201
|
Song Y, Wang Y, Guan A, Xue J, Li B, Huang Z, Zheng Z, Liang N, Yang Y, Li S. Footprints: Stamping hallmarks of lung cancer with patient-derived models, from molecular mechanisms to clinical translation. Front Bioeng Biotechnol 2023; 11:1132940. [PMID: 36911198 PMCID: PMC9993089 DOI: 10.3389/fbioe.2023.1132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
The conventional two-dimensional (2D) tumor cell lines in Petri dishes have played an important role in revealing the molecular biological mechanism of lung cancer. However, they cannot adequately recapitulate the complex biological systems and clinical outcomes of lung cancer. The three-dimensional (3D) cell culture enables the possible 3D cell interactions and the complex 3D systems with co-culture of different cells mimicking the tumor microenvironments (TME). In this regard, patient-derived models, mainly patient-derived tumor xenograft (PDX) and patient-derived organoids discussed hereby, are with higher biological fidelity of lung cancer, and regarded as more faithful preclinical models. The significant Hallmarks of Cancer is believed to be the most comprehensive coverage of current research on tumor biological characteristics. Therefore, this review aims to present and discuss the application of different patient-derived lung cancer models from molecular mechanisms to clinical translation with regards to the dimensions of different hallmarks, and to look to the prospects of these patient-derived lung cancer models.
Collapse
Affiliation(s)
- Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ai Guan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
202
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
203
|
Rosen JC, Sacher A, Tsao MS. Direct GDP-KRAS G12C inhibitors and mechanisms of resistance: the tip of the iceberg. Ther Adv Med Oncol 2023; 15:17588359231160141. [PMID: 36950276 PMCID: PMC10026147 DOI: 10.1177/17588359231160141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog mutations are observed in 25% of lung adenocarcinoma and 40% of these are G12C mutations. Historically, no approved targeted agents were available for patients with any KRAS mutation, and response rates to standard-of-care therapies were suboptimal. Newly developed inhibitors directed toward KRASG12C have been successful in clinical trials with overall response rates ranging between 32% and 46%, and two FDA approvals were granted in May 2021 and December 2022 as second-line or later monotherapies. However, rapid tumor resistance complicates their use as a monotherapy. With the rapid development of this novel class of inhibitors, it is important to discern the different types of tumor resistance that may arise and how each can differently contribute to tumor growth and survival. G12C inhibitor resistance is under investigation and combinations of therapies with G12C inhibitors have been proposed. Much of this insight is gleaned from preclinical investigations, as our knowledge of clinical resistance is in its infancy. In this review, we summarize the preclinical development of KRASG12C inhibitors, their clinical evaluations, different types of resistance mechanisms to these compounds, and ways of overcoming them. Finally, we underscore the importance of basic and translational investigations of these molecules in a landscape where their clinical evaluations garner the most attention, and we set the stage for what is to come.
Collapse
Affiliation(s)
- Joshua C. Rosen
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and
Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto,
ON, Canada
| | - Adrian Sacher
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of
Medicine, Princess Margaret Cancer Centre, Temerty Faculty of Medicine,
University of Toronto, Toronto, ON, Canada
- Department of Immunology, Temerty Faculty of
Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
204
|
Sattler M, Mohanty A, Kulkarni P, Salgia R. Precision oncology provides opportunities for targeting KRAS-inhibitor resistance. Trends Cancer 2023; 9:42-54. [PMID: 36751115 DOI: 10.1016/j.trecan.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/28/2022]
Abstract
Novel inhibitors targeting Kirsten rat sarcoma virus homolog (KRAS) KRASG12C in various cancers have shown good initial efficacy, but therapy-related drug resistance eventually occurs in most patients. It has become apparent that cancer cells not only rely on novel mutations that provide escape mechanisms, but about half of them become resistant in the absence of apparent genetic mutations. Redundancies within the KRAS signaling pathways and cross-talk between these pathways - as well as other canonical cancer-driving mechanisms - not only provide challenges but also present opportunities for drug development and targeted approaches. We discuss the challenges for the duality of KRAS inhibitor drug resistance with an additional focus on nongenetic mechanisms and the potential for patient-centered combination treatments.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
205
|
Zhao MH, Wu AW. Targeting KRAS G12C mutations in colorectal cancer. Gastroenterol Rep (Oxf) 2022; 11:goac083. [PMID: 36632627 PMCID: PMC9825714 DOI: 10.1093/gastro/goac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
With the advent of Kirsten rat sarcoma viral oncogene homologue G12C (KRAS G12C) inhibitors, RAS is no longer considered undruggable. For the suppression of RAS, new therapeutic approaches have been suggested. However, current clinical studies have indicated therapeutic resistance after short-lived tumour suppression. According to preclinical studies, this might be associated with acquired genetic alterations, reactivation of downstream pathways, and stimulation for upstream signalling. In this review, we aimed to summarize current approaches for combination therapy to alleviate resistance to KRAS G12C inhibitors in colorectal cancer with a focus on the mechanisms of therapeutic resistance. We also analysed the relationship between various mechanisms and therapeutic resistance.
Collapse
Affiliation(s)
- Ming-He Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ai-Wen Wu
- Corresponding author. Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Gastrointestinal Cancer Center, Unit III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd, Haidian District, Beijing 100142, China. Tel/Fax: +86-10-88196981;
| |
Collapse
|
206
|
Lorthiois E, Gerspacher M, Beyer KS, Vaupel A, Leblanc C, Stringer R, Weiss A, Wilcken R, Guthy DA, Lingel A, Bomio-Confaglia C, Machauer R, Rigollier P, Ottl J, Arz D, Bernet P, Desjonqueres G, Dussauge S, Kazic-Legueux M, Lozac'h MA, Mura C, Sorge M, Todorov M, Warin N, Zink F, Voshol H, Zecri FJ, Sedrani RC, Ostermann N, Brachmann SM, Cotesta S. JDQ443, a Structurally Novel, Pyrazole-Based, Covalent Inhibitor of KRAS G12C for the Treatment of Solid Tumors. J Med Chem 2022; 65:16173-16203. [PMID: 36399068 DOI: 10.1021/acs.jmedchem.2c01438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid emergence of tumor resistance via RAS pathway reactivation has been reported from clinical studies of covalent KRASG12C inhibitors. Thus, inhibitors with broad potential for combination treatment and distinct binding modes to overcome resistance mutations may prove beneficial. JDQ443 is an investigational covalent KRASG12C inhibitor derived from structure-based drug design followed by extensive optimization of two dissimilar prototypes. JDQ443 is a stable atropisomer containing a unique 5-methylpyrazole core and a spiro-azetidine linker designed to position the electrophilic acrylamide for optimal engagement with KRASG12C C12. A substituted indazole at pyrazole position 3 results in novel interactions with the binding pocket that do not involve residue H95. JDQ443 showed PK/PD activity in vivo and dose-dependent antitumor activity in mouse xenograft models. JDQ443 is now in clinical development, with encouraging early phase data reported from an ongoing Phase Ib/II clinical trial (NCT04699188).
Collapse
Affiliation(s)
- Edwige Lorthiois
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Kim S Beyer
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Catherine Leblanc
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Rowan Stringer
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Daniel A Guthy
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | | | - Rainer Machauer
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Pascal Rigollier
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Dorothee Arz
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | | | | | - Solene Dussauge
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | | | | | - Christophe Mura
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Mickaël Sorge
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Milen Todorov
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Nicolas Warin
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Florence Zink
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Frederic J Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts02139, United States
| | - Richard C Sedrani
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| | | | - Simona Cotesta
- Novartis Institutes for BioMedical Research, BaselCH-4056, Switzerland
| |
Collapse
|
207
|
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y. An overview of PROTACs: a promising drug discovery paradigm. MOLECULAR BIOMEDICINE 2022; 3:46. [PMID: 36536188 PMCID: PMC9763089 DOI: 10.1186/s43556-022-00112-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.
Collapse
Affiliation(s)
- Zi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Mingxing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yu Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chenghao Du
- grid.42505.360000 0001 2156 6853Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, 90089 USA
| | - Haoxuan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chengyali Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yuanwei Chen
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Lei Fan
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Hongqun Ma
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Youling Gong
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongmei Xie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| |
Collapse
|
208
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
209
|
Targeting KRASp.G12C Mutation in Advanced Non-Small Cell Lung Cancer: a New Era Has Begun. Curr Treat Options Oncol 2022; 23:1699-1720. [PMID: 36394791 DOI: 10.1007/s11864-022-01033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
OPINION STATEMENT KRASp.G12C mutation occurs in 12% of newly diagnosed advanced NSCLC and has recently emerged as a positive predictive biomarker for the selection of advanced NSCLC patients who may respond to novel KRASp.G12C inhibitors. The recent discovery of a new binding pocket under the effector region of KRAS G12C oncoprotein has made direct pharmacological inhibition of the KRASp.G12 mutation possible, leading to the clinical development of a new series of direct selective inhibitors, with a potential major impact on patients' survival and quality of life. Promising efficacy and tolerability data emerging from the early phase CodeBreak trial have already supported the regulatory approval of sotorasib as first in class targeted treatment for the second-line treatment of KRASp.G12C-positive NSCLC population, following immunotherapy-based first-line therapies, while the randomized phase III CodeBreak 200 clinical study has recently confirmed a significant superiority of sotorasib over docetaxel in terms of progression-free survival and quality of life. However, KRAS mutant NSCLC is a high heterogeneous disease characterized by a high rate of co-mutations, most frequently involving P53, STK11, and KEAP1 genes, which significantly modulate the composition of the tumor microenvironment and consequently affect clinical responses to both immunotherapy and targeted inhibitors now available in clinical practice. Both pre-clinical and clinical translational series have recently revealed a wide spectrum of resistance mechanisms occurring under selective KRASG12C inhibitors, including both on-target and off-target molecular alterations as well as morphological switching, negatively affecting the antitumor activity of these drugs when used as single agent therapies. The understanding of such biological background along with the emergence of pre-clinical data provided a strong rational to investigate different combination strategies, including the inhibition of SHP2, SOS1, and KRAS G12C downstream effectors, as well as the addition of immunotherapy and/or chemotherapy to targeted therapy. The preliminary results of these trials have recently suggested a promising activity of SHP2 inhibitors in the front-line setting, while toxicity issues limited the concurrent administration of immune-checkpoint inhibitors and sotorasib. The identification of predictive genomic/immunological biomarkers will be crucial to understand how to optimally sequencing/combining different drugs and ultimately personalize treatment strategies under clinical investigation, to definitively increase the survival outcomes of KRASp.G12C mutant advanced NSCLC patients.
Collapse
|
210
|
Mullaguri SC, Akula S, Sahoo PS, Ashireddygari VR, Mupparapu V, Silveri R, Prasad Burra VLS, Kancha RK. Molecular docking analysis reveals differential binding affinities of multiple classes of selective inhibitors towards cancer-associated KRAS mutants. 3 Biotech 2022; 12:343. [PMID: 36353445 PMCID: PMC9637698 DOI: 10.1007/s13205-022-03407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022] Open
Abstract
KRAS is the most frequently mutated oncogene in solid cancers, and inhibitors that specifically target the KRAS-G12C mutant were recently approved for clinical use. The limited availability of experimental data pertaining to the sensitivity of KRAS-non-G12C mutants towards RAS inhibitors made it difficult to predict the response of KRAS-mutated cancers towards RAS-targeted therapies. The current study aims at evaluating sensitivity profiles of KRAS-non-G12C mutations towards clinically approved sotorasib and adagrasib, and experimental RAS inhibitors based on binding energies derived through molecular docking analysis. Computationally predicted sensitivities of KRAS mutants conformed with the available but limited experimental data, thus validating the usefulness of molecular docking approach in predicting clinical response towards RAS inhibitor treatment. Our results indicate differential sensitivity of KRAS mutants towards both clinical and experimental therapeutics; while certain mutants exhibited broad cross-resistance to most inhibitors, some mutants showed resistance towards specific inhibitors. These results thus suggest the potential of emergence of more resistance mutations in future towards RAS-targeted therapy and points to an urgent need to develop novel classes of inhibitors that are able to overcome both primary and secondary drug resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03407-9.
Collapse
Affiliation(s)
- Sai Charitha Mullaguri
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007 India
| | - Sravani Akula
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007 India
| | - Partha Sarathi Sahoo
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh India
| | | | - Vyshnavika Mupparapu
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007 India
| | - Ravalika Silveri
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007 India
| | - V. L. S. Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007 India
| |
Collapse
|
211
|
Farnsworth DA, Inoue Y, Johnson FD, de Rappard-Yuswack G, Lu D, Shi R, Ma LIJ, Mattar MS, Somwar R, Ladanyi M, Unni AM, Lockwood WW. MEK inhibitor resistance in lung adenocarcinoma is associated with addiction to sustained ERK suppression. NPJ Precis Oncol 2022; 6:88. [PMID: 36418460 PMCID: PMC9684561 DOI: 10.1038/s41698-022-00328-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of "drug addiction" in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRASG12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a "drug holiday" to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.
Collapse
Affiliation(s)
- Dylan A. Farnsworth
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | | | - Daniel Lu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Lok In Josephine Ma
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Marissa S. Mattar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Romel Somwar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Marc Ladanyi
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Arun M. Unni
- grid.5386.8000000041936877XMeyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
212
|
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, Chen Z, Cai Z, Liu M, Pang X. BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest 2022; 132:161308. [PMID: 36377663 PMCID: PMC9663163 DOI: 10.1172/jci161308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.
Collapse
Affiliation(s)
- Kun Li
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
- Joint Translational Science and Technology Research Institute, East China Normal University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yi Ding
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengwei Zhang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Juanjuan Feng
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiaxin Hu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Jiwei Chen
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Zhengke Lian
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Kewen Hu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi Chen
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| | - Xiufeng Pang
- Changning Maternity and Infant Health Hospital and Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences and
| |
Collapse
|
213
|
In Silico Study of the Acquired Resistance Caused by the Secondary Mutations of KRAS G12C Protein Using Long Time Molecular Dynamics Simulation and Markov State Model Analysis. Int J Mol Sci 2022; 23:ijms232213845. [PMID: 36430323 PMCID: PMC9694466 DOI: 10.3390/ijms232213845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is a small GTPase protein which plays an important role in the treatment of KRAS mutant cancers. The FDA-approved AMG510 and MRTX849 (phase III clinical trials) are two potent KRASG12C-selective inhibitors that target KRAS G12C. However, the drug resistance caused by the second-site mutation in KRAS has emerged, and the mechanisms of drug resistance at atom level are still unclear. To clarify the mechanisms of drug resistance, we conducted long time molecular dynamics simulations (75 μs in total) to study the structural and energetic features of KRAS G12C and its four drug resistant variants to inhibitors. The combined binding free energy calculation and protein-ligand interaction fingerprint revealed that these second-site mutations indeed caused KRAS to produce different degrees of resistance to AMG510 and MRTX849. Furthermore, Markov State Models and 2D-free energy landscapes analysis revealed the difference in conformational changes of mutated KRAS bound with and without inhibitors. Furthermore, the comparative analysis of these systems showed that there were differences in their allosteric signal pathways. These findings provide the molecular mechanism of drug resistance, which helps to guide novel KRAS G12C inhibitor design to overcome drug resistance.
Collapse
|
214
|
Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022; 27:molecules27227728. [PMID: 36431829 PMCID: PMC9694382 DOI: 10.3390/molecules27227728] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.
Collapse
|
215
|
Brazel D, Arter Z, Nagasaka M. A Long Overdue Targeted Treatment for KRAS Mutations in NSCLC: Spotlight on Adagrasib. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:75-80. [PMID: 36387582 PMCID: PMC9662012 DOI: 10.2147/lctt.s383662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2023]
Abstract
KRASG12C is one of the most common oncogenes in non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Historically, KRAS mutations have been difficult to target due to lack of binding sites and exceptionally high affinity for guanosine triphosphate/guanosine diphosphate (GTP/GDP). Recently, KRASG12C selective inhibitors have shown promising results in Phase I/II studies. Here we discuss the mechanism of action, pharmacokinetic and pharmacodynamic properties, efficacy, and tolerability of adagrasib (MRTX849).
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Zhaohui Arter
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
216
|
Scharpf RB, Balan A, Ricciuti B, Fiksel J, Cherry C, Wang C, Lenoue-Newton ML, Rizvi HA, White JR, Baras AS, Anaya J, Landon BV, Majcherska-Agrawal M, Ghanem P, Lee J, Raskin L, Park AS, Tu H, Hsu H, Arbour KC, Awad MM, Riely GJ, Lovly CM, Anagnostou V. Genomic Landscapes and Hallmarks of Mutant RAS in Human Cancers. Cancer Res 2022; 82:4058-4078. [PMID: 36074020 PMCID: PMC9627127 DOI: 10.1158/0008-5472.can-22-1731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
The RAS family of small GTPases represents the most commonly activated oncogenes in human cancers. To better understand the prevalence of somatic RAS mutations and the compendium of genes that are coaltered in RAS-mutant tumors, we analyzed targeted next-generation sequencing data of 607,863 mutations from 66,372 tumors in 51 cancer types in the AACR Project GENIE Registry. Bayesian hierarchical models were implemented to estimate the cancer-specific prevalence of RAS and non-RAS somatic mutations, to evaluate co-occurrence and mutual exclusivity, and to model the effects of tumor mutation burden and mutational signatures on comutation patterns. These analyses revealed differential RAS prevalence and comutations with non-RAS genes in a cancer lineage-dependent and context-dependent manner, with differences across age, sex, and ethnic groups. Allele-specific RAS co-mutational patterns included an enrichment in NTRK3 and chromatin-regulating gene mutations in KRAS G12C-mutant non-small cell lung cancer. Integrated multiomic analyses of 10,217 tumors from The Cancer Genome Atlas (TCGA) revealed distinct genotype-driven gene expression programs pointing to differential recruitment of cancer hallmarks as well as phenotypic differences and immune surveillance states in the tumor microenvironment of RAS-mutant tumors. The distinct genomic tracks discovered in RAS-mutant tumors reflected differential clinical outcomes in TCGA cohort and in an independent cohort of patients with KRAS G12C-mutant non-small cell lung cancer that received immunotherapy-containing regimens. The RAS genetic architecture points to cancer lineage-specific therapeutic vulnerabilities that can be leveraged for rationally combining RAS-mutant allele-directed therapies with targeted therapies and immunotherapy. SIGNIFICANCE The complex genomic landscape of RAS-mutant tumors is reflective of selection processes in a cancer lineage-specific and context-dependent manner, highlighting differential therapeutic vulnerabilities that can be clinically translated.
Collapse
Affiliation(s)
- Robert B. Scharpf
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Archana Balan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Biagio Ricciuti
- Department of Medicine, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacob Fiksel
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christopher Cherry
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenguang Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michele L. Lenoue-Newton
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Hira A. Rizvi
- Department of Medicine, Collaborative Research Centers, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James R. White
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander S. Baras
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jordan Anaya
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blair V. Landon
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marta Majcherska-Agrawal
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paola Ghanem
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jocelyn Lee
- AACR Project GENIE, American Association for Cancer Research, Pennsylvania
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Andrew S. Park
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Huakang Tu
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Hil Hsu
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Kathryn C. Arbour
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M. Awad
- Department of Medicine, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory J. Riely
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine M. Lovly
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
217
|
Nascimento IJDS, de Aquino TM, da Silva-Júnior EF. The New Era of Drug Discovery: The Power of Computer-aided Drug
Design (CADD). LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405225817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Drug design and discovery is a process that requires high financial costs and is timeconsuming.
For many years, this process focused on empirical pharmacology. However, over the years,
the target-based approach allowed a significant discovery in this field, initiating the rational design era. In
view, to decrease the time and financial cost, rational drug design is benefited by increasing computer
engineering and software development, and computer-aided drug design (CADD) emerges as a promising
alternative. Since the 1970s, this approach has been able to identify many important and revolutionary
compounds, like protease inhibitors, antibiotics, and others. Many anticancer compounds identified
through this approach have shown their importance, being CADD essential in any drug discovery campaign.
Thus, this perspective will present the prominent successful cases utilizing this approach and entering
into the next stage of drug design. We believe that drug discovery will follow the progress in bioinformatics,
using high-performance computing with molecular dynamics protocols faster and more effectively.
In addition, artificial intelligence and machine learning will be the next process in the rational design
of new drugs. Here, we hope that this paper generates new ideas and instigates research groups
worldwide to use these methods and stimulate progress in drug design.
Collapse
Affiliation(s)
| | | | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
- Laboratory of Medicinal
Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
218
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
219
|
Cheng ML, Lee JK, Kumar R, Klein H, Raskina K, Schrock AB, Michael KS, Mazor T, Cerami E, Oxnard GR, Liu D, Beltran H, Sholl LM, Nishino M, Jänne PA. Response to MEK Inhibitor Therapy in MAP2K1 ( MEK1) K57N Non-Small-Cell Lung Cancer and Genomic Landscape of MAP2K1 Mutations in Non-Small-Cell Lung Cancer. JCO Precis Oncol 2022; 6:e2200382. [PMID: 36455195 DOI: 10.1200/po.22.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Present address: Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | | | - Rachit Kumar
- Harold Alfond Center for Cancer Care, MaineHealth, Augusta, MA
| | - Harry Klein
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Kesi S Michael
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Present address: Foundation Medicine, Cambridge, MA
| | - Tali Mazor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - David Liu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Himisha Beltran
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
220
|
Song Z, Lou L, Fan G, Liu L, Ge Y, Liu H, Chan AS, Zhang X, Xiong XF. Identification of novel Pyrrolo[2,3-d]Pyrimidine-based KRAS G12C inhibitors with anticancer effects. Eur J Med Chem 2022; 245:114907. [DOI: 10.1016/j.ejmech.2022.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
221
|
Li L, Feng R, Li Y, Yu X, Liu Y, Zhao Y, Liu Z. Caspase-8 mutants activate Nrf2 via phosphorylating SQSTM1 to protect against oxidative stress in esophageal squamous cell carcinoma. Free Radic Biol Med 2022; 192:51-62. [PMID: 36165926 DOI: 10.1016/j.freeradbiomed.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Caspase-8, a caspase protein, is involved in the regulation of multiple cell death modes and has a predominant role in cell death. Cancer-associated mutations in the protein-coding region of caspase-8 have been widely reported in several solid tumors and might lead to the loss of its apoptotic function and contribute to the pathogenesis of tumors. However, the specific function and molecular mechanisms of mutant caspase-8 in the development of esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we identified caspase-8 mutants exert tumor-promoting properties in ESCC, patients with the mutants presented a worse prognosis, and caspase-8 mutants lost the suppressive effect on tumor growth in ESCC cells. In addition, we demonstrated that caspase-8 mutants gain a new function of abolishing excess reactive oxygen species (ROS) to maintain ESCC cell growth under oxidative stress. An Nrf2 inhibitor reduced the effects of caspase-8 mutants against oxidative stress. Caspase-8 mutants combined with mTOR to phosphorylate SQSTM1 at Ser349, facilitating the interaction of SQSTM1 and Keap1 and reducing the degradation of the Nrf2 protein. Therefore, our study demonstrated that caspase-8 mutants gain a new function of protecting against oxidative stress via the mTOR/SQSTM1/Keap1/Nrf2 axis in ESCC. Caspase-8 status may be a new prognostic factor for survival in ESCC patients.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
222
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|
223
|
He Q, Liu Z, Wang J. Targeting KRAS in PDAC: A New Way to Cure It? Cancers (Basel) 2022; 14:cancers14204982. [PMID: 36291766 PMCID: PMC9599866 DOI: 10.3390/cancers14204982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is one of the most intractable malignant tumors worldwide, and is known for its refractory nature and poor prognosis. The fatality rate of pancreatic cancer can reach over 90%. In pancreatic ductal carcinoma (PDAC), the most common subtype of pancreatic cancer, KRAS is the most predominant mutated gene (more than 80%). In recent decades, KRAS proteins have maintained the reputation of being “undruggable” due to their special molecular structures and biological characteristics, making therapy targeting downstream genes challenging. Fortunately, the heavy rampart formed by KRAS has been broken down in recent years by the advent of KRASG12C inhibitors; the covalent inhibitors bond to the switch-II pocket of the KRASG12C protein. The KRASG12C inhibitor sotorasib has been received by the FDA for the treatment of patients suffering from KRASG12C-driven cancers. Meanwhile, researchers have paid close attention to the development of inhibitors for other KRAS mutations. Due to the high incidence of PDAC, developing KRASG12D/V inhibitors has become the focus of attention. Here, we review the clinical status of PDAC and recent research progress in targeting KRASG12D/V and discuss the potential applications.
Collapse
Affiliation(s)
- Qianyu He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
224
|
Chakraborty A, Hanson L, Robinson D, Lewis H, Bickerton S, Davies M, Polanski R, Whiteley R, Koers A, Atkinson J, Baker T, del Barco Barrantes I, Ciotta G, Kettle JG, Magiera L, Martins CP, Peter A, Wigmore E, Underwood Z, Cosulich S, Niedbala M, Ross S. AZD4625 is a Potent and Selective Inhibitor of KRASG12C. Mol Cancer Ther 2022; 21:1535-1546. [PMID: 35930755 PMCID: PMC9538594 DOI: 10.1158/1535-7163.mct-22-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
AZD4625 is a potent, selective, and orally bioavailable inhibitor of oncogenic KRASG12C as demonstrated in cellular assays and in vivo in preclinical cell line-derived and patient-derived xenograft models. In vitro and cellular assays have shown selective binding and inhibition of the KRASG12C mutant isoform, which carries a glycine to cysteine mutation at residue 12, with no binding and inhibition of wild-type RAS or isoforms carrying non-KRASG12C mutations. The pharmacology of AZD4625 shows that it has the potential to provide therapeutic benefit to patients with KRASG12C mutant cancer as either a monotherapy treatment or in combination with other targeted drug agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sarah Ross
- AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: Sarah Ross, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom. Phone: +44 (0) 7584 909550; E-mail:
| |
Collapse
|
225
|
Kulkarni P, Mohanty A, Bhattacharya S, Singhal S, Guo L, Ramisetty S, Mirzapoiazova T, Mambetsariev B, Mittan S, Malhotra J, Gupta N, Kim P, Babikian R, Rajurkar S, Subbiah S, Tan T, Nguyen D, Merla A, Kollimuttathuillam SV, Phillips T, Baik P, Tan B, Vashi P, Shrestha S, Leach B, Garg R, Rich PL, Stewart FM, Pisick E, Salgia R. Addressing Drug Resistance in Cancer: A Team Medicine Approach. J Clin Med 2022; 11:5701. [PMID: 36233569 PMCID: PMC9572909 DOI: 10.3390/jcm11195701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Drug resistance remains one of the major impediments to treating cancer. Although many patients respond well initially, resistance to therapy typically ensues. Several confounding factors appear to contribute to this challenge. Here, we first discuss some of the challenges associated with drug resistance. We then discuss how a 'Team Medicine' approach, involving an interdisciplinary team of basic scientists working together with clinicians, has uncovered new therapeutic strategies. These strategies, referred to as intermittent or 'adaptive' therapy, which are based on eco-evolutionary principles, have met with remarkable success in potentially precluding or delaying the emergence of drug resistance in several cancers. Incorporating such treatment strategies into clinical protocols could potentially enhance the precision of delivering personalized medicine to patients. Furthermore, reaching out to patients in the network of hospitals affiliated with leading academic centers could help them benefit from such innovative treatment options. Finally, lowering the dose of the drug and its frequency (because of intermittent rather than continuous therapy) can also have a significant impact on lowering the toxicity and undesirable side effects of the drugs while lowering the financial burden carried by the patient and insurance providers.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Linlin Guo
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sandeep Mittan
- Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1000 FivePoint, Irvine, CA 92618, USA
| | - Naveen Gupta
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1100 San Bernardino Road, Suite 1100, Upland, CA 91786, USA
| | - Pauline Kim
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Razmig Babikian
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1100 San Bernardino Road, Suite 1100, Upland, CA 91786, USA
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1250 S. Sunset Ave., Suite 303, West Covina, CA 91790, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1601 Avocado Ave., Newport Beach, CA 92660, USA
| | - Danny Nguyen
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 19671 Beach Blvd. #315, Huntington Beach, CA 92648, USA
| | - Amartej Merla
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 38660 Medical Center Dr, Suite A380, Palmdale, CA 93551, USA
| | - Sudarsan V. Kollimuttathuillam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 16300 Sand Canyon Ave., Suite 207, Irvine, CA 92618, USA
| | - Tanyanika Phillips
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 44151 15th St. West, Lancaster, CA 93534, USA
| | - Peter Baik
- Cancer Treatment Centers of America, CTCA Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Bradford Tan
- Cancer Treatment Centers of America, CTCA Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Pankaj Vashi
- Cancer Treatment Centers of America, CTCA Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Sagun Shrestha
- Cancer Treatment Centers of America, CTCA Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA
| | - Benjamin Leach
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 15031 Rinaldi St., Suite 150, Mission Hills, CA 91345, USA
| | - Ruchi Garg
- Cancer Treatment Centers of America, CTCA Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA
| | - Patricia L. Rich
- Cancer Treatment Centers of America, CTCA Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA
| | - F. Marc Stewart
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Evan Pisick
- Cancer Treatment Centers of America, CTCA Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
226
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
227
|
Zhang Z, Rohweder PJ, Ongpipattanakul C, Basu K, Bohn MF, Dugan EJ, Steri V, Hann B, Shokat KM, Craik CS. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40:1060-1069.e7. [PMID: 36099883 PMCID: PMC10393267 DOI: 10.1016/j.ccell.2022.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Koli Basu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Eli J Dugan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
228
|
Combinatorial approaches for mitigating resistance to KRAS-targeted therapies. Biochem J 2022; 479:1985-1997. [PMID: 36065754 PMCID: PMC9555794 DOI: 10.1042/bcj20220440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Approximately 15% of all cancer patients harbor mutated KRAS. Direct inhibitors of KRAS have now been generated and are beginning to make progress through clinical trials. These include a suite of inhibitors targeting the KRASG12C mutation commonly found in lung cancer. We investigated emergent resistance to representative examples of different classes of Ras targeted therapies. They all exhibited rapid reactivation of Ras signaling within days of exposure and adaptive responses continued to change over long-term treatment schedules. Whilst the gene signatures were distinct for each inhibitor, they commonly involved up-regulation of upstream nodes promoting mutant and wild-type Ras activation. Experiments to reverse resistance unfortunately revealed frequent desensitization to members of a panel of anti-cancer therapeutics, suggesting that salvage approaches are unlikely to be feasible. Instead, we identified triple inhibitor combinations that resulted in more durable responses to KRAS inhibitors and that may benefit from further pre-clinical evaluation.
Collapse
|
229
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
230
|
Molecular Biology and Therapeutic Perspectives for K-Ras Mutant Non-Small Cell Lung Cancers. Cancers (Basel) 2022; 14:cancers14174103. [PMID: 36077640 PMCID: PMC9454753 DOI: 10.3390/cancers14174103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/28/2022] Open
Abstract
In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.
Collapse
|
231
|
KRAS-Mutant Non-Small-Cell Lung Cancer: From Past Efforts to Future Challenges. Int J Mol Sci 2022; 23:ijms23169391. [PMID: 36012655 PMCID: PMC9408881 DOI: 10.3390/ijms23169391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
KRAS is the most frequently mutated oncogene identified in human cancers. Despite the numerous efforts to develop effective specific inhibitors against KRAS, this molecule has remained "undruggable" for decades. The development of direct KRAS inhibitors, such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or adagrasib, was made possible with the discovery of a small pocket in the binding switch II region of KRAS G12C. However, a new challenge is represented by the necessity to overcome resistance mechanisms to KRAS inhibitors. Another area to be explored is the potential role of co-mutations in the selection of the treatment strategy, particularly in the setting of immune checkpoint inhibitors. The aim of this review was to analyze the state-of-the-art of KRAS mutations in non-small-cell lung cancer by describing the biological structure of KRAS and exploring the clinical relevance of KRAS as a prognostic and predictive biomarker. We reviewed the different treatment approaches, focusing on the novel therapeutic strategies for the treatment of KRAS-mutant lung cancers.
Collapse
|
232
|
Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022; 12:915512. [PMID: 36033504 PMCID: PMC9399772 DOI: 10.3389/fonc.2022.915512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Special oncogenic mutations in the RAS proteins lead to the aberrant activation of RAS and its downstream signaling pathways. AMG510, the first approval drug for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and has shown promising antitumor activity in clinical trials. Recent studies have reported that the clinically acquired Y96D mutation could severely affect the effectiveness of AMG510. However, the underlying mechanism of the drug-resistance remains unclear. To address this, we performed multiple microsecond molecular dynamics simulations on the KRASG12C−AMG510 and KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction between the residue 96 and AMG510 was impaired owing to the Y96D mutation. Moreover, the mutation yielded higher flexibility and more coupled motion of the switch II and α3-helix, which led to the departing motion of the switch II and α3-helix. The resulting departing motion impaired the interaction between the switch II and α3-helix and subsequently induced the opening and loosening of the AMG510 binding pocket, which further disrupted the interaction between the key residues in the pocket and AMG510 and induced an increased solvent exposure of AMG510. These findings reveal the resistance mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for the development of KRAS targeted drugs to overcome acquired resistance.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| |
Collapse
|
233
|
Zhu C, Guan X, Zhang X, Luan X, Song Z, Cheng X, Zhang W, Qin JJ. Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol Cancer 2022; 21:159. [PMID: 35922812 PMCID: PMC9351107 DOI: 10.1186/s12943-022-01629-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) is the most frequently mutated oncogene, occurring in a variety of tumor types. Targeting KRAS mutations with drugs is challenging because KRAS is considered undruggable due to the lack of classic drug binding sites. Over the past 40 years, great efforts have been made to explore routes for indirect targeting of KRAS mutant cancers, including KRAS expression, processing, upstream regulators, or downstream effectors. With the advent of KRAS (G12C) inhibitors, KRAS mutations are now druggable. Despite such inhibitors showing remarkable clinical responses, resistance to monotherapy of KRAS inhibitors is eventually developed. Significant progress has been made in understanding the mechanisms of drug resistance to KRAS-mutant inhibitors. Here we review the most recent advances in therapeutic approaches and resistance mechanisms targeting KRAS mutations and discuss opportunities for combination therapy.
Collapse
Affiliation(s)
- Chunxiao Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Xinuo Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengbo Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,Key Laboratory of Prevention, Diagnosis, and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| |
Collapse
|
234
|
Sabari JK, Velcheti V, Shimizu K, Strickland MR, Heist RS, Singh M, Nayyar N, Giobbie-Hurder A, Digumarthy SR, Gainor JF, Rajan AP, Nieblas-Bedolla E, Burns AC, Hallin J, Olson P, Christensen JG, Kurz SC, Brastianos PK, Wakimoto H. Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2022; 28:3318-3328. [PMID: 35404402 PMCID: PMC9662862 DOI: 10.1158/1078-0432.ccr-22-0383] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Patients with KRAS-mutant non-small cell lung cancer (NSCLC) with brain metastases (BM) have a poor prognosis. Adagrasib (MRTX849), a potent oral small-molecule KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib has been optimized for favorable pharmacokinetic properties, including long half-life (∼24 hours), extensive tissue distribution, dose-dependent pharmacokinetics, and central nervous system penetration; however, BM-specific antitumor activity of KRASG12C inhibitors remains to be fully characterized. EXPERIMENTAL DESIGN A retrospective database query identified patients with KRAS-mutant NSCLC to understand their propensity to develop BM. Preclinical studies assessed physiochemical and pharmacokinetic properties of adagrasib. Mice bearing intracranial KRASG12C-mutant NSCLC xenografts (LU99-Luc/H23-Luc/LU65-Luc) were treated with clinically relevant adagrasib doses, and levels of adagrasib in plasma, cerebrospinal fluid (CSF), and brain were determined along with antitumor activity. Preliminary clinical data were collected from 2 patients with NSCLC with untreated BM who had received adagrasib 600 mg twice daily in the phase Ib cohort of the KRYSTAL-1 trial; CSF was collected, adagrasib concentrations measured, and antitumor activity in BM evaluated. RESULTS Patients with KRAS-mutant NSCLC demonstrated high propensity to develop BM (≥40%). Adagrasib penetrated into CSF and demonstrated tumor regression and extended survival in multiple preclinical BM models. In 2 patients with NSCLC and untreated BM, CSF concentrations of adagrasib measured above the target cellular IC50. Both patients demonstrated corresponding BM regression, supporting potential clinical activity of adagrasib in the brain. CONCLUSIONS These data support further development of adagrasib in patients with KRASG12C-mutant NSCLC with untreated BM. See related commentary by Kommalapati and Mansfield, p. 3179.
Collapse
Affiliation(s)
- Joshua K. Sabari
- Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, New York.,Corresponding Author: Joshua K. Sabari, Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, NY 10016. Phone: 212-731-5662; E-mail:
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, New York
| | - Kazuhide Shimizu
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Tokyo Medical and Dental University, Tokyo, Japan
| | - Matthew R. Strickland
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca S. Heist
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mohini Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naema Nayyar
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Subba R. Digumarthy
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Justin F. Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anant P. Rajan
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Sylvia C. Kurz
- Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, New York
| | | | - Hiroaki Wakimoto
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
235
|
Lebedev TD, Khabusheva ER, Mareeva SR, Ivanenko KA, Morozov AV, Spirin PV, Rubtsov PM, Snezhkina AV, Kudryavtseva AV, Sorokin MI, Buzdin AA, Prassolov VS. Identification of cell type-specific correlations between ERK activity and cell viability upon treatment with ERK1/2 inhibitors. J Biol Chem 2022; 298:102226. [PMID: 35787369 PMCID: PMC9358475 DOI: 10.1016/j.jbc.2022.102226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Elmira R Khabusheva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia R Mareeva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
| | - Karina A Ivanenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Morozov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Petr M Rubtsov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Snezhkina
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim I Sorokin
- Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia; Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Department of Bioinformatics and Molecular Networks, OmicsWay Corp, Walnut, California, USA
| | - Anton A Buzdin
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia; Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia; Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Department of Bioinformatics and Molecular Networks, OmicsWay Corp, Walnut, California, USA
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
236
|
Mugarza E, van Maldegem F, Boumelha J, Moore C, Rana S, Llorian Sopena M, East P, Ambler R, Anastasiou P, Romero-Clavijo P, Valand K, Cole M, Molina-Arcas M, Downward J. Therapeutic KRAS G12C inhibition drives effective interferon-mediated antitumor immunity in immunogenic lung cancers. SCIENCE ADVANCES 2022; 8:eabm8780. [PMID: 35857848 PMCID: PMC9299537 DOI: 10.1126/sciadv.abm8780] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/07/2022] [Indexed: 05/03/2023]
Abstract
Recently developed KRASG12C inhibitory drugs are beneficial to lung cancer patients harboring KRASG12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRASG12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRASG12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD1 drugs.
Collapse
Affiliation(s)
- Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Febe van Maldegem
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Moore
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachel Ambler
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Panayiotis Anastasiou
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pablo Romero-Clavijo
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karishma Valand
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Megan Cole
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
237
|
Andreani C, Bartolacci C, Scaglioni PP. Ferroptosis: A Specific Vulnerability of RAS-Driven Cancers? Front Oncol 2022; 12:923915. [PMID: 35912247 PMCID: PMC9337859 DOI: 10.3389/fonc.2022.923915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has emerged as a new type of programmed cell death that can be harnessed for cancer therapy. The concept of ferroptosis was for the first time proposed in in the early 2000s, as an iron-dependent mode of regulated cell death caused by unrestricted lipid peroxidation (LPO) and subsequent plasma membrane rupture. Since the discovery and characterization of ferroptosis, a wealth of research has improved our understanding of the main pathways regulating this process, leading to both the repurposing and the development of small molecules. However, ferroptosis is still little understood and several aspects remain to be investigated. For instance, it is unclear whether specific oncogenes, cells of origin or tumor niches impose specific susceptibility/resistance to ferroptosis or if there are some ferroptosis-related genes that may be used as bona fide pan-cancer targetable dependencies. In this context, even though RAS-driven cancer cell lines seemed to be selectively sensitive to ferroptosis inducers, subsequent studies have questioned these results, indicating that in some cases mutant RAS is necessary, but not sufficient to induce ferroptosis. In this perspective, based on publicly available genomic screening data and the literature, we discuss the relationship between RAS-mutation and ferroptosis susceptibility in cancer.
Collapse
Affiliation(s)
| | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
238
|
Liu J, Kang R, Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther 2022; 29:875-878. [PMID: 34471232 DOI: 10.1038/s41417-021-00383-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Although it has long been deemed "undruggable", with the development of drugs specifically binding the KRAS-G12C mutant protein, clinical trials that directly inhibit oncogenic RAS have recently made promising improvements. In particular, the covalent KRAS-G12C inhibitors sotorasib and adagrasib are used to treat patients with advanced non-small cell lung cancer (NSCLC) carrying KRAS-G12C mutations. Unfortunately, the vast majority of patients do not respond to KRAS-G12C inhibitor therapy, mainly due to intrinsic or acquired resistance caused by cellular, molecular, and genetic mechanisms. Improving the understanding of drug response in the tumor microenvironment may continue to promote the design, testing, and clinical application of KRAS-G12C inhibitors.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
239
|
Chen S, Dong R, Li Y, Zheng N, Peng G, Lu F, Qiu Q, Wen H, Wang Y, Wu H, Liu M. m 7G-Related DNA Damage Repair Genes are Potential Biomarkers for Predicting Prognosis and Immunotherapy Effectiveness in Colon Cancer Patients. Front Genet 2022; 13:918159. [PMID: 35754841 PMCID: PMC9218807 DOI: 10.3389/fgene.2022.918159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: m7G is a post-transcriptional modification modality, however, limited research has been conducted on its role in colon cancer. DNA damage repair (DDR) is an important factor that contributes to colon cancer development, growth and chemoresistance. This study aimed to explore whether m7G-related DNA damage repair genes may be used as biomarkers to predict the prognosis of colon cancer patients. Methods: We use non-negative matrix factorization (NMF) to type CRC patients into. Risk models were constructed using different expression genes in two clusters. We assessed the reliability of risk models with DCA curves, and a Nomogram. Meanwhile, The receiver operating characteristic and C-index curves were used to compare the predictive significance of the constructed risk models with other studies. In additional, we examined the significance of risk models on patients' immunity microenvironment and response to immune therapy. Finally, we used a series of cellular experiments to validate the effect of model genes on the malignant progression of CRC cells. Results: Twenty-eight m7G genes were obtained from the GSEA database. Multivariate Cox and LASSO Cox regression analysis was performed and eleven m7G-related DDR genes were identified for constructing the risk model. Survival and stage of CRC patients were worser in the high-risk group than in the low-risk group for both the training and test sets. Additionally, the different immune microenvironment status of patients in the high- and low-risk groups, suggesting that patients in the low-risk group may be more sensitive to immunotherapy, particularly immune checkpoint inhibitors. Finally, we found that depletion of ATP2A1, one of the risk genes in our model, influence the biologic behaviour of CRC cells significantly. Conclusion: The m7G-related DDR genes can be used as important markers for predicting patient prognosis and immunotherapy response. Our data suggest that ATP2A1 may promote the proliferation of colon cancer cells. These findings may provide new therapeutic targets for the treatment of colon cancer.
Collapse
Affiliation(s)
- Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ni Zheng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Guisen Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Fei Lu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yitong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
240
|
Arbour KC, Lito P. Expanding the Arsenal of Clinically Active KRAS G12C Inhibitors. J Clin Oncol 2022; 40:2609-2611. [PMID: 35763705 DOI: 10.1200/jco.22.00562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY
| |
Collapse
|
241
|
Grudzien P, Jang H, Leschinsky N, Nussinov R, Gaponenko V. Conformational Dynamics Allows Sampling of an "Active-like" State by Oncogenic K-Ras-GDP. J Mol Biol 2022; 434:167695. [PMID: 35752212 DOI: 10.1016/j.jmb.2022.167695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Mutations in K-Ras GTPase replacing Gly12 with either Asp or Val are common in cancer. These mutations decelerate intrinsic and catalyzed GTP hydrolysis, leading to accumulation of K-Ras-GTP in cells. Signaling cascades initiated by K-Ras-GTP promote cell proliferation, survival, and invasion. Despite functional differences between the most frequent G12D mutation and the most aggressive and chemotherapy resistant G12V mutation, their long-suspected distinct structural features remain elusive. Using NMR, X-ray structures, and computational methods, we found that oncogenic mutants of K-Ras4B, the predominant splice variant of K-Ras, exhibit distinct conformational dynamics when GDP-bound, visiting the "active-like" conformational state similar to the one observed in GTP-bound K-Ras. This behavior distinguishes G12V from wild type and G12D K-Ras4B-GDP. The likely reason is hydrophobic interactions between the aliphatic sidechain of V12 and the Switch II region of K-Ras4BG12V-GDP, which are distinct in K-Ras4BG12D-GDP. In the X-ray structures, crystal contacts reduce the dynamics of the sidechain at position 12 by stabilizing the Switch I region of the protein. This explains why structural differences between G12V and G12D K-Ras have yet not been reported. Together, our results suggest a previously unknown mechanism of K-Ras activation. This mechanism relies on conformational dynamics caused by specific oncogenic mutations in the GDP-bound state. Our findings also imply that the therapeutic strategies decreasing the level of K-Ras-GTP by interfering with nucleotide exchange or by expediting GTP hydrolysis may work differently in different oncogenic mutants.
Collapse
Affiliation(s)
- Patrick Grudzien
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Nicholas Leschinsky
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, U.S.A; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, U.S.A.
| |
Collapse
|
242
|
Ryan MB, Coker O, Sorokin A, Fella K, Barnes H, Wong E, Kanikarla P, Gao F, Zhang Y, Zhou L, Kopetz S, Corcoran RB. KRAS G12C-independent feedback activation of wild-type RAS constrains KRAS G12C inhibitor efficacy. Cell Rep 2022; 39:110993. [PMID: 35732135 PMCID: PMC9809542 DOI: 10.1016/j.celrep.2022.110993] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023] Open
Abstract
Although KRAS has long been considered undruggable, direct KRASG12C inhibitors have shown promising initial clinical efficacy. However, the majority of patients still fail to respond. Adaptive feedback reactivation of RAS-mitogen-activated protein kinase (MAPK) signaling has been proposed by our group and others as a key mediator of resistance, but the exact mechanism driving reactivation and the therapeutic implications are unclear. We find that upstream feedback activation of wild-type RAS, as opposed to a shift in KRASG12C to its active guanosine triphosphate (GTP)-bound state, is sufficient to drive RAS-MAPK reactivation in a KRASG12C-independent manner. Moreover, multiple receptor tyrosine kinases (RTKs) can drive feedback reactivation, potentially necessitating targeting of convergent signaling nodes for more universal efficacy. Even in colorectal cancer, where feedback is thought to be primarily epidermal growth factor receptor (EGFR)-mediated, alternative RTKs drive pathway reactivation and limit efficacy, but convergent upstream or downstream signal blockade can enhance activity. Overall, these data provide important mechanistic insight to guide therapeutic strategies targeting KRAS.
Collapse
Affiliation(s)
- Meagan B Ryan
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katerina Fella
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Preeti Kanikarla
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fengqin Gao
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
243
|
Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51:5498-5517. [PMID: 35723413 DOI: 10.1039/d2cs00197g] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions (PPIs) govern all biological processes. Some small molecules modulate PPIs through induced protein proximity. In particular, molecular glue degraders are monovalent compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting the proteasomal degradation of the former. This and other pharmacological strategies of targeted protein degradation (e.g. proteolysis-targeting chimeras - PROTACs) overcome some limitations of traditional occupancy-based therapeutics. Here, we provide an overview of the "molecular glue" concept, with a special focus on natural and synthetic inducers of proximity to E3s. We then briefly highlight the serendipitous discoveries of some clinical and preclinical molecular glue degraders, and discuss the first examples of intentional discoveries. Specifically, we outline the different screening strategies reported in this rapidly evolving arena and our thoughts on future perspectives. By mastering the ability to influence PPIs, molecular glue degraders can induce the degradation of unligandable proteins, thus providing an exciting path forward to broaden the targetable proteome.
Collapse
Affiliation(s)
- Ana Domostegui
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Luis Nieto-Barrado
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Carles Perez-Lopez
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Cristina Mayor-Ruiz
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
244
|
Abstract
Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.
Collapse
|
245
|
Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, Chen X, Cui X, de Kanter R, Dharmarajan L, Fedele C, Gerspacher M, Guthy DA, Head V, Jaeger A, Núñez EJ, Kearns JD, Leblanc C, Maira SM, Murphy J, Oakman H, Ostermann N, Ottl J, Rigollier P, Roman D, Schnell C, Sedrani R, Shimizu T, Stringer R, Vaupel A, Voshol H, Wessels P, Widmer T, Wilcken R, Xu K, Zecri F, Farago AF, Cotesta S, Brachmann SM. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov 2022; 12:1500-1517. [PMID: 35404998 PMCID: PMC9394399 DOI: 10.1158/2159-8290.cd-22-0158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Heather Burks
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xiaoming Cui
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ruben de Kanter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Victoria Head
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ashley Jaeger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Helen Oakman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Danielle Roman
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kun Xu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Frederic Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anna F. Farago
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Saskia M. Brachmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| |
Collapse
|
246
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
247
|
Lietman CD, Johnson ML, McCormick F, Lindsay CR. More to the RAS Story: KRAS G12C Inhibition, Resistance Mechanisms, and Moving Beyond KRAS G12C. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35561303 DOI: 10.1200/edbk_351333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the discovery of RAS oncogenes in human tumor DNA 40 years ago, the development of effective targeted therapies directed against RAS has lagged behind those more successful advancements in the field of therapeutic tyrosine kinase inhibitors targeting other oncogenes such as EGFR, ALK, and ROS1. The discoveries that (1) malignant RAS oncogenes differ from their wild-type counterparts by only a single amino acid change and (2) covalent inhibition of the cysteine residue at codon 12 of KRASG12C in its inactive GDP-bound state resulted in effective inhibition of oncogenic RAS signaling and have catalyzed a dramatic shift in mindset toward KRAS-driven cancers. Although the development of allele-selective KRASG12C inhibitors has changed a treatment paradigm, the clinical activity of these agents is more modest than tyrosine kinase inhibitors targeting other oncogene-driven cancers. Heterogeneous resistance mechanisms generally result in the restoration of RAS/mitogen-activated protein kinase pathway signaling. Many approaches are being evaluated to overcome this resistance, with many combinatorial clinical trials ongoing. Furthermore, because KRASG12D and KRASG12V are more prevalent than KRASG12C, there remains an unmet need for additional therapeutic strategies for these patients. Thus, our current translational standing could be described as "the end of the beginning," with additional discovery and research innovation needed to address the enormous disease burden imposed by RAS-mutant cancers. Here, we describe the development of KRASG12C inhibitors, the challenges of resistance to these inhibitors, strategies to mitigate that resistance, and new approaches being taken to address other RAS-mutant cancers.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | |
Collapse
|
248
|
A saturation mutagenesis screen uncovers resistant and sensitizing secondary KRAS mutations to clinical KRAS G12C inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2120512119. [PMID: 35471904 PMCID: PMC9170150 DOI: 10.1073/pnas.2120512119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
KRASG12C inhibitors have demonstrated promising efficacy in non–small-cell lung cancer patients harboring the KRASG12C mutation. However, the mechanism of resistance remains to be fully understood. To understand the consequences of single amino acid changes within KRASG12C, we conducted a saturation mutagenesis screen of the KRASG12C protein and assessed the mutational impact on drug sensitivity. Not only did our screen reveal resistant hits that were identified from patients’ samples (V8L, C12F, R68S, H95D, H95R, and Y96C), but we also discovered variants that sensitize the inhibition. Furthermore, we examined the human genetics databases and identified germline or somatic KRAS mutations that appear among the strong resistance hits. Our study positions future drug discovery targeting KRASG12C toward focusing on inhibitors preserving potency against resistance mutations at key residues. Mutant-specific inhibitors of KRASG12C, such as AMG510 (sotorasib) and MRTX849 (adagrasib), offer the unprecedented opportunity to inhibit KRAS, the most frequently mutated and heretofore undruggable oncoprotein. While clinical data are still limited, on-target mutations in KRASG12C at position 12 and other sites are emerging as major drivers of clinical relapse. We identified additional mutations in KRASG12C that impact inhibitor sensitivity through a saturation mutagenesis screen in the KRASG12C NCI-H358 non–small-cell lung cancer (NSCLC) cell line. We also identified individuals in population genetic databases harboring these resistance mutations in their germline and in tumors, including a subset that co-occur with KRASG12C, indicating that these mutations may preexist in patients treated with KRASG12C inhibitors. Notably, through structural modeling, we found that one such mutation (R68L) interferes with the critical protein–drug interface, conferring resistance to both inhibitors. Finally, we uncovered a mutant (S17E) that demonstrated a strong sensitizing phenotype to both inhibitors. Functional studies suggest that S17E sensitizes KRASG12C cells to KRASG12C inhibition by impacting signaling through PI3K/AKT/mTOR but not the MAPK signaling pathway. Our studies highlight the utility of unbiased mutation profiling to understand the functional consequences of all variants of a disease-causing genetic mutant and predict acquired resistant mutations in the targeted therapeutics.
Collapse
|
249
|
Khan HY, Nagasaka M, Li Y, Aboukameel A, Uddin MH, Sexton R, Bannoura S, Mzannar Y, Al-Hallak MN, Kim S, Beydoun R, Landesman Y, Mamdani H, Uprety D, Philip PA, Mohammad RM, Shields AF, Azmi AS. Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C-Mutant Cancers. CANCER RESEARCH COMMUNICATIONS 2022; 2:342-352. [PMID: 35573474 PMCID: PMC9105196 DOI: 10.1158/2767-9764.crc-21-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023]
Abstract
UNLABELLED The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. SIGNIFICANCE In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Husain Yar Khan
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Misako Nagasaka
- University of California Irvine School of Medicine and Chao Family Comprehensive Cancer Center, Orange, California
- Division of Neurology, Department of Internal Medicine, St. Marianna University, Kawasaki, Japan
| | - Yiwei Li
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amro Aboukameel
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Md. Hafiz Uddin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Rachel Sexton
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sahar Bannoura
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yousef Mzannar
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Najeeb Al-Hallak
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Kim
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Rafic Beydoun
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Hirva Mamdani
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Dipesh Uprety
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Philip A. Philip
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ramzi M. Mohammad
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony F. Shields
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Asfar S. Azmi
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
250
|
Luo J, Ostrem J, Pellini B, Imbody D, Stern Y, Solanki HS, Haura EB, Villaruz LC. Overcoming KRAS-Mutant Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35412860 DOI: 10.1200/edbk_360354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
More than 50 years after the discovery of RAS family proteins, which harbor the most common activating mutations in cancer, the U.S. Food and Drug Administration approved the first direct allele-specific inhibitor of mutant KRAS in lung cancer. We highlight the history of discovering RAS and decades of studies targeting KRAS-driven lung cancer. A landmark article by Shokat and colleagues in 2013 elucidated allosteric inhibition of this undruggable target and paved the way for the first-in-class direct KRASG12C inhibitor. Although these drugs have impressive 36%-45% objective response rates with a median duration of response of 10 months, many tumors do not respond, and diverse mechanisms of resistance have already been observed; this includes new KRAS alterations, activation of alternate RTK pathway proteins, bypass pathways, and transcriptional remodeling. These resistance mechanisms can be profiled using tissue-based and plasma-based testing and help to inform clinical trial options for patients. We conclude with a discussion of research informing ongoing clinical trials to rationally test promising treatments to thwart or overcome resistance to KRASG12C inhibitors and target other KRAS-altered lung cancers.
Collapse
Affiliation(s)
- Jia Luo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jonathan Ostrem
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Bruna Pellini
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Denis Imbody
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Yaakov Stern
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Hitendra S Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Liza C Villaruz
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|