA9 activity with membrane-impermeant CA inhibitors. The observation that CA9 activity reversibly reduces pH(e) indicates the enzyme is facilitating CO(2) excretion from cells (by converting vented CO(2) to extracellular H(+)), rather than facilitating membrane H(+) transport (such as H(+) associated with metabolically generated lactic acid). This latter process requires titration of exported H(+) ions with extracellular HCO(3)(-), which would reduce rather than increase extracellular acidity. In a multicellular structure, the net effect of CA9 on pH(e) will depend on the cellular CO(2)/lactic acid emission ratio (set by local oxygenation and membrane HCO(3)(-) uptake). Our results suggest that CO(2)-producing tumors may express CA9 to facilitate CO(2) excretion, thus raising pH(i) and reducing pH(e), which promotes tumor proliferation and survival. The results suggest a possible basis for attenuating tumor development through inhibiting CA9 activity.
Collapse
Affiliation(s)
- Pawel Swietach
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, Oxford OX1 3PT, United Kingdom
| | - Shalini Patiar
- the Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Claudiu T. Supuran
- the Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, I-50019 Firenze, Italy
| | - Adrian L. Harris
- the Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Richard D. Vaughan-Jones
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
220
|
Jensen S, Lindqvist D, Asplund L. Lipid extraction and determination of halogenated phenols and alkylphenols as their pentafluorobenzoyl derivatives in marine organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5872-7. [PMID: 19492833 DOI: 10.1021/jf803971d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A method was developed for the extraction of lipids and analysis of halogenated phenols and alkylphenols in marine organisms. The extraction efficiency was evaluated by comparing the extractable lipid content and the recovery of 13 added phenols from three different marine species (herring, cod, and blue mussel), with the corresponding results from three well-established extraction procedures, the Bligh and Dyer (B&D), the Smedes (S), and the Jensen (J) methods. The J method and the new method, Jensen centrifugation (Jc), gave phenol recoveries of 80-100% for all species, whereas the B&D and S methods gave relatively low recoveries for the most acidic phenols, with recoveries of only 20-50% for pentachlorophenol (PCP) depending on the species. It was concluded that this effect was governed by the dissociation of the phenols and adsorption to the protein tissue during the extraction (due to ionic interactions). To increase the sensitivity of the analysis, the phenols were converted to their pentafluorobenzoyl esters, by using a tetrabutylammonium-catalyzed extractive acylation. The reaction was quantitative within 2 min at room temperature, and the formed derivatives were persistent enough to withstand treatment with concentrated sulfuric acid.
Collapse
Affiliation(s)
- Sören Jensen
- Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
221
|
Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen species. Hypertension 2009; 53:885-92. [PMID: 19398655 PMCID: PMC2716801 DOI: 10.1161/hypertensionaha.109.130054] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 04/03/2009] [Indexed: 12/11/2022]
Affiliation(s)
- Francesco Addabbo
- Department of Medicine and Pharmacology, Renal Research Institute, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
222
|
Pandya JD, Pauly JR, Sullivan PG. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP. Exp Neurol 2009; 218:381-9. [PMID: 19477175 DOI: 10.1016/j.expneurol.2009.05.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/13/2009] [Accepted: 05/18/2009] [Indexed: 11/30/2022]
Abstract
Experimental traumatic brain injury (TBI) leads to a rapid and extensive necrosis at the primary site of injury that appears to be driven in part by significant mitochondrial dysfunction. The present study is based on the hypothesis that TBI-induced, aberrant glutamate release increases mitochondrial Ca(2+) cycling/overload ultimately leading to mitochondrial damage. Previous work from our laboratory demonstrates that mitochondrial uncoupling during the acute phases of TBI-induced excitotoxicity can reduce mitochondrial Ca(2+) uptake (cycling), ROS production and mitochondrial damage resulting in neuroprotection and improved behavioral outcome. The current study was designed to determine the optimal dosage and therapeutic window of opportunity for the potent mitochondrial uncoupler FCCP following moderate TBI. For this study, we used young adult male Sprague-Dawley rats (300-350 g); either sham-operated or moderately (1.5 mm) injured using the controlled cortical impactor (CCI) model of TBI. In the first set of studies animals were injected with either vehicle (100% DMSO) or different concentrations of FCCP (0.5, 1, 2.5 and 5 mg/kg in 100% DMSO) intraperitoneally at 5 min post-injury; tested behaviorally at 10 days and cortical sparing assessed at 18 days post-injury. The results demonstrate that of all the dosages tested, 2.5 mg/kg rendered the maximum improvement in behavioral outcomes and tissue spared. Using this optimal dose (2.5 mg/kg) and time point for intervention (5 min post-injury), we assessed mitochondrial bioenergetics and mitochondrial structural integrity 24 h post-injury. Furthermore, using this dosage we assessed mitochondrial bioenergetics and Ca(2+) loading at 3 and 6 h post-injury to further verify our target mechanism and establish these assessments as a valid endpoint to use as a means to determine the therapeutic window of FCCP. To begin to address the window of opportunity for maintaining mitochondrial homeostasis, the optimal dose of FCCP was then administered at 5 min, 3, 6, or 24 h post-injury and several parameters of mitochondrial function were used as outcome measures. The results demonstrate that a prolonged window of opportunity exists for targeting mitochondrial dysfunction using uncouplers following TBI and give insight into the cellular pathology associated with TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, 40536, USA
| | | | | |
Collapse
|
223
|
Abstract
Cannabinoids and the endocannabinoid system have attracted considerable interest for therapeutic applications. Nevertheless, the mechanism of action of one of the main nonpsychoactive phytocannabinoids, cannabidiol (CBD), remains elusive despite potentially beneficial properties as an anti-convulsant and neuroprotectant. Here, we characterize the mechanisms by which CBD regulates Ca(2+) homeostasis and mediates neuroprotection in neuronal preparations. Imaging studies in hippocampal cultures using fura-2 AM suggested that CBD-mediated Ca(2+) regulation is bidirectional, depending on the excitability of cells. Under physiological K(+)/Ca(2+) levels, CBD caused a subtle rise in [Ca(2+)](i), whereas CBD reduced [Ca(2+)](i) and prevented Ca(2+) oscillations under high-excitability conditions (high K(+) or exposure to the K(+) channel antagonist 4AP). Regulation of [Ca(2+)](i) was not primarily mediated by interactions with ryanodine or IP(3) receptors of the endoplasmic reticulum. Instead, dual-calcium imaging experiments with a cytosolic (fura-2 AM) and a mitochondrial (Rhod-FF, AM) fluorophore implied that mitochondria act as sinks and sources for CBD's [Ca(2+)](i) regulation. Application of carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and the mitochondrial Na(+)/Ca(2+) exchange inhibitor, CGP 37157, but not the mitochondrial permeability transition pore inhibitor cyclosporin A, prevented subsequent CBD-induced Ca(2+) responses. In established human neuroblastoma cell lines (SH-SY5Y) treated with mitochondrial toxins, CBD (0.1 and 1 microm) was neuroprotective against the uncoupler FCCP (53% protection), and modestly protective against hydrogen peroxide- (16%) and oligomycin- (15%) mediated cell death, a pattern also confirmed in cultured hippocampal neurons. Thus, under pathological conditions involving mitochondrial dysfunction and Ca(2+) dysregulation, CBD may prove beneficial in preventing apoptotic signaling via a restoration of Ca(2+) homeostasis.
Collapse
|
224
|
Nadanaciva S, Willis JH, Barker ML, Gharaibeh D, Capaldi RA, Marusich MF, Will Y. Lateral-flow immunoassay for detecting drug-induced inhibition of mitochondrial DNA replication and mtDNA-encoded protein synthesis. J Immunol Methods 2009; 343:1-12. [PMID: 19152798 DOI: 10.1016/j.jim.2008.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 12/14/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Drug-induced mitochondrial toxicity can occur as a result of inhibition of mitochondrial DNA (mtDNA) replication as with certain nucleoside reverse transcriptase inhibitors or inhibition of mtDNA-encoded protein synthesis as with certain antibacterials. Both types of dysfunction have the overall effect of reducing the level of proteins encoded by mtDNA. A lateral-flow immunoassay which measures the levels of both a mtDNA-encoded protein and a nuclear DNA-encoded protein allows simple and rapid determination of the ratio of these 2 proteins and, hence, identifies changes in mtDNA-encoded protein levels. Here, we describe an assay that compares the level of Complex IV (cytochrome c oxidase), a mitochondrial protein which has 3 subunits encoded by mtDNA and made by mitochondrial ribosomes, with that of frataxin, a protein encoded by nuclear DNA and made by cytosolic ribosomes. We tested a selection of antibacterials and antiretrovirals in cells and show that the ratio of Complex IV: frataxin decreases when a drug inhibits either mtDNA replication or mtDNA-encoded protein synthesis. The results obtained with the assay were confirmed by Western blotting and immunocytochemical analysis. The assay has high reproducibility, requires small amounts of sample, is quantitative, and is able to identify drugs which ultimately lead to a decrease in mtDNA-encoded proteins.
Collapse
|
225
|
Andersson MA, Mikkola R, Raulio M, Kredics L, Maijala P, Salkinoja-Salonen MS. Acrebol, a novel toxic peptaibol produced by an Acremonium exuviarum indoor isolate. J Appl Microbiol 2009; 106:909-23. [PMID: 19191958 DOI: 10.1111/j.1365-2672.2008.04062.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify a toxin and its producer isolated from woody material in a building where the occupants experienced serious ill health symptoms. METHODS AND RESULTS Hyphal extracts of an indoor fungus, identified as the cycloheximide-tolerant species Acremonium exuviarum, inhibited motility of boar spermatozoa (EC(50) 5 +/- 2 microg of crude solids ml(-1)) and caused cytolysis of murine neuroblastoma cells (MNA) and feline fetal lung cells (FL). The responsible substances were purified and identified as two structurally similar, heat-stable, novel, toxic peptaibols, 1726 Da and 1740 Da, respectively, with amino acid sequences of Acetyl-Phe-Iva/Val-Gln-Aib-Ile-Thr-Leu-Aib-Pro-Aib-Gln-Pro-Aib-(X-X-X)-SerOH and Acetyl-Phe-Iva/Val-Gln-Aib-Ile-Thr-Leu-Val-Pro-Aib-Gln-Pro-Aib-(X-X-X)-SerOH. Purified acrebol inhibited motility of boar sperm, depleted ATP half-content in 1 day (EC(50) of 0.1 microg ml(-1), 60 nmol l(-1)) depolarised the mitochondria after 2 days, but did not affect the cellular content in NADH. This indicates mitochondrial toxicity. Plate-grown biomass of A. exuviarum BMB4 contained 0.1-1% (w/w) of acrebol, depending on the culture medium. CONCLUSIONS Acrebol paralysed the energy generation of mammalian cells suggesting that mitochondria were its target of action. SIGNIFICANCE AND IMPACT OF THE STUDY Acremonium exuviarum, as an indoor fungus, is potentially hazardous to health because of the toxic peptaibols that it produces.
Collapse
Affiliation(s)
- M A Andersson
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
226
|
Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 2008; 53:1290-2. [PMID: 19075053 DOI: 10.1128/aac.01393-08] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diarylquinoline TMC207 kills Mycobacterium tuberculosis by specifically inhibiting ATP synthase. We show here that human mitochondrial ATP synthase (50% inhibitory concentration [IC(50)] of >200 microM) displayed more than 20,000-fold lower sensitivity for TMC207 compared to that of mycobacterial ATP synthase (IC(50) of 10 nM). Also, oxygen consumption in mouse liver and bovine heart mitochondria showed very low sensitivity for TMC207. These results suggest that TMC207 may not elicit ATP synthesis-related toxicity in mammalian cells. ATP synthase, although highly conserved between prokaryotes and eukaryotes, may still qualify as an attractive antibiotic target.
Collapse
|
227
|
Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 2008; 674:3-22. [PMID: 19114126 DOI: 10.1016/j.mrgentox.2008.11.012] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Apoptosis is an evolutionary conserved homeostatic process involved in distinct physiological processes including organ and tissue morphogenesis, development and senescence. Its deregulation is also known to participate in the etiology of several human diseases including cancer, neurodegenerative and autoimmune disorders. Environmental stressors (cytotoxic agents, pollutants or toxicants) are well known to induce apoptotic cell death and to contribute to a variety of pathological conditions. Oxidative stress seems to be the central element in the regulation of the apoptotic pathways triggered by environmental stressors. In this work, we review the established mechanisms by which oxidative stress and environmental stressors regulate the apoptotic machinery with the aim to underscore the relevance of apoptosis as a component in environmental toxicity and human disease progression.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, P. O. Box 12233, 111. T.W. Alexander Drive, Research Triangle Park, NC 27709, United States.
| | | | | | | |
Collapse
|
228
|
Zhang J, Chang CWT. Divergent Synthesis of Three Classes of Aryl N-Glycosides by Solvent Control. J Org Chem 2008; 74:685-95. [DOI: 10.1021/jo8020133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianjun Zhang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300
| | - Cheng-Wei Tom Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300
| |
Collapse
|
229
|
Subramanian K, Raghavan S, Rajan Bhat A, Das S, Bajpai Dikshit J, Kumar R, Narasimha MK, Nalini R, Radhakrishnan R, Raghunathan S. A systems biology based integrative framework to enhance the predictivity ofin vitromethods for drug-induced liver injury. Expert Opin Drug Saf 2008; 7:647-62. [DOI: 10.1517/14740330802501211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
230
|
Buonanno F, Quassinti L, Bramucci M, Amantini C, Lucciarini R, Santoni G, Iio H, Ortenzi C. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem Biol Interact 2008; 176:151-64. [DOI: 10.1016/j.cbi.2008.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
231
|
Amirshahi N, Alyautdin RN, Sarkar S, Rezayat SM, Orlova MA, Trushkov IV, Buchachenko AL, Kuznetsov DA. Porphyrin-fullerene nanoparticles for treatment of hypoxic cardiopathies. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1995078008090115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
232
|
Neumann HG. Aromatic Amines in Experimental Cancer Research: Tissue-Specific Effects, an Old Problem and New Solutions. Crit Rev Toxicol 2008; 37:211-36. [PMID: 17453932 DOI: 10.1080/10408440601028603] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carcinogenic aromatic amines usually produce tumors in specific target tissue, such as 2-acetylaminofluorene (AAF) producing liver tumors in rats, in contrast to some other structurally related arylamines. A hypothesis is presented that explains the mode of action in this rat liver model. Genotoxic and nongenotoxic effects work together and make AAF a complete rat liver carcinogen. The cytotoxic, promoting effects are particularly important. N-Hydroxy-2-aminofluorene and 2-nitrosofluorene, two metabolites of AAF, are able to uncouple the mitochondrial respiratory chain. They entertain a redox cycle that removes electrons from the respiratory chain and impairs ATP production. The dose-dependent opening of the mitochondrial permeability transition pore signals the viability of the cell. If the pore is opened to a certain extent, the cell is eliminated by apoptosis. As a consequence, oval cells proliferate, and as this process is overloaded, the liver transforms into a cirrhosis-like situation and thus provides the conditions under which initiated liver cells develop tumors. Such an interpretation is based on assumptions that have been debated for a long time. Some of these often forgotten developments are reviewed in support of the hypothesis, which allows a more comprehensive view of the complex in vivo situation at a time when in vitro models prevail.
Collapse
Affiliation(s)
- H-G Neumann
- Department of Toxicology, University of Würzburg, Germany.
| |
Collapse
|
233
|
Kaplowitz N, Shinohara M, Liu ZX, Han D. How to protect against acetaminophen: don't ask for JUNK. Gastroenterology 2008; 135:1047-51. [PMID: 18782575 DOI: 10.1053/j.gastro.2008.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
234
|
Amirshahi N, Alyautdin RN, Sarkar S, Rezayat SM, Orlova MA, Trushkov IV, Buchachenko AL, Kuznetsov DA. Fullerene-based low toxic nanocationite particles (porphyrin adducts of cyclohexyl fullerene-C(60)) to treat hypoxia-induced mitochondrial dysfunction in mammalian heart muscle. Arch Med Res 2008; 39:549-59. [PMID: 18662585 DOI: 10.1016/j.arcmed.2008.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 05/30/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND This is the first report on the targeted delivery of fullerene-based low toxic nanocationite particles (porphyrin adducts of cyclohexyl fullerene-C(60)) to treat hypoxia-induced mitochondrial dysfunction in mammalian heart muscle. METHODS The magnetic isotope effect generated by the release of paramagnetic (25)Mg(2+) from these nanoparticles selectively stimulates the ATP overproduction in the oxygen-depleted cell. RESULTS Because nanoparticles are membranotropic cationites, they will only release the overactivating paramagnetic cations in response to hypoxia-induced acidic shift. The resulting changes in the heart cell energy metabolism result in approximately 80% recovery of the affected myocardium in <24 h after a single injection (0.03-0.1 LD(50)). CONCLUSIONS Pharmacokinetics and pharmacodynamics of the nanoparticles suggest their suitability for safe and efficient administration in either single or multi-injection (acute or chronic) therapeutic schemes for the prevention and treatment of clinical conditions involving myocardial hypoxia.
Collapse
Affiliation(s)
- Nima Amirshahi
- School of Pharmacy, I.M. Sechenov Moscow Medical Academy, Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Boelsterli UA, Hsiao CJJ. The heterozygous Sod2(+/-) mouse: modeling the mitochondrial role in drug toxicity. Drug Discov Today 2008; 13:982-8. [PMID: 18762273 DOI: 10.1016/j.drudis.2008.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/29/2008] [Accepted: 08/05/2008] [Indexed: 12/11/2022]
Abstract
Mitochondria have been increasingly implicated in being a crucial subcellular target and amplifying oxidative injury induced by many drugs. Among the major cytoprotective antioxidants is the mitochondrial matrix protein, superoxide dismutase-2 (SOD2). Genetic modification of the expression of SOD2 by transgenic techniques or gene silencing has generated a number of distinct animal models with SOD2 deficiency including the heterozygous Sod2(+/-) knockout mouse model. These mice display a discreet underlying mitochondrial stress but are otherwise phenotypically normal and thus model a variety of clinically silent mitochondrial abnormalities. The model has found application in oxidative stress and age-related research, but it is only recently that it has been successfully used to study mechanisms of idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Urs A Boelsterli
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT 06269-3092, United States.
| | | |
Collapse
|
236
|
In vivo assessment of mitochondrial toxicity. Drug Discov Today 2008; 13:785-90. [DOI: 10.1016/j.drudis.2008.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/22/2022]
|
237
|
Ivanina AV, Habinck E, Sokolova IM. Differential sensitivity to cadmium of key mitochondrial enzymes in the eastern oyster, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:72-9. [PMID: 18434254 DOI: 10.1016/j.cbpc.2008.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 12/25/2022]
Abstract
Combined effects of cadmium (Cd) and temperature on key mitochondrial enzymes [including Complexes I-IV of electron transport chain and Krebs cycle enzymes citrate synthase (CS), and NAD- and NADP-dependent isocitrate dehydrogenases (NAD-IDH and NADP-IDH)] were studied in a marine ectotherm, Crassostrea virginica in order to better understand the mechanisms of Cd-induced impairment of mitochondrial function. Matrix enzymes including CS and isocitrate dehydrogenases were the most sensitive to Cd making Krebs cycle a likely candidate to explain Cd-induced impairment of mitochondrial substrate oxidation. CS and NAD-IDH had IC(50) of 26 and 65 microM at the acclimation temperature (15 degrees C) and 65 (CS) and 1.5 (NAD-IDH) microM at elevated temperature (25 degrees C), respectively. Mitochondrial NADP-IDH was the most sensitive to Cd with IC(50) of 14 and 3.4 microM at 15 degrees and 25 degrees C, respectively. Electron transport chain (ETC) complexes were significantly less sensitive to the direct effects of Cd with IC(50) ranging from 260 to >>400 microM. Temperature increase led to a higher sensitivity of mitochondrial enzymes to the inhibitory effects of Cd as indicated by a decline in IC(50) with the exception of Complex III from gills and CS from gills and hepatopancreas. Cd exposure also resulted in a decrease in activation energy of mitochondrial enzymes suggesting that mitochondria from Cd-exposed oysters could exhibit reduced capacity to respond to temperature rise with an adequate increase in the substrate flux. These interactive effects of Cd and temperature on mitochondrial enzymes could negatively affect metabolic performance of oysters and possibly other ectotherms in polluted environments during temperature increase such as expected during the global climate change and/or tidal or seasonal warming in estuarine and coastal waters.
Collapse
Affiliation(s)
- Anna V Ivanina
- Biology Department, University of North Carolina , Charlotte, NC 28223, USA
| | | | | |
Collapse
|
238
|
Ulanovskaya OA, Janjic J, Suzuki M, Sabharwal SS, Schumacker PT, Kron SJ, Kozmin SA. Synthesis enables identification of the cellular target of leucascandrolide A and neopeltolide. Nat Chem Biol 2008; 4:418-24. [PMID: 18516048 PMCID: PMC2673112 DOI: 10.1038/nchembio.94] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/12/2008] [Indexed: 11/09/2022]
Abstract
Leucascandrolide A and neopeltolide are structurally homologous marine natural products that elicit potent antiproliferative profiles in mammalian cells and yeast. The scarcity of naturally available material has been a significant barrier to their biochemical and pharmacological evaluation. We developed practical synthetic access to this class of natural products that enabled the determination of their mechanism of action. We demonstrated effective cellular growth inhibition in yeast, which was substantially enhanced by substituting glucose with galactose or glycerol. These results, along with genetic analysis of determinants of drug sensitivity, suggested that leucascandrolide A and neopeltolide may inhibit mitochondrial ATP synthesis. Evaluation of the activity of the four mitochondrial electron transport chain complexes in yeast and mammalian cells revealed cytochrome bc(1) complex as the principal cellular target. This result provided the molecular basis for the potent antiproliferative activity of this class of marine macrolides, thus identifying them as new biochemical tools for investigation of eukaryotic energy metabolism.
Collapse
Affiliation(s)
- Olesya A Ulanovskaya
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Pagliarani A, Bandiera P, Ventrella V, Trombetti F, Pirini M, Nesci S, Borgatti AR. Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria. Toxicol In Vitro 2008; 22:827-36. [PMID: 18261881 DOI: 10.1016/j.tiv.2007.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 12/07/2007] [Accepted: 12/21/2007] [Indexed: 11/30/2022]
|
240
|
Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 2008; 29:361-6. [PMID: 18501972 DOI: 10.1016/j.tips.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
The bioenergetic features of mitochondria have long been exploited in the design of pharmacological agents suited to accomplish a desired physiological effect; uncoupling of oxidative phosphorylation to induce weight loss, for example. However, more recent experience demonstrates mitochondria to be unintended off targets of other drug therapies and responsible, at least in part, for the dose-limiting adverse events associated with a large array of pharmaceuticals. Review of the fundamentals of mitochondrial molecular biology and bioenergetics reveals a multiplicity of off targets that can be invoked to explain drug-induced mitochondrial failure. It is this redundancy of mitochondrial off targets that complicates identification of discrete mechanisms of toxicity and confounds QSAR-based design of new small molecules devoid of this potential for mitochondrial toxicity. The present review article briefly reviews the molecular biology and biophysics of mitochondrial bioenergetics, which then serves as a platform for identifying the various potential off targets for drug-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
241
|
Eyer F, Zilker T. Bench-to-bedside review: mechanisms and management of hyperthermia due to toxicity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:236. [PMID: 18096088 PMCID: PMC2246210 DOI: 10.1186/cc6177] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Body temperature can be severely disturbed by drugs capable of altering the balance between heat production and dissipation. If not treated aggressively, these events may become rapidly fatal. Several toxins can induce such non-infection-based temperature disturbances through different underlying mechanisms. The drugs involved in the eruption of these syndromes include sympathomimetics and monoamine oxidase inhibitors, antidopaminergic agents, anticholinergic compounds, serotonergic agents, medicaments with the capability of uncoupling oxidative phosphorylation, inhalation anesthetics, and unspecific agents causing drug fever. Besides centrally disturbed regulation disorders, hyperthermia often results as a consequence of intense skeletal muscle hypermetabolic reaction. This leads mostly to rapidly evolving muscle rigidity, extensive rhabdomyolysis, electrolyte disorders, and renal failure and may be fatal. The goal of treatment is to reduce body core temperature with both symptomatic supportive care, including active cooling, and specific treatment options.
Collapse
Affiliation(s)
- Florian Eyer
- Department of Clinical Toxicology, II Medizinische Klinik, Klinikum rechts der Isar, Technical University, D-81675 Munich, Germany.
| | | |
Collapse
|
242
|
Lagido C, Pettitt J, Flett A, Glover LA. Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans. BMC PHYSIOLOGY 2008; 8:7. [PMID: 18384668 PMCID: PMC2364618 DOI: 10.1186/1472-6793-8-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/02/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ATP levels of an organism are an important physiological parameter that is affected by genetic make up, ageing, stress and disease. RESULTS We have generated luminescent C. elegans through ubiquitous, constitutive expression of firefly luciferase, widely used for in vitro ATP determination. We hypothesise that whole animal luminescence reflects its intracellular ATP levels in vivo. To test this, we characterised the bioluminescence response of C. elegans during sublethal exposure to, and recovery from azide, a treatment that inhibits mitochondrial respiration reversibly, and causes ATP depletion. Consistent with our expectations, in vivo luminescence decreased with increasing sublethal azide levels, and recovered fully when worms were removed from azide. Firefly luciferase expression levels, stability and activity did not influence the final luminescence. Bioluminescence also reflected the lowered activity of the electron transport chain achieved with RNA interference (RNAi) of genes encoding respiratory chain components. CONCLUSION Results indicated that C. elegans luminescence reports on ATP levels in real-time. For the first time, we are able to directly assess the metabolism of a whole, living, multicellular organism by determination of the relative ATP levels. This will enable genetic analysis based on a readily quantifiable metabolic phenotype and will provide novel insights into mechanisms of fitness and disease that are likely to be of relevance for other organisms, as well as the worm.
Collapse
Affiliation(s)
- Cristina Lagido
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Pettitt
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Aileen Flett
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - L Anne Glover
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
243
|
Spycher S, Smejtek P, Netzeva TI, Escher BI. Toward a Class-Independent Quantitative Structure−Activity Relationship Model for Uncouplers of Oxidative Phosphorylation. Chem Res Toxicol 2008; 21:911-27. [DOI: 10.1021/tx700391f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Spycher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Pavel Smejtek
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Tatiana I. Netzeva
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Beate I. Escher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| |
Collapse
|
244
|
Dykens JA, Jamieson JD, Marroquin LD, Nadanaciva S, Xu JJ, Dunn MC, Smith AR, Will Y. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci 2008; 103:335-45. [PMID: 18344530 DOI: 10.1093/toxsci/kfn056] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial toxicity is increasingly implicated in a host of drug-induced organ toxicities, including hepatotoxicity. Nefazodone was withdrawn from the U.S. market in 2004 due to hepatotoxicity. Accordingly, we evaluated nefazodone, another triazolopyridine trazodone, plus the azaspirodecanedione buspirone, for cytotoxicity and effects on mitochondrial function. In accord with its clinical disposition, nefazodone was the most toxic compound of the three, trazodone had relatively modest effects, whereas buspirone showed the least toxicity. Nefazodone profoundly inhibited mitochondrial respiration in isolated rat liver mitochondria and in intact HepG2 cells where this was accompanied by simultaneous acceleration of glycolysis. Using immunocaptured oxidative phosphorylation (OXPHOS) complexes, we identified Complex 1, and to a lesser amount Complex IV, as the targets of nefazodone toxicity. No inhibition was found for trazodone, and buspirone showed 3.4-fold less inhibition of OXPHOS Complex 1 than nefazodone. In human hepatocytes that express cytochrome P450, isoform 3A4, after 24 h exposure, nefazodone and trazodone collapsed mitochondrial membrane potential, and imposed oxidative stress, as detected via glutathione depletion, leading to cell death. Our results suggest that the mitochondrial impairment imposed by nefazodone is profound and likely contributes to its hepatotoxicity, especially in patients cotreated with other drugs with mitochondrial liabilities.
Collapse
Affiliation(s)
- James A Dykens
- Drug Safety Research and Development, Pfizer, Inc., Sandwich CT139NJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
245
|
van Boxtel AL, Kamstra JH, Cenijn PH, Pieterse B, Wagner JM, Antink M, Krab K, van der Burg B, Marsh G, Brouwer A, Legler J. Microarray analysis reveals a mechanism of phenolic polybrominated diphenylether toxicity in zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:1773-1779. [PMID: 18441834 DOI: 10.1021/es0720863] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polybrominated diphenylethers (PBDEs) are ubiquitous in the environment, with the lower brominated congener 2,2',4,4'-tetrabromodiphenylether (BDE47) among the most prevalent. The phenolic PBDE, 6-hydroxy-BDE47 (6-OH-BDE47) is both an important metabolite formed by in vivo metabolism of BDE47 and a natural product produced by marine organisms such as algae. Although this compound has been detected in humans and wildlife, including fish, virtually nothing is known of its in vivo toxicity. Here we report that 6-OH-BDE47 is acutely toxic in developing and adult zebrafish at concentrations in the nanomolar (nM) range. To identify possible mechanisms of toxicity, we used microarray analysis as a diagnostic tool. Zebrafish embryonic fibroblast (PAC2) cells were exposed to 6-OH-BDE47, BDE47, and the methoxylated metabolite 6-MeO-BDE47. These experiments revealed that 6-OH-BDE47 alters the expression of genes involved in proton transport and carbohydrate metabolism. These findings, combined with the acute toxicity, suggested that 6-OH-BDE47 causes disruption of oxidative phosphorylation (OXPHOS).Therefore, we further investigated the effect of 6-OH-BDE47 on OXPHOS in zebrafish mitochondria. Results show unequivocally that this compound is a potent uncoupler of OXPHOS and is an inhibitor of complex II of the electron transport chain. This study provides the first evidence of the in vivo toxicity and an important potential mechanism of toxicity of an environmentally relevant phenolic PBDE of both anthropogenic and natural origin. The results of this study emphasize the need for further investigation on the presence and toxicity of this class of polybrominated compounds.
Collapse
Affiliation(s)
- Antonius L van Boxtel
- Institute for Environmental Studies and Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
Pharmacogenetics holds promise in HIV treatment because of the complexity and potential toxicity of multidrug therapies that are prescribed for long periods. Thus far, few candidate genes have been examined for a limited number of allelic variants, but a number of confirmed associations have already emerged. A change in paradigm emerges from the availability of the HapMap, the wealth of data on less-common genetic polymorphisms, and new genotyping technology. This review presents a comprehensive analysis of the existing literature on pharmacogenetic determinants of antiretroviral drug exposure, drug toxicity, as well as genetic markers associated with the rate of disease progression. It is expected that larger-scale comprehensive genome approaches will profoundly change the landscape of knowledge in the future.
Collapse
Affiliation(s)
- A Telenti
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
247
|
Policastro MA, Otten EJ. Case files of the University of Cincinnati fellowship in medical toxicology: two patients with acute lethal occupational exposure to hydrogen sulfide. J Med Toxicol 2008; 3:73-81. [PMID: 18072164 DOI: 10.1007/bf03160912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Michael A Policastro
- University of Cincinnati, Division of Toxicology, Department of Emergency Medicine, OH 45267-0769, USA.
| | | |
Collapse
|
248
|
Sanni B, Williams K, Sokolov EP, Sokolova IM. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:101-12. [PMID: 17869588 DOI: 10.1016/j.cbpc.2007.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/15/2007] [Accepted: 08/15/2007] [Indexed: 11/20/2022]
Abstract
Temperature and heavy metals such as cadmium (Cd) are important stressors which can strongly affect physiology of marine ectotherms in polluted estuaries. Mitochondria are among the key intracellular targets for these stressors, but the mechanisms of Cd-induced mitochondrial damage are not fully understood. In this study we determined the effects of acclimation temperature (12, 20 and 28 degrees C) and Cd exposure (0 or 50 microg L(-1) Cd) in vivo on activity and mRNA expression of a key mitochondrial enzyme, aconitase, which is known as a sensitive marker of oxidative stress, and on mRNA expression of LON protease involved in the degradation of oxidatively damaged mitochondrial proteins, in eastern oysters Crassostrea virginica. Sensitivity of mitochondrial aconitase to exposure to Cd in vitro (0 or 50 microM) was also determined in oysters acclimated to different temperatures and Cd levels. Acclimation at 28 degrees C resulted in a strong decrease in activity of mitochondrial aconitase as well as mRNA expression of aconitase and LON protease suggesting mitochondrial dysfunction at elevated temperatures. Exposure of isolated mitochondria to 50 microM Cd in vitro resulted in a 20-25% inhibition of mitochondrial aconitase reflecting oxidative damage of this enzyme. However, long-term (3-6 weeks) exposure of whole oysters to Cd had no effect on mitochondrial aconitase activity suggesting that this enzyme is well protected against Cd-induced oxidative stress in vivo. Aconitase mRNA expression was positively correlated with the enzyme activity within control and Cd-exposed groups; however, this correlation was strikingly different when compared between control and Cd-exposed oysters. The level of aconitase transcript was considerably lower (3-13-fold) in Cd-exposed oysters while the specific aconitase activities were similar in control and Cd-exposed oysters indicating regulation at the post-transcriptional level. LON protease expression was upregulated by 2-4-fold in Cd-exposed oysters suggesting an increase in mitochondrial protein degradation as a novel protective mechanism against Cd-induced mitochondrial stress. Our data indicate that mitochondrial aconitase is not a good biomarker for Cd-induced oxidative stress in oysters in vivo, because of its complex regulation at transcriptional and post-transcriptional levels, low sensitivity to Cd effects in vivo but high sensitivity to acclimation temperature that can potentially mask effects of other stressors under the field conditions.
Collapse
Affiliation(s)
- Basharat Sanni
- Biology Department, 381c Woodward Hall, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
249
|
Spycher S, Netzeva TI, Worth AP, Escher BI. Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2008; 19:433-463. [PMID: 18853296 DOI: 10.1080/10629360802348803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new approach for classification of uncouplers of oxidative and photophosphorylation, also suitable for screening of large chemical inventories, is introduced. Earlier fragment-based approaches for this mode of toxic action are limited to phenols but weak acids of extremely diverse chemical classes can act as uncouplers. The proposed approach overcomes the limitation to phenolic uncouplers by combining structural fragments with the global information of physico-chemical descriptors. In a top-down approach to reduce the number of candidate chemicals, firstly substructure definitions for the detection of weak acids were applied. Subsequently, conservative physico-chemical thresholds for the two most important properties for the uncoupling activity were defined: an acid dissociation constant (pK(a)) between 3 and 9, and a sufficiently low energy barrier for the internal permeability of anions (17 kcal/mol). The later was derived from a novel approach to calculate the distribution of compounds across membranes. The combination of structural and physico-chemical criteria allowed a good separation of active from inactive chemicals with high sensitivity (95%) and slightly lower (more than 75%) specificity. Applying this approach to several thousand high and low production volume chemicals retrieved a surprisingly small number of 10 compounds with a predicted excess toxicity above 10. Nevertheless, uncoupling can be an important mode of action as highlighted with several examples ranging from pesticide metabolites to persistent organic compounds.
Collapse
Affiliation(s)
- S Spycher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
250
|
Brvar M, Okrajsek R, Kosmina P, Staric F, Kaps R, Kozelj G, Bunc M. Metabolic acidosis in prometryn (triazine herbicide) self-poisoning. Clin Toxicol (Phila) 2007; 46:270-3. [PMID: 17924252 DOI: 10.1080/15563650701665126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prometryn is a triazine herbicide, which is one of the most extensively used groups of herbicides. The mechanism of acute triazine herbicide toxicity in humans is not known. We report a first case of acute prometryn poisoning. CASE REPORT A 62-year-old male ingested 50 g of prometryn and ethanol in a suicide attempt. On arrival two hours after ingestion, he was somnolent and vomited. Seven hours after ingestion laboratory tests showed metabolic acidosis with a calculated anion gap of 47.5 mmol/L and lactate of 23.4 mmol/L. Gas chromatography/mass spectrometry revealed serum prometryn concentrations of 48.1 mg/L. Hemodialysis corrected metabolic acidosis, but the serum prometryn concentration increased to 67.7 mg/L. The lactate level after hemodialysis was 11.7 mmol/L and returned within normal limits 47 hours after ingestion. The patient was discharged without any sequelae after psychiatric evaluation. CONCLUSION In high anion gap metabolic acidosis we should consider poisoning with prometryn and other triazine herbicides. Hemodialysis corrects metabolic derangements, but it does not lower serum prometryn concentration.
Collapse
Affiliation(s)
- Miran Brvar
- Poison Control Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|