201
|
Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 2011; 6:P1-17. [PMID: 21721837 DOI: 10.1116/1.3582324] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon nanotubes are molecular-scale one-dimensional manufactured materials which display several potential applications in engineering and materials science. Burgeoning evidence demonstrates that carbon nanotubes and asbestos share comparable physical properties. Therefore carbon nanotubes might display toxic effects and the extent of the toxicity is more specifically directed to lung and pleura. These effects are related to properties of carbon nanotubes, such as their structure, length, aspects ratio, surface area, degree of aggregation, extent of oxidation, bound functional group, method of manufacturing, concentration and dose. At the present there is no global agreement about the risk of carbon nanotubes on human health and in particular on their transformation capacity. Safety concerns regarding carbon nanotubes can be ameliorated. In this context, it is important to put the known hazards of carbon nanotubes into perspective. Here is presented an overview about toxicity issues in the application of carbon nanotubes to biological systems, taking into consideration the already known asbestos-induced mechanisms of biological damages.
Collapse
|
202
|
Lau PCP, Chan ATC. Novel therapeutic target for head and neck squamous cell carcinoma: HGF-MET signaling pathway. Anticancer Drugs 2011; 22:665-73. [PMID: 21709616 DOI: 10.1097/cad.0b013e328341879d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a devastating type of malignancy characterized by its high incidence of regional and distant metastases at the time of diagnosis. Vital physiological functions in the upper aerodigestive tract are often impaired as a result of the disease and treatment for the disease, giving rise to severe morbidity in patients suffering from this type of cancer. It is crucial to delineate the aberrant growth signaling pathways in HNSCC cells and develop specific target therapies for the disease to improve the treatment outcome. Although the epidermal growth factor receptor pathway has been extensively studied in HNSCC and anti-epidermal growth factor receptor therapy has already shown promise in treating HNSCC in phase III clinical trials, the signaling pathway that accounts for the highly invasive phenotype of HNSCC needs to be defined and also therapeutically targeted. The hepatocyte growth factor-MET signaling pathway has been studied extensively over the past two decades and it is now clear that it plays an important role in mediating invasive growth of many types of cancer. Here, we review comprehensively the evidence on hepatocyte growth factor-MET cascade being a key in the signaling pathway in mediating invasive growth of HNSCC and the potential of this signaling pathway to be a therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Patrick Chi-pan Lau
- State Key Laboratory of Oncology, South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
203
|
Tanizaki J, Okamoto I, Sakai K, Nakagawa K. Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br J Cancer 2011; 105:807-13. [PMID: 21847121 PMCID: PMC3171021 DOI: 10.1038/bjc.2011.322] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: MET is a receptor tyrosine kinase (RTK) whose gene is amplified in various tumour types. We investigated the roles and mechanisms of RTK heterodimerisation in lung cancer with MET amplification. Methods: With the use of an RTK array, we identified phosphorylated RTKs in lung cancer cells with MET amplification. We examined the roles and mechanisms of action of these RTKs with immunoprecipitation, annexin V binding, and cell migration assays. Results: We identified epidermal growth factor receptor (EGFR), human EGFR (HER)2, HER3, and RET in addition to MET as highly phosphorylated RTKs in lung cancer cells with MET amplification. Immunoprecipitation revealed that EGFR, HER2, HER3, and RET each formed a heterodimer exclusively with MET and that these associations were markedly reduced in extent by treatment with a MET kinase inhibitor. RNA interference-mediated depletion of EGFR, HER2, or HER3 induced apoptosis in association with inhibition of AKT and ERK signalling pathways, whereas depletion of HER2 or RET inhibited both cell migration and STAT3 signalling. Conclusion: Our data suggest that heterodimers of MET with EGFR, HER2, HER3, or RET have differential roles in tumour development, and they provide new insight into the function of trans-phosphorylated RTKs as heterodimerisation partners of MET in lung cancer with MET amplification.
Collapse
Affiliation(s)
- J Tanizaki
- Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | |
Collapse
|
204
|
MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br J Cancer 2011; 105:814-23. [PMID: 21847116 PMCID: PMC3171012 DOI: 10.1038/bjc.2011.298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Small cell lung carcinoma (SCLC) has poor prognosis and remains orphan from targeted therapy. MET is activated in several tumour types and may be a promising therapeutic target. Methods: To evaluate the role of MET in SCLC, MET gene status and protein expression were evaluated in a panel of SCLC cell lines. The MET inhibitor PHA-665752 was used to study effects of pathway inhibition in basal and hepatocyte growth factor (HGF)-stimulated conditions. Immunohistochemistry for MET and p-MET was performed in human SCLC samples and association with outcome was assessed. Results: In MET mutant SCLC cells, HGF induced MET phosphorylation, increased proliferation, invasiveness and clonogenic growth. PHA-665752 blocked MET phosphorylation and counteracted HGF-induced effects. In clinical samples, total MET and p-MET overexpression were detected in 54% and 43% SCLC tumours (n=77), respectively. MET phosphorylation was associated with poor median overall survival (132 days) vs p-MET negative cases (287 days)(P<0.001). Phospho-MET retained its prognostic value in a multivariate analysis. Conclusions: MET activation resulted in a more aggressive phenotype in MET mutant SCLC cells and its inhibition by PHA-665752 reversed this phenotype. In patients with SCLC, MET activation was associated with worse prognosis, suggesting a role in the adverse clinical behaviour in this disease.
Collapse
|
205
|
Han SY, Zhao MB, Zhuang GB, Li PP. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells. Lung Cancer 2011; 75:30-7. [PMID: 21757251 DOI: 10.1016/j.lungcan.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/25/2011] [Accepted: 06/01/2011] [Indexed: 12/01/2022]
Abstract
Most non-small cell lung cancer (NSCLC) patients responding to gefitinib harbor activating mutations in the epidermal growth factor receptor (EGFR). However, the responsive cases eventually develop the resistance to gefitinib. Besides, K-ras mutations were identified as the primary resistance to gefitinib. We investigated whether Marsdenia tenacissima extract (MTE, trade name: Xiao-Ai-Ping injection) combined with gefitinib could overcome the resistance of NSCLC cells to gefitinib. NSCLC cell lines with different sensitivities to gefitinib were studied. Cell growth and apoptosis were evaluated by MTT assay and flow cytometry, respectively. The EGFR-related signaling molecule phosphorylation was assessed by Western blotting. We found that MTE inhibited cell growth in gefitinib-sensitive and -resistant cells. In gefitinib-resistant cells, the MTE→MTE+gefitinib (M→M+G) treatment was most potent over the concurrent administration of MTE and gefitinib (M+G) or gefitinib→gefitinib+MTE (G→G+M) treatment in cell growth inhibition and apoptosis induction. The M→M+G treatment significantly reduced the phosphorylation of EGFR downstream signaling molecules PI3K/Akt/mTOR and ERK, on which MTE and gefitinib alone had no obvious effects on the resistant cells. The M→M+G treatment attenuated c-Met phosphorylation in H460 and H1975 as well. Thus, we found that the M→M+G treatment improved the sensitivity of resistant NSCLC cells carrying T790M or K-ras mutations to gefitinib, suggesting that the M→M+G treatment may be a promising therapeutic strategy to overcome gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | | | | | | |
Collapse
|
206
|
Faoro L, Cervantes GM, Ferguson BD, Seiwert TY, Yala S, Vigneswaran WT, Westerhoff M, Tretiakova MS, Ferguson MK, Moura GL, Husain AN, Vokes EE, Salgia R. MET/PKCbeta expression correlate with metastasis and inhibition is synergistic in lung cancer. J Carcinog 2011; 8:15. [PMID: 19955662 PMCID: PMC2791827 DOI: 10.4103/1477-3163.57857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Treatment of non-small cell lung cancer (NSCLC) remains a difficult task in oncology. Targeted inhibition of oncogenic proteins is promising. In this study, we evaluate the expression of MET and PKCß and in vitro effects of their inhibition using SU11274 and enzastaurin (LY317615.HCl) respectively. Materials and Methods: Patient samples were analyzed by immunohistochemistry for expression of PKCß and MET, utilizing tissue microarrays under an IRB-approved protocol. Expression of PKCß and MET was evaluated in cell lines by immunoblotting. Treatment with SU1174 against MET and enzastaurin against PKCß was performed in H1993 and H358 cell lines, and cell proliferation and downstream signaling (phosphorylation of MET, AKT, FAK, and GSK3ß) were evaluated by immunoblotting. Statistical analysis was performed using SPSS 16.0. Results: Expression of MET positively correlated with lymph node metastases (p=.0004), whereas PKCß showed no correlation (p=0.204). MET and PKCß expression were also strongly correlated (p<0.001). Expression of MET was observed in 5/8 cell lines (H358, H1703, A549, H1993, H2170; absent from H522, H661, or SW1573), whereas PKCß expression was observed in 8/8 cell lines. Cell proliferation was significantly impaired by treatment with SU11274 and enzastaurin, and their effects were synergistic in combination (CI=0.32 and 0.09). Phosphorylation of MET, FAK, AKT, and GSK3ß were strongly inhibited with both agents in combination. Conclusions: Concomitant inhibition of MET and PKCß significantly increased cytotoxicity in vitro against NSCLC, disrupting important downstream signaling pathways. Further evaluation in animal models is warranted.
Collapse
Affiliation(s)
- Leonardo Faoro
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Tiedt R, Degenkolbe E, Furet P, Appleton BA, Wagner S, Schoepfer J, Buck E, Ruddy DA, Monahan JE, Jones MD, Blank J, Haasen D, Drueckes P, Wartmann M, McCarthy C, Sellers WR, Hofmann F. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res 2011; 71:5255-64. [PMID: 21697284 DOI: 10.1158/0008-5472.can-10-4433] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emergence of drug resistance is a primary concern in any cancer treatment, including with targeted kinase inhibitors as exemplified by the appearance of Bcr-Abl point mutations in chronic myeloid leukemia (CML) patients treated with imatinib. In vitro approaches to identify resistance mutations in Bcr-Abl have yielded mutation spectra that faithfully recapitulated clinical observations. To predict resistance mutations in the receptor tyrosine kinase MET that could emerge during inhibitor treatment in patients, we conducted a resistance screen in BaF3 TPR-MET cells using the novel selective MET inhibitor NVP-BVU972. The observed spectrum of mutations in resistant cells was dominated by substitutions of tyrosine 1230 but also included other missense mutations and partially overlapped with activating MET mutations that were previously described in cancer patients. Cocrystallization of the MET kinase domain in complex with NVP-BVU972 revealed a key role for Y1230 in binding of NVP-BVU972, as previously reported for multiple other selective MET inhibitors. A second resistance screen in the same format with the MET inhibitor AMG 458 yielded a distinct spectrum of mutations rich in F1200 alterations, which is consistent with a different predicted binding mode. Our findings suggest that amino acid substitutions in the MET kinase domain of cancer patients need to be carefully monitored before and during treatment with MET inhibitors, as resistance may preexist or emerge. Compounds binding in the same manner as NVP-BVU972 might be particularly susceptible to the development of resistance through mutations in Y1230, a condition that may be addressed by MET inhibitors with alternative binding modes.
Collapse
MESH Headings
- Amino Acid Substitution
- Aminopyridines/metabolism
- Aminopyridines/pharmacology
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Transformed
- Cell Line, Tumor
- Crystallography, X-Ray
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation/genetics
- Humans
- Mice
- Models, Molecular
- Mutagenesis
- Mutation, Missense
- Neoplasms/drug therapy
- Neoplasms/genetics
- Point Mutation
- Protein Binding
- Protein Conformation
- Protein Kinase Inhibitors/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/chemistry
- Proto-Oncogene Proteins c-met/genetics
- Pyrazoles/metabolism
- Pyrazoles/pharmacology
- Quinolines/metabolism
- Quinolines/pharmacology
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Growth Factor/chemistry
- Receptors, Growth Factor/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Ralph Tiedt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
Background: Cholangiocarcinoma (CC) is a highly malignant carcinoma. We attempted to clarify the prognostic significance of c-Met overexpression and its association with clinicopathological factors in patients with CC. Patients and methods: One hundred and eleven patients with intrahepatic CC (IHCC) and 136 patients with extrahepatic CC (EHCC) who had undergone curative surgery were divided immunohistologically into c-Methigh and c-Metlow groups. Clinicopathological factors and outcomes were compared between the groups. c-Met and epidermal growth factor receptor (EGFR) expression was also examined in 10 CC cell lines. Results: The positivity of c-Met was 45.0% in IHCC and 68.4% in EHCC; c-Methigh expression was demonstrated in 11.7% of IHCC and 16.2% of EHCC. c-Methigh expression was significantly correlated with the 5-year survival rate for CC overall (P=0.0046) and for IHCC (P=0.0013), histopathological classification in EHCC, and for EGFR overexpression in both IHCC and EHCC. Coexpression and coactivation of c-Met and EGFR were also observed in CC cell lines. Multivariate analysis revealed that c-Methigh expression was an independent predictor of poor overall and disease-free survival in patients with IHCC. Conclusions: c-Met overexpression is associated with EGFR expression and is a poor prognostic factor in CC.
Collapse
|
209
|
Singhal G, Akhter MZ, Stern DF, Gupta SD, Ahuja A, Sharma U, Jagannathan NR, Rajeswari MR. DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther 2011; 18:520-30. [PMID: 21660063 DOI: 10.1038/cgt.2011.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal epithelial transition factor (MET) is one of the critical cell signaling molecules whose aberrant expression is reported in several human cancers. The aim of the study is to investigate the antigene and antiproliferative effect of short triplex forming oligonucleotides, TFO-1 (part of the positive regulatory element) and TFO-2 (away from the transcription start site) on MET expression. HepG2 cells transfected only with TFO-1 (but not with TFO-2 and non-specific TFO) significantly decreased MET levels, which is accompanied by decrease in antiapoptotic proteins and increase in pro-apoptotic proteins. Phosphoproteome-array analysis of 46 intracellular kinases revealed hypophosphorylation of about 15 kinases including ERK, AKT, Src and MEK, suggesting the growth inhibitory effect of TFO-1. Further, the efficacy of TFO-1 was tested on diethylnitrosamine-induced liver tumors in wistar rats. T2-weighted magnetic resonance imaging showed decrease in liver tumor volume up to 90% after treatment with TFO-1. Decreased MET expression and elevated apoptotic activity further indicate that TFO-1 targeted to c-met leads to cell death and tumor regression in hepatoma. Formation of stable DNA triplex between TFO-1 and targeted gene sequence was confirmed by circular dichroic spectroscopy and gel retardation assay. Therefore, it can be concluded that DNA triplex-based therapeutic approaches hold promise in the treatment of malignancies associated with MET overexpression.
Collapse
Affiliation(s)
- G Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Katz JD, Jewell JP, Guerin DJ, Lim J, Dinsmore CJ, Deshmukh SV, Pan BS, Marshall CG, Lu W, Altman MD, Dahlberg WK, Davis L, Falcone D, Gabarda AE, Hang G, Hatch H, Holmes R, Kunii K, Lumb KJ, Lutterbach B, Mathvink R, Nazef N, Patel SB, Qu X, Reilly JF, Rickert KW, Rosenstein C, Soisson SM, Spencer KB, Szewczak AA, Walker D, Wang W, Young J, Zeng Q. Discovery of a 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one (MK-2461) inhibitor of c-Met kinase for the treatment of cancer. J Med Chem 2011; 54:4092-108. [PMID: 21608528 DOI: 10.1021/jm200112k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.
Collapse
Affiliation(s)
- Jason D Katz
- Department of Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, BMB-2-114, Boston, Massachusetts 02115, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Tworkoski K, Singhal G, Szpakowski S, Zito CI, Bacchiocchi A, Muthusamy V, Bosenberg M, Krauthammer M, Halaban R, Stern DF. Phosphoproteomic screen identifies potential therapeutic targets in melanoma. Mol Cancer Res 2011; 9:801-12. [PMID: 21521745 DOI: 10.1158/1541-7786.mcr-10-0512] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Therapies directed against receptor tyrosine kinases are effective in many cancer subtypes, including lung and breast cancer. We used a phosphoproteomic platform to identify active receptor tyrosine kinases that might represent therapeutic targets in a panel of 25 melanoma cell strains. We detected activated receptors including TYRO3, AXL, MERTK, EPHB2, MET, IGF1R, EGFR, KIT, HER3, and HER4. Statistical analysis of receptor tyrosine kinase activation as well as ligand and receptor expression indicates that some receptors, such as FGFR3, may be activated via autocrine circuits. Short hairpin RNA knockdown targeting three of the active kinases identified in the screen, AXL, HER3, and IGF1R, inhibited the proliferation of melanoma cells and knockdown of active AXL also reduced melanoma cell migration. The changes in cellular phenotype observed on AXL knockdown seem to be modulated via the STAT3 signaling pathway, whereas the IGF1R-dependent alterations seem to be regulated by the AKT signaling pathway. Ultimately, this study identifies several novel targets for therapeutic intervention in melanoma.
Collapse
Affiliation(s)
- Kathryn Tworkoski
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Treatment decisions for patients with lung cancer have historically been based on tumour histology. Some understanding of the molecular composition of tumours has led to the development of targeted agents, for which initial findings are promising. Clearer understanding of mutations in relevant genes and their effects on cancer cell proliferation and survival, is, therefore, of substantial interest. We review current knowledge about molecular subsets in non-small-cell lung cancer that have been identified as potentially having clinical relevance to targeted therapies. Since mutations in EGFR and KRAS have been extensively reviewed elsewhere, here, we discuss subsets defined by so-called driver mutations in ALK, HER2 (also known as ERBB2), BRAF, PIK3CA, AKT1, MAP2K1, and MET. The adoption of treatment tailored according to the genetic make-up of individual tumours would involve a paradigm shift, but might lead to substantial therapeutic improvements.
Collapse
Affiliation(s)
- William Pao
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232–6307, USA.
| | | |
Collapse
|
213
|
Qi J, McTigue MA, Rogers A, Lifshits E, Christensen JG, Jänne PA, Engelman JA. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res 2011; 71:1081-91. [PMID: 21266357 DOI: 10.1158/0008-5472.can-10-1623] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapies targeting receptor tyrosine kinases have shown efficacy in molecularly defined subsets of cancers. Unfortunately, cancers invariably develop resistance, and overcoming or preventing resistance will ultimately be key to unleashing their full therapeutic potential. In this study, we examined how cancers become resistant to MET inhibitors, a class of drugs currently under clinical development. We utilized the highly sensitive gastric carcinoma cell line, SNU638, and two related MET inhibitors PHA-665752 and PF-2341066. To our surprise, we observed at least two mechanisms of resistance that arose simultaneously. Both resulted in maintenance of downstream PI3K (phosphoinositide 3-kinase)-AKT and MEK (MAP/ERK kinase)-ERK signaling in the presence of inhibitor. One mechanism, observed by modeling resistance both in vitro and in vivo, involved the acquisition of a mutation in the MET activation loop (Y1230). Structural analysis indicates that this mutation destabilizes the autoinhibitory conformation of MET and abrogates an important aromatic stacking interaction with the inhibitor. The other cause of resistance was activation of the epidermal growth factor receptor (EGFR) pathway due to increased expression of transforming growth factor α. Activation of EGFR bypassed the need for MET signaling to activate downstream signaling in these cells. This resistance could be overcome by combined EGFR and MET inhibition. Thus, therapeutic strategies that combine MET inhibitors capable of inhibiting Y1230 mutant MET in combination with anti-EGFR-based therapies may enhance clinical benefit for patients with MET-addicted cancers. Importantly, these results also underscore the notion that a single cancer can simultaneously develop resistance induced by several mechanisms and highlight the daunting challenges associated with preventing or overcoming resistance.
Collapse
Affiliation(s)
- Jie Qi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Liu L, Shi H, Liu Y, Anderson A, Peterson J, Greger J, Martin AM, Gilmer TM. Synergistic effects of foretinib with HER-targeted agents in MET and HER1- or HER2-coactivated tumor cells. Mol Cancer Ther 2011; 10:518-30. [PMID: 21252284 DOI: 10.1158/1535-7163.mct-10-0698] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HER and MET receptor tyrosine kinases (RTK) are coactivated in a subset of human tumors. This study characterizes MET and HER expression and signaling in a panel of human tumor cell lines and the differential susceptibility of these cell lines to single agents or combinations of foretinib, a multikinase MET inhibitor, with HER-targeted agents, erlotinib or lapatinib. Most MET-amplified tumor lines without HER1 or HER2 amplification are sensitive to foretinib, whereas MET-amplified lines with HER1 or HER2 amplification are more sensitive to the combination of foretinib with lapatinib or erlotinib. Interestingly, MET-overexpressing tumor cell lines with HER1 or HER2 amplification also exhibited reduced sensitivity to lapatinib or erlotinib in the presence of hepatocyte growth factor (HGF), indicating MET activation can decrease the effectiveness of HER1/2 inhibitors in some cell lines. Consistent with this observation, the effect of HGF on lapatinib or erlotinib sensitivity in these cells was reversed by foretinib, other MET inhibitors, or siRNA to MET. Western blot analyses showed that combining foretinib with erlotinib or lapatinib effectively decreased the phosphorylation of MET, HER1, HER2, HER3, AKT, and ERK in these cells. Furthermore, HER2-positive advanced or metastatic breast cancer patients treated with lapatinib who had higher tumor MET expression showed shorter progression-free survival (19.29 weeks in MET-high patients vs. 28.14 weeks in MET-low patients, P < 0.0225). These data suggest that combination therapy with foretinib and HER-targeted agents should be tested as a treatment option for HER1- or HER2-positive patients with MET-amplified or -overexpressing tumors.
Collapse
Affiliation(s)
- Li Liu
- GlaxoSmithKline, 17.1356I, 5 Moore Drive, Research Triangle Park, NC 27709-3398, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Benvenuti S, Lazzari L, Arnesano A, Li Chiavi G, Gentile A, Comoglio PM. Ron kinase transphosphorylation sustains MET oncogene addiction. Cancer Res 2011; 71:1945-55. [PMID: 21212418 DOI: 10.1158/0008-5472.can-10-2100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and proliferation). Here we show that cancer cells addicted to MET also display constitutive activation of the Ron kinase. In human cancer cell lines coexpressing the 2 oncogenes, Ron is specifically transphosphorylated by activated Met. In contrast, Ron phosphorylation is not triggered in cells harboring constitutively active kinase receptors other than Met, including Egfr or Her2. Furthermore, Ron phosphorylation is suppressed by Met-specific kinase inhibitors (PHA-665752 or JNJ-38877605). Last, Ron phosphorylation is quenched by reducing cell surface expression of Met proteins by antibody-induced shedding. In MET-addicted cancer cells, short hairpin RNA-mediated silencing of RON expression resulted in decreased proliferation and clonogenic activity in vitro and tumorigenicity in vivo. Our findings establish that oncogene addiction to MET involves Ron transactivation, pointing to Ron kinase as a target for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Exploratory Research Laboratory, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
216
|
Falck E, Karlsson S, Carlsson J, Helenius G, Karlsson M, Klinga-Levan K. Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int 2010; 10:46. [PMID: 21106063 PMCID: PMC3014921 DOI: 10.1186/1475-2867-10-46] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/24/2010] [Indexed: 11/24/2022] Open
Abstract
Glutathione peroxidase 3 (GPX3) is one of the key enzymes in the cellular defense against oxidative stress and the hepatocyte growth factor receptor, (MET) has been suggested to be influenced by the GPX3 gene expression. In a previous microarray study performed by our group, Gpx3 was identified as a potential biomarker for rat endometrial adenocarcinoma (EAC), since the expression was highly downregulated in rat EAC tumors. Herein, we have investigated the mRNA expression and Gpx3 and Met in rat EAC by real time quantitative PCR (qPCR), and the methylation status of Gpx3. In addition we have examined the expression of GPX3 and MET in 30 human EACs of different FIGO grades and 20 benign endometrial tissues. We found that the expression of GPX3 was uniformly down regulated in both rat and human EAC, regardless of tumor grade or histopathological subtype, implying that the down-regulation is an early event in EAC. The rate of Gpx3 promoter methylation reaches 91%, where biallelic methylation was present in 90% of the methylated tumors. The expression of the Met oncogene was slightly upregulated in EACs that showed loss of expression of Gpx3, but no tumor suppressor activity of Gpx3/GPX3 was detected. Preliminary results also suggest that the production of H2O2 is higher in rat endometrial tumors with down-regulated Gpx3 expression. A likely consequence of loss of GPX3 protein function would be a higher amount of ROS in the cancer cell environment. Thus, the results suggest important clinical implications of the GPX3 expression in EAC, both as a molecular biomarker for EAC and as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Eva Falck
- Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde, Sweden
| | - Sandra Karlsson
- Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde, Sweden
| | - Jessica Carlsson
- Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde, Sweden
| | - Gisela Helenius
- Department of Pathology, Örebro University Hospital, Örebro, Sweden
| | - Mats Karlsson
- Department of Pathology, Örebro University Hospital, Örebro, Sweden
| | - Karin Klinga-Levan
- Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde, Sweden
| |
Collapse
|
217
|
Stella GM, Benvenuti S, Comoglio PM. Targeting the MET oncogene in cancer and metastases. Expert Opin Investig Drugs 2010; 19:1381-94. [PMID: 20868306 DOI: 10.1517/13543784.2010.522988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD 'Invasive growth' is a genetic program involved in embryonic development and adult organ regeneration and usurped by cancer cells. Although its control is complex, tumor- and context-specific and regulated by several cytokines and growth factors, the role played by the MET oncogene is well documented. In human cancers the contribution of MET to invasive growth is mainly through overexpression, driven by unfavorable microenvironmental conditions. MET activation confers a selective advantage to neoplastic cells in tumor progression and drug resistance. A subset of tumors feature alterations of the MET gene and a consequent MET-addicted phenotype. AREAS COVERED IN THIS REVIEW The molecular basis and rationale of MET inhibition in cancer and metastases are discussed. A number of molecules designed to block MET signaling are under development and several Phase II trials are ongoing. WHAT THE READER WILL GAIN Knowledge of the state of the art of anti-MET targeted approaches and the molecular basis and strategies to select patients eligible for treatment with MET inhibitors. TAKE HOME MESSAGE Due to its versatile functions MET is a promising candidate for cancer therapy. Understanding molecular mechanisms of sensitization and resistance to MET inhibitors is a priority to guide tailored therapies and select patients that are most likely to achieve a clinical benefit.
Collapse
Affiliation(s)
- Giulia M Stella
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, I-10060 Candiolo, Turin, Italy.
| | | | | |
Collapse
|
218
|
Cepero V, Sierra JR, Corso S, Ghiso E, Casorzo L, Perera T, Comoglio PM, Giordano S. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res 2010; 70:7580-90. [PMID: 20841479 DOI: 10.1158/0008-5472.can-10-0436] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The establishment of the role of MET in human cancer has led to the development of small-molecule inhibitors, many of which are currently in clinical trials. Thus far, nothing is known about their therapeutic efficacy and the possible emergence of resistance to treatment, a problem that has been often observed with other receptor tyrosine kinase (RTK) inhibitors. To predict mechanisms of acquired resistance, we generated resistant cells by treating MET-addicted cells with increasing concentrations of the MET small-molecule inhibitors PHA-665752 or JNJ38877605. Resistant cells displayed MET gene amplification, leading to increased expression and constitutive phosphorylation of MET, followed by subsequent amplification and overexpression of wild-type (wt) KRAS. Cells harboring KRAS amplification progressively lost their MET dependence and acquired KRAS dependence. Our results suggest that MET and KRAS amplification is a general mechanism of resistance to specific MET inhibitors given that similar results were observed with two small inhibitors and in different cell lines of different histotypes. To our knowledge, this is the first report showing that overexpression of wt KRAS can overcome the inhibitory effect of a RTK inhibitor. In view of the fact that cellular models of resistance to inhibitors targeting other tyrosine kinases have predicted and corroborated clinical findings, our results provide insights into strategies for preventing and/or overcoming drug resistance.
Collapse
Affiliation(s)
- Virna Cepero
- Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Pacchiana G, Chiriaco C, Stella MC, Petronzelli F, De Santis R, Galluzzo M, Carminati P, Comoglio PM, Michieli P, Vigna E. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 2010; 285:36149-57. [PMID: 20833723 DOI: 10.1074/jbc.m110.134031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor "shedding") followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.
Collapse
Affiliation(s)
- Giovanni Pacchiana
- Laboratory of Experimental Therapy and Gene Transfer, Institute for Cancer Research and Treatment, Department of Oncological Sciences, University of Turin Medical School, SP 142, km 3.95, I-10060 Candiolo, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Pallis AG, Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Molecular networks in respiratory epithelium carcinomas. Cancer Lett 2010; 295:1-6. [PMID: 20381956 DOI: 10.1016/j.canlet.2010.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/14/2010] [Accepted: 03/17/2010] [Indexed: 11/26/2022]
Abstract
Current anti-cancer research is focused on cell surface receptors targeting, mainly epidermal growth factor receptor and vascular endothelial growth factor receptor, against which a few targeted agents are now available in clinical practice. Recent improvements of our understanding on the intracellular networks that participate in respiratory epithelium carcinogenesis have further elucidated the role of a variety of molecules that represent attractive targets for novel therapeutic strategies. The aim of this review is to explore the potential therapeutic opportunities of the manipulation of these pathways.
Collapse
Affiliation(s)
- Athanasios G Pallis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
221
|
Wang MH, Padhye SS, Guin S, Ma Q, Zhou YQ. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin 2010; 31:1181-8. [PMID: 20694025 PMCID: PMC4002297 DOI: 10.1038/aps.2010.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/01/2010] [Indexed: 12/14/2022]
Abstract
Products of proto-oncogenes c-MET and RON belong to a subfamily of receptor tyrosine kinases that contribute significantly to tumorigenic progression. In primary tumors, altered c-MET/RON expression transduces signals regulating invasive growth that is characterized by cell migration and matrix invasion. These pathogenic features provide the basis for targeting c-MET/RON in cancer therapy. In the last decade, various approaches have been investigated to suppress c-MET/RON-transduced oncogenesis. Among the therapeutics developed, monoclonal antibodies (mAbs) and small-molecule inhibitors (SMIs) have emerged as promising candidates. The mechanism of these therapeutic candidates is the disruption of tumor dependency on c-MET/RON signals for survival. The mAbs specific to hepatocyte growth factor (AMG102) and c-MET (MetMAb) are both humanized and able to block c-MET signaling, leading to inhibition of tumor cell proliferation in vitro and inhibition of tumor growth in xenograft models. The mAb AMG102 neutralizes hepatocyte growth factor and enhances the cytotoxicity of various chemotherapeutics to tumors in vivo. AMG102 is currently in phase II clinical trials for patients with advanced solid tumors. IMC-41A40 and Zt/f2 are RON-specific mAbs that down-regulate RON expression and inhibit ligand-induced phosphorylation. Both mAbs inhibit tumor growth in mice mediated by colon and pancreatic cancer cells. SMIs specific to c-MET (ARQ107 and PF-02341066) are in various phases of clinical trials. Therapeutic efficacy has also been observed with dual inhibitors such as Compound I, which is specific to c-MET/RON. However, a potential issue is the emergence of acquired resistance to these inhibitors. Clearly, development of c-MET/RON therapeutics provides opportunities and challenges for combating cancer in the future.
Collapse
Affiliation(s)
- Ming-Hai Wang
- Center for Cancer Biology & Therapeutics and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Snehal S Padhye
- Center for Cancer Biology & Therapeutics and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sunny Guin
- Center for Cancer Biology & Therapeutics and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Qi Ma
- Center for Cancer Biology & Therapeutics and Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong-qing Zhou
- Division of Neurosurgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
222
|
Molecular Predictors of Sensitivity to the MET Inhibitor PHA665752 in Lung Carcinoma Cells. J Thorac Oncol 2010; 5:1317-24. [DOI: 10.1097/jto.0b013e3181e2a409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
223
|
Zender L, Villanueva A, Tovar V, Sia D, Chiang DY, Llovet JM. Cancer gene discovery in hepatocellular carcinoma. J Hepatol 2010; 52:921-9. [PMID: 20385424 PMCID: PMC2905725 DOI: 10.1016/j.jhep.2009.12.034] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 12/31/2009] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is a deadly cancer, whose incidence is increasing worldwide. Albeit the main risk factors for HCC development have been clearly identified, such as hepatitis B and C virus infection and alcohol abuse, there is still preliminary understanding of the key drivers of this malignancy. Recent data suggest that genomic analysis of cirrhotic tissue - the pre-neoplastic carcinogenic field - may provide a read-out to identify at risk populations for cancer development. Given this contextual complexity, it is of utmost importance to characterize the molecular pathogenesis of this disease, and pinpoint the dominant pathways/drivers by integrative oncogenomic approaches and/or sophisticated experimental models. Identification of the dominant proliferative signals and key aberrations will allow for a more personalized therapy. Pathway-based approaches and functional experimental studies have aided in identifying the activation of different signaling cascades in HCC (e.g. epidermal growth factor, insulin-like growth factor, RAS, MTOR, WNT-betacatenin, etc.). However, the introduction of new high-throughput genomic technologies (e.g. microarrays, deep sequencing, etc.), and increased sophistication of computational biology (e.g. bioinformatics, biomodeling, etc.), opens the field to new strategies in oncogene and tumor suppressor discovery. These oncogenomic approaches are framed within emerging new disciplines such as systems biology, which integrates multiple inputs to explain cancer onset and progression. In addition, the consolidation of sophisticated animal models, such as mosaic cancer mouse models or the use of transposons for mutagenesis screens, have been instrumental for the identification of novel tumor drivers. We herein review some classical as well as some recent fast track approaches for oncogene discovery in HCC, and provide a comprehensive landscape of the currently known spectrum of molecular aberrations involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Lars Zender
- Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Augusto Villanueva
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques Agusto Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enferme dades Hepáticas y Digestivas [CIBEREHD], Hospital Clinic, Barcelona, 08036, Spain
| | - Victoria Tovar
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques Agusto Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enferme dades Hepáticas y Digestivas [CIBEREHD], Hospital Clinic, Barcelona, 08036, Spain
| | - Daniela Sia
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques Agusto Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enferme dades Hepáticas y Digestivas [CIBEREHD], Hospital Clinic, Barcelona, 08036, Spain
| | - Derek Y. Chiang
- Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Josep M. Llovet
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit. Institut d'Investigacions Biomediques Agusto Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enferme dades Hepáticas y Digestivas [CIBEREHD], Hospital Clinic, Barcelona, 08036, Spain
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
- Institució Catalana de Recerca i Estudis Avançats, Catalonia, Spain
- Corresponding author Josep M Llovet, MD Professor of Research HCC Translational Research Lab BCLC Group, Liver Unit. CIBERehd Hospital Clínic Barcelona, IDIBAPS Villarroel 170 08036 Barcelona Catalonia, Spain Phone: +34-93.2279156 / Lab: +34-93.2279155
| |
Collapse
|
224
|
Corso S, Ghiso E, Cepero V, Sierra JR, Migliore C, Bertotti A, Trusolino L, Comoglio PM, Giordano S. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol Cancer 2010; 9:121. [PMID: 20500904 PMCID: PMC2892452 DOI: 10.1186/1476-4598-9-121] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/26/2010] [Indexed: 11/25/2022] Open
Abstract
Background Gastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies. Results Our in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance. Conclusions Our findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.
Collapse
Affiliation(s)
- Simona Corso
- Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (Torino), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Inhibition of rhabdomyosarcoma's metastatic behavior through downregulation of MET receptor signaling. Folia Histochem Cytobiol 2010; 47:485-9. [PMID: 20164036 DOI: 10.2478/v10042-009-0108-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma usually diagnosed in children. In advanced and metastatic stages the prognosis is often poor. RMS cell lines were used for evaluation of the role of MET receptor inhibition on chemotaxis and invasion. In vivo studies were performed using NOD-SCID xenograft model. This study shows that blocking of MET expression has strong influence on metastatic behavior of RMS. MET negative cells possess a reduced potential to migrate and to invade. Downregulation of MET suppressed the ability of RMS cells to populate bone marrow. Inhibition of MET negative tumor cells engraftment into bone marrow was observed. MET negative tumors were also two to four times smaller than their wild type counterparts. Since MET receptor plays a very important role in facilitating metastasis of RMS cells, blocking of HGF-MET axis might be considered as a therapeutic option for RMS patients, at more advanced and metastatic stages.
Collapse
|
226
|
Toschi L, Cappuzzo F. Clinical implications of MET gene copy number in lung cancer. Future Oncol 2010; 6:239-47. [PMID: 20146583 DOI: 10.2217/fon.09.164] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MET, the receptor for HGF, has recently been identified as a novel promising target in several human malignancies, including non-small-cell lung cancer (NSCLC). Deregulation of the HGF/MET signaling pathway can occur via different mechanisms, including HGF and/or MET overexpression, MET gene amplification, mutations or rearrangements. While the role of MET mutations in NSCLC is not yet fully understood, MET amplification emerged as a critical event in driving cell survival, with preclinical data suggesting that MET-amplified cell lines are exquisitely sensitive to MET inhibition. True MET amplification, which has been associated with poor prognosis in different retrospective series, is a relatively uncommon event in NSCLC, occurring in 1-7% of unselected cases. Nevertheless, in highly selected cohorts of patients, such as those harboring somatic mutations of the EGF receptor (EGFR) with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs), MET amplification can be observed in up to 20% of cases. Preclinical data suggested that a treatment approach including a combination of EGFR and MET TKIs could be an effective strategy in this setting and led to the clinical investigation of multiple MET TKIs in combination with erlotinib. Results from ongoing and future trials will clarify the role of MET TKIs for the treatment of NSCLC and will provide insights into the most appropriate timing for their use.
Collapse
Affiliation(s)
- Luca Toschi
- Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | |
Collapse
|
227
|
Benedettini E, Sholl LM, Peyton M, Reilly J, Ware C, Davis L, Vena N, Bailey D, Yeap BY, Fiorentino M, Ligon AH, Pan BS, Richon V, Minna JD, Gazdar AF, Draetta G, Bosari S, Chirieac LR, Lutterbach B, Loda M. Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:415-23. [PMID: 20489150 DOI: 10.2353/ajpath.2010.090863] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most non-small cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations respond to tyrosine kinase inhibitor (TKI) therapy. However, about 30% exhibit primary resistance to EGFR TKI therapy. Here we report that Met protein expression and phosphorylation were associated with primary resistance to EGFR TKI therapy in NSCLC patients harboring EGFR mutations, implicating Met as a de novo mechanism of resistance. In a separate patient cohort, Met expression and phosphorylation were also associated with development of NSCLC brain metastasis and were selectively enriched in brain metastases relative to paired primary lung tumors. A similar metastasis-specific activation of Met occurred in vitro in the isogenous cell lines H2073 and H1993, which are derived from the primary lung tumor and a metastasis, respectively, from the same patient. We conclude that Met activation is found in NSCLC before EGFR-targeted therapy and is associated with both primary resistance to EGFR inhibitor therapy and with the development of metastases. If confirmed in larger cohorts, our analysis suggests that patient tumors harboring both Met activation and EGFR mutation could potentially benefit from early intervention with a combination of EGFR and Met inhibitors.
Collapse
Affiliation(s)
- Elisa Benedettini
- Department of Medical Oncology, the Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z, Nikolinakos PG, Yang Y, Prudkin L, Liu D, Lee JJ, Johnson FM, Wong KK, Girard L, Gazdar AF, Minna JD, Kurie JM, Wistuba II, Heymach JV. Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung cancer cells. Oncogene 2010; 29:2616-27. [PMID: 20154724 DOI: 10.1038/onc.2010.16] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies have established that amplification of the MET proto-oncogene can cause resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cell lines with EGFR-activating mutations. The role of non-amplified MET in EGFR-dependent signaling before TKI resistance, however, is not well understood. Using NSCLC cell lines and transgenic models, we demonstrate here that EGFR activation by either mutation or ligand binding increases MET gene expression and protein levels. Our analysis of 202 NSCLC patient specimens was consistent with these observations: levels of MET were significantly higher in NSCLC with EGFR mutations than in NSCLC with wild-type EGFR. EGFR regulation of MET levels in cell lines occurred through the hypoxia-inducible factor (HIF)-1alpha pathway in a hypoxia-independent manner. This regulation was lost, however, after MET gene amplification or overexpression of a constitutively active form of HIF-1alpha. EGFR- and hypoxia-induced invasiveness of NSCLC cells, but not cell survival, were found to be MET dependent. These findings establish that, absent MET amplification, EGFR signaling can regulate MET levels through HIF-1alpha and that MET is a key downstream mediator of EGFR-induced invasiveness in EGFR-dependent NSCLC cells.
Collapse
Affiliation(s)
- L Xu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Pan BS, Chan GKY, Chenard M, Chi A, Davis LJ, Deshmukh SV, Gibbs JB, Gil S, Hang G, Hatch H, Jewell JP, Kariv I, Katz JD, Kunii K, Lu W, Lutterbach BA, Paweletz CP, Qu X, Reilly JF, Szewczak AA, Zeng Q, Kohl NE, Dinsmore CJ. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res 2010; 70:1524-33. [PMID: 20145145 DOI: 10.1158/0008-5472.can-09-2541] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy.
Collapse
Affiliation(s)
- Bo-Sheng Pan
- Department of In Vitro Sciences, Merck Research Laboratories, BMB-11, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
McDermott U, Pusapati RV, Christensen JG, Gray NS, Settleman J. Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res 2010; 70:1625-34. [PMID: 20124471 DOI: 10.1158/0008-5472.can-09-3620] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells harboring MET amplification display striking sensitivity to selective small molecule inhibitors of MET kinase, prompting their clinical evaluation. Similar to the experience with traditional therapeutics, most patients responding to treatment with such molecular targeted therapeutics ultimately relapse with drug-resistant disease. In this study we modeled acquired resistance to experimental MET kinase inhibitor PF2341066 in MET-amplified non-small cell lung carcinoma (NSCLC) cell lines to identify drug resistance mechanisms that may arise in clinic. We found that activation of the epidermal growth factor receptor (EGFR) pathway emerges as a resistance mechanism in MET-amplified cells after prolonged exposure to PF2341066. Whereas combined inhibition of MET and EGFR kinases in MET-dependent NSCLC cells did not enhance their initial sensitivity to PF2341066, this combination dramatically suppressed the eventual emergence of drug-resistant clones after prolonged drug exposure. Conversely, activation of the EGFR pathway increased the yield of PF2341066-resistant clones, confirming the significance of this pathway in conferring resistance. Our findings support an intimate relationship between the EGFR and MET signaling pathways in NSCLC, and they suggest that combination treatment with MET and EGFR kinase inhibitors may be beneficial in MET-amplified NSCLC by reducing selection for drug resistant clones.
Collapse
Affiliation(s)
- Ultan McDermott
- Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
231
|
Goetsch L, Caussanel V. Selection criteria for c-Met-targeted therapies: emerging evidence for biomarkers. Biomark Med 2010; 4:149-70. [DOI: 10.2217/bmm.09.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extensive development of targeted therapies emphasize the critical need for biomarkers and major efforts have been engaged to identify screening, prognostic, stratification and therapy-monitoring markers. One of the challenges in translating preclinical studies into effective clinical therapies remains the accurate identification of a responsive subsets of patients. Studies on trastuzumab demonstrated that patient response could be specifically correlated with the amplification of the Her2 gene. However, for the EGF receptor, it has been more difficult to find the right stratification biomarker and recent data demonstrate that genetic alterations for the EGF receptor have to be considered. Taken together, these data underline the need for a deeper understanding of both targeted receptor and human disease to determine pathways that might be investigated during early clinical trials in order to define relevant biomarkers for patient selection. This article, dealing with the c-Met tyrosine kinase receptor, provides an overview of c-Met alterations observed in cancer and proposes approaches for stratification biomarker selection.
Collapse
Affiliation(s)
- Liliane Goetsch
- Centre d’Immunologie Pierre Fabre, 5 avenue Napoléon III F-74164 Saint Julien en Genevois, France
| | | |
Collapse
|
232
|
Yoshida T, Okamoto I, Okamoto W, Hatashita E, Yamada Y, Kuwata K, Nishio K, Fukuoka M, Jänne PA, Nakagawa K. Effects of Src inhibitors on cell growth and epidermal growth factor receptor and MET signaling in gefitinib-resistant non-small cell lung cancer cells with acquired MET amplification. Cancer Sci 2010; 101:167-72. [PMID: 19804422 PMCID: PMC11158912 DOI: 10.1111/j.1349-7006.2009.01368.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors such as gefitinib and erlotinib in non-small cell lung cancer (NSCLC) is often limited by the emergence of drug resistance conferred either by a secondary T790M mutation of EGFR or by acquired amplification of the MET gene. We now show that the extent of activation of the tyrosine kinase Src is markedly increased in gefitinib-resistant NSCLC (HCC827 GR) cells with MET amplification compared with that in the gefitinib-sensitive parental (HCC827) cells. In contrast, the extent of Src activation did not differ between gefitinib-resistant NSCLC (PC9/ZD) cells harboring the T790M mutation of EGFR and the corresponding gefitinib-sensitive parental (PC9) cells. This activation of Src in HCC827 GR cells was largely abolished by the MET-TKI PHA-665752 but was only partially inhibited by gefitinib, suggesting that Src activation is more dependent on MET signaling than on EGFR signaling in gefitinib-resistant NSCLC cells with MET amplification. Src inhibitors blocked Akt and Erk signaling pathways, resulting in both suppression of cell growth and induction of apoptosis, in HCC827 GR cells as effectively as did the combination of gefitinib and PHA-665752. Furthermore, Src inhibitor dasatinib inhibited tumor growth in HCC827 GR xenografts to a significantly greater extent than did treatment with gefitinib alone. These results provide a rationale for clinical targeting of Src in gefitinib-resistant NSCLC with MET amplification.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Medical Oncology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S, Shirotori S, Asada M, Obaishi H. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci 2010; 101:210-5. [PMID: 19832844 PMCID: PMC11159146 DOI: 10.1111/j.1349-7006.2009.01343.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
c-Met is the cellular receptor for hepatocyte growth factor (HGF) and is known to be dysregulated in various types of human cancers. Activation of the HGF/c-Met pathway causes tumor progression, invasion, and metastasis. Vascular endothelial growth factor (VEGF) is also known as a key molecule in tumor progression through the induction of tumor angiogenesis. Because of their key roles in tumor progression, these pathways provide attractive targets for therapeutic intervention. We have generated a novel, orally active, small molecule compound, E7050, which inhibits both c-Met and vascular endothelial growth factor receptor (VEGFR)-2. In vitro studies indicate that E7050 potently inhibits phosphorylation of both c-Met and VEGFR-2. E7050 also potently represses the growth of both c-met amplified tumor cells and endothelial cells stimulated with either HGF or VEGF. In vivo studies using E7050 showed inhibition of the phosphorylation of c-Met and VEGFR-2 in tumors, and strong inhibition of tumor growth and tumor angiogenesis in xenograft models. Treatment of some tumor lines containing c-met amplifications with high doses of E7050 (50-200 mg/kg) induced tumor regression and disappearance. In a peritoneal dissemination model, E7050 showed an antitumor effect against peritoneal tumors as well as a significant prolongation of lifespan in treated mice. Our results indicate that E7050 is a potent inhibitor of c-Met and VEGFR-2 and has therapeutic potential for the treatment of cancer.
Collapse
|
234
|
Bertotti A, Burbridge MF, Gastaldi S, Galimi F, Torti D, Medico E, Giordano S, Corso S, Rolland-Valognes G, Lockhart BP, Hickman JA, Comoglio PM, Trusolino L. Only a Subset of Met-Activated Pathways Are Required to Sustain Oncogene Addiction. Sci Signal 2009; 2:ra80. [DOI: 10.1126/scisignal.2000643] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
235
|
Kim YH, Kwei KA, Girard L, Salari K, Kao J, Pacyna-Gengelbach M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, Minna JD, Pollack JR. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 2009; 29:1421-30. [PMID: 19966867 PMCID: PMC3320568 DOI: 10.1038/onc.2009.437] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA amplifications, leading to the overexpression of oncogenes, are a cardinal feature of lung cancer and directly contribute to its pathogenesis. To uncover novel such alterations, we performed an array-based comparative genomic hybridization survey of 128 non-small cell lung cancer cell lines and tumors. Prominent among our findings, we identified recurrent high-level amplification at cytoband 22q11.21 in 3% of lung cancer specimens, with another 11% of specimens exhibiting low-level gain spanning that locus. The 22q11.21 amplicon core contained eight named genes, only four of which were overexpressed (by transcript profiling) when amplified. Among these, CRKL encodes an adaptor protein functioning in signal transduction, best known as a substrate of the BCR-ABL kinase in chronic myelogenous leukemia. RNA interference-mediated knockdown of CRKL in lung cancer cell lines with (but not without) amplification led to significantly decreased cell proliferation, cell-cycle progression, cell survival, and cell motility and invasion. In addition, overexpression of CRKL in immortalized human bronchial epithelial cells led to EGF-independent cell growth. Our findings indicate that amplification and resultant overexpression of CRKL contributes to diverse oncogenic phenotypes in lung cancer, with implications for targeted therapy, and highlighting a role of adapter proteins as primary genetic drivers of tumorigenesis.
Collapse
Affiliation(s)
- Y H Kim
- Department of Pathology, Stanford University, Stanford, CA 94305-5176, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Buchanan SG, Hendle J, Lee PS, Smith CR, Bounaud PY, Jessen KA, Tang CM, Huser NH, Felce JD, Froning KJ, Peterman MC, Aubol BE, Gessert SF, Sauder JM, Schwinn KD, Russell M, Rooney IA, Adams J, Leon BC, Do TH, Blaney JM, Sprengeler PA, Thompson DA, Smyth L, Pelletier LA, Atwell S, Holme K, Wasserman SR, Emtage S, Burley SK, Reich SH. SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol Cancer Ther 2009; 8:3181-90. [DOI: 10.1158/1535-7163.mct-09-0477] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
237
|
Abstract
In spite of the overexpression and efficient inhibition of epidermal growth factor receptor (EGFR), resistance to EGFR inhibitors, monoclonal antibodies and tyrosine kinase inhibitors may occur. Understanding the molecular mechanisms affecting cancer cell sensitivity or resistance to EGFR inhibitors may be of help in deciding on treatment and in new translational studies. This review will focus on the most relevant mechanisms contributing to the acquisition of sensitivity/resistance to EGFR inhibitors.
Collapse
|
238
|
Zhang Q, Feng W, Zhou H, Yan B. Advances in preclinical small molecules for the treatment of NSCLC. Expert Opin Ther Pat 2009; 19:731-51. [PMID: 19456275 DOI: 10.1517/13543770902967674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND NSCLC accounts for 85% of all lung cancer cases and is the leading cause of cancer mortality. Advances in the knowledge of molecular events governing oncogenesis have led to a number of novel therapeutic agents targeting specific pathways critical for tumor growth. OBJECTIVE To summarize the recent preclinical developments of small molecules for NSCLC therapy. METHODS This review primarily consists of patents and publications between 1997 and 2008. RESULTS/CONCLUSION Small molecules with known targets, such as inhibitors for EGFR, VEGF, RAS-RAF-MAP kinase pathway, phosphoinositide 3-kinase pathway, histone deacetylase, protein phosphatase, topoisomerase, cyclin dependent kinases, heat-shock protein, tubulin, DNA and MET are reviewed. Other novel small molecules with potent efficacy without target information are also discussed.
Collapse
Affiliation(s)
- Qiu Zhang
- Shandong University, Chemistry, 27 Shanda Nanlu, Jinan, 250100, China
| | | | | | | |
Collapse
|
239
|
Milligan SA, Burke P, Coleman DT, Bigelow RL, Steffan JJ, Carroll JL, Williams BJ, Cardelli JA. The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin Cancer Res 2009; 15:4885-94. [PMID: 19638461 DOI: 10.1158/1078-0432.ccr-09-0109] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Activation of the c-Met and epidermal growth factor receptors (EGFR) promotes the growth and survival of non-small cell lung cancer (NSCLC). Specific receptor antagonists have shown efficacy in the clinic, but tumors often become resistant to these therapies. We investigated the ability of (-)-epigallocatechin-3-gallate (EGCG) to inhibit cell proliferation, and c-Met receptor and EGFR kinase activation in several NSCLC cell lines. EXPERIMENTAL DESIGN NSCLC cell lines with variable sensitivity to the EGFR antagonist erlotinib were studied. Cell growth was evaluated using proliferation and colony formation assays. Kinase activation was assessed via Western blot analysis. Experiments were conducted with EGCG, the EGFR antagonist erlotinib, and the c-Met inhibitor SU11274. The antagonists were also tested in a xenograft model using SCID mice. RESULTS EGCG inhibited cell proliferation in erlotinib-sensitive and -resistant cell lines, including those with c-Met overexpression, and acquired resistance to erlotinib. The combination of erlotinib and EGCG resulted in greater inhibition of cell proliferation and colony formation than either agent alone. EGCG also completely inhibited ligand-induced c-Met phosphorylation and partially inhibited EGFR phosphorylation. The triple combination of EGCG/erlotinib/SU11274 resulted in a greater inhibition of proliferation than EGCG with erlotinib. Finally, the combination of EGCG and erlotinib significantly slowed the growth rate of H460 xenografts. CONCLUSION EGCG is a potent inhibitor of cell proliferation, independent of EGFR inhibition, in several NSCLC cell lines, including those resistant to both EGFR kinase inhibitors and those overexpressing c-Met. Therefore, EGCG might be a useful agent to study as an adjunct to other anticancer agents.
Collapse
Affiliation(s)
- Shawn A Milligan
- Feist-Weiller Cancer Center and Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Urology, Louisiana State University-Health Sciences Center, Shreveport, Louisiana
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Wang S, Pashtan I, Tsutsumi S, Xu W, Neckers L. Cancer cells harboring MET gene amplification activate alternative signaling pathways to escape MET inhibition but remain sensitive to Hsp90 inhibitors. Cell Cycle 2009; 8:2050-6. [PMID: 19502802 DOI: 10.4161/cc.8.13.8861] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) receptor c-Met is implicated in growth, invasion and metastasis of many tumors. Tumor cells harboring MET gene amplification are initially sensitive to c-Met tyrosine kinase inhibitors (TKI), but escape from long-term treatment has not been investigated. C-Met is a client of heat shock protein 90 (Hsp90) and is destabilized by Hsp90 inhibitors, suggesting that these drugs may inhibit tumors driven by MET amplification, although tumor escape under these conditions also has not been explored. Here, we evaluated the initial inhibitory effects of, and the likelihood of escape from, the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) and the c-Met TKI SU11274, using two cell lines harboring MET gene amplification. 17-AAG inhibited cell growth in both cell lines and induced substantial apoptosis, whereas SU11274 was only growth inhibitory in one cell line. In both cell lines, c-Met-dependent Akt, Erk and/or STAT3 signaling, as well as activation of the EGFR family, resumed shortly after treatment with c-Met TKI despite sustained c-Met inhibition. PKC delta upregulation may participate in reactivation of c-Met downstream signaling in both cell lines. In contrast to c-Met TKI, 17-AAG destabilized c-Met protein and durably blocked reactivation of downstream signaling pathways and EGFR family members. Our data demonstrate that downstream signaling in tumor cells overexpressing c-Met is not stably suppressed by c-Met TKI, even though c-Met remains fully inhibited. In contrast, Hsp90 inhibitors provide long-lasting suppression of c-Met-dependent signaling, and these drugs should be further evaluated in tumors driven by MET gene amplification.
Collapse
Affiliation(s)
- Suiquan Wang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
241
|
Jänne PA, Gray N, Settleman J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov 2009; 8:709-23. [PMID: 19629074 DOI: 10.1038/nrd2871] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selective small-molecule kinase inhibitors have emerged over the past decade as an important class of anti-cancer agents, and have demonstrated impressive clinical efficacy in several different diseases, including relatively common malignancies such as breast and lung cancer. However, clinical benefit is typically limited to a fraction of treated patients. Genomic features of individual tumours contribute significantly to such clinical responses, and these seem to vary tremendously across patients. Additional factors, including pharmacogenomics, the tumour microenvironment and rapidly acquired drug resistance, also contribute to the clinical sensitivity of various cancers, and should be considered and applied in the development and use of new kinase inhibitors.
Collapse
Affiliation(s)
- Pasi A Jänne
- Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
242
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol 2009; 10:709-17. [PMID: 19573800 DOI: 10.1016/s1470-2045(09)70137-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hepatocyte growth factor (HGF)-mesenchymal-epithelial transition factor (MET) pathway has a key role in carcinogenesis; it is implicated in proliferation, inhibition of apoptosis, angiogenesis, migration, invasiveness, and metastasis. All of these molecular events are driven through membrane and intracellular coplayers and several downstream effector proteins. MET has been shown to cross react with epithelial growth factor receptor (EGFR) proteins and possibly substitutes their activity, thus conferring resistance to EGFR-targeting drugs. Therefore, identification of MET inhibitors might lead to new treatments for MET-triggered neoplasia and improve the sensitivity of molecularly targeted antineoplastic compounds that are currently in use. In this Review, we outline current data regarding the HGF-MET pathway during carcinogenesis and the strategies for therapeutic targeting of this pathway. We also discuss the rationale and future perspectives of the combinatorial blockade of HGF-MET and EGFR signalling cascades in cancer treatment.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | |
Collapse
|
243
|
Kono SA, Marshall ME, Ware KE, Heasley LE. The fibroblast growth factor receptor signaling pathway as a mediator of intrinsic resistance to EGFR-specific tyrosine kinase inhibitors in non-small cell lung cancer. Drug Resist Updat 2009; 12:95-102. [PMID: 19501013 DOI: 10.1016/j.drup.2009.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/09/2009] [Accepted: 05/11/2009] [Indexed: 01/25/2023]
Abstract
The EGFR has been targeted through the development of selective tyrosine kinase inhibitors (TKIs) that have proven effective in a subset of non-small cell lung cancer (NSCLC) patients, many bearing gain-of-function EGFR mutations or egfr gene amplification. However, the majority ( approximately 80-90%) of NSCLC patients do not respond to EGFR-specific TKIs and a high rate of acquired resistance to these therapeutics is observed in those that do respond. Thus, EGFR-specific TKIs will not, as single agents, make a high impact on overall lung cancer survival. A number of studies support the activities of other receptor tyrosine kinase pathways including cMet, IGF-1R and FGFRs as mechanisms for both intrinsic and acquired resistance to EGFR TKIs. While the role of cMet and IGF-1R signaling systems as mechanisms of resistance to EGFR TKIs has been widely reviewed in recent years, the potential role of FGFR-dependent signaling as a mechanism for EGFR TKI resistance has more recently emerged and will be highlighted herein. Due to the high degree of homology of FGFRs with VEGFRs and PDGFRs, FGFR-active TKIs already exist via development of VEGFR-targeted TKIs as angiogenesis inhibitors. Thus, these agents could be rapidly advanced into clinical investigations as FGFR inhibitors, either alone or in combination with TKIs selective for EGFR, cMet or IGF-1R as a means to expand the spectrum of NSCLC patients that can be effectively targeted with TKI-directed therapies.
Collapse
Affiliation(s)
- Scott A Kono
- Department of Medicine, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
244
|
Ichihara E, Ohashi K, Takigawa N, Osawa M, Ogino A, Tanimoto M, Kiura K. Effects of vandetanib on lung adenocarcinoma cells harboring epidermal growth factor receptor T790M mutation in vivo. Cancer Res 2009; 69:5091-8. [PMID: 19491268 DOI: 10.1158/0008-5472.can-08-4204] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vandetanib is a novel multitarget tyrosine kinase inhibitor (TKI) that inhibits vascular endothelial growth factor receptor-2 (VEGFR-2), with additional inhibition of epidermal growth factor receptor (EGFR) and rearranged during transfection receptor signaling, which has shown promising results in clinical trials for advanced non-small cell lung cancer. However, the mechanisms of acquired resistance to vandetanib remain unclear. Therefore, we established in vitro vandetanib-resistant PC-9/VanR cells from PC-9, a vandetanib-sensitive lung adenocarcinoma cell line, by chronic exposure to this agent. PC-9/VanR cells were 50-fold more resistant to vandetanib than PC-9 cells in vitro. Compared with PC-9 cells, PC-9/VanR cells showed emergence of an EGFR T790M mutation, moderately elevated MET amplification, and similar VEGFR-2 inhibition by vandetanib. Note that phospho-MET in PC-9/VanR was suppressed following EGFR inhibition by an irreversible EGFR-TKI, indicating that MET signaling of PC-9/VanR was dependent on EGFR signaling and that MET amplification was not the primary mechanism of resistance to vandetanib. In contrast to the in vitro experiment, vandetanib effectively inhibited the growth of PC-9/VanR tumors in an in vivo xenograft model through the antiangiogenesis effects of VEGFR-2 inhibition. In conclusion, the multitarget TKI vandetanib induced or selected for the EGFR T790M mutation as observed previously with highly selective EGFR-TKIs. However, vandetanib retained significant efficacy in vivo against xenografts harboring the T790M mutation, providing a strong scientific rationale for investigating vandetanib in clinical settings where acquired resistance through emergence of EGFR T790M mutations limits the effectiveness of highly selective EGFR-TKIs.
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
245
|
Vanbrocklin MW, Robinson JP, Whitwam T, Guilbeault AR, Koeman J, Swiatek PJ, Vande Woude GF, Khoury JD, Holmen SL. Met amplification and tumor progression in Cdkn2a-deficient melanocytes. Pigment Cell Melanoma Res 2009; 22:454-60. [PMID: 19422607 DOI: 10.1111/j.1755-148x.2009.00576.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While many genetic alterations have been identified in melanoma, the relevant molecular events that contribute to disease progression are poorly understood. Most primary human melanomas exhibit loss of expression of the CDKN2A locus in addition to activation of the canonical mitogen-activated protein kinase signaling pathway. In this study, we used a Cdkn2a-deficient mouse melanocyte cell line to screen for secondary genetic events in melanoma tumor progression. Upon investigation, intrachromosomal gene amplification of Met, a receptor tyrosine kinase implicated in melanoma progression, was identified in Cdkn2a-deficient tumors. RNA interference targeting Met in these tumor cells resulted in a significant delay in tumor growth in vivo compared with the control cells. MET expression is rarely detected in primary human melanoma but is frequently observed in metastatic disease. This study validates a role for Met activation in melanoma tumor progression in the context of Cdkn2a deficiency.
Collapse
|
246
|
Abstract
The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) have been implicated in transformation of a variety of malignancies. Chronic or dysregulated activation of the MET/HGF pathway may lead to increased cell growth, invasion, angiogenesis, and metastasis, reduced apoptosis, altered cytoskeletal functions and other biological changes. It has been suggested that ligand activated MET stimulation can be sufficient for a transforming phenotype. In addition, amplification and activation mutations (germline and/or somatic) within the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain have been identified for MET. MET gain-of-function mutations lead to either deregulated or prolonged tyrosine kinase activity, which are instrumental to its transforming activity. A number of therapeutic strategies targeting ligand-dependent activation or the kinase domain have been employed to inhibit MET. The different structural requirements for activation of signaling events and biological functions regulated by MET will be summarized. Therapeutic targets and current pre-clinical and clinical approaches will be described. Targeting the HGF/MET pathway, alone or in combination with standard therapies, is likely to improve present therapies in MET-dependent malignancies.
Collapse
|
247
|
Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, Toschi L, Finocchiaro G, Destro A, Terracciano L, Roncalli M, Alloisio M, Santoro A, Varella-Garcia M. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 2009; 27:1667-74. [PMID: 19255323 PMCID: PMC3341799 DOI: 10.1200/jco.2008.19.1635] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 11/17/2008] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the prognostic role of genomic gain for MET and epidermal growth factor receptor (EGFR) genes in surgically resected non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS This retrospective study included 447 NSCLC patients with available tumor tissue from primary lung tumor and survival data. EGFR and MET status was evaluated by fluorescent in situ hybridization (FISH) in tissue microarray sections. RESULTS EGFR FISH results were obtained in 376 cases. EGFR gene amplification and high polysomy (EGFR FISH+) were observed in 10.4% and 32.4% of cases, respectively. EGFR FISH-positive patients had a nonsignificant shorter survival than EGFR FISH-negative patients (P = .4). Activating EGFR mutations were detected in 9.7% of 144 stage I-II disease with no impact on survival. MET FISH analysis was performed in 435 cases. High MET gene copy number (mean > or = 5 copies/cell) was observed in 48 cases (MET+, 11.1%), including 18 cases with true gene amplification (4.1%). MET+ status was associated with advanced stage (P = .01), with grade 3 (P = .016) and with EGFR FISH+ result (P < .0001). No patient with activating EGFR mutation resulted MET+. In the whole population, MET-positive patients had shorter survival than MET-negative patients (P = .005). Multivariable model confirmed that MET-negative patients had a significant reduction in the risk of death than MET-positive patients (hazard ratio, 0.66; P = .04). CONCLUSION MET increased gene copy number is an independent negative prognostic factor in surgically resected NSCLC. EGFR gene gain does not impact survival after resection.
Collapse
Affiliation(s)
- Federico Cappuzzo
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology-Hematology, University of Milan School of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, Jida M, Otani H, Fujii T, Ouchida M, Takigawa N, Kiura K, Shimizu K, Date H, Minna JD, Varella-Garcia M, Lam WL, Gazdar AF, Toyooka S. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer 2009; 124:1778-84. [PMID: 19117057 DOI: 10.1002/ijc.24150] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We analyzed MET protein and copy number in NSCLC with or without EGFR mutations untreated with EGFR tyrosine kinase inhibitors (TKIs). MET copy number was examined in 28 NSCLC and 4 human bronchial epithelial cell lines (HBEC) and 100 primary tumors using quantitative real-time PCR. Positive results were confirmed by array comparative genomic hybridization and fluorescence in-situ hybridization. Total and phospho-MET protein expression was determined in 24 NSCLC and 2 HBEC cell lines using Western blot. EGFR mutations were examined for exon 19 deletions, T790M, and L858R. Knockdown of EGFR with siRNA was performed to examine the relation between EGFR and MET activation. High-level MET amplification was observed in 3 of 28 NSCLC cell lines and in 2 of 100 primary lung tumors that had not been treated with EGFR-TKIs. MET protein was highly expressed and phosphorylated in all the 3 cell lines with high MET amplification. In contrast, 6 NSCLC cell lines showed phospho-MET among 21 NSCLC cell lines without MET amplification (p = 0.042). Furthermore, those 6 cell lines harboring phospho-MET expression without MET amplification were all EGFR mutant (p = 0.0039). siRNA-mediated knockdown of EGFR abolished phospho-MET expression in examined 3 EGFR mutant cell lines of which MET gene copy number was not amplified. By contrast, phospho-MET expression in 2 cell lines with amplified MET gene was not down-regulated by knockdown of EGFR. Our results indicated that MET amplification was present in untreated NSCLC and EGFR mutation or MET amplification activated MET protein in NSCLC.
Collapse
Affiliation(s)
- Takafumi Kubo
- Department of Cancer and Thoracic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer 2009; 99:923-9. [PMID: 19238633 PMCID: PMC2538768 DOI: 10.1038/sj.bjc.6604629] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In non-small-cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) and K-RAS mutations of the primary tumour are associated with responsiveness and resistance to tyrosine kinase inhibitors (TKIs), respectively. However, the EGFR and K-RAS mutation status in metastases is not well studied. We compared the mutation status of these genes between the primary tumours and the corresponding metastases of 25 patients. Epidermal growth factor receptor and K-RAS mutation status was different between primary tumours and corresponding metastases in 7 (28%) and 6 (24%) of the 25 patients, respectively. Among the 25 primary tumours, three ‘hotspot’ and two non-classical EGFR mutations were found; none of the corresponding metastases had the same mutation pattern. Among the five (20%) K-RAS mutations detected in the primary tumours, two were maintained in the corresponding metastasis. Epidermal growth factor receptor and K-RAS mutations were detected in the metastatic tumours of three (12%) and five (20%) patients, respectively. The expressions of EGFR and phosphorylated EGFR showed 10 and 50% discordance, in that order. We conclude that there is substantial discordance in EGFR and K-RAS mutational status between the primary tumours and corresponding metastases in patients with NSCLC and this might have therapeutic implications when treatment with TKIs is considered.
Collapse
|
250
|
Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009; 4:5-11. [PMID: 19096300 DOI: 10.1097/jto.0b013e3181913e0e] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION MET (Met proto-oncogene) activation either by gene amplification or mutation is implicated in various types of human cancers. For lung cancer, MET gene amplification is reported to occur in a subset of adenocarcinomas. Although somatic mutations of MET in lung adenocarcinomas are rare, all but one of those reported so far entail a splice mutation deleting the juxtamembrane domain for binding the c-Cbl E3-ligase; normally such binding leads to ubiquitination and receptor degradation, and loss of this domain leads to MET activation. The purpose of this study was to clarify in the role of MET activation in lung carcinogenesis. MATERIALS AND METHODS MET gene copy number was determined by real-time quantitative polymerase chain reaction in 187 of the patients with lung cancer and the MET gene splice mutation deleting the juxtamembrane domain was examined by direct sequencing in 262. The results were correlated with various clinical and pathologic features including mutations of the epidermal growth factor receptor, KRAS, and HER2 genes. RESULTS All the instances of MET activation occurred in patients with adenocarcinomas. The prevalences of MET gene amplification and splice mutations were 1.4% (2 of 148) and 3.3% (7 of 211), respectively. We identified four different intronic mutations that disrupted a splice consensus sequence in genomic DNA. Activation of MET and mutations of the epidermal growth factor receptor, KRAS, and HER2 genes had strict mutual exclusionary relationships. CONCLUSIONS About 5% of pulmonary adenocarcinomas in this cohort of Japanese patients were driven by activated MET by gene amplification or splice mutations. Such patients would be candidates for targeted therapy against MET.
Collapse
|