201
|
Chuang ST, Kuo YH, Su MJ. Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells. Sci Rep 2014; 4:5814. [PMID: 25056456 PMCID: PMC4108915 DOI: 10.1038/srep05814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that renal tubulointerstitial fibrosis is a main cause of end-stage renal disease. Clinically, there are no beneficial treatments that can effectively reverse the progressive loss of renal functions. Caffeic acid phenethyl ester is a natural phenolic antifibrotic agent, but rapid decomposition by an esterase leads to its low bioavailability. In this study, we evaluated the effects of KS370G, a caffeic acid phenylethyl amide, on murine renal fibrosis induced by unilateral renal ischemia-reperfusion injury (IRI) and in TGF-β1 stimulated renal tubular epithelial cells (NRK52E and HK-2). In the animal model, renal fibrosis was evaluated at 14 days post-operation. Immediately following the operation, KS370G (10 mg/kg) was administered by oral gavage once a day. Our results show that KS370G markedly attenuates collagen deposition and inhibits an IRI-induced increase of fibronectin, vimentin, α-SMA and TGF-β1 expression and plasma TGF-β1 levels in the mouse kidney. Furthermore, KS370G reverses TGF-β1-induced downregulation of E-cadherin and upregulation of α-SMA and also decreases the expression of fibronectin, collagen I and PAI-1 and inhibits TGF-β1-induced phosphorylation of Smad2/3. These findings show the beneficial effects of KS370G on renal fibrosis in vivo and in vitro with the possible mechanism being the inhibition of the Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yueh-Hsiung Kuo
- 1] Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan [2] Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Ming-Jai Su
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
202
|
Nishida H, Kurahashi T, Saito Y, Otsuki N, Kwon M, Ohtake H, Yamakawa M, Yamada KI, Miyata S, Tomita Y, Fujii J. Kidney fibrosis is independent of the amount of ascorbic acid in mice with unilateral ureteral obstruction. Free Radic Res 2014; 48:1115-24. [PMID: 24735064 DOI: 10.3109/10715762.2014.915031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In response to sustained damage to a kidney, fibrosis that can be characterized as the deposition of a collagenous matrix occurs and consequently causes chronic kidney failure. Because most animals used in experiments synthesize ascorbic acid (AsA) from glucose, the roles of AsA in fibrotic kidney diseases are largely unknown. Unilateral ureteric obstruction (UUO) mimics the complex pathophysiology of chronic obstructive nephropathy and is an ideal model for the investigation of the roles of AsA in kidney failure. We examined the impact of a deficiency of Akr1a, a gene that encodes aldehyde reductase and is responsible for the production of AsA, on fibrotic damage caused by UUO in mice. Oxidatively modified DNA was elevated in wild-type and Akr1a-deficient kidneys as a result of UUO to a similar extent, and was only slightly suppressed by the administration of AsA. Even though Akrla-deficient mice could produce only about 10% of the AsA produced by wild-type mice, no difference was observed in collagen I synthesis under pathological conditions. The data implied either a low demand for AsA or the presence of another electron donor for collagen I production in the mouse kidney. Next, we attempted to elucidate the potential causes for oxidative damage in kidney cells during the fibrotic change. We found decreases in mitochondrial proteins, particularly in electron transport complexes, at the initial stage of the kidney fibrosis. The data imply that a dysfunction of the mitochondria leads to an elevation of ROS, which results in kidney fibrosis by stimulating cellular transformation to myofibroblasts.
Collapse
Affiliation(s)
- H Nishida
- Department of Biochemistry and Molecular Biology, Yamagata University School of Medicine , Yamagata , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol 2014; 740:578-83. [PMID: 24975097 DOI: 10.1016/j.ejphar.2014.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
Unilateral ureteral obstruction (UUO) is a well-established model for the study of interstitial fibrosis in the kidney. In this study, we investigated the effects of a COX-2 inhibitor, meloxicam, on UUO-induced renal interstitial fibrosis in mice. Serum creatinine, blood urea nitrogen and urinary glucose were significantly increased by UUO. However, all of these changes were attenuated by meloxicam (1 mg/kg/day). Masson׳s trichrome staining showed that interstitial fibrosis was significantly increased by UUO, but that meloxicam also significantly diminished the area of UUO-induced fibrosis. Heat shock protein (HSP) 47 protein, a collagen-specific molecular chaperone essential for the biosynthesis of collagen molecules, and type IV collagen mRNA were increased in kidneys of UUO mice. Meloxicam reduced the expression of both HSP47 protein and type IV collagen mRNA. The phosphorylation of extracellular regulated kinase (ERK) and c-jun-N-terminal kinase (JNK) was increased by UUO, but these changes were inhibited by meloxicam. Collectively, these results suggest that COX-2 may be involved in the expression of HSP47 and type IV collagen through the phosphorylation of ERK and JNK, accelerating renal interstitial fibrosis.
Collapse
|
204
|
Abstract
Tubulointerstitial (TI) fibrosis is a final common pathway to progressive renal injury of all forms of renal disease. However, once renal damage reaches a certain threshold, progression of renal disease is consistent, irreversible, and largely independent of the initial injury. Angiotensin (AT) II is the main effector of the renin angiotensin system (RAS) and effects that may contribute to the onset and progression of renal damage. AT II may also directly contribute to accelerate renal damage by sustaining cell growth, inflammation, and fibrosis. Interventions that inhibit the activity of the RAS are renoprotective and may retard or even halt the progression of chronic nephropathies. Unilateral ureteral obstruction suggested as a well-established experimental model of progressive interstitial expansion and fibrosis. Although technically challenging, some investigators have successfully relieved the obstruction and reported significant reduction in interstitial fibrosis severity. Drugs that modulate the RAS, such as ACE inhibitors and angiotensin type 1 (AT1) receptor antagonists, have demonstrated protective renal effects and can ameliorate fibrosis. However, neither ACE inhibitor nor AT1 receptor blockade completely suppresses progression of renal disease. Dual blockade of the RAS with ACE inhibitors and AT1 receptor blockers may provide renal benefit beyond therapy with either drug alone, due to their potential additive beneficial effect.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Pediatrics, College of Medicine, Inje University, Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
205
|
Lo TH, Tseng KY, Tsao WS, Yang CY, Hsieh SL, Chiu AWH, Takai T, Mak TW, Tarng DC, Chen NJ. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney Int 2014; 86:1174-86. [PMID: 24918157 DOI: 10.1038/ki.2014.205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is an emerging worldwide public health problem. Inflammatory cell infiltration and activation during the early stages in injured kidneys is a common pathologic feature of CKD. Here, we determined whether an important inflammatory regulator, triggering receptor expressed on myeloid cells (TREM)-1, is upregulated in renal tissues collected from mouse ureteral obstruction-induced nephritis. TREM-1 is crucial for modulating macrophage polarization, and has a pivotal role in mediating tubular injury and interstitial collagen deposition in obstructive nephritis. Lysates from nephritic kidneys triggered a TREM-1-dependent M1 polarization ex vivo, consistent with the observation that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived M1 macrophages express higher levels of TREM-1 in comparison with M-CSF-derived cells. Moreover, agonistic TREM-1 cross-link significantly strengthens the inductions of iNOS and GM-CSF in M1 cells. These observations are validated by a strong clinical correlation between infiltrating TREM-1-expressing/iNOS-positive macrophages and renal injury in human obstructive nephropathy. Thus, TREM-1 may be a potential diagnostic and therapeutic target in human kidney disease.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Kai-Yu Tseng
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Wen-Shan Tsao
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Chih-Ya Yang
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Genomic Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Shie-Liang Hsieh
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Genomic Research Center, Academia Sinica, Taipei, Taiwan (ROC) [3] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [4] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC) [5] Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan (ROC) [6] Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Allen Wen-Hsiang Chiu
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Der-Cherng Tarng
- 1] Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [3] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC) [4] Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan (ROC) [5] Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (ROC)
| | - Nien-Jung Chen
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC)
| |
Collapse
|
206
|
Zhang C, Lu Y, Zhou YJ, Tong QQ, Qu C, Kang TJ. The effect of stachydrine on the expression of caspase-12 in rats with unilateral ureteral obstruction. J Urol 2014; 192:1549-54. [PMID: 24840537 DOI: 10.1016/j.juro.2014.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE We studied the effect of stachydrine on the expression of caspase-12 and 9 in rats with unilateral ureteral obstruction. MATERIALS AND METHODS An animal model of renal interstitial fibrosis was established using unilateral ureteral obstruction with enalapril as the positive control. Rats were randomly divided into 6 groups, including sham treated, model, enalapril, and high, medium and low stachydrine. On day 14 postoperatively the rats were sacrificed. Serum was collected to determine serum creatinine and blood urea nitrogen. Tubular injury index was measured by hematoxylin and eosin staining. Renal interstitial collagen deposition was analyzed semiquantitatively by Masson staining. Expression of the apoptotic factors caspase-12 and 9 in renal tissues was determined by immunohistochemistry. RESULTS The renal tubular interstitial damage index, degree of renal interstitial fibrosis, serum creatinine, blood urea nitrogen, and expression of caspase-12 and 9 in the treatment groups were significantly decreased compared to the model group (p <0.05 and <0.01, respectively). Serum creatinine, blood urea nitrogen, renal tubular injury, collagen deposition, and expression of caspase-12 and 9 in the high stachydrine group were significantly decreased compared with the enalapril group (p <0.05). CONCLUSIONS Stachydrine interfered with the endoplasmic reticulum stress mediated apoptosis pathway by decreasing caspase-12 expression and inhibiting caspase-9 activation. Ultimately renal tubular epithelial cell apoptosis was suppressed and renal interstitial fibrosis development was postponed.
Collapse
Affiliation(s)
- Cui Zhang
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China.
| | - Ying Lu
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China
| | - Ya-Jie Zhou
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China
| | - Qian-Qian Tong
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China
| | - Chao Qu
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China
| | - Tian-Ji Kang
- College of Pharmacy, Harbin University of Commerce and Heilongjiang University of Chinese Medicine (TJK), Harbin, People's Republic of China
| |
Collapse
|
207
|
Bai Y, Lu H, Zhang G, Wu C, Lin C, Liang Y, Chen B. Sedum sarmentosum Bunge extract exerts renal anti-fibrotic effects in vivo and in vitro. Life Sci 2014; 105:22-30. [PMID: 24747135 DOI: 10.1016/j.lfs.2014.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 04/07/2014] [Indexed: 01/22/2023]
Abstract
AIMS Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical effects, including anti-oxidation, anti-inflammation, and anti-cancer properties. In this study, we determined whether S. sarmentosum Bunge Extract (SSBE) has anti-fibrotic effects on renal tissues. MAIN METHODS We investigated the effects of SSBE on aristolochic acid (AA)-induced injury to renal tubular epithelial cells (RTECs) in vitro and unilateral ureteral obstruction (UUO)-induced renal fibrosis in vivo by evaluating epithelial-to-mesenchymal transition (EMT) and the accumulation of extracellular matrix (ECM) components. Furthermore, we examined the expression levels of TGF-β1 and its receptor. KEY FINDINGS In cultured RTECs (NRK-52E), AA promoted renal EMT and ECM accumulation by up-regulating the expression of mesenchymal markers and ECM components and by down-regulating the expression of epithelial markers. In addition, AA induced an imbalance between MMP-2 and TIMP-2 and enhanced expression of TGF-β1 and its receptor. SSBE treatment significantly inhibited AA-induced TGF-β1 expression and prevented the induction of EMT and deposition of ECM. In the UUO rats, tubular injury and interstitial fibrosis were obviously increased. SSBE administration protected renal function, as indicated by reduced serum creatinine levels, and alleviated renal interstitial fibrosis. These anti-fibrotic effects were associated with a reduction in TGF-β1 expression and inhibition of EMT and ECM accumulation. SIGNIFICANCE These findings suggest that SSBE may have therapeutic potential for fibrotic kidney diseases.
Collapse
Affiliation(s)
- Yongheng Bai
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Ge Zhang
- Department of Orthopedics, People's Hospital of Luzhou City, Luzhou 646000, China
| | - Cunzao Wu
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Chengcheng Lin
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yong Liang
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Bicheng Chen
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
208
|
Sakuraya K, Endo A, Someya T, Hirano D, Murano Y, Fujinaga S, Ohtomo Y, Shimizu T. The Synergistic Effect of Mizoribine and a Direct Renin Inhibitor, Aliskiren, on Unilateral Ureteral Obstruction Induced Renal Fibrosis in Rats. J Urol 2014; 191:1139-46. [DOI: 10.1016/j.juro.2013.10.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Koji Sakuraya
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Amane Endo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomonosuke Someya
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daishi Hirano
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Yayoi Murano
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuichiro Fujinaga
- Division of Nephrology, Saitama Children's Medical Center, Saitama, Japan
| | - Yoshiyuki Ohtomo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
209
|
Simões e Silva AC, Pereira AB, Teixeira MM, Teixeira AL. Chemokines as potential markers in pediatric renal diseases. DISEASE MARKERS 2014; 2014:278715. [PMID: 24692841 PMCID: PMC3947707 DOI: 10.1155/2014/278715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Glomerular diseases and obstructive uropathies are the two most frequent causes of chronic kidney disease (CKD) in children. Recently, biomarkers have become a focus of clinical research as potentially useful diagnostic tools in pediatric renal diseases. Among several putative biomarkers, chemokines emerge as promising molecules since they play relevant roles in the pathophysiology of pediatric renal diseases. The evaluation of these inflammatory mediators might help in the management of diverse renal diseases in children and the detection of patients at high risk to develop CKD. The aim of this paper is to revise general aspects of chemokines and the potential link between chemokines and the most common pediatric renal diseases by including experimental and clinical evidence.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- Unidade de Nefrologia Pediátrica, Departamento de Pediatria, Universidade Federal de Minas Gerais (UFMG), 30130-100 Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular (INCT-MM), Faculdade de Medicina, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
| | - André Barreto Pereira
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular (INCT-MM), Faculdade de Medicina, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
- Departamento de Nefrologia, Santa Casa de Misericordia de Belo Horizonte, 30130-100 Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
| |
Collapse
|
210
|
Hypertension-related, calcium-regulated gene (HCaRG/COMMD5) and kidney diseases: HCaRG accelerates tubular repair. J Nephrol 2014; 27:351-60. [PMID: 24515317 PMCID: PMC4104007 DOI: 10.1007/s40620-014-0054-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Hypertension is a risk factor for renal impairment. While treatment of hypertension provides significant renal protection, there is still an unmet need requiring further exploration of additional pathogenetic mechanisms. We have found that the hypertension-related, calcium-regulated gene (HCaRG/COMMD5) is involved in renal repair. HCaRG is a small intracellular protein of 225 amino acids and its gene expression is negatively regulated by extracellular calcium concentrations. HCaRG is mostly expressed in the kidneys, with higher levels found in the spontaneously hypertensive rat than in normotensive rats. In an acute kidney injury model, HCaRG expression decreases immediately after injury but increases above baseline during the repair phase. In cell cultures, HCaRG has been shown to facilitate differentiation and to inhibit cell proliferation via p21 transactivation through the p53-independent signaling pathway. Induction of p21 independently of p53 is also observed in transgenic mice overexpressing HCaRG during the repair phase after ischemia/reperfusion injury, resulting in their improved renal function and survival with rapid re-differentiation of proximal tubular epithelial cells. In addition, transgenic mice recover rapidly from the inflammatory burst most likely as a result of maintenance of the tubular epithelial barrier. Recent studies indicate that facilitating re-differentiation and cell cycle regulation in injured renal proximal tubules might be important functions of HCaRG. We have proposed that HCaRG is a component of differential genetic susceptibility to renal impairment in response to hypertension.
Collapse
|
211
|
Østergaard M, Christensen M, Nilsson L, Carlsen I, Frøkiær J, Nørregaard R. ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol 2014; 306:F259-70. [DOI: 10.1152/ajprenal.00352.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress resulting from unilateral ureteral obstruction (UUO) may be aggravated by increased production of ROS. Previous studies have demonstrated increased cyclooxygenase (COX)-2 expression in renal medullary interstitial cells (RMICs) in response to UUO. We investigated, both in vivo and in vitro, the role of ROS in the induction of COX-2 in rats subjected to UUO and in RMICs exposed to oxidative and mechanical stress. Rats subjected to 3-day UUO were treated with two mechanistically distinct antioxidants, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) and the complex I inhibitor rotenone (ROT), to interfere with ROS production. We found that UUO-mediated induction of COX-2 in the inner medulla was attenuated by both antioxidants. In addition, DPI and ROT reduced tubular damage and oxidative stress after UUO. Moreover, mechanical stretch induced COX-2 and oxidative stress in RMICs. Likewise, RMICs exposed to H2O2 as an inducer of oxidative stress showed increased COX-2 expression and activity, both of which were reduced by DPI and ROT. Similarly, ROS production, which was increased after exposure of RMICs to H2O2, was also reduced by DPI and ROT. Furthermore, oxidative stress-induced phosphorylation of ERK1/2 and p38 was blocked by both antioxidants, and inhibition of ERK1/2 and p38 attenuated the induction of COX-2 in RMICs. Notably, COX-2 inhibitors further exacerbated the oxidative stress level in H2O2-exposed RMICs. We conclude that oxidative stress as a consequence of UUO stimulates COX-2 expression through the activation of multiple MAPKs and that the induction of COX-2 may exert a cytoprotective function in RMICs.
Collapse
Affiliation(s)
- Martin Østergaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Michael Christensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Line Nilsson
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Inge Carlsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
- Department of Clinical Physiology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
212
|
Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, Sutterwala FS, Florquin S, Leemans JC. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS One 2014; 9:e85775. [PMID: 24454932 PMCID: PMC3893260 DOI: 10.1371/journal.pone.0085775] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/08/2013] [Indexed: 12/11/2022] Open
Abstract
Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (-/-) mice to unilateral ureter obstruction (UUO). Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3-/- mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3-/- mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3-/- mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Loes M. Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwendoline J. Teske
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark C. Dessing
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, Connecticut, United States of America
| | - Fayyaz S. Sutterwala
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C. Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
213
|
Duitman J, Borensztajn KS, Pulskens WPC, Leemans JC, Florquin S, Spek CA. CCAAT-enhancer binding protein delta (C/EBPδ) attenuates tubular injury and tubulointerstitial fibrogenesis during chronic obstructive nephropathy. J Transl Med 2014; 94:89-97. [PMID: 24247561 DOI: 10.1038/labinvest.2013.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022] Open
Abstract
CCAAT-enhancer-binding protein delta (C/EBPδ) is a transcription factor mainly known for its role in inflammation and apoptosis/proliferation. Considering that these are key processes in renal fibrosis, we hypothesized that C/EBPδ would potentiate renal fibrosis. In line with this hypothesis, C/EBPδ has recently been suggested to regulate the fibrotic response during glomerulonephritis. Here we determined the importance of C/EBPδ in the development of renal tubulointerstitial fibrosis by subjecting 8- to 12-week-old C/EBPδ-deficient mice and age- and sex-matched wild-type controls to the unilateral ureteral obstruction model. Mice were killed at 1, 3, or 7 days post surgery, and renal tissues were obtained for RNA, protein, and immunohistochemical analysis. We show that C/EBPδ deficiency resulted in a more profound fibrotic response as evident from enhanced tubular injury, collagen deposition in the interstitial area, and higher expression of transforming growth factor-β. Moreover, we show that the increase in renal fibrosis in C/EBPδ-deficient mice does not depend on an altered proliferation/apoptosis balance or on a differential inflammatory response in the obstructed kidney. In conclusion, our study provides direct evidence that C/EBPδ is a novel mediator of renal fibrosis. Modulating C/EBPδ expression could consequently be a potential antifibrotic strategy in patients with chronic kidney disease.
Collapse
Affiliation(s)
- JanWillem Duitman
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Keren S Borensztajn
- Unité INSERM 700, Physiopathologie et Epidémiologie de l'Insuffisance Respiratoire, Faculté de Médecine Xavier Bichat, Paris, France
| | - Willem P C Pulskens
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- 1] Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands [2] Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
214
|
Ma SK, Joo SY, Kim CS, Choi JS, Bae EH, Lee J, Kim SW. Increased Phosphorylation of PI3K/Akt/mTOR in the Obstructed Kidney of Rats with Unilateral Ureteral Obstruction. Chonnam Med J 2013; 49:108-12. [PMID: 24400212 PMCID: PMC3881205 DOI: 10.4068/cmj.2013.49.3.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate changes in the mammalian target of rapamycin (mTOR) signaling pathway in the obstructed kidney of rats with unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats were unilaterally obstructed by ligation of the left proximal ureter for 7 days. Control rats were treated in the same way except that no ligature was made. The expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K), Akt, and mTOR were determined in the kidney by semiquantitative immunoblotting. The protein expression levels of transforming growth factor (TGF)-β1, Bax, and Bcl-2 were also determined in the kidney. The phosphorylation of PI3K, Akt, and mTOR was increased in the kidney of ureteral obstruction rats compared with the control. In the obstructed kidney, the protein expression of TGF-β1 and Bax was also increased, whereas Bcl-2 expression was decreased. In conclusion, the phosphorylation of PI3K/Akt/mTOR was increased in the obstructed kidney of rats with UUO.
Collapse
Affiliation(s)
- Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Yeon Joo
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Joon Seok Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
215
|
Kajbafzadeh AM, Sabetkish N, Sabetkish S, Javan-Farazmand N, Harsini S, Tavangar SM. The ameliorative effect of various antioxidants on Adriamycin-induced fetal renal abnormalities. J Pediatr Urol 2013; 9:1084-92. [PMID: 23665376 DOI: 10.1016/j.jpurol.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To examine the efficacy of nine antiapoptotic compounds in preventing the development of Adriamycin-induced fetal renal abnormalities or ameliorating the resultant renal damage in a rat model. METHODS Thirty-three Sprague-Dawley rats were randomly divided into sham-control, Adriamycin and prevention groups. The prevention group was divided into 9 subgroups. The rats were time mated and experimental rats were injected with Adriamycin on gestational day 7-9. Sham-control rats were injected with saline on the same days. The preventive medications were administered to the prevention group from 7 days prior to mating to the end of pregnancy. Samples were prepared from fetuses for histological and biochemical analyses. RESULTS A total of 331 fetuses were recovered. There were no resorptions in the Deferoxamine, Amifostine and sham-control groups. Significant decrease of antioxidant activities was noted in the Adriamycin group compared to the sham-control group. In all prevention groups, antioxidant activities were significantly increased compared to the Adriamycin group. The highest rate of hydronephrosis was observed in the Adriamycin group (82%). The lowest rates of renal abnormalities were noted with Deferoxamine and Amifostine: 8% and 11%. CONCLUSION Oxidant injury plays a critical role in the development and progression of Adriamycin-induced fetal renal abnormalities. Some antiapoptotic medications, notably Deferoxamine and Amifostine, may have preventive and therapeutic potential in the management of fetal renal abnormalities.
Collapse
Affiliation(s)
- Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Department of Pediatric Urology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
216
|
Long J, Badal SS, Wang Y, Chang BHJ, Rodriguez A, Danesh FR. MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney. J Biol Chem 2013; 288:36202-14. [PMID: 24163368 DOI: 10.1074/jbc.m113.498634] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.
Collapse
Affiliation(s)
- Jianyin Long
- From the Nephrology Section, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
217
|
Ito I, Waku T, Aoki M, Abe R, Nagai Y, Watanabe T, Nakajima Y, Ohkido I, Yokoyama K, Miyachi H, Shimizu T, Murayama A, Kishimoto H, Nagasawa K, Yanagisawa J. A nonclassical vitamin D receptor pathway suppresses renal fibrosis. J Clin Invest 2013; 123:4579-94. [PMID: 24135137 DOI: 10.1172/jci67804] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/15/2013] [Indexed: 01/20/2023] Open
Abstract
The TGF-β superfamily comprises pleiotropic cytokines that regulate SMAD and non-SMAD signaling. TGF-β-SMAD signal transduction is known to be involved in tissue fibrosis, including renal fibrosis. Here, we found that 1,25-dihydroxyvitamin D3-bound [1,25(OH)2D3-bound] vitamin D receptor (VDR) specifically inhibits TGF-β-SMAD signal transduction through direct interaction with SMAD3. In mouse models of tissue fibrosis, 1,25(OH)2D3 treatment prevented renal fibrosis through the suppression of TGF-β-SMAD signal transduction. Based on the structure of the VDR-ligand complex, we generated 2 synthetic ligands. These ligands selectively inhibited TGF-β-SMAD signal transduction without activating VDR-mediated transcription and significantly attenuated renal fibrosis in mice. These results indicate that 1,25(OH)2D3-dependent suppression of TGF-β-SMAD signal transduction is independent of VDR-mediated transcriptional activity. In addition, these ligands did not cause hypercalcemia resulting from stimulation of the transcriptional activity of the VDR. Thus, our study provides a new strategy for generating chemical compounds that specifically inhibit TGF-β-SMAD signal transduction. Since TGF-β-SMAD signal transduction is reportedly involved in several disorders, our results will aid in the development of new drugs that do not cause detectable adverse effects, such as hypercalcemia.
Collapse
|
218
|
Haque ME, Franklin T, Bokhary U, Mathew L, Hack BK, Chang A, Puri TS, Prasad PV. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: Preliminary experience. J Magn Reson Imaging 2013; 39:835-41. [DOI: 10.1002/jmri.24235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/01/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Muhammad E. Haque
- Department of Radiology; NorthShore University HealthSystem; Evanston Illinois USA
| | - Tammy Franklin
- Department of Radiology; NorthShore University HealthSystem; Evanston Illinois USA
| | - Ujala Bokhary
- Department of Radiology; NorthShore University HealthSystem; Evanston Illinois USA
| | - Liby Mathew
- Department of Nephrology; University of Chicago; Chicago Illinois USA
| | - Bradley K. Hack
- Department of Nephrology; University of Chicago; Chicago Illinois USA
| | - Anthony Chang
- Department of Pathology; University of Chicago; Chicago Illinois USA
| | - Tipu S. Puri
- Department of Nephrology; University of Chicago; Chicago Illinois USA
| | - Pottumarthi V. Prasad
- Department of Radiology; NorthShore University HealthSystem; Evanston Illinois USA
- Department of Radiology; University of Chicago; Chicago Illinois USA
| |
Collapse
|
219
|
Suzuki S, Ohashi N, Kitagawa M. Roles of the Skp2/p27 axis in the progression of chronic nephropathy. Cell Mol Life Sci 2013; 70:3277-3287. [PMID: 23255047 PMCID: PMC3753466 DOI: 10.1007/s00018-012-1232-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein component of the Skp/Cullin/F-box-type E3 ubiquitin ligase that targets several cell cycle regulatory proteins for degradation through the ubiquitin-dependent pathway. Skp2-mediated degradation of p27, a cyclin-dependent kinase inhibitor, is involved in cell cycle regulation. Tubular epithelial cell proliferation is a characteristic feature of renal damage that is apparent in the early stages of nephropathy. The p27 level is associated with the progression of renal injury, and increased Skp2 expression in progressive nephropathy is implicated in decreases of p27 expression. In Skp2(-/-) mice, renal damage caused by unilateral ureteral obstruction (UUO) was ameliorated by p27 accumulation, mainly in tubular epithelial cells. However, the amelioration of UUO-induced renal injury in Skp2(-/-) mice was prevented by p27 deficiency in Skp2(-/-)/p27(-/-) mice. These results suggest that the Skp2-mediated reduction in p27 is a pathogenic activity that occurs during the progression of nephropathy. Here, we discuss the roles of the Skp2/p27 axis and/or related signaling pathways/components in the progression of chronic nephropathy.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| | - Naro Ohashi
- Internal Medicine 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192 Japan
| |
Collapse
|
220
|
Simões e Silva AC, Valério FC, Vasconcelos MA, Miranda DM, Oliveira EA. Interactions between cytokines, congenital anomalies of kidney and urinary tract and chronic kidney disease. Clin Dev Immunol 2013; 2013:597920. [PMID: 24066006 PMCID: PMC3770011 DOI: 10.1155/2013/597920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
Abstract
Fetal hydronephrosis is the most common anomaly detected on antenatal ultrasound, affecting 1-5% of pregnancies. Postnatal investigation has the major aim in detecting infants with severe urinary tract obstruction and clinically significant urinary tract anomalies among the heterogeneous universe of patients. Congenital uropathies are frequent causes of pediatric chronic kidney disease (CKD). Imaging techniques clearly contribute to this purpose; however, sometimes, these exams are invasive, very expensive, and not sufficient to precisely define the best approach as well as the prognosis. Recently, biomarkers have become a focus of clinical research as potentially useful diagnostic tools in pediatric urological diseases. In this regard, recent studies suggest a role for cytokines and chemokines in the pathophysiology of CAKUT and for the progression to CKD. Some authors proposed that the evaluation of these inflammatory mediators might help the management of postnatal uropathies and the detection of patients with high risk to developed chronic kidney disease. Therefore, the aim of this paper is to revise general aspects of cytokines and the link between cytokines, CAKUT, and CKD by including experimental and clinical evidence.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- Pediatric Nephrology Unit, Department of Pediatrics, Federal University of Minas Gerais, 30130-100 Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
221
|
Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction. Kidney Int 2013; 84:317-26. [DOI: 10.1038/ki.2013.98] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
|
222
|
Gonzalez J, Mouttalib S, Delage C, Calise D, Maoret JJ, Pradère JP, Klein J, Buffin-Meyer B, Van der Veen B, Charo IF, Heeringa P, Duchene J, Bascands JL, Schanstra JP. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun 2013; 438:257-63. [PMID: 23872063 DOI: 10.1016/j.bbrc.2013.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022]
Abstract
Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.
Collapse
Affiliation(s)
- Julien Gonzalez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Xu B, Zhang YB, Li ZZ, Yang MW, Wang S, Jiang DP. Hydrogen-rich saline ameliorates renal injury induced by unilateral ureteral obstruction in rats. Int Immunopharmacol 2013; 17:447-52. [PMID: 23871246 DOI: 10.1016/j.intimp.2013.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022]
Abstract
Hydrogen has been demonstrated to have effective protection against tissue injuries caused by oxidative stress, inflammation, and apoptosis. This study investigated the efficacy of hydrogen-rich saline (HS) on the prevention of renal injury induced by unilateral ureteric obstruction (UUO) in rats. Male Sprague-Dawley rats were divided randomly into 4 groups: sham group, UUO group, UUO+saline group, and UUO+HS group. UUO was induced by ligation of the left ureter. 5ml/kg HRSS or saline was administered beginning 1day after UUO and for 10days thereafter. Rats were killed at 10days after UUO. Left kidneys were excised immediately for the tissue histologic examinations and biochemical assays. Renal injury scores in the UUO group and the UUO+saline group were significantly higher compared with those in the sham group. However, administration of HS significantly reduced the injury score. Apoptosis index was significantly increased in UUO group and the UUO+saline group. HS treatment also reduced the apoptosis index. Interstitial fibrosis and macrophage infiltration were obvious in UUO kidneys. However, HS treatment significantly reduced the fibrosis and infiltration of macrophage in UUO kidneys. Significant increase in the MDA level and decrease in the SOD activity were observed in UUO group and the UUO+saline group. MDA level of UUO+HS group was significantly reduced. In addition, SOD activity of was significantly improved after treatment of HS. The data provide a biochemical and histologic basis for HS acting as a novel therapeutic strategy for preventing the renal injury induced by UUO.
Collapse
Affiliation(s)
- Bo Xu
- Department of Pediatric Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
224
|
Jung KJ, Jang HS, Kim JI, Han SJ, Park JW, Park KM. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1989-97. [PMID: 23846016 DOI: 10.1016/j.bbadis.2013.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in the transsulfuration pathway of homocysteine plays a number of pathophysiological roles. Hyperhomocysteinemia is involved in kidney fibrosis. However, the role of H2S in kidney fibrosis remains to be defined. Here, we investigated the role of H2S and its acting mechanism in unilateral ureteral obstruction (UO)-induced kidney fibrosis in mice. UO decreased expressions of CBS and CSE in the kidney with decrease of H2S concentration. Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UO reduced UO-induced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD) expression, and glutathione level. In addition, NaHS mitigated decreases of CBS and CSE expressions, and H2S concentration in the kidney. NaHS treatment attenuated UO-induced increases in levels of TGF-β1, activated Smad3, and activated NF-κB. This study provided the first evidence of involvement of the transsulfuration pathway and H2S in UO-induced kidney fibrosis, suggesting that H2S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases.
Collapse
Affiliation(s)
- Kyong-Jin Jung
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
225
|
Li S, Zhang Q, You G. Three ubiquitination sites of organic anion transporter-1 synergistically mediate protein kinase C-dependent endocytosis of the transporter. Mol Pharmacol 2013; 84:139-46. [PMID: 23640180 PMCID: PMC3684823 DOI: 10.1124/mol.113.086769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022] Open
Abstract
Organic anion transporter-1 (OAT1) mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. Therefore, understanding the regulation of OAT1 has profound clinical significance. We previously established that OAT1 constitutively internalizes from and recycles back to cell surface and that activation of protein kinase C (PKC) inhibits OAT1 activity by promoting ubiquitination of the transporter, which then leads to an accelerated internalization of the transporter from cell surface to intracellular compartments. In the current study, we showed that PKC isoform PKCα was responsible for OAT1 ubiquitination. To directly address the role of OAT1 ubiquitination, we then generated two OAT1 mutants, each having multiple lysines (K) simultaneously mutated to arginine (R). One mutant K163/297/303/315/321R lost sensitivities to PKC-induced inhibition of transport activity, to PKC-induced ubiquitination, and to PKC-induced acceleration of transporter internalization. Further dissecting each lysine in this mutant, we identified Lys297, Lys303, and Lys315 as being the ubiquitin conjugation sites. Of interest, mutating any one of the three lysines prevented the ubiquitin conjugation to the other two lysines, suggesting that Lys297, Lys303, and Lys315 may form an optimal structure to interact with ubiquitination machineries. This is the first demonstration that Lys297, Lys303, and Lys315 play a synergistic role in PKC-regulated OAT1 ubiquitination, trafficking, and transport activity.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
226
|
Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata KI, Tanaka Y, Minami Y. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 2013; 18:608-19. [DOI: 10.1111/gtc.12064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Xin Li
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Kaoru Yamagata
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Michiru Nishita
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Mitsuharu Endo
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Nur Arfian
- Division of Cardiovascular Medicine; Department of Internal Medicine; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | | | | | - Ken-ichi Hirata
- Division of Cardiovascular Medicine; Department of Internal Medicine; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine; School of Medicine; University of Occupational and Environmental Health; 1-1 Iseigaoka Yahatanishi-ku; Kitakyushu; 807-8555; Japan
| | - Yasuhiro Minami
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| |
Collapse
|
227
|
Zhang Z, Wang G, Ma J, Liu H, Zhang X, Zhu G. Effect of herba centellae on the expression of HGF and MCP-1. Exp Ther Med 2013; 6:427-434. [PMID: 24137203 PMCID: PMC3786861 DOI: 10.3892/etm.2013.1146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to explore the effects of herba centellae on protein and mRNA expression of hepatocyte growth factor (HGF), and monocyte chemotactic protein-1 (MCP-1) in renal tubulointerstitial fibrosis (TIF). A unilateral ureteral obstruction (UUO) model was established in 50 male Sprague Dawley (SD) rats. Blood samples were collected and the blood urea nitrogen (BUN) levels, serum creatinine (Scr), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. Immunohistochemistry (IHC) detected the localization and expression levels of HGF and MCP-1. In addition, quantitative polymerase chain reaction (qPCR) detected the mRNA expression of HGF and MCP-1. Thirty rats were used to prepare the rat serum containing drug by cell culture, and qPCR and immunocytochemistry (ICC) were performed to examine the mRNA and protein expression of HGF and MCP-1. MCP-1 and its mRNA expression was significantly higher in rat renal interstitium of the UUO group and cells of the transforming growth factor-β1 (TGF-β1) stimulation group compared with that of the control group (P<0.01). MCP-1 and its mRNA expression in the drug intervention group were significantly reduced compared with that of the UUO model group (P<0.01). However, MCP-1 and its mRNA expression in the high-dose herba centellae group was significantly lower compared with that of the low-dose herba centellae group (P<0.01). Furthermore, HGF and its mRNA expression significantly increased in the drug intervention group (P<0.01), and expression in the high-dose group was significantly higher compared with that of the low-dose group (P<0.01), but similar to that of the fosinopril group (P>0.05). The levels of BUN decreased in the drug intervention group; however, no significant differences were determined in Scr, ALT and AST levels. Herba centellae may have inhibited MCP-1 and its mRNA expression through the upregulation of HGF and its mRNA expression, in order to achieve resistance to TIF without showing evident hepatorenal toxicity.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Nephropathy, The First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | | | | | | | | | | |
Collapse
|
228
|
Jia T, Olauson H, Lindberg K, Amin R, Edvardsson K, Lindholm B, Andersson G, Wernerson A, Sabbagh Y, Schiavi S, Larsson TE. A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrol 2013; 14:116. [PMID: 23718816 PMCID: PMC3682934 DOI: 10.1186/1471-2369-14-116] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In vivo models of uremia are important tools to study numerous aspects of acute and chronic kidney disease. Mouse models are pivotal because most genetically engineered animal models are mice, which allow dissecting the impact of selected target genes in renal failure. Adenine-based protocols to induce renal failure are available in rats, but have not been adapted in mice due to their reluctance to consume adenine. In the current paper we developed a novel method for induction of renal failure through dietary delivery of adenine mixed in a casein-based diet. RESULTS After an induction phase, a stable model of renal impairment was obtained (target urea range 80-100 mg/dL), mimicking several aspects of chronic kidney disease - mineral and bone disorder including secondary hyperparathyroidism, bone abnormalities and pathological elevation of FGF23. No deaths occurred and the level of uremia was adaptable through adjustments of the adenine content, providing significant advantages compared to existing models. In an 8-week proof-of-concept study, renal histology showed mainly a tubulointerstitial damage with infiltrating leukocytes, interstitial edema and widening of the Bownman's space. Fibrosis was present in most animals as defined by histology and gene expression changes of fibrosis markers. Parathyroid cell proliferation was markedly increased but without signs of glandular hypertrophy. Skeletal histology showed increased trabecular bone and bone marrow adiposity whereas bone biomarkers (CTX and PINP) suggested higher bone formation, but surprisingly, lower bone resorption and perturbations in mineral metabolism. CONCLUSIONS We present a novel, non-surgical method for induction of renal failure in mice. This is an important complement to existing uremic models for pathophysiological studies in acute and chronic kidney disease, especially in terms of tubulointerstitial lesions.
Collapse
|
229
|
Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, Xiao A. Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One 2013; 8:e65042. [PMID: 23724119 PMCID: PMC3665750 DOI: 10.1371/journal.pone.0065042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/25/2013] [Indexed: 11/18/2022] Open
Abstract
Interstitial fibrosis is regarded as the main pathway for the progression of chronic kidney disease (CKD) and is often associated with severe renal dysfunction. Stem cell-based therapies may provide alternative approaches for the treatment of CKD. Human amniotic fluid-derived stem cells (hAFSCs) are a novel stem cell population, which exhibit both embryonic and mesenchymal stem cell characteristics. Herein, the present study investigated whether the transplantation of hAFSCs into renal tissues could improve renal interstitial fibrosis in a murine model of unilateral ureteral obstruction (UUO). We showed that hAFSCs provided a protective effect and alleviated interstitial fibrosis as reflected by an increase in microvascular density; additionally, hAFSCs treatment beneficially modulated protein levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1). Therefore, we hypothesize that hAFSCs could represent an alternative, readily available source of stem cells that can be applied for the treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
230
|
Kim KH, Park JH, Lee WR, Park JS, Kim HC, Park KK. The inhibitory effect of chimeric decoy oligodeoxynucleotide against NF-κB and Sp1 in renal interstitial fibrosis. J Mol Med (Berl) 2013; 91:573-586. [PMID: 23114611 DOI: 10.1007/s00109-012-0972-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
Abstract
The pathophysiology of chronic renal disease is characterized by a progressive loss of renal function and deposition of the extracellular matrix, leading to widespread tissue fibrosis. Much of the matrix in chronic renal disease is synthesized by interstitial myofibroblasts, recruited from resident fibroblasts and circulating precursors. These changes are believed to be derived from epithelial-mesenchymal transition (EMT) of tubuloepithelial cells. To develop a novel therapeutic approach for treating renal fibrosis, we examined the simultaneous inhibition of the transcription factors NF-κB and Sp1 in a mouse model of unilateral ureteral obstruction (UUO). To simultaneously inhibit both NF-κB and Sp1, we developed chimeric (Chi) decoy oligodeoxynucleotide (ODN) which contained binding sequences for both NF-κB and Sp1 in a single decoy molecule to enhance the effective use of decoy ODN strategy. Chi decoy ODN significantly attenuated tubulointerstitial fibrosis in a mouse model of UUO compared to scrambled decoy ODN, as demonstrated by the reduced interstitial volume, macrophage infiltration, and fibrosis-related gene expression. Interestingly, Chi decoy ODN also regulated EMT-related gene expression, leading to the inhibition of renal fibrotic changes in vivo and in vitro. The present study demonstrates the feasibility of Chi decoy ODN treatment for preventing renal fibrosis and EMT processes. This strategy might be useful to improve the clinical outcome after chronic renal disease.
Collapse
Affiliation(s)
- Kyung-Hyun Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, 3056-6 Daemyung 4-dong, Daegu, Nam-gu, 705-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
231
|
Kim JI, Jang HS, Jeong JH, Noh MR, Choi JY, Park KM. Defect in Runx2 gene accelerates ureteral obstruction-induced kidney fibrosis via increased TGF-β signaling pathway. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1520-7. [PMID: 23639629 DOI: 10.1016/j.bbadis.2013.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 2 (Runx2) plays an important role in bone formation and de novo synthesis of proteins, including type 1 collagen. Runx2 has a potent effect on signaling of transforming growth factor (TGF)-β and vice versa, implicating its significant role in fibrosis. Chronic renal failure comprises fibrosis, characterized as an increase in TGF-β signaling, and expression of α-smooth muscle actin (α-SMA), and extracellular matrix proteins. Here, we evaluated the role of Runx2 in ureteral obstruction (UO)-induced kidney fibrosis using mice whose Runx2 gene expression is genetically down-regulated. UO caused tubular atrophy and dilation, expansion of interstitium, and increased expression of collagens and α-SMA with a concomitant decrease in expression of Runx2. Deficiency of Runx2 gene (Runx2(+/-) mice) showed higher expression of collagens and α-SMA in the kidney following UO compared to wild type (Runx2(+/+)) mice. UO-induced activation of TGF-β signaling was higher in the Runx2(+/-) kidney than Runx2(+/+) kidney, suggesting an inhibitory effect of Runx2 on TGF-β signaling in kidney fibrosis. Besides, overexpression of the Runx2 gene using an adenoviral vector in kidney tubule cells resulted in attenuated TGF-β-induced Smad3 phosphorylation and expressions of α-SMA and collagen I. Furthermore, Runx2 gene deficient mouse embryonic fibroblasts induced greater activation of Smad3 and expression of α-SMA in response to TGF-β. Collectively, Runx2 plays a protective role in UO-induced kidney fibrosis by inhibition of TGF-β signaling, suggesting Runx2 as a novel target for protection against fibrosis-related diseases such as chronic renal failure.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy and BK21, Kyungpook National University School of Medicine, Republic of Korea
| | | | | | | | | | | |
Collapse
|
232
|
Xiao H, Shen HY, Liu W, Xiong RP, Li P, Meng G, Yang N, Chen X, Si LY, Zhou YG. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS One 2013; 8:e60173. [PMID: 23585831 PMCID: PMC3621825 DOI: 10.1371/journal.pone.0060173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is the common pathological process of chronic kidney diseases leading inevitably to renal function deterioration. RIF and its preceding epithelial-mesenchymal transition (EMT) are commonly triggered by an early occurring renal inflammation. However, an effective approach to prevent EMT and RIF is still lacking and of urgent need. Recently, the adenosine A2A receptor (A2AR) emerges as a novel inflammation regulator, therefore manipulation of A2AR may suppress the EMT process and as such protect against RIF. To test this hypothesis we applied a unilateral ureteral obstruction (UUO) model of RIF on A2AR knockout mice and their wild-type littermates, combined with the intervention of a selective A2AR agonist, CGS 21680. On days 3, 7 and 14 post-UUO we evaluated the effects of A2AR manipulation on the molecular pathological progresses of RIF, including the cellular component of interstitial infiltration, expression of profibrotic factors, cellular biomarkers of EMT, and collagen deposition of extracellular matrix. Our data demonstrated that activation of A2AR significantly suppressed the deposition of collagen types I and III, reduced the infiltration of CD4+ T lymphocytes, and attenuated the expression of TGF-β1 and ROCK1, which in turn inhibited and postponed the EMT progress. Conversely, genetic inactivation of A2AR exacerbated the aforementioned pathological processes of UUO-induced RIF. Together, activation of A2AR effectively alleviated EMT and RIF in mice, suggesting A2AR as a potential therapeutic target for the treatment of RIF.
Collapse
Affiliation(s)
- Hang Xiao
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hai-Ying Shen
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Liu
- Department of Ophthalmology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ren-ping Xiong
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xing Chen
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang-Yi Si
- Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
233
|
Wallace E, Gewin L. Imatinib: Novel Treatment of Immune-Mediated Kidney Injury. J Am Soc Nephrol 2013; 24:694-701. [DOI: 10.1681/asn.2012080818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
234
|
Lai CF, Chen YM, Chiang WC, Lin SL, Kuo ML, Tsai TJ. Cysteine-rich protein 61 plays a proinflammatory role in obstructive kidney fibrosis. PLoS One 2013; 8:e56481. [PMID: 23457573 PMCID: PMC3574066 DOI: 10.1371/journal.pone.0056481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022] Open
Abstract
Cysteine-rich protein 61 (Cyr61) is a secreted matrix-associated protein that regulates a broad spectrum of biological and cellular activities. This study aimed to investigate the role of Cyr61 in progressive kidney fibrosis induced by unilateral ureteral obstruction (UUO) surgery in mice. The expression of Cyr61 transcripts and proteins in the obstructed kidneys were increased from day 1 and remained high until day 10 after surgery. Immunohistochemistry indicated that Cyr61 was expressed mainly in renal tubular epithelial cells. The upregulated Cyr61 in UUO kidneys was reduced in mice treated with pan-transforming growth factor-β (TGF-β) antibody. The role of TGF-β in tubular Cyr61 upregulation after obstructive kidney injury was further supported by experiments showing that TGF-β1 stimulated Cyr61 expression in cultured tubular epithelial cells. Notably, the upregulation of Cyr61 in UUO kidneys was followed by a marked increase in monocyte chemoattractant protein 1 (MCP-1) transcripts and macrophage infiltration, which were attenuated in mice treated with anti-Cyr61 antibodies. This proinflammatory property of Cyr61 in inducing MCP-1 expression was further confirmed in tubular epithelial cells cultured with Cyr61 protein. The anti-Cyr61 antibody in UUO mice also reduced the levels of collagen type 1-α1 transcripts, collagen fibril accumulation evaluated by picrosirius red staining, and the levels of α-smooth muscle actin (α-SMA) transcripts and proteins on day 4 after surgery; however, the antifibrotic effect was not sustained. In conclusion, the TGF-β-mediated increase in tubular Cyr61 expression involved renal inflammatory cell infiltration through MCP-1 induction during obstructive kidney injury. The Cyr61 blockade attenuated kidney fibrosis in the early phase, but the antifibrotic effect could not be sustained.
Collapse
Affiliation(s)
- Chun-Fu Lai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliou City, Taiwan
| | - Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shuei-Liong Lin
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tun-Jun Tsai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
235
|
Zhang Q, Li S, Patterson C, You G. Lysine 48-linked polyubiquitination of organic anion transporter-1 is essential for its protein kinase C-regulated endocytosis. Mol Pharmacol 2013; 83:217-24. [PMID: 23087261 PMCID: PMC3533473 DOI: 10.1124/mol.112.082065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/19/2012] [Indexed: 01/29/2023] Open
Abstract
Organic anion transporter-1 (OAT1) mediates the body's disposition of a diverse array of environmental toxins and clinically important drugs. Therefore, understanding the regulation of this transporter has profound clinical significance. We had previously established that OAT1 undergoes constitutive internalization from and recycling back to the cell surface and that acute activation of protein kinase C (PKC) inhibits OAT1 activity by reducing OAT1 cell-surface expression through accelerating its internalization from cell surface to intracellular compartments. However, the underlying mechanisms are poorly understood. In the current study, we provide novel evidence that acute activation of PKC significantly enhances OAT1 ubiquitination both in vitro and ex vivo. We further show that ubiquitination of cell-surface OAT1 increases in cells transfected with dominant negative mutant of dynamin-2, a maneuver blocking OAT1 internalization, which suggests that OAT1 ubiquitination proceeds before OAT1 internalization. Mass spectroscopy has revealed that ubiquitination of OAT1 consists of polyubiquitin chains, primarily through lysine 48 linkage. Transfection of cells with the dominant negative mutant of ubiquitin Ub-K48R, which prevents the formation of Lys48-linked polyubiquitin chains, abolishes PKC-stimulated OAT1 ubiquitination and internalization. Together, our findings demonstrate for the first time that Lys48-linked polyubiquitination is essential for PKC-regulated OAT1 trafficking.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
236
|
Tantawy MN, Jiang R, Wang F, Takahashi K, Peterson TE, Zemel D, Hao CM, Fujita H, Harris RC, Quarles CC, Takahashi T. Assessment of renal function in mice with unilateral ureteral obstruction using 99mTc-MAG3 dynamic scintigraphy. BMC Nephrol 2012; 13:168. [PMID: 23228112 PMCID: PMC3542003 DOI: 10.1186/1471-2369-13-168] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/27/2012] [Indexed: 12/27/2022] Open
Abstract
Background Renal scintigraphy using 99mTc-mercaptoacetyltriglycine (99mTc-MAG3) is widely used for the assessment of renal function in humans. However, the application of this method to animal models of renal disease is currently limited, especially in rodents. Here, we have applied 99mTc-MAG3 renal scintigraphy to a mouse model of unilateral ureteral obstruction (UUO) and evaluated its utility in studying obstructive renal disease. Methods UUO mice were generated by complete ligation of the left ureter. Sham-operated mice were used as a control. Renal function was investigated on days 0, 1, 3, and 6 post-surgery using dynamic planar imaging of 99mTc-MAG3 activity following retro-orbital injection. Time-activity curves (TACs) were produced for individual kidneys and renal function was assessed by 1) the slope of initial 99mTc-MAG3 uptake (SIU), which is related to renal perfusion; 2) peak activity; and 3) the time-to-peak (TTP). The parameters of tubular excretion were not evaluated in this study as 99mTc-MAG3 is not excreted from UUO kidneys. Results Compared to sham-operated mice, SIU was remarkably (>60%) reduced in UUO kidneys at day 1 post surgery and the TACs plateaued, indicating that 99mTc-MAG3 is not excreted in these kidneys. The plateau activity in UUO kidneys was relatively low (~40% of sham kidney’s peak activity) as early as day1 post surgery, demonstrating that uptake of 99mTc-MAG3 is rapidly reduced in UUO kidneys. The time to plateau in UUO kidneys exceeded 200 sec, suggesting that 99mTc-MAG3 is slowly up-taken in these kidneys. These changes advanced as the disease progressed. SIU, peak activity and TTPs were minimally changed in contra-lateral kidneys during the study period. Conclusions Our data demonstrate that renal uptake of 99mTc-MAG3 is remarkably and rapidly reduced in UUO kidneys, while the changes are minimal in contra-lateral kidneys. The parametric analysis of TACs suggested that renal perfusion as well as tubular uptake is reduced in UUO kidneys. This imaging technique should allow non-invasive assessments of UUO renal injury and enable a more rapid interrogation of novel therapeutic agents and protocols.
Collapse
Affiliation(s)
- Mohammed N Tantawy
- Radiology and Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
In progressive kidney diseases, fibrosis represents the common pathway to end-stage kidney failure. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that has been established as a central mediator of kidney fibrosis. Emerging evidence shows a complex scheme of signaling networks that enable multifunctionality of TGF-β1 actions. Specific targeting of the TGF-β signaling pathway is seemingly critical and an attractive molecular therapeutic strategy. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways involving the Smad and the non-Smad. The Smad signaling axis is known as the canonical pathway induced by TGF-β1. Importantly, recent investigations have shown that TGF-β1 also induces various non-Smad signaling pathways. In this review, we focus on current insights into the mechanism and function of the Smad-independent signaling pathway via TGF-β-activated kinase 1 and its role in mediating the profibrotic effects of TGF-β1.
Collapse
Affiliation(s)
- Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
238
|
Oliveira FAM, Moraes ACM, Paiva AP, Schinzel V, Correa-Costa M, Semedo P, Castoldi A, Cenedeze MA, Oliveira RSMF, Bastos MG, Câmara NOS, Sanders-Pinheiro H. Low-level laser therapy decreases renal interstitial fibrosis. Photomed Laser Surg 2012; 30:705-13. [PMID: 23134313 DOI: 10.1089/pho.2012.3272] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE the purpose of this study was to investigate the effect of low-level laser therapy (LLLT) on chronic kidney disease (CKD) in a model of unilateral ureteral obstruction (UUO). BACKGROUND DATA Regardless of the etiology, CKD involves progressive widespread tissue fibrosis, tubular atrophy, and loss of kidney function. This process also occurs in kidney allograft. At present, effective therapies for this condition are lacking. We investigated the effects of LLLT on the interstitial fibrosis that occurs after experimental UUO in rats. METHODS The occluded kidney of half of the 32 Wistar rats that underwent UUO received a single intraoperative dose of LLLT (AlGaAs laser, 780 nm, 22.5 J/cm(2), 30 mW, 0.75 W/cm(2), 30 sec on each of nine points). After 14 days, renal fibrosis was assessed by Sirius red staining under polarized light. Immunohistochemical analyses quantitated the renal tissue cells that expressed fibroblast (FSP-1) and myofibroblast (α-SMA) markers. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the mRNA expression of interleukin (IL)-6, monocyte chemotactic protein-1 (MCP-1), transforming growth factor (TGF)-β1 and Smad3. RESULTS The UUO and LLLT animals had less fibrosis than the UUO animals, as well having decreased expression inflammatory and pro-fibrotic markers. CONCLUSIONS For the first time, we showed that LLLT had a protective effect regarding renal interstitial fibrosis. It is conceivable that by attenuating inflammation, LLLT can prevent tubular activation and transdifferentiation, which are the two processes that mainly drive the renal fibrosis of the UUO model.
Collapse
|
239
|
Mason RM. Fell-Muir lecture: Connective tissue growth factor (CCN2) -- a pernicious and pleiotropic player in the development of kidney fibrosis. Int J Exp Pathol 2012; 94:1-16. [PMID: 23110747 DOI: 10.1111/j.1365-2613.2012.00845.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/21/2012] [Indexed: 01/01/2023] Open
Abstract
Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis.
Collapse
Affiliation(s)
- Roger M Mason
- Renal Section, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
240
|
Measurement and compartmental modeling of the effect of CYP3A5 gene variation on systemic and intrarenal tacrolimus disposition. Clin Pharmacol Ther 2012; 92:737-45. [PMID: 23073208 DOI: 10.1038/clpt.2012.175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We evaluated the hypothesis that cytochrome P450 3A5 (CYP3A5) expression can affect intrarenal tacrolimus accumulation. Tacrolimus was administered orally to 24 healthy volunteers who were selected on the basis of their CYP3A5 genotype. As compared with CYP3A5 nonexpressors, expressors had a 1.6-fold higher oral tacrolimus clearance and 2.0- to 2.7-fold higher metabolite/parent area under the curve (AUC) ratios for 31-desmethyl tacrolimus (31-DMT), 12-hydroxy tacrolimus, and 13-desmethyl tacrolimus (13-DMT). In addition, the apparent urinary tacrolimus clearance was 36% lower in CYP3A5 expressors as compared with nonexpressors. To explore the mechanism behind this observation, we developed a semiphysiological model of renal tacrolimus disposition and predicted that tacrolimus exposure in the renal epithelium of CYP3A5 expressors is 53% of that for CYP3A5 nonexpressors, when normalized to blood AUC. These data suggest that, at steady state, intrarenal accumulation of tacrolimus and its primary metabolites will depend on the CYP3A5 genotype of the liver and kidneys. This may contribute to interpatient differences in the risk of tacrolimus-induced nephrotoxicity.
Collapse
|
241
|
Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. PLoS One 2012; 7:e45870. [PMID: 23056222 PMCID: PMC3466265 DOI: 10.1371/journal.pone.0045870] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/22/2012] [Indexed: 12/29/2022] Open
Abstract
TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethylfumarate (DMF), which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-β signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2) decreased PAI-1, alpha-smooth muscle actin (α-SMA), fibronectin and type 1 collagen expression in TGF-β-treated rat mesangial cells (RMCs) and renal fibroblast cells (NRK-49F). Additionally, DMF and Ad-Nrf2 repressed TGF-β-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE)-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST) did not reverse the inhibitory effect of DMF on TGF-β-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO)-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-β/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis.
Collapse
|
242
|
Chen F. Plumbing the depths of urinary tract obstruction by using murine models. Organogenesis 2012; 5:297-305. [PMID: 19568351 DOI: 10.4161/org.8055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
Urinary tract obstruction leads to obstructive nephropathy, which in turn, frequently results in renal failure. Congenital urinary tract obstruction can be traced back to errors during the organogenesis of the urinary system. A fundamental understanding of the causes of urinary tract obstruction and the developmental processes involved are critical for improving the diagnostic and therapeutic strategies for this disease. A number of laboratories, including ours, have been using genetically engineered and spontaneously occurring mouse models to study the primary causes and the pathogenesis of urinary tract obstruction. These studies have shown that urinary tract obstruction is a very heterogeneous disease that can be caused by a diverse set of factors targeting multiple levels of the urinary system. Accumulating evidence also indicates that the development of the urinary tract requires the integration of progenitor cells of diverse embryonic origins, leading to the formation of multiple junctions prone to developmental errors. In addition, the high sensitivity of the pyeloureteral peristaltic machinery to disturbance affecting the structural or functional integrity of its components also contributes to the high incidence rate of urinary tract obstruction.
Collapse
Affiliation(s)
- Feng Chen
- Assistant Professor of Medicine and Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA
| |
Collapse
|
243
|
Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, Sun X, Mao L, Xiang H. Gene expression profiling in glomeruli of diabetic nephropathy rat. Exp Biol Med (Maywood) 2012; 237:903-11. [PMID: 22903132 DOI: 10.1258/ebm.2012.012032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming growth factor β1) were significantly up-regulated in the DN group. The expressions of NDUFS3 and TGF-β1 in DN rats were increased. Our findings suggested that the oxidative phosphorylation pathway, ECM-receptor interaction, TGF-β pathway and renin-angiotensin system may be involved in the development of DN.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Basu R, Lee J, Wang Z, Patel VB, Fan D, Das SK, Liu GC, John R, Scholey JW, Oudit GY, Kassiri Z. Loss of TIMP3 selectively exacerbates diabetic nephropathy. Am J Physiol Renal Physiol 2012; 303:F1341-52. [PMID: 22896043 DOI: 10.1152/ajprenal.00349.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy is the most common cause of end-stage renal disease. Polymorphism in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene, and the ECM-bound inhibitor of matrix metalloproteinases (MMPs), has been linked to diabetic nephropathy in humans. To elucidate the mechanism, we generated double mutant mice in which the TIMP3 gene was deleted in the genetic diabetic Akita mouse background. The aggravation of diabetic injury occurred in the absence of worsening of hypertension or hyperglycemia. In fact, myocardial TIMP3 levels were not affected in Akita hearts, and cardiac diastolic and systolic function remained unchanged in the double mutant mice. However, TIMP3 levels increased in Akita kidneys and deletion of TIMP3 exacerbated the diabetic renal injury in the Akita mouse, characterized by increased albuminuria, mesangial matrix expansion, and kidney hypertrophy. The progression of diabetic renal injury was accompanied by the upregulation of fibrotic and inflammatory markers, increased production of reactive oxygen species and NADPH oxidase activity, and elevated activity of TNF-α-converting enzyme (TACE) in the TIMP3(-/-)/Akita kidneys. Moreover, while the elevated phospho-Akt (S473 and T308) and phospho-ERK1/2 in the Akita mice was not detected in the TIMP3(-/-)/Akita kidneys, PKCβ1 (but not PKCα) was markedly elevated in the double mutant kidneys. Our data provide definitive evidence for a critical and selective role of TIMP3 in diabetic renal injury consistent with gene expression findings from human diabetic kidneys.
Collapse
Affiliation(s)
- Ratnadeep Basu
- Dept. of Physiology, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Effect of yishen huayu fang on kidney tissue E-cadherin expression in unilateral ureter ligation in rats. J TRADIT CHIN MED 2012; 32:273-7. [PMID: 22876456 DOI: 10.1016/s0254-6272(13)60024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To observe E-calcium sticky protein (E-cadherin) expression in kidney tissues in a rat model of unilateral ureter ligation and the effect of Yishen Huayu Fang (formula of tonifying the kidney and dissolving accumulated blood stasis) on the expression. METHODS A total of 150 clean grade male rats were randomly divided into a control group, model group, low-dose Yishen Huayu Fang group (low-dose group), high-dose Yishen Huayu Fang group (high-dose group), and Lotensin group. A renal fibrosis model was established with unilateral ureteral obstruction (UUO). Pathological changes of rat renal tissue were observed with light microscopy on days 3, 7, 14, 21, and 28 after UUO. Changes in kidney tissue E-cadherin expression were observed with immunohistochemistry. RESULTS Three days after modeling, kidney edema appeared followed by gradual inflammatory cell infiltration, and part of the small tubules disappeared while the renal cortex thinned. Meanwhile, the E-cadherin expression level dropped, which was negatively correlated with the obstruction time. After intervention, E-cadherin expression was increased in all treatment groups (P < 0.01 or P < 0.05), while there were no significant differences between the high-dose and Lotensin groups. CONCLUSION Yishen Huayu Fang delays the renal fibrosis process by promoting E-cadherin expression in renal tissues and reducing extracellular matrix deposition.
Collapse
|
246
|
Atorvastatin Prevents the Downregulation of Aquaporin-2 Receptor After Bilateral Ureteral Obstruction and Protects Renal Function in a Rat Model. Urology 2012; 80:485.e15-20. [DOI: 10.1016/j.urology.2012.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/02/2012] [Accepted: 02/13/2012] [Indexed: 01/09/2023]
|
247
|
Du X, Shimizu A, Masuda Y, Kuwahara N, Arai T, Kataoka M, Uchiyama M, Kaneko T, Akimoto T, Iino Y, Fukuda Y. Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy. J Transl Med 2012; 92:1149-60. [PMID: 22614125 DOI: 10.1038/labinvest.2012.68] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Renal fibrosis is a common finding in progressive renal diseases. Matrix metalloproteinases (MMPs) are involved in epithelial-to-mesenchymal transition (EMT). We investigated the role of MMP-2 and the effect of inhibition of MMPs on the development of renal fibrosis. Renal fibrosis was induced in MMP-2 wild-type (MMP-2⁺/⁺) mice by unilateral ureteral obstruction (UUO). Renal histopathology, EMT-associated molecules, and activity of MMP-2 and MMP-9 were examined during the development of interstitial fibrosis. UUO-renal fibrosis was also induced in MMP-2 deficient (MMP-2⁻/⁻) and MMP-2⁺/⁺ mice treated with minocycline (inhibitor of MMPs). In MMP-2⁺/⁺ mice, MMP-2 and MMP-9 were expressed in damaged tubules, and their activities increased in a time-dependent manner after UUO. Interstitial fibrosis was noted at day 14, with deposition of types III and I collagens and expression of markers of mesenchymal cells (S100A4, vimentin, α-smooth muscle actin, and heat shock protein-47) in damaged tubular epithelial cells, together with F4/80+ macrophage infiltration. Fibrotic kidneys expressed EMT-associated molecules (ILK, TGF-β1, Smad, Wnt, β-catenin, and Snail). In contrast, the kidneys of MMP-2⁻/⁻ mice and minocycline-treated MMP-2⁺/⁺ mice showed amelioration of renal fibrosis with reduced expression of markers of mesenchymal cells in tubular epithelial cells, inhibition of upregulated EMT-associated molecules, and suppression of macrophage infiltration. The results suggested that MMP-2 have a pathogenic role in renal interstitial fibrosis, possibly through the induction of EMT and macrophage infiltration. Inhibition of MMPs may be beneficial therapeutically in renal fibrosis.
Collapse
Affiliation(s)
- Xuanyi Du
- Department of Pathology-Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Lavoz C, Rodrigues-Diez R, Benito-Martin A, Rayego-Mateos S, Rodrigues-Diez RR, Alique M, Ortiz A, Mezzano S, Egido J, Ruiz-Ortega M. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PLoS One 2012; 7:e40490. [PMID: 22792351 PMCID: PMC3392235 DOI: 10.1371/journal.pone.0040490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 12/20/2022] Open
Abstract
Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix proteins. In cultured human tubular epithelial cells the Notch activation by transforming growth factor-β1 (TGF-β1) has been involved in epithelial mesenchymal transition. AngII mimics many profibrotic actions of TGF-β1. For these reasons, our aim was to investigate whether AngII could regulate the Notch/Jagged system in the kidney, and its potential role in AngII-induced responses. In cultured human tubular epithelial cells, TGF-β1, but not AngII, increased the Notch pathway-related gene expression, Jagged-1 synthesis, and caused nuclear translocation of the activated Notch. In podocytes and renal fibroblasts, AngII did not modulate the Notch pathway. In tubular epithelial cells, pharmacological Notch inhibition did not modify AngII-induced changes in epithelial mesenchymal markers, profibrotic factors and extracellular matrix proteins. Systemic infusion of AngII into rats for 2 weeks caused tubulointerstitial fibrosis, but did not upregulate renal expression of activated Notch-1 or Jagged-1, as observed in spontaneously hypertensive rats. Moreover, the Notch/Jagged system was not modulated by AngII type I receptor blockade in the model of unilateral ureteral obstruction in mice. These data clearly indicate that AngII does not regulate the Notch/Jagged signaling system in the kidney, in vivo and in vitro. Our findings showing that the Notch pathway is not involved in AngII-induced fibrosis could provide important information to understand the complex role of Notch system in the regulation of renal regeneration vs damage progression.
Collapse
Affiliation(s)
- Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | | | | | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | | | - Matilde Alique
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
| | - Alberto Ortiz
- Dialysis Unit, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory. Universidad Autónoma, Madrid, Spain
- * E-mail:
| |
Collapse
|
249
|
Nelson PJ, Teixeira MM. Dissection of inflammatory processes using chemokine biology: Lessons from clinical models. Immunol Lett 2012; 145:55-61. [DOI: 10.1016/j.imlet.2012.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/13/2012] [Indexed: 12/30/2022]
|
250
|
Xiao HB, Liu RH, Ling GH, Xiao L, Xia YC, Liu FY, Li J, Liu YH, Chen QK, Lv JL, Zhan M, Yang SK, Kanwar YS, Sun L. HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1 through ERK1/2 and JNK MAPK pathways. Am J Physiol Renal Physiol 2012; 303:F757-65. [PMID: 22718885 DOI: 10.1152/ajprenal.00470.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein (HSP)47 is a collagen-specific molecular chaperone that is essential for the biosynthesis of collagen molecules. It is likely that increased levels of HSP47 contribute to the assembly of procollagen and thereby cause an excessive accumulation of collagens in disease processes associated with fibrosis. Although HSP47 promotes renal fibrosis, the underlying mechanism and associated signaling events have not been clearly delineated. We examined the role of HSP47 in renal fibrosis using a rat unilateral ureteral obstruction model and transforming growth factor (TGF)-β(1)-treated human proximal tubular epithelial (HK-2) cells. An upregulation of HSP47 in both in vivo and in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of HSP47 by short interfering RNA suppressed the expression of ECM proteins and PAI-1. In addition, TGF-β(1)-induced HSP47 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of HSP47, the chaperoning effect of which on TGF-β(1) would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.
Collapse
Affiliation(s)
- Hong-bo Xiao
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Central South University, No. 139 Remin Middle Rd., Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|