201
|
Yin Q, Wang P, Wu X. MicroRNA -148 alleviates cardiac dysfunction, immune disorders and myocardial apoptosis in myocardial ischemia-reperfusion (MI/R) injury by targeting pyruvate dehydrogenase kinase (PDK4). Bioengineered 2021; 12:5552-5565. [PMID: 34517782 PMCID: PMC8806724 DOI: 10.1080/21655979.2021.1965812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ischemic heart disease in children may be induced by varied factors, and there is no corresponding systematic treatment up to now. This study aims to investigate the effects of microRNA (miR)-148 on myocardial injury in immature rats with myocardial ischemia-reperfusion (MI/R) injury. In this study, MI/R model was established by ligating the coronary artery of heart. The results showed that miR-148 alleviated myocardial injury and rescued relevant parameters (mean ventricular systolic blood pressure (MAP), left ventricular systolic blood pressure (LVSP), heart rate (HR), creatine kinase-MB (CK-MB), cTn1 and Mb in immature rats with MI/R injury. Besides, miR-148 improved the immune dysfunction induced by MI/R through increasing the number of interleukin (IL)-10+ cells and reducing the number of inducible nitric oxide synthase (iNOS)+ cells. In addition, miR-148 relieved the apoptosis of cardiomyocytes induced by MI/R through inhibiting the expression of Bax and elevating the expression of Bcl-2. Further molecular mechanism indicated that pyruvate dehydrogenase kinase 4 (PDK4) was the downstream target of miR-148, which was further confirmed by dual luciferase reporter assay and related expression detection. Accordingly, silenced PDK4 attenuated cardiac dysfunction, immune disorder and myocardial apoptosis in immature rats and enhanced the ability of antioxidant enzymes. What is more, activated SMAD pathway induced by MI/R injury was then blocked by silenced PDK4. Taken together, our study demonstrated that overexpressed miR-148 relieved cardiac dysfunction, immune disorder and cardiomyocyte apoptosis in immature MI/R rats by PDK4 inhibition, which provided novel targets for MI/R injury treatment.
Collapse
Affiliation(s)
- Qi Yin
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| | - Ping Wang
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| | - Xiaohua Wu
- Department of Health care center, Hainan People's Hospital, Haikou, Hainan, China
| |
Collapse
|
202
|
Nie X, Li H, Wang J, Cai Y, Fan J, Dai B, Chen C, Wang DW. Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice With Coxsackie B3 Virus-Induced Myocarditis. Front Cell Infect Microbiol 2021; 11:704919. [PMID: 34504807 PMCID: PMC8423026 DOI: 10.3389/fcimb.2021.704919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Aims Long non-coding RNAs (lncRNAs) are critical regulators of viral infection and inflammatory responses. However, the roles of lncRNAs in acute myocarditis (AM), especially fulminant myocarditis (FM), remain unclear. Methods FM and non-fulminant myocarditis (NFM) were induced by coxsackie B3 virus (CVB3) in different mouse strains. Then, the expression profiles of the lncRNAs in the heart tissues were detected by sequencing. Finally, the patterns were analyzed by Pearson/Spearman rank correlation, Kyoto Encyclopedia of Genes and Genomes, and Cytoscape 3.7. Results First, 1,216, 983, 1,606, and 2,459 differentially expressed lncRNAs were identified in CVB3-treated A/J, C57BL/6, BALB/c, and C3H mice with myocarditis, respectively. Among them, 88 lncRNAs were commonly dysregulated in all four models. Quantitative real-time polymerase chain reaction analyses further confirmed that four out of the top six commonly dysregulated lncRNAs were upregulated in all four models. Moreover, the levels of ENSMUST00000188819, ENSMUST00000199139, and ENSMUST00000222401 were significantly elevated in the heart and spleen and correlated with the severity of cardiac inflammatory infiltration. Meanwhile, 923 FM-specific dysregulated lncRNAs were detected, among which the levels of MSTRG.26098.49, MSTRG.31307.11, MSTRG.31357.2, and MSTRG.32881.28 were highly correlated with LVEF. Conclusion Expression of lncRNAs is significantly dysregulated in acute myocarditis, which may play different roles in the progression of AM.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Cai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Dai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
203
|
Destructive Effects of Pyroptosis on Homeostasis of Neuron Survival Associated with the Dysfunctional BBB-Glymphatic System and Amyloid-Beta Accumulation after Cerebral Ischemia/Reperfusion in Rats. Neural Plast 2021; 2021:4504363. [PMID: 34434229 PMCID: PMC8382555 DOI: 10.1155/2021/4504363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation-related amyloid-beta peptide (Aβ) accumulation after cerebral ischemia/reperfusion (I/R) accounts for cerebral I/R injuries and poststroke dementia. Recently, pyroptosis, a proinflammatory cell death, has been identified as a crucial pathological link of cerebral I/R injuries. However, whether pyroptosis acts as a trigger of Aβ accumulation after cerebral I/R has not yet been demonstrated. Blood-brain barrier (BBB) and glymphatic system mediated by aquaporin-4 (AQP-4) on astrocytic endfeet are important pathways for the clearance of Aβ in the brain, and pyroptosis especially occurring in astrocytes after cerebral I/R potentially damages BBB integrity and glymphatic function and thus influences Aβ clearance and brain homeostasis. In present study, the method of middle cerebral artery occlusion/reperfusion (MCAO/R) was used for building models of focal cerebral I/R injuries in rats. Then, we used lipopolysaccharide and glycine as the agonist and inhibitor of pyroptosis, respectively, Western blotting for detections of pyroptosis, AQP-4, and Aβ1-42 oligomers, laser confocal microscopy for observations of pyroptosis and Aβ locations, and immunohistochemical stainings of SMI 71 (a specific marker for BBB integrity)/AQP-4 and Nissl staining for evaluating, respectively, BBB-glymphatic system and neuronal damage. The results showed that pyroptosis obviously promoted the loss of BBB integrity and AQP-4 polarization, brain edema, Aβ accumulation, and the formation of Aβ1-42 oligomers and thus increased neuronal damage after cerebral I/R. However, glycine could inhibit cerebral I/R-induced pyroptosis by alleviating cytomembrane damage and downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, NLRP3 (nucleotide-binding domain, leucine-rich repeat containing protein 3), interleukin-6 (IL-6) and IL-1β and markedly abate above pathological changes. Our study revealed that pyroptosis is a considerable factor causing toxic Aβ accumulation, dysfunctional BBB-glymphatic system, and neurological deficits after cerebral I/R, suggesting that targeting pyroptosis is a potential strategy for the prevention of ischemic stroke sequelae including dementia.
Collapse
|
204
|
Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovasc Drugs Ther 2021; 36:1075-1089. [PMID: 34436706 DOI: 10.1007/s10557-021-07239-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Anti-inflammatory therapy is important for reducing myocardial injury after acute myocardial infarction (MI). New anti-inflammatory drugs and their mechanism are necessary to be explored to improve clinical efficacy. We aimed to improve the efficacy of colchicine on attenuating MI injury by nano-drug delivery systems and to investigate the mechanism of anti-inflammatory. METHODS A colchicine-containing delivery system based on calcium carbonate nanoparticles (ColCaNPs) was synthesized. The protection against MI by ColCaNPs was evaluated using an in vivo rat model established by ligating the left anterior descending coronary artery. Macrophage polarization and the levels of inflammatory cytokines were determined using immunohistochemistry, Western blot, and ELISA analysis. RESULTS ColCaNP treatment showed about a 45% reduction in myocardial infarct size and attenuating myocardial fibrosis compared with groups without drug intervention after MI. Furthermore, ColCaNPs significantly decreased the levels of CRP, TNF-α, and IL-1β in serum and the expression of proinflammatory cytokine in myocardial tissues after MI (p < 0.05). We also found that ColCaNPs notably restrained pyroptosis and inhibited inflammatory response by modulating on M1/M2 macrophage polarization and suppressing TLR4/NFκB/NLRP3 signal pathway. CONCLUSION Colchicine-containing nanoparticles can protect against MI injury in a clinically relevant rat model by reducing inflammation. In addition, calcium carbonate nanoparticles can increase the cardioprotective effects of colchicine.
Collapse
|
205
|
孔 令, 徐 臣, 孙 娜, 梁 飞, 魏 明, 苏 兴. [Melatonin alleviates myocardial ischemia-reperfusion injury in mice by inhibiting inflammatory response via activating Nrf2 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1165-1170. [PMID: 34549706 PMCID: PMC8527228 DOI: 10.12122/j.issn.1673-4254.2021.08.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of melatonin against myocardial ischemia-reperfusion (IR) injury in mice and the role of Nrf2 signaling in mediating this effect. METHODS C57/bl6 mice were randomized into sham-operated group(Sham), IR group(IR), IR with melatonin treatment(melatonin+IR)group, and IR with melatonin and Nrf2 inhibitor ML-385 (melatonin+ML-385+IR) group.In the latter 3 groups, mouse models of myocardial IR injury were established by ligation of the left anterior descending coronary artery.The infarct size was measured with Evans blue/TTC staining, and serum LDH level was detected using ELISA.The ejection fraction (EF) and fractional shortening (FS) of the mice were measured using Vevo software.The expressions of Bcl2, Bax, Nrf2, Nrf2 substrates NQO-1 and HO-1, TNF-α, IL-1β, and IL-6 in the myocardial tissues were detected with Western blotting. RESULTS Compared with the sham-operated mice, the mouse models of myocardial IR injury showed significantly increased infarct size and serum LDH levels (P < 0.01) with obviously decreased EF and FS (P < 0.01).The mouse models also showed significantly increased expressions of Bax, TNF-α, IL-1β and IL-6, decreased expression of Bcl2, Nrf2, NQO-1, and HO-1, and increased apoptotic index and TNF-α expression in the myocardial tissue(P < 0.01).Melatonin treatment significantly decreased the infarct size, serum LDH levels, the expressions of Bax, TNF-α, IL-1β and IL-6(P < 0.01), lowered the apoptotic index, and increased the expressions of Bcl2, Nrf2, NQO-1, and HO-1 in the mouse models(P < 0.01).The effects of melatonin were obviously blocked by ML-385 treatment in the mouse models. CONCLUSION Melatonin can alleviate myocardial IR injury in mice by inhibiting inflammatory response via activation of Nrf2 signaling.
Collapse
Affiliation(s)
- 令恒 孔
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 臣年 徐
- 北部战区总医院心血管外科, 辽宁 沈阳 110016Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - 娜 孙
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 飞 梁
- 西安医学院药学院, 陕西 西安 710021School of Pharmacy, Xi′an Medical University, Xi′an 710021, China
| | - 明 魏
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 兴利 苏
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| |
Collapse
|
206
|
TREM-1 aggravates chronic obstructive pulmonary disease development via activation NLRP3 inflammasome-mediated pyroptosis. Inflamm Res 2021; 70:971-980. [PMID: 34374795 DOI: 10.1007/s00011-021-01490-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a major cause of death globally. Inflammation plays a crucial role in COPD development. Pyroptosis, an inflammatory form of cell death, may involve in the pathogenesis of COPD. This study aims to explore the role and action mechanism of triggering receptor expressed on myeloid cells 1 (TREM-1) in COPD. METHODS Here, cigarette smoke stimulation was used to establish COPD model in mice. Cigarette smoke extract combined with lipopolysaccharide was used to stimulate RAW264.7 cells for COPD model in vitro. QRT-PCR and Western blot were performed to detect the expression of mRNA and proteins, respectively, in the lung tissues and cells. Concentration of cytokines was measured using ELISA. H&E staining was used to analyze the pathological changes in lung tissues. The number of infiltrated macrophage was examined using immunofluorescence. LP17 was used to silence the expression of TREM-1. RESULTS The results showed that TREM-1 was highly expressed in COPD. In vivo, inhibition of TREM-1 effectively improved the injury in lung tissues of COPD mouse, and reduced the infiltration of macrophages. Moreover, inhibition of TREM-1 in vivo and in vitro notably suppressed the activation of NLRP3 inflammasome and pyroptosis. Rescue experiment demonstrated that TREM-1 activated pyroptosis via regulating NLRP3 inflammasome. CONCLUSION Overall, our results proved that TREM-1 promoted the lung injury and inflammation in COPD mouse through activation of NLRP3 inflammasome-mediated pyroptosis. Our data indicated a novel mechanism of TREM-1 in COPD development, and maybe provide a novel therapeutic target for COPD treatment.
Collapse
|
207
|
Overexpression of miR-1298 attenuates myocardial ischemia-reperfusion injury by targeting PP2A. J Thromb Thrombolysis 2021; 53:136-148. [PMID: 34351558 DOI: 10.1007/s11239-021-02540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Previous studies reported that microRNA-1298 was abnormally expressed in the myocardium of rat hearts after hypoxia/normoxia injury. This study aims to investigate the function and specific mechanism of miR-1298 in myocardial ischemia/reperfusion (IR) injury. Neonatal rat cardiomyocytes (NRCMs) were isolated from neonatal rat hearts and subjected to oxygen/glucose deprivation/reperfusion (OGD/R) to induce I/R injury. The rat model with I/R injury was induced by ligating the proximal left anterior descending artery (LAD). MiR-1298 expression was detected by qRT-PCR. The levels of PP2A, Bcl-2, Bax, and AMPK signaling members (p-AMPK, p-GSK3β) was detected by Western blot. Cell apoptosis was evaluated by TUNEL staining assay and flow cytometry. The infarct size of rat hearts was assessed by TTC staining assay. Premature and mature MiR-1298 were significantly downregulated while PP2A was significantly upregulated during I/R injury both in vitro and in vivo. The prediction of Starbase suggested that PP2A was a potential target of miR-1298. MiR-1298 overexpression significantly reduced cardiomyocyte apoptosis in vitro, and its protective effect was obviously attenuated by PP2A overexpression. Luciferase reporter assay showed that miR-1298 targeted PP2A directly. In addition, miR-1298 overexpression significantly reduced infarct size and cardiomyocyte apoptosis in the hearts of rats received with I/R injury in vivo. Moreover, miR-1298 overexpression significantly elevated the levels of Bcl-2 and AMPK signaling members (p-AMPK, p-GSK3β) while decreased Bax level, and these effects were partially reversed by PP2A overexpression. MiR-1298 participated in myocardial I/R injury by targeting the PP2A/AMPK/GSK3β signaling pathway, suggesting that miR-1298 might be a potential therapeutic target for myocardial I/R injury.
Collapse
|
208
|
Resolvin D1 Improves Post-Resuscitation Cardiac and Cerebral Outcomes in A Porcine Model of Cardiac Arrest. Shock 2021; 54:548-554. [PMID: 32080063 DOI: 10.1097/shk.0000000000001528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Following global ischemia reperfusion injury triggered by cardiac arrest (CA) and resuscitation, the ensuing cardiac and cerebral damage would result in high mortality and morbidity. Recently, resolvin D1 has been proven to have a protective effect on regional cardiac and cerebral ischemia reperfusion injury. In this study, we investigated the effects of resolvin D1 on cardiac and cerebral outcomes after cardiopulmonary resuscitation (CPR) in a porcine model.Twenty-eight male domestic pigs weighing between 33 and 41 kg were randomly divided into one of the four groups: sham, CPR, low-dose resolvin D1 (LRD), and high-dose resolvin D1 (HRD). Sham animals underwent the surgical preparation only. Other animals were subjected to 8 min of untreated ventricular fibrillation and then 5 min of CPR. At 5 min after resuscitation, resolvin D1 was intravenously administered with the doses of 0.3 and 0.6 μg/kg in the LRD and HRD groups, respectively. The resuscitated animals were monitored for 6 h and observed for an additional 18 h.After resuscitation, myocardial and neurological function were significantly impaired, and their serum levels of injury biomarkers were markedly increased in the CPR, LRD, and HRD groups compared with the sham group. In addition, tissue inflammation and oxidative stress in the heart and brain were observed in the three groups. However, myocardial function was significantly improved and its injury biomarker was significantly decreased starting 3 h after resuscitation in the LRD and HRD groups compared with the CPR group. Similarly, neurological function was significantly better at 24 h post-resuscitation and its injury biomarkers were significantly lower at 6 and 24 h post-resuscitation in the LRD and HRD groups than in the CPR group. In addition, myocardial, cerebral inflammation, and oxidative stress were significantly milder in the two resolvin D1-treated groups. Especially, HRD produced significantly greater post-resuscitation cardiac and cerebral protection compared with the LRD group.In conclusion, resolvin D1 significantly improved post-resuscitation cardiac and cerebral outcomes in a porcine model of CA, in which the protective effects may be in a dose-dependent manner.
Collapse
|
209
|
Xu L, Chen Y, Jin Q, Wu Y, Deng C, Zhong Y, Lin L, Chen L, Fu W, Yi L, Sun Z, Qin X, Li Y, Yang Y, Xie M. Biomimetic PLGA Microbubbles Coated with Platelet Membranes for Early Detection of Myocardial Ischaemia-Reperfusion Injury. Mol Pharm 2021; 18:2974-2985. [PMID: 34197128 DOI: 10.1021/acs.molpharmaceut.1c00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early diagnosis of myocardial ischaemia-reperfusion (MI/R) injury is important for protecting the myocardium and improving patient prognoses. Fortunately, the platelet membrane possesses the ability to target the region of MI/R injury. Therefore, we hypothesized that platelet membrane-coated particles (PMPs) could be used to detect early MI/R injury by ultrasound imaging. We designed PMPs with a porous polylactic-co-glycolic acid (PLGA) core coated with a platelet membrane shell. Red blood cell membrane-coated particles (RMPs) were fabricated as controls. Transmission electron microscopy (TEM) and fluorescence microscopy were applied to confirm the membrane coatings of the PMPs and RMPs. In vitro imaging of the PMPs and RMPs was verified. Moreover, binding experiments were designed to examine the targeting ability of the PMPs. Finally, we assessed the signal intensity of the adherent PMPs in the risk area and remote area by ultrasound imaging based on an MI/R rat model. The platelet membrane equipped the PMPs with an accurate targeting ability. Compared with RMPs, PMPs showed significantly more adhesion to human umbilical vein endothelial cells and collagen IV in vitro. Both PMPs and RMPs exhibited good enhancement ability in vitro and in vivo. Furthermore, the signal intensity of PMPs in the risk area was significantly higher than that in remote areas. These results were further validated by an immunofluorescence assay and ex vivo fluorescence imaging. In summary, ultrasound imaging with PMPs can detect early MI/R injury in a noninvasive manner.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ling Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ling Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zhenxing Sun
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaojuan Qin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
210
|
Wei Y, Zhu M, Li S, Hong T, Guo X, Li Y, Liu Y, Hou X, He B. Engineered Biomimetic Nanoplatform Protects the Myocardium Against Ischemia/Reperfusion Injury by Inhibiting Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33756-33766. [PMID: 34258997 DOI: 10.1021/acsami.1c03421] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protection of cardiomyocytes against oxidative stress is vital to alleviate myocardial ischemia/reperfusion injury (MI/RI). However, antioxidative treatment is hampered by the lack of safe and effective therapeutics. Polydopamine (PDA), as a biodegradable class of nanomaterial with excellent antioxidant properties, has shown great potential in treating MI/RI. To achieve site-specific antioxidative efficacy, we established a PDA-based biomimetic nanoplatform (PDA@M), which consisted of a polydopamine core and a macrophage membrane shell to form a shell-core structure. By inheriting the inherent migration capability of macrophages, PDA@M was able to target the infarcted myocardium and exert an antioxidative effect to protect the myocardium. The results demonstrated that the accumulation of the membrane-wrapped nanoparticles (NPs) in the infarcted myocardium was greatly increased as compared with PDA alone, which effectively relieved the MI/RI-induced oxidative stress. PDA@M largely decreased the infarct size and improved the cardiac function post-MI/RI. Our study revealed that PDA@M could inhibit cell pyroptosis by suppressing the NLRP3/caspase-1 pathway, which is known to play a significant role in the antioxidant signaling pathway. In summary, PDA@M can target the infarcted myocardium and exert antioxidative and antipyroptosis functions to protect the myocardium against MI/RI-induced oxidative stress, suggesting that it may prove to be a potential therapeutic agent for MI/RI.
Collapse
Affiliation(s)
- Yazhong Wei
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Saiqi Li
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yongyong Li
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yiqiong Liu
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
211
|
Lee CY, Lee S, Jeong S, Lee J, Seo HH, Shin S, Park JH, Song BW, Kim IK, Choi JW, Kim SW, Han G, Lim S, Hwang KC. Suppressing Pyroptosis Augments Post-Transplant Survival of Stem Cells and Cardiac Function Following Ischemic Injury. Int J Mol Sci 2021; 22:7946. [PMID: 34360711 PMCID: PMC8348609 DOI: 10.3390/ijms22157946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1β production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.
Collapse
Affiliation(s)
- Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Korea; (C.Y.L.); (S.S.); (J.-H.P.); (G.H.)
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Seongtae Jeong
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea; (J.L.); (H.-H.S.)
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea; (J.L.); (H.-H.S.)
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Korea; (C.Y.L.); (S.S.); (J.-H.P.); (G.H.)
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Korea; (C.Y.L.); (S.S.); (J.-H.P.); (G.H.)
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Gyoonhee Han
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Korea; (C.Y.L.); (S.S.); (J.-H.P.); (G.H.)
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (S.L.); (S.J.); (B.-W.S.); (I.-K.K.); (J.-W.C.); (S.W.K.)
| |
Collapse
|
212
|
Drysch M, Schmidt SV, Becerikli M, Reinkemeier F, Dittfeld S, Wagner JM, Dadras M, Sogorski A, von Glinski M, Lehnhardt M, Behr B, Wallner C. Myostatin Deficiency Protects C2C12 Cells from Oxidative Stress by Inhibiting Intrinsic Activation of Apoptosis. Cells 2021; 10:cells10071680. [PMID: 34359850 PMCID: PMC8305813 DOI: 10.3390/cells10071680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemia reperfusion (IR) injury remains an important topic in clinical medicine. While a multitude of prophylactic and therapeutic strategies have been proposed, recent studies have illuminated protective effects of myostatin inhibition. This study aims to elaborate on the intracellular pathways involved in myostatin signaling and to explore key proteins that convey protective effects in IR injury. We used CRISPR/Cas9 gene editing to introduce a myostatin (Mstn) deletion into a C2C12 cell line. In subsequent experiments, we evaluated overall cell death, activation of apoptotic pathways, ROS generation, lipid peroxidation, intracellular signaling via mitogen-activated protein kinases (MAPKs), cell migration, and cell proliferation under hypoxic conditions followed by reoxygenation to simulate an IR situation in vitro (hypoxia reoxygenation). It was found that mitogen-activated protein kinase kinase 3/6, also known as MAPK/ERK Kinase 3/6 (MEK3/6), and subsequent p38 MAPK activation were blunted in C2C12-Mstn−/− cells in response to hypoxia reoxygenation (HR). Similarly, c-Jun N-terminal kinase (JNK) activation was negated. We also found the intrinsic activation of apoptosis to be more important in comparison with the extrinsic activation. Additionally, intercepting myostatin signaling mitigated apoptosis activation. Ultimately, this research validated protective effects of myostatin inhibition in HR and identified potential mediators worth further investigation. Intercepting myostatin signaling did not inhibit ROS generation overall but mitigated cellular injury. In particular, intrinsic activation of apoptosis origination from mitochondria was alleviated. This was presumably mediated by decreased activation of p38 caused by the diminished kinase activity increase of MEK3/6. Overall, this work provides important insights into HR signaling in C2C12-Mstn−/− cells and could serve as basis for further research.
Collapse
|
213
|
Jiang Y, Yu Q, Sui D, Yu X, Xu H, Li M. 20(S)-Protopanaxadiol Alleviates Myocardial Ischemia/Reperfusion Injury in Rats Through Suppression of Oxidative Stress and Apoptosis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211029528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
20(S)-protopanaxadiol (PPD) is an active natural product which is transformed from protopanaxadiol-type ginsenosides. The present study was conducted to evaluate the effects of PPD on myocardial ischemia/reperfusion (I/R) injury in a rat model. PPD (20mg/kg) or positive-control drug Diltiazem (10mg/kg) was administered daily for 7 days before left anterior descending I/R operation. After 2-hour reperfusion, changes of cardiac morphology, structure, and function were evaluated by HE staining and echocardiography. Myocardial infarct size was assessed using nitroblue tetrazolium staining. The activities of cardiac enzymes in serum were also evaluated. Cardiomyocyte apoptosis was detected using the terminal dUTP nick end labelling (TUNEL) assay. The extent of oxidative stress was evaluated according to the activities of superoxide dismutase (SOD) and glutathione per oxidase (GPx) and the levels of malondialdehyde (MDA). Western blot and immunohistochemistry were used to determine the expression of apoptosis associated proteins, including Bcl-2, Bax, cleaved Caspase-3, cleaved Caspase-9, and cytochrome C. According to the results, PPD reduced I/R‑induced increases in myocardial infarct size and improved cardiac function. Furthermore, PPD decreased cardiomyocyte apoptosis on TUNEL staining, which was verified by increased Bcl-2, and decreased expression of Bax, cytochrome C, cleaved Caspase-9, and cleaved Caspase-3 in I/R rat myocardium. Additionally, PPD reduced MDA levels and increased the anti-oxidative capacity by upregulating the activities of SOD and GPx. Taken together, the results suggest that PPD serves a protective role against oxidative stress and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
214
|
Zhuo Y, Yuan R, Chen X, He J, Chen Y, Zhang C, Sun K, Yang S, Liu Z, Gao H. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med 2021; 16:48. [PMID: 34183021 PMCID: PMC8240219 DOI: 10.1186/s13020-021-00458-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tanshinone I (TI) is a primary component of Salvia miltiorrhiza Bunge (Danshen), which confers a favorable role in a variety of pharmacological activities including cardiovascular protection. However, the exact mechanism of the cardiovascular protection activity of TI remains to be illustrated. In this study, the cardiovascular protective effect and its mechanism of TI were investigated. METHODS In this study, tert-butyl hydroperoxide (t-BHP)-stimulated H9c2 cells model was employed to investigate the protective effect in vitro. The cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) kit. The reactive-oxygen-species (ROS) level and mitochondrial membrane potential (MMP) were investigated by the flow cytometry and JC-1 assay, respectively. While in vivo experiment, the cardiovascular protective effect of TI was determined by using myocardial ischemia-reperfusion (MI/R) model including hematoxylin-eosin (H&E) staining assay and determination of superoxide dismutase (SOD) and malondialdehyde (MDA). Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release were detected by Enzyme-linked immunosorbent assay (ELISA). Receptor interacting protein kinase 1 (RIP1), receptor interacting protein kinase 3 (RIP3), receptor interacting protein kinase 3 (MLKL), protein kinase B (Akt), Nuclear factor erythroid 2 related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1) were determined by western blotting. RESULTS Our data demonstrated that TI pretreatment attenuated t-BHP and MI/R injury-induced necroptosis by inhibiting the expression of p-RIP1, p-RIP3, and p-MLKL. TI activated the Akt/Nrf2 pathway to promote the expression of antioxidant-related proteins such as phosphorylation of Akt, nuclear factor erythroid 2 related factor 2 (Nrf2), quinone oxidoreductase-1 (NQO-1) and heme oxygenase-1 (HO-1) expression in t-BHP-stimulated H9c2 cells. TI relieved oxidative stress by mitigating ROS generation and reversing MMP loss. In vivo experiment, TI made electrocardiograph (ECG) recovery better and lessened the degree of myocardial tissue damage. The counts of white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), and the release of TNF-α and IL-6 were reversed by TI treatment. SOD level was increased, while MDA level was decreased by TI treatment. CONCLUSION Collectively, our findings indicated that TI exerted cardiovascular protective activities in vitro and in vivo through suppressing RIP1/RIP3/MLKL and activating Akt/Nrf2 signaling pathways, which could be developed into a cardiovascular protective agent.
Collapse
Affiliation(s)
- Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Kaili Sun
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200, China.
| |
Collapse
|
215
|
Abstract
SUMMARY Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.
Collapse
|
216
|
Goerlich CE, Griffith B, Singh AK, Abdullah M, Singireddy S, Kolesnik I, Lewis B, Sentz F, Tatarov I, Hershfeld A, Zhang T, Strauss E, Odonkor P, Williams B, Tabatabai A, Bhutta A, Ayares D, Kaczorowski DJ, Mohiuddin MM. Blood Cardioplegia Induction, Perfusion Storage and Graft Dysfunction in Cardiac Xenotransplantation. Front Immunol 2021; 12:667093. [PMID: 34177906 PMCID: PMC8220198 DOI: 10.3389/fimmu.2021.667093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia. Methods Baboons were weight matched to genetically engineered swine heart donors. Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the addition of 25% by volume of donor whole blood. Continuous perfusion was performed using an XVIVO © Perfusion system with XHS to which baboon RBCs were added. Results PCXD was observed in 5/8 that were preserved with crystalloid cardioplegia followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively. Traditional preservation resulted in more inotropic support and higher average peak serum lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous perfusion 3.5±1.5 mmol/L. Conclusion Blood cardioplegia induction, alone or followed by XHS perfusion storage, reduced the incidence of PCXD and improved graft function and survival, relative to traditional crystalloid cardioplegia-slush storage alone.
Collapse
Affiliation(s)
- Corbin E Goerlich
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Bartley Griffith
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Avneesh K Singh
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohamed Abdullah
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Cardiothoracic Surgery, Cairo University, Cairo, Egypt
| | - Shreya Singireddy
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina Kolesnik
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Billeta Lewis
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Faith Sentz
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ivan Tatarov
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alena Hershfeld
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tianshu Zhang
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Erik Strauss
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Patrick Odonkor
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brittney Williams
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ali Tabatabai
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adnan Bhutta
- Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - David J Kaczorowski
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad M Mohiuddin
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
217
|
Bian Y, Pang P, Li X, Yu S, Wang X, Liu K, Ju J, Wu H, Gao Y, Liu Q, Jia Y, Qu Z, Bi X, Mei Z, Yin X, Wang N, Du W, Yang B. CircHelz activates NLRP3 inflammasome to promote myocardial injury by sponging miR-133a-3p in mouse ischemic heart. J Mol Cell Cardiol 2021; 158:128-139. [PMID: 34043986 DOI: 10.1016/j.yjmcc.2021.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI)-induced the activation of NLRP3 inflammasome has been well known to aggravate myocardial injury and cardiac dysfunction by causing inflammation and pyroptosis in the heart. Circular RNAs (circRNAs) have been demonstrated to play critical roles in cardiovascular diseases. However, the functions and mechanisms of circRNAs in modulating cardiac inflammatory response and cardiomyocyte pyroptosis remain largely unknown. We revealed that circHelz, a novel circRNA transcribed from the helicase with zinc finger (Helz) gene, was significantly upregulated in both the ischemic myocardium of MI mouse and neonatal mouse ventricular cardiomyocytes (NMVCs) exposed to hypoxia. Overexpression of circHelz caused cardiomyocyte injury in NMVCs by activating the NLRP3 inflammasome and inducing pyroptosis, while circHelz silencing reduced these effects induced by hypoxia. Furthermore, knockdown of circHelz remarkably attenuated NLRP3 expression, decreased myocardial infarct size, pyroptosis, inflammation, and increased cardiac function in vivo after MI. Overexpression of miR-133a-3p in cardiomyocytes greatly prevented pyroptosis in the presence of hypoxia or circHelz by targeting NLRP3 in NMVCs. Mechanistically, circHelz functioned as an endogenous sponge for miR-133a-3p via suppressing its activity. Overall, our results demonstrate that circHelz causes myocardial injury by triggering the NLRP3 inflammasome-mediated pro-inflammatory response and subsequent pyroptosis in cardiomyocytes by inhibiting miR-133a-3p function. Therefore, interfering with circHelz/miR-133a-3p/NLRP3 axis might be a promising therapeutic approach for ischemic cardiac diseases.
Collapse
Affiliation(s)
- Yu Bian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ping Pang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Shuting Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiuzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Kuiwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Jiaming Ju
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Han Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yuelin Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Qian Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yingqiong Jia
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhezhe Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiaoqian Bi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhongting Mei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xinda Yin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
218
|
Systematic Pharmacology Reveals the Antioxidative Stress and Anti-Inflammatory Mechanisms of Resveratrol Intervention in Myocardial Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5515396. [PMID: 34093716 PMCID: PMC8163539 DOI: 10.1155/2021/5515396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022]
Abstract
Objective To explore the oxidative stress and inflammatory mechanisms of resveratrol intervention in myocardial ischemia-reperfusion injury (MIRI). Methods The potential targets of resveratrol were predicted by PharmMapper. The MIRI genes were collected by Online Mendelian Inheritance in Man (OMIM), GeneCards is used to collect related disease genes, and String is used for enrichment analysis. Animal experiments were then performed to verify the systematic pharmacological results. Hematoxylin-eosin (HE) staining was used to observe myocardial damage. The levels of serum interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in each experimental group were detected. The protein and mRNA expressions of Toll-like receptor 4 (TLR4), nuclear factor-kappa (NF-κB) p65, IL-1β, IL-6, and TNF-α in rat myocardial tissue were measured. Results The results of systematic pharmacology showed that insulin resistance, FoxO signaling pathway, adipocytokine signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, T-cell receptor signaling pathway, peroxisome proliferator-activated receptors (PPAR) signaling pathway, Ras signaling pathway, TNF signaling pathway, and so on were regulated to improve MIRI. The results of animal experiments showed that the myocardial cells of the sham operation group were arranged in fibrous form, and the myocardial ischemia-reperfusion injury group had obvious cell morphology disorder. Compared with the MIRI group, the resveratrol group had a certain degree of relief. Compared with the MIRI group, serum IL-1β, TNF-α, and IL-6 in the resveratrol group was significantly reduced (P < 0.05), and myocardial tissue TLR4, NF-κB p65, IL-1β, IL-6, and TNF-α mRNA and protein expressions were significantly reduced (P < 0.05). Conclusion Resveratrol can effectively improve MIRI, and its mechanism may be related to antioxidative stress and anti-inflammatory.
Collapse
|
219
|
Different types of cell death in vascular diseases. Mol Biol Rep 2021; 48:4687-4702. [PMID: 34013393 DOI: 10.1007/s11033-021-06402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
In a mature organism, tissue homeostasis is regulated by cell division and cell demise as the two major physiological procedures. There is increasing evidence that deregulation of these processes is important in the pathogenicity of main diseases, including myocardial infarction, stroke, atherosclerosis, and inflammatory diseases. Therefore, there are ongoing efforts to discover modulating factors of the cell cycle and cell demise planners aiming at shaping innovative therapeutically modalities to the therapy of such diseases. Although the life of a cell is terminated by several modes of action, a few cell deaths exist-some of which resemble apoptosis and/or necrosis, and most of them are different from one another-that contribute to a wide range of functions to either support or disrupt the homoeostasis. Even in normal physiological conditions, cell life is severe within the cardiovascular system. Cells are persistently undergoing stretch, contraction, injurious metabolic byproducts, and hemodynamic forces, and a few of cells sustain decade-long lifetimes. The duration of vascular disease causes further exposure of vascular cells to a novel range of offences, most of which induce cell death. There is growing evidence on consequences of direct damage to a cell, as well as on responses of adjacent and infiltrating cells, which also have an effect on the pathology. In this study, by focusing on different pathways of cell death in different vascular diseases, an attempt is made to open a new perspective on the therapeutic goals associated with cell death in these diseases.
Collapse
|
220
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
221
|
NLRP3 as a sensor of metabolism gone awry. Curr Opin Biotechnol 2021; 68:300-309. [PMID: 33862489 DOI: 10.1016/j.copbio.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The NLRP3 inflammasome is an important player in innate immunity and pathogenic inflammation. Numerous studies have implicated it in sensing endogenous danger signals, yet the precise mechanisms remain unknown. Here, we review the current knowledge on the organismal and cellular metabolic triggers engaging NLRP3, and the mechanisms involved in integrating the diverse signals.
Collapse
|
222
|
Dai F, Li X, Li X, Ding Z, Xu R, Yin P, Wang S, Ge J, Wu J, Zou Y. Caspase-1 Abrogates the Salutary Effects of Hypertrophic Preconditioning in Pressure Overload Hearts via IL-1β and IL-18. Front Mol Biosci 2021; 8:641585. [PMID: 33842546 PMCID: PMC8024560 DOI: 10.3389/fmolb.2021.641585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac hypertrophic preconditioning (HP) signifies cardioprotection induced by transient pressure overload to resist hypertrophic effects of subsequently sustained pressure overload. Although it is recently found that inflammation triggers the development of nonischemic cardiomyopathy, whether inflammation plays a role in the antecedent protective effects of HP remains unknown. Caspase-1 is a critical proinflammatory caspase that also induces pyroptosis; thus, we investigated the role of caspase-1 using a unique model of HP in mice subjected longitudinally to 3 days of transverse aortic constriction (TAC 3d), 4 days of de-constriction (De-TAC 4d), and 4 weeks of Re-TAC (Re-TAC 4W). Echocardiography, hemodynamics, histology, PCR, and western blot confirmed preserved cardiac function, alleviated myocardial hypertrophy and fibrosis, and less activated hypertrophic signaling effectors in Re-TAC 4W mice, compared with TAC 4W mice. Mechanistically, caspase-1 and its downstream targets IL-1β and IL-18, but not GSDMD, were less activated in Re-TAC 4W mice. Furthermore, in HP mice with AAV-9-mediated cardiac-specific caspase-1 overexpression, the salutary effects of HP were remarkably abrogated, as evidenced by exacerbated cardiac remodeling, dysfunction, and activation of IL-1β and IL-18. Collectively, this study revealed a previously unrecognized involvement of caspase-1 in cardiac HP by regulation of IL-1β and IL-18 and shed light on caspase-1 as an antecedent indicator and target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xia Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peipei Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
223
|
Li J, Zhao C, Zhu Q, Wang Y, Li G, Li X, Li Y, Wu N, Ma C. Sweroside Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Pyroptosis Partially via Modulation of the Keap1/Nrf2 Axis. Front Cardiovasc Med 2021; 8:650368. [PMID: 33816579 PMCID: PMC8017130 DOI: 10.3389/fcvm.2021.650368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Aims: Sweroside, a secoiridoid glucoside extracted from Swertia pseudochinensis Hara, is reported to possess antioxidant and anti-inflammatory activities. However, whether sweroside has a protective effect on myocardial ischemia-reperfusion (IR) injury is yet to be elucidated. The present study aimed to confirm the cardioprotective effect of sweroside and to identify its underlying mechanism. Methods and Results: H9c2 cells were pretreated with sweroside and then underwent hypoxia-reoxygenation. Cell Counting Kit-8, creatine kinase-myocardial band (CK-MB) and lactate dehydrogenase (LDH) assays were conducted to detect cell viability and myocardial injury, respectively. The Langendorff method was used to induce myocardial IR injury ex vivo. Triphenyltetrazolium chloride staining was performed to detect myocardial infarct size, while protein expression was analyzed using western blotting. Overall, the results indicated that sweroside pretreatment dose-dependently led to a significant enhancement in cell viability, a decrease in release of CK-MB and LDH, a reduction in infarct size, and an improvement in cardiac function. Additionally, sweroside pretreatment caused a marked suppression of oxidative stress, as evidenced by the fact that sweroside decreased the accumulation of reactive oxygen species and malondialdehyde, while enhancing the activities of superoxide dismutase and glutathione peroxidase. Moreover, sweroside was found to notably repress pyroptosis, as sweroside blocked pore formation in the cell membrane, inhibited caspase-1 and interleukin (IL)-1β activity, and decreased the expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD, cleaved caspase-1, and IL-1β. Mechanistically, it was found that sweroside inhibited Kelch-like ECH-associated protein 1 (Keap1) and induced nuclear factor E2-associated factor 2 (Nrf2) nuclear translocation. Furthermore, the inhibition of oxidative stress and pyroptosis by sweroside could be abrogated via the inhibition of Nrf2 expression, which suggested that the protective effect induced by sweroside was Nrf2-dependent. Conclusions: The present study demonstrated that sweroside pretreatment could protect against myocardial IR injury by inhibiting of oxidative stress and NLRP3 inflammasome-mediated pyroptosis partially via modulation of the Keap1/Nrf2 axis.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guangyuan Li
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuhong Li
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Nan Wu
- The Core Laboratory of the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
224
|
Zheng X, Li J, Fan Q, Zhao X, Chen K. Dexmedetomidine alleviates myocardial ischemia/reperfusion-induced injury and Ca 2+ overload via the microRNA-346-3p/CaMKIId axis. Int J Cardiol 2021; 338:185-195. [PMID: 33731281 DOI: 10.1016/j.ijcard.2021.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) may impair cardiac functions. Dexmedetomidine (DEX) is protective in various clinical cases. Therefore, this study investigated the role and mechanism of DEX in MI/R. The myocardial infarct size, apoptosis, and levels of myocardial enzymes, SOD, ROS, Ca2+, and inflammatory factors in DEX-treated MI/R rats were measured. Differentially expressed microRNAs (miRs) in DEX-treated MI/R rats were detected. miR-346-3p was intervened to assess the effects of DEX on MI/R rats. The targeted binding relationship between miR-346-3p and CaMKIId was predicted and verified. DEX effect on hypoxia/reoxygenation (H/R)-induced cell model was evaluated. The role of CaMKIId in DEX protection was assessed after CaMKIId overexpression in H/R cells. NF-κB pathway and NLRP3 inflammasome-related protein levels were detected. DEX alleviated the myocardial injury and Ca2+ overload in MI/R rats, as evidenced by reduced infarct size, apoptosis and levels of myocardial enzymes, ROS, Ca2+, and inflammatory factors. DEX promoted miR-346-3p expression in MI/R rats, and miR-346-3p knockdown reversed DEX protection on MI/R rats. miR-346-3p targeted CaMKIId. DEX improved H/R-induced cell injury and Ca2+ overload and inhibited NF-κB/NLRP3 inflammasome-related protein levels, which were all reversed by CaMKIId overexpression. DEX alleviated injury and Ca2+ overload in MI/R via regulating the miR-346-3p/CaMKIId axis and inhibiting the NF-κB/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xuwei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China.
| | - Jianxiu Li
- Disinfection and supply room, Weifang Yidu Central Hospital, No. 4138, Linglongshan South Road, Qingzhou 262500, Shandong, China
| | - Qian Fan
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| |
Collapse
|
225
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
226
|
Intermittent high glucose induces pyroptosis of rat H9C2 cardiomyocytes via sodium-glucose cotransporter 1. Mol Cell Biochem 2021; 476:2479-2489. [PMID: 33608832 DOI: 10.1007/s11010-021-04104-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Cardiomyocyte death is an important pathogenic process in cardiac complications of diabetes. Diabetic patients often suffer glycemic variability. Pyroptosis is a form of programmed cell death triggered by inflammasomes and related with caspase-1 and gasdermin D activation. The present study was designed to examine the effects of intermittent high glucose simulating glycemic variability on the pyroptosis of cardiomyocytes in vitro. Rat H9C2 cardiomyocytes were incubated with normal glucose (NG), constant high glucose (CHG) and intermittent high glucose (IHG). Results showed that compared to CHG treatment, IHG further inhibited cell proliferation and promoted cell death of H9C2 cardiomyocytes. In addition, IHG upregulated higher levels of the expressions of inflammasome NLR family pyrin domain containing 3 (NLRP3) and adaptor protein apoptosis-associated speck-like protein containing CARD domain (ASC) and increased higher levels of activated caspase-1 and gasdermin D than CHG treatment. Moreover, the production of reactive oxygen species (ROS) and activation of NF-κB that is induced by IHG were significantly higher than that induced by CHG. Knockdown of sodium-glucose cotransporters 1 (SGLT1) in H9C2 cardiomyocytes was performed and the effects of SGLT1 on IHG-induced pyroptosis was evaluated. The results demonstrated that knockdown of SGLT1 partially reduced IHG-induced pyroptosis, ROS generation and NF-κB activation. Our results indicated that IHG is harmful to cardiomyocytes and it might be partially because of the SGLT1-depedent pyroptosis in cardiomyocytes.
Collapse
|
227
|
Farache Trajano L, Smart N. Immunomodulation for optimal cardiac regeneration: insights from comparative analyses. NPJ Regen Med 2021; 6:8. [PMID: 33589632 PMCID: PMC7884783 DOI: 10.1038/s41536-021-00118-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite decades of research, regeneration of the infarcted human heart remains an unmet ambition. A significant obstacle facing experimental regenerative therapies is the hostile immune response which arises following a myocardial infarction (MI). Upon cardiac damage, sterile inflammation commences via the release of pro-inflammatory meditators, leading to the migration of neutrophils, eosinophils and monocytes, as well as the activation of local vascular cells and fibroblasts. This response is amplified by components of the adaptive immune system. Moreover, the physical trauma of the infarction and immune-mediated tissue injury provides a supply of autoantigens, perpetuating a cycle of autoreactivity, which further contributes to adverse remodelling. A gradual shift towards an immune-resolving environment follows, culminating in the formation of a collagenous scar, which compromises cardiac function, ultimately driving the development of heart failure. Comparing the human heart with those of animal models that are capable of cardiac regeneration reveals key differences in the innate and adaptive immune responses to MI. By modulating key immune components to better resemble those of regenerative species, a cardiac environment may be established which would, either independently or via the synergistic application of emerging regenerative therapies, improve functional recovery post-MI.
Collapse
Affiliation(s)
- Luiza Farache Trajano
- British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
228
|
Mezzaroma E, Abbate A, Toldo S. NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules 2021; 26:976. [PMID: 33673188 PMCID: PMC7917621 DOI: 10.3390/molecules26040976] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| |
Collapse
|
229
|
Liang C, Liu Y, Xu H, Huang J, Shen Y, Chen F, Luo M. Exosomes of Human Umbilical Cord MSCs Protect Against Hypoxia/Reoxygenation-Induced Pyroptosis of Cardiomyocytes via the miRNA-100-5p/FOXO3/NLRP3 Pathway. Front Bioeng Biotechnol 2021; 8:615850. [PMID: 33520966 PMCID: PMC7844314 DOI: 10.3389/fbioe.2020.615850] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of morbidity and death worldwide. Studies have indicated that microRNAs in mesenchymal stem cell (MSC)-derived exosomes are crucial for treating various diseases. Methods Human umbilical cord MSC (hucMSC)-derived exosomes (hucMSC-exo) were isolated and used to treat cardiomyocytes that underwent hypoxia/reoxygenation (H/R) injury. Bioluminescence assessment was used to study binding of miRNA to its targeting gene. Results We found that H/R decreased the viability of AC16 cells, increased the expression of NLRP3, and activated caspase-1(p20) and GSDMD-N as well as release of IL-1β and IL-18, and such effects were abolished by administration of hucMSC-exo. Administration of exosomes from negative scramble miRNA (NC)-transfected hucMSCs blocked H/R-caused lactate dehydrogenase release, pyroptosis, and over-regulation of NLRP3 and activated caspase-1(p20) and GSDMD-N as well as release of IL-1β and IL-18. More importantly, in comparison to exsomes from NC-transfected hucMSCs, exsomes from miR-100-5p-overexpressing hucMSCs had more obvious effects, and those from miR-100-5p-inhibitor-transfected hucMSCs showed fewer effects. Functional study showed that miR-100-5p bound to the 3’-untranslated region (3’-UTR) of FOXO3 to suppress its transcription. Moreover, overexpression of FOXO3 abolished the protective effects of miR-100-5p. Conclusion Enriched miR-100-5p in hucMSC-exo suppressed FOXO3 expression to inhibit NLRP3 inflammasome activation and suppress cytokine release and, therefore, protected cardiomyocytes from H/R-induced pyroptosis and injury.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huifeng Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shen
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Faxiu Chen
- Department of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ming Luo
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
230
|
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2021; 11:570867. [PMID: 33597866 PMCID: PMC7883640 DOI: 10.3389/fphar.2020.570867] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia is a high-risk disease among middle-aged and senior individuals. After thrombolytic therapy, heart tissue can potentially suffer further damage, which is called myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of MIRI involves the interaction of multiple factors, and the current research hotspots mainly include oxidative stress, inflammation, calcium overload, energy metabolism disorders, pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese herbal medicines have been used to treat patients with coronary heart disease, angina pectoris, and other cardiovascular diseases. Studies have shown that saponins are the main active substances in TCMs containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted the saponin components with anti-MIRI effects and their regulatory mechanisms. Each saponin can play a cardioprotective role via multiple mechanisms, and the signaling pathways involved in different saponins are not the same. We found that more active saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a strong regulatory effect on energy metabolism. The highly active saponin components of Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad application prospect for the development of highly effective and low-toxicity anti-MIRI drugs.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
231
|
Wu J, Cai W, Du R, Li H, Wang B, Zhou Y, Shen D, Shen H, Lan Y, Chen L, Zheng X, Huang D, Shi G. Sevoflurane Alleviates Myocardial Ischemia Reperfusion Injury by Inhibiting P2X7-NLRP3 Mediated Pyroptosis. Front Mol Biosci 2021; 8:768594. [PMID: 34765646 PMCID: PMC8576530 DOI: 10.3389/fmolb.2021.768594] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia is common in aging population. This study investigates the protective effect of Sevoflurane on myocardial ischemia reperfusion injury (MIRI) and its underlying mechanism. A total of 87 patients with a history of myocardial ischemia who underwent abdominal surgery with Sevoflurane general anesthesia were recruited in the study. The clinical data, blood pressure, heart rate, pressure-rate quotient (PRQ) and rate-pressure product (RPP) were recorded. Serum samples were collected and heart-type fatty acid binding protein (H-FABP), ischemia modified albumin (IMA), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were measured to observe whether Sevoflurane anesthesia had protective effect on myocardium. In addition, MIRI rats and hypoxia/reoxygenation (H/R) injury cell model was established using neonatal rat ventricular myocytes (NRVM). Rats or NRVM were pretreated with sevoflurane for 45min before hypoxia. The mRNA expression of purinergic receptor-7 (P2X7) and NLR family pyrin domain containing 3(NLRP3) were examined. The protein expression of P2X7, NLRP3, apoptosis-associated speck-like protein (ASC), cysteine aspartic acid specific protease-1(Caspase-1), Gasdermin-D (GSDMD), Bcl-2 Associated X Protein (Bax), B-cell lymphoma-2 (Bcl-2) in myocardial tissue and cells were evaluated. The serum contents of IL-1β, IL-18, Malondialdehyde (MDA), Superoxide dismutase (SOD), Lactate dehydrogenase (LDH), Creatine kinase (CK), and Creatine kinase isoenzymes (CK-MB) were measured. The cellular localization and fluorescence intensity of NLRP3 and ASC in cells were detected. It was found that the secretion of IL-1β and IL-18 decreased in the patients. After I45 min/R3h in SD rats and H3h/R1h in NRVM, the protein expressions of P2X7, NLRP3, ASC, Caspase-1 and GSDMD were increased, the release of IL-1β, IL-18, CK, CK-MB, LDH and MDA were increased, and SOD activity was decreased. Sevoflurane treatment inhibited the high expression of P2X7, NLRP3, ASC, Caspase-1 and GSDMD, inhibited the release of LDH, CK,CK-MB and MDA in cells, and improved the activity of SOD, indicating that Sevoflurane alleviated the damage of MIRI of rats and H/R of NRVM, and had myocardial protective effect. Taken together, our study suggests that Sevoflurane inhibited the expression of IL-1β, IL-18 and GSDMD by inhibiting the P2X7-NLRP3 signaling pathway. It reduced the H/R injury of cardiomyocytes and protected the cardiac function by regulating inflammatory reaction and pyroptosis.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruiming Du
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haiyang Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiong Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Daifei Shen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huimin Shen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Lan
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lesi Chen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoxia Zheng
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Ganggang Shi,
| |
Collapse
|
232
|
Guo X, Hu S, Liu J, Huang L, Zhong P, Fan Z, Ye P, Chen M. Piperine protects against pyroptosis in myocardial ischaemia/reperfusion injury by regulating the miR-383/RP105/AKT signalling pathway. J Cell Mol Med 2021; 25:244-258. [PMID: 33219747 PMCID: PMC7810957 DOI: 10.1111/jcmm.15953] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
miRNA-mediated pyroptosis play crucial effects in the development of myocardial ischaemia/reperfusion (I/R) injury (MIRI). Piperine (PIP) possesses multiple pharmacological effects especially in I/R condition. This study focuses on whether PIP protects MIRI from pyroptosis via miR-383-dependent pathway. Rat MIRI model was established by 30 minutes of LAD ligation and 4 hours of reperfusion. Myocardial enzymes, histomorphology, structure and function were detected to evaluate MIRI. Recombinant adenoviral vectors for miR-383 overexpression or miR-383 silencing or RP105 knockdown were constructed, respectively. Luciferase reporter analysis was used to confirm RP105 as a target of miR-383. Pyroptosis-related markers were measured by Western blotting assay. The results showed that I/R provoked myocardial injury, as shown by the increases of LDH/CK releases, infarcted areas and apoptosis as well as worsened function and structure. Pyroptosis-related mediators including NLRP3, cleaved caspase-1, cleaved IL-1β and IL-18 were also reinforced after MIRI. However, PIP treatment greatly ameliorated MIRI in parallel with pyroptotic repression. In mechanistic studies, MIRI-caused elevation of miR-383 and decrease of RP105/PI3K/AKT pathway were reverted by PIP treatment. Luciferase reporter assay confirmed RP105 as a miR-383 target. miR-383 knockdown ameliorated but miR-383 overexpression facilitated pyroptosis and MIRI. Moreover, the anti-pyroptotic effect from miR-383 silencing was verified to be relied on the RP105/PI3K/AKT signalling pathway. Additionally, our present study further indicated the miR-383/RP105/AKT-dependent approach resulting from PIP administration against pyroptosis in MIRI. Therefore, PIP treatment attenuates MIRI and pyroptosis by regulating miR-383/RP105/AKT pathway, and it may provide a therapeutic manner for the treatment of MIRI.
Collapse
Affiliation(s)
- Xin Guo
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shan Hu
- Heart Function DepartmentThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ji‐Jun Liu
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Huang
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng Zhong
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Xing Fan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ping Ye
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Hua Chen
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
233
|
Cheng L, Wu Y, Tang J, Zhang C, Cheng H, Jiang Q, Jian C. Remifentanil protects against myocardial ischemia/reperfusion injury via miR-205-mediated regulation of PINK1. J Toxicol Sci 2021; 46:263-271. [PMID: 34078833 DOI: 10.2131/jts.46.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury could lead to severe cardiovascular ischemic disease, including myocardial infarction and contractile dysfunction. Remifentanil demonstrated protective effect on myocardial I/R injury. The underlying pathophysiological mechanism was then investigated in this study. In the current study, primary cardiomyocytes were isolated from rats, and then preconditioned with remifentanil. Rats, tail vein injected with miR-205 antagomir, were subjected to infusion of remifentanil, and then subjected to regional ischemia followed by reperfusion. The results demonstrated that cell viability of hypoxia/reoxygenation-induced cardiomyocytes was increased post remifentanil, while the apoptosis was decreased accompanied with reduced cleaved caspase-3 expression. Hypoxia/reoxygenation treatment increased miR-205 and decreased PINK1 (PTEN induced putative kinase 1) expression. However, preconditioning with remifentanil reduced miR-205 and enhanced PINK1. Moreover, over-expression of miR-205 decreased PINK1 expression and counteracted the effects of remifentanil-induced increase of cell viability and decrease of cell apoptosis in hypoxia/reoxygenation-induced cardiomyocytes. Injection with miR-205 antagomir improved remifentanil-induced decrease of infarct size and LDH (lactic acid dehydrogenase) activity in rat model with I/R injury. In conclusion, miR-205 might participate in the protective effect of remifentanil in rat myocardial I/R injury via regulation of PINK1, providing a potential target for amelioration of cardiovascular ischemic disease.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Cardiovascular Internal Medicine, The Affiliated Cardiovascular Hospital of Qindao University, China
| | - Yifan Wu
- Department of Cardiovascular Internal Medicine, Central People's Hospital of Zhanjiang, China
| | - Jiayu Tang
- Department of Medical Laboratory, Central People's Hospital of Zhanjiang, China
| | - Chao Zhang
- Department of Cardiovascular Internal Medicine, The Affiliated Cardiovascular Hospital of Qindao University, China
| | - Huan Cheng
- Department of Uitrasound, The Affiliated Hospital of Qindao University, China
| | - Qi Jiang
- Department of Cardiovascular Internal Medicine, The Affiliated Cardiovascular Hospital of Qindao University, China
| | - Chunyan Jian
- Department of Cardiovascular Internal Medicine, Central People's Hospital of Zhanjiang, China
| |
Collapse
|
234
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
235
|
Chen X, Zhang J, Xia L, Wang L, Li H, Liu H, Zhou J, Feng Z, Jin H, Yang J, Yang Y, Wu B, Zhang L, Chen G, Wang G. β-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling. Aging (Albany NY) 2020; 13:2251-2263. [PMID: 33323551 PMCID: PMC7880335 DOI: 10.18632/aging.202246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) remains a common complication during liver transplantation (LT), partial hepatectomy and hemorrhagic shock in patients. As a member of the G protein-coupled receptors adaptors, ARRB2 has been reported to be involved in a variety of physiological and pathological processes. However, whether β-arrestin-2 affects the pathogenesis of hepatic IRI remains unknown. The goal of the present study was to determine whether ARRB2 protects against hepatic IR injury and elucidate the underlying mechanisms. To this end, 70% hepatic IR models were established in ARRB2 knockdown mice and wild-type littermates, with blood and liver samples collected at 1, 6 and 12 h after reperfusion to evaluate liver injury. The effect of ARBB2 on PI3K/Akt signaling during IR injury was evaluated in vivo, and PI3K/Akt pathway regulation by ARRB2 was further assessed in vitro. Our results showed that ARRB2 knockdown aggravates hepatic IR injury by promoting the apoptosis of hepatocytes and inhibiting their proliferation. In addition, ARRB2 deficiency inhibited PI3K/Akt pathway activation, while the administration of the PI3K/Akt inhibitor PX866 resulted in severe IR injury in mice. Furthermore, the liver-protecting effect of ARRB2 was shown to depend on PI3K/Akt pathway activation. In summary, our results suggest that β-Arrestin-2 protects against hepatic IRI by activating PI3K/Akt signaling, which may provide a novel therapeutic strategy for treating liver ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Junbin Zhang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Long Xia
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Li Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Hui Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Huilin Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Zhiying Feng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Hai Jin
- Department of Medical Ultrasonics, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510630, Guangdong Province, P. R. China
| | - JianXu Yang
- Department of Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P. R. China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Bin Wu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Guihua Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Genshu Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| |
Collapse
|
236
|
Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y, Ye Y. Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther 2020; 34:443-461. [PMID: 32335797 DOI: 10.1007/s10557-020-06978-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ticagrelor, a P2Y12 receptor antagonist, and dapagliflozin, a sodium-glucose-cotransporter-2 inhibitor, suppress the activation of the NLRP3 inflammasome. The anti-inflammatory effects of dapagliflozin depend on AMPK activation. Also, ticagrelor can activate AMPK. We assessed whether dapagliflozin and ticagrelor have additive effects in attenuating the progression of diabetic cardiomyopathy in T2DM mice. METHODS Eight-week-old BTBR and wild-type mice received no drug, dapagliflozin (1.5 mg/kg/day), ticagrelor (100 mg/kg/day), or their combination for 12 weeks. Heart function was evaluated by echocardiography and heart tissue samples were assessed for fibrosis, apoptosis, qRT-PCR, and immunoblotting. RESULTS Both drugs attenuated the progression of diabetic cardiomyopathy as evident by improvements in left ventricular end-systolic and end-diastolic volumes and left ventricular ejection fraction, which were further improved by the combination. Both drugs attenuated the activation of the NOD-like receptor 3 (NLRP3) inflammasome and fibrosis. The effect of the combination was significantly greater than each drug alone on myocardial tissue necrotic factorα (TNFα) and interleukin-6 (IL-6) levels, suggesting additive effects. The combination had also a greater effect on ASC, collagen-1, and collagen-3 mRNA levels than each drug alone. While both drugs activated adenosine mono-phosphate kinase (AMPK), only dapagliflozin activated mTOR and increased RICTOR levels. Moreover, only dapagliflozin decreased myocardial BNP and Caspase-1 mRNA levels, and the effects of dapagliflozin on NLRP3 and collagen-3 mRNA levels were significantly greater than those of ticagrelor. CONCLUSIONS Both dapagliflozin and ticagrelor attenuated the progression of diabetic cardiomyopathy, the activation of the NLRP3 inflammasome, and fibrosis in BTBR mice with additive effects of the combination. While both dapagliflozin and ticagrelor activated AMPK, only dapagliflozin activated mTOR complex 2 (mTORC2) in hearts of BTBR mice.
Collapse
Affiliation(s)
- Huan Chen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA
- Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Da Tran
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Sven Nylander
- Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.
| |
Collapse
|
237
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
238
|
Wohlford GF, Van Tassell BW, Billingsley HE, Kadariya D, Canada JM, Carbone S, Mihalick VL, Bonaventura A, Vecchié A, Chiabrando JG, Bressi E, Thomas G, Ho AC, Marawan AA, Dell M, Trankle CR, Turlington J, Markley R, Abbate A. Phase 1B, Randomized, Double-Blinded, Dose Escalation, Single-Center, Repeat Dose Safety and Pharmacodynamics Study of the Oral NLRP3 Inhibitor Dapansutrile in Subjects With NYHA II-III Systolic Heart Failure. J Cardiovasc Pharmacol 2020; 77:49-60. [PMID: 33235030 PMCID: PMC7774821 DOI: 10.1097/fjc.0000000000000931] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
ABSTRACT The NLRP3 inflammasome has been implicated in the development and progression of heart failure. The aim of this study was to determine the safety of an oral inhibitor of the NLRP3 inflammasome, dapansutrile (OLT1177), in patients with heart failure and reduced ejection fraction (HFrEF). This was a phase 1B, randomized, double-blind, dose escalation, single-center, repeat dose safety and pharmacodynamics study of dapansutrile in stable patients with HFrEF (New York Heart Association Class II-III). Subjects were randomized to treatment with dapansutrile for up to 14 days at a ratio of 4:1 into 1 of 3 sequential ascending dose cohorts (500, 1000, or 2000 mg) each including 10 patients. Subjects underwent clinical assessment, biomarker determination, transthoracic echocardiogram, and maximal cardiopulmonary exercise testing at baseline, day 14, and day 28 to ascertain changes in clinical status. Placebo cases (N = 2 per cohort) were used as a decoy to reduce bias and not for statistical comparisons. Thirty participants (20 men) were treated for 13 (12-14) days. No serious adverse events during the study were recorded. All clinical or laboratory parameters at day 14 compared with baseline suggested clinical stability without significant within-group differences in the dapansutrile-pooled group or the 3 dapansutrile cohorts. Improvements in left ventricular EF [from 31.5% (27.5-39) to 36.5% (27.5-45), P = 0.039] and in exercise time [from 570 (399.5-627) to 616 (446.5-688) seconds, P = 0.039] were seen in the dapansutrile 2000 mg cohort. Treatment with dapansutrile for 14 days was safe and well tolerated in patients with stable HFrEF.
Collapse
Affiliation(s)
- George F. Wohlford
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Benjamin W. Van Tassell
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA; and
| | - Hayley E. Billingsley
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA
| | - Dinesh Kadariya
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Justin M. Canada
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Salvatore Carbone
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA
| | - Virginia L. Mihalick
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Aldo Bonaventura
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Alessandra Vecchié
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Juan Guido Chiabrando
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Edoardo Bressi
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Georgia Thomas
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Ai-Chen Ho
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Amr A. Marawan
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Megan Dell
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Cory R. Trankle
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Jeremy Turlington
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Roshanak Markley
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA
| |
Collapse
|
239
|
Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21207711. [PMID: 33081064 PMCID: PMC7589803 DOI: 10.3390/ijms21207711] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
It is well established that adipose tissue, apart from its energy storage function, acts as an endocrine organ that produces and secretes a number of bioactive substances, including hormones commonly known as adipokines. Obesity is a major risk factor for the development of cardiovascular diseases, mainly due to a low grade of inflammation and the excessive fat accumulation produced in this state. The adipose tissue dysfunction in obesity leads to an aberrant release of adipokines, some of them with direct cardiovascular and inflammatory regulatory functions. Inflammation is a common link between obesity and cardiovascular diseases, so this review will summarise the role of the main adipokines implicated in the regulation of the inflammatory processes occurring under the scenario of cardiovascular diseases.
Collapse
|
240
|
Fan S, Zhang D, Liu F, Yang Y, Xu H. Artesunate alleviates myocardial ischemia/reperfusion-induced myocardial necrosis in rats and hypoxia/reoxygenation-induced apoptosis in H9C2 cells via regulating the FAK/PI3K/Akt pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1291. [PMID: 33209871 PMCID: PMC7661874 DOI: 10.21037/atm-20-5182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background The various anti-inflammatory, anti-apoptotic, and antioxidant effects of Artesunate (Art) have been explored in numerous studies. This study aimed to evaluate the function of Art on myocardial necrosis in apoptotic cardiomyocytes in vivo and in vitro. Methods Sprague Dawley (SD) rats were randomly divided into groups: a control group, a myocardial ischemia reperfusion (MI/R) group, and MI/R+ Art groups. To establish a MI/R model, rats were subjected to left anterior descending artery ischemia for 45 minutes, and then reperfusion for 2 hours. Hypoxia was induced in H9C2 cells by subjecting them to hypoxic conditions at 37 °C for 4 hours, before placing them in a normoxic chamber for 2 hours. The test methods were used in this test, such as echocardiography, enzyme-linked immunosorbent assay (ELISA), HE staining, TUNEL staining, immunohistochemistry, flow cytometry, western blot, and CCK-8 assay. Results Art improved myocardial systolic function caused by MI/R injury in vivo. Simultaneously, Art reduced the levels of cardiac troponin I (cTnl), creatine kinase-MB (CK-MB) and myohemoglobin (Mb) in vivo and in vitro. Moreover, Art inhibited cardiomyocyte apoptosis in vivo and in vitro. The focal adhesion kinase (FAK)/phosphatidylinositide-3 kinases (PI3K)/AKT signaling pathway was also activated by Art in vivo and in vitro. Furthermore, after inhibitor PF573228 was added, Art inhibited apoptosis in H9C2 cells via activation of the FAK/PI3K/AKT signaling pathway in vitro. Conclusions This study confirms that Art alleviated MI/R injury and inhibited cardiomyocyte apoptosis in vivo and in vitro. Art exerted an inhibitory effect on cardiomyocyte apoptosis by activating the FAK/PI3K/AKT signaling pathway. Therefore, Art may serve as an alternative treatment for MI/R injury.
Collapse
Affiliation(s)
- Shunyang Fan
- Department of Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deyin Zhang
- Department of Galactphore, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuyun Liu
- Department of Pediatric Orthopaedic, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqi Yang
- Department of Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliang Xu
- Department of Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
241
|
Castro-Torres Y, Katholi RE. Recently Approved and Under Investigation Drugs for Treating Patients with Heart Failure. Curr Cardiol Rev 2020; 16:202-211. [PMID: 32351188 PMCID: PMC7536816 DOI: 10.2174/1573403x14666180702151626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Heart Failure (HF) represents a leading cause of morbidity and mortality worldwide. Despite the recent advances in the treatment of this condition, patients´ prognosis remains unfavorable in most cases. Sacubitril/valsartan and ivabradine have been recently approved to improve clinical outcomes in patients with HF with reduced ejection fraction. Drugs under investigation for treating patients with HF encompass many novel mechanisms including vasoactive peptides, blocking inflammatory- mediators, natriuretic peptides, selective non-steroidal mineralocorticoid-receptor antagonists, myocardial β3 adrenoreceptor agonists, inhibiting the cytochrome C/cardiolipin peroxidase complex, neuregulin-1/ErbB signaling and inhibiting late inward sodium current. The aim of this manuscript is to review the main drugs under investigation for the treatment of patients with HF and give perspectives for their implementation into clinical practice.
Collapse
Affiliation(s)
- Yaniel Castro-Torres
- Servicio de Cardiología, Hospital Universitario Celestino Hernández Robau, Santa Clara, Villa Clara, Cuba
| | - Richard E Katholi
- Department of Pharmacology, Southern Illinois School of Medicine, Springfield, IL 62702, United States
| |
Collapse
|
242
|
Lu S, Tian Y, Luo Y, Xu X, Ge W, Sun G, Sun X. Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury. J Adv Res 2020; 29:83-94. [PMID: 33842007 PMCID: PMC8020153 DOI: 10.1016/j.jare.2020.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Inflammation is a key factor in myocardial ischemia/reperfusion (MI/R) injury. Targeting leucocyte-mediated inflammation is an important strategy for MI/R therapy. Iminostilbene (ISB), a simple dibenzoazepine small molecule compound, has a strong anti-neurodegenerative effect. However, no study has shown the cardioprotective effect of ISB. Objectives This study aimed to investigate the role of ISB against MI/R injury and identify its molecular target. Methods To verify the cardiac protection of ISB in vivo and in vitro, we performed rat MI/R surgery and subjected inflammatory modeling of macrophages. In terms of molecular mechanisms, we designed and synthesized a small molecular probe of ISB and employed it on the click chemistry-activity-based protein profiling technique to fish for ISB targets in macrophages. To identify the target, we applied the competitive inhibition assay, surface-plasmon resonance (SPR), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. Results In vivo, ISB showed robust anti-myocardial injury activity by improving cardiac function, reducing myocardial infarction, and inhibiting macrophage-mediated inflammation. In vitro, ISB strongly inhibited the transcription and the expression levels of inflammatory cytokines in macrophages. The pyruvate kinase isozyme type M2 (PKM2) was identified as the potential target of ISB through proteomic analysis and the competitive assay was performed for specific binding verification. Further thermodynamic and kinetic experiments showed that ISB was bound to PKM2 in a dose-dependent manner. Moreover, in terms of the biological function of ISB on PKM2, ISB reduced the expression of PKM2, thereby reducing the expression of HIF1α and the phosphorylation of STAT3. Conclusion This study for the first time demonstrated that ISB targeted PKM2 to reduce macrophage inflammation thereby significantly alleviating MI/R injury.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Wenxiu Ge
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| |
Collapse
|
243
|
Xie D, Li M, Yu K, Lu H, Chen Y. Etomidate alleviates cardiac dysfunction, fibrosis and oxidative stress in rats with myocardial ischemic reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1181. [PMID: 33241030 PMCID: PMC7576070 DOI: 10.21037/atm-20-6015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Etomidate has been shown to reduce ischemia/reperfusion (I/R) injury in several tissues. Here we aimed to investigate the protective effects of etomidate on I/R injury in Sprague-Dawley (SD) rats. Methods Thirty rats were randomly divided into 5 groups and pretreated with saline or 0.5/1/2 mg/kg etomidate. I/R injury was induced in all groups except the sham control group. After administration with saline or 0.5/1/2 mg/kg etomidate daily for another 27 days, rats were sacrificed and the effects of etomidate were analyzed. Results Treatment with etomidate dose dependently improved echocardiography indexes, ameliorated myocardial histological alterations and reduced serum creatine kinase isoenzyme (CK-MB), myoglobin (Mb) and troponin I (cTnl) levels. Fibrosis markers transforming growth factor beta (TGF-β), alpha-smooth muscle actin (α-SMA) and fibronectin was decreased with etomidate treatment. Etomidate also decreased oxidative stress and inflammation in rats, indicated by increased superoxide dismutase (SOD) and glutathione (GSH), and reduced malondialdehyde (MDA) in myocardial tissues, as well as decreased inducible NO synthase (iNOS) and increased interleukin (IL)-10 in both serum and myocardial tissues. Conclusions Altogether, we showed that etomidate alleviated I/R injury in rats through reduced cardiac dysfunction, fibrosis and oxidative stress. These results supported the protective role of etomidate to myocardial I/R injury.
Collapse
Affiliation(s)
- Dili Xie
- Department of Geriatric Cardiology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Li
- Department of Geriatric ICU, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Kang Yu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Lu
- Anesthesia Operation Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yong Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
244
|
Duerr GD, Wu S, Schneider ML, Marggraf V, Weisheit CK, Velten M, Verfuerth L, Frede S, Boehm O, Treede H, Dewald O, Baumgarten G, Kim SC. CpG postconditioning after reperfused myocardial infarction is associated with modulated inflammation, less apoptosis, and better left ventricular function. Am J Physiol Heart Circ Physiol 2020; 319:H995-H1007. [PMID: 32857588 DOI: 10.1152/ajpheart.00269.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconditioning attenuates inflammation and fibrosis in myocardial infarction (MI). The aim of this study was to investigate whether postconditioning with the cytosine-phosphate-guanine (CpG)-containing Toll-like receptor-9 (TLR9) ligand 1668-thioate (CpG) can modulate inflammation and remodeling in reperfused murine MI. Thirty minutes of left descending coronary artery (LAD) occlusion was conducted in 12-wk-old C57BL/6 mice. Mice were treated with CpG intraperitoneally 5 min before reperfusion. The control group received PBS; the sham group did not undergo ischemia. M-mode echocardiography (3, 7, and 28 days) and Millar left ventricular (LV) catheterization were performed (7 and 28 days) before the hearts were excised and harvested for immunohistochemical (6 h, 24 h, 3 days, 7 days, and 28 days), gene expression (6 h, 24 h, and 3 days; Taqman RT-qPCR), protein, and FACS analysis (24 h and 3 days). Mice treated with CpG showed significantly better LV function after 7 and 28 days of reperfusion. Protein and mRNA expressions of proinflammatory and anti-inflammatory cytokines were significantly induced after CpG treatment. Histology revealed fewer macrophages in CpG mice after 24 h, confirmed by FACS analysis with a decrease in both classically M1- and alternative M2a-monocytes. CpG treatment reduced apoptosis and cardiomyocyte loss and was associated with induction of adaptive mechanisms, e.g., of heme-oxigenase-1 and β-/α-myosin heavy chain (MHC) ratio. Profibrotic markers collagen type Iα (Col-Ια) and Col-III induction was abrogated in CpG mice, accompanied by fewer myofibroblasts. This led to the formation of a smaller scar. Differential matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) expression contributed to attenuated remodeling in CpG, resulting in preserved cardiac function in a Toll-like receptor 1- and TLR9-dependent manner. Our study suggests a cardioprotective mechanism of CpG postconditioning, involving Toll-like receptor-driven modulation of inflammation. This is followed by attenuated remodeling and preserved LV function.NEW & NOTEWORTHY Cytosine-phosphate-guanine (CpG) postconditioning seems to mediate inflammation via Toll-like receptor-1 and Toll-like receptor-9 signaling. Enhanced cytokine and chemokine expressions are partly attenuated by IL-10 and matrix metalloproteinase-8 (MMP8) induction, being associated with lower macrophage infiltration and M1-monocyte differentiation. Furthermore, switch from α- to β-MHC and balanced MMP/TIMP expression led to lesser cardiomyocyte apoptosis, smaller scar size, and preserved cardiac function. Data of pharmacological postconditioning have been widely disappointing to date. Our study suggests a new pathway promoting myocardial postconditioning via Toll-like receptor activation.
Collapse
Affiliation(s)
- Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Shuijing Wu
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Max Lukas Schneider
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Vanessa Marggraf
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | | | - Markus Velten
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Luise Verfuerth
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Hendrik Treede
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Oliver Dewald
- Department of Cardiac Surgery, University Hospital of Oldenburg, Oldenburg, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology, Johanniter-Krankenhaus Bonn, Bonn, Germany
| | - Se-Chan Kim
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| |
Collapse
|
245
|
Li Q, Gao J, Pang X, Chen A, Wang Y. Molecular Mechanisms of Action of Emodin: As an Anti-Cardiovascular Disease Drug. Front Pharmacol 2020; 11:559607. [PMID: 32973538 PMCID: PMC7481471 DOI: 10.3389/fphar.2020.559607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Emodin is a natural occurring anthraquinone derivative isolated from roots and barks of numerous plants, molds, and lichens. It is found to be an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and it is a pleiotropic molecule with diuretic, vasorelaxant, anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Moreover, emodin has also been shown to have a wide activity of anti-cardiovascular diseases. It is mainly involved in multiple molecular targets such as inflammatory, anti-apoptosis, anti-hypertrophy, anti-fibrosis, anti-oxidative damage, abnormal, and excessive proliferation of smooth muscle cells in cardiovascular diseases. As a new type of cardiovascular disease treatment drug, emodin has broad application prospects. However, a large amount of evidences detailing the effect of emodin on many signaling pathways and cellular functions in cardiovascular disease, the overall understanding of its mechanisms of action remains elusive. In addition, by describing the evidence of the effects of emodin in detail, the toxicity and poor oral bioavailability of mice have been continuously discovered. This review aims to describe a timely overview of emodin related to the treatment of cardiovascular disease. The emphasis is to summarize the pharmacological effects of emodin as an anti-cardiovascular drug, as well as the targets and its potential mechanisms. Furthermore, the treatment of emodin compared with conventional cardiovascular drugs or target inhibitors, the toxicity, pharmacokinetics and derivatives of emodin were discussed.
Collapse
Affiliation(s)
- Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohan Pang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
246
|
Jankowski M, Broderick TL, Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol 2020; 11:2139. [PMID: 32982875 PMCID: PMC7477297 DOI: 10.3389/fpsyg.2020.02139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
247
|
Vecchié A, Bonaventura A, Toldo S, Dagna L, Dinarello CA, Abbate A. IL-18 and infections: Is there a role for targeted therapies? J Cell Physiol 2020; 236:1638-1657. [PMID: 32794180 DOI: 10.1002/jcp.30008] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023]
Abstract
Interleukin (IL)-18 is a pro-inflammatory cytokine belonging to the IL-1 family, first identified for its interferon-γ-inducing properties. IL-18 regulates both T helper (Th) 1 and Th2 responses. It acts synergistically with IL-12 in the Th1 paradigm, whereas with IL-2 and without IL-12 it can induce Th2 cytokine production from cluster of differentation (CD)4+ T cells, natural killer (NK cells, NKT cells, as well as from Th1 cells. IL-18 also plays a role in the hemophagocytic lymphohistiocytosis, a life-threatening condition characterized by a cytokine storm that can be secondary to infections. IL-18-mediated inflammation was largely studied in animal models of bacterial, viral, parasitic, and fungal infections. These studies highlight the contribution of either IL-18 overproduction by the host or overresponsiveness of the host to IL-18 causing an exaggerated inflammatory burden and leading to tissue injury. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19). The damage in the later phase of the disease appears to be driven by a cytokine storm, including interleukin IL-1 family members and secondary cytokines like IL-6. IL-18 may participate in this hyperinflammation, as it was previously found to be able to cause injury in the lung tissue of infected animals. IL-18 blockade has become an appealing therapeutic target and has been tested in some IL-18-mediated rheumatic diseases and infantile-onset macrophage activation syndrome. Given its role in regulating the immune response to infections, IL-18 blockade might represent a therapeutic option for COVID-19, although further studies are warranted to investigate more in detail the exact role of IL-18 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra Vecchié
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Aldo Bonaventura
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia.,Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Charles A Dinarello
- Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
248
|
Fei L, Jingyuan X, Fangte L, Huijun D, Liu Y, Ren J, Jinyuan L, Linghui P. Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J Transl Med 2020; 18:301. [PMID: 32758258 PMCID: PMC7405465 DOI: 10.1186/s12967-020-02467-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a complex pathophysiological process that can lead to poor patient outcomes. Inflammasome-dependent macrophage pyroptosis contributes to organ damage caused by ischemia/reperfusion injury. Oxidative stress and antioxidant enzymes also play an important role in LIRI. In this study, we conducted experiments to investigate whether and how preconditioning with rHMGB1 could ameliorate LIRI in a mouse model. METHODS Adult male BALB/c mice were anesthetized, the left hilus pulmonis was clamped, and reperfusion was performed. rHMGB1 was administered via intraperitoneal injection before anesthesia, and brusatol was given intraperitoneally every other day before surgery. We measured pathohistological lung tissue damage, wet/dry mass ratios of pulmonary tissue, and levels of inflammatory mediators to assess the extent of lung injury. Alveolar macrophage pyroptosis was evaluated by measuring release of lactate dehydrogenase, caspase-1 expression was assessed using flow cytometry, and gasdermin-D expression was analyzed using immunofluorescent staining. Levels of oxidative stress markers and antioxidant enzymes were also analyzed. RESULTS Preconditioning with rHMGB1 significantly ameliorated lung injury induced by ischemia-reperfusion, based on measurements of morphology, wet/dry mass ratios, as well as expression of IL-1β, IL-6, NF-κB, and HMGB1 in lung tissues. It also alleviated alveolar macrophage pyroptosis, reduced oxidative stress and restored the activity of antioxidant enzymes. These beneficial effects were mediated at least in part by the Keap1/Nrf2/HO-1 pathway, since they were reversed by the pathway inhibitor brusatol. CONCLUSIONS Preconditioning with rHMGB1 may protect against LIRI by suppressing alveolar macrophage pyroptosis. This appears to involve reduction of oxidative stress and promotion of antioxidant enzyme activity via the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Lin Fei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao Jingyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Fangte
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dai Huijun
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ye Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Ren
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Jinyuan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pan Linghui
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
249
|
Ye J, Lu S, Wang M, Ge W, Liu H, Qi Y, Fu J, Zhang Q, Zhang B, Sun G, Sun X. Hydroxysafflor Yellow A Protects Against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Front Pharmacol 2020; 11:1170. [PMID: 32848777 PMCID: PMC7406911 DOI: 10.3389/fphar.2020.01170] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a serious threat to human health. Hydroxysafflor yellow A (HSYA), the main water-soluble ingredient extracted from Carthami flos (Carthamus tinctorius L.), has therapeutic potential for treating MI/R injury. However, the mechanisms of HSYA−mediated protection from MI/R injury are incompletely understood. In the present study, we investigated the effects and the underlying mechanisms of HSYA during MI/R. Adult Sprague-Dawley rats were subjected to left anterior descending artery ligation for 30 min followed by 24 h of reperfusion with or without HSYA treatment. The protective effect of HSYA was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin eosin (HE) staining, and myocardial enzymes detections. Serum levels of inflammatory factors such as TNF-α, interleukin (IL)-1β, and IL-18, were detected using ELISA kits. The expression of NLRP3 and other related proteins in the myocardium was detected by western blot and immunohistochemistry. The expression of autophagy-related proteins, including Atg5, BECN1, P62, and LC3B, was detected by western blot to evaluate the effect of HSYA on autophagy. Results showed that HSYA decreased the myocardial infarct size and attenuated the cardiac dysfunction in rats after I/R. In addition, HSYA inhibited myocardial apoptosis compared with the I/R group, decreased the levels of inflammatory cytokines in rat serum, reduced NLRP3 inflammasome expression, and induced autophagy. Mechanistically, our results demonstrated that HSYA can activate AMPK to improve autophagy and inhibit NLRP3 inflammasome by inhibiting the mTOR pathway. This work provides strong data supporting for the clinical applications of HSYA in MI/R injury.
Collapse
Affiliation(s)
- Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenxiu Ge
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Haitao Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Fu
- Pneumology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Zhang
- Pneumology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bengang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
250
|
Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol 2020; 86:106768. [PMID: 32679539 DOI: 10.1016/j.intimp.2020.106768] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Dexmedetomidine (DEX) was reported to protect heart against ischemic-reperfusion (IR) but the mechanism herein remains elusive. This study aims to explore the mechanism of DEX on pyroptosis induced by myocardial ischemic reperfusion (MIR). METHODS MIR rat models were established and injected DEX or miR-29b agomir/antagomir separately. The possible effect of DEX or miR-29b on myocardial cells was assessed according to measurement on creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), interleukin-1β (IL-1β) and interleukin-18 (IL-18), myocardial infarction size, myocardial injury and apoptosis. Western blot determined the expression levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-caspase-1. Hypoxia/reoxygenation (H/R) cell model was established. The lactate dehydrogenase (LDH) content released by myocardial cells was examined. The relation between miR-29b and FoxO3a was confirmed by dual luciferase reporter gene assay. FoxO3a or ARC level was elevated in H/R myocardial cells to detect its effect on pyroptosis. RESULTS MIR rat models were successfully established, in which cell pyroptosis was triggered as evidenced by increased expression levels of NLRP3, ASC and cleaved-caspase-1. Rats with DEX precondition had attenuated cell pyroptosis and ameliorated inflammatory response. FoxO3a was a target of miR-29b. MiR-29b agomir or miR-29b antagomir could inhibit or promote the protective effect of DEX on MIR. Overexpression of FoxO3a/ARC axis could suppress myocardial pyroptosis induced by H/R. CONCLUSION DEX could ameliorate MIR injury (MIRI) and H/R injury in rats and inhibit H/R induced pyroptosis in myocardial cells via down-regulating miR-29b to activate FoxO3a/ARC axis.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yi-Ping Li
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yong-Qiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bai-Long Hu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Hong Gao
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|