201
|
Immune checkpoint inhibitors combined with chemotherapy for the treatment of advanced pancreatic cancer patients. Cancer Immunol Immunother 2020; 69:365-372. [PMID: 31897660 DOI: 10.1007/s00262-019-02452-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a major breakthrough for cancer treatment. However, evidence regarding the use of ICIs in pancreatic cancer (PC) remained scarce. To assess the efficacy and safety of ICIs plus chemotherapy, patients with advanced PC were retrospectively recruited and were treated with either chemotherapy alone or chemotherapy plus ICIs. Patients previously treated with any agents targeting T-cell co-stimulation or checkpoint pathways were excluded. The primary outcome was overall survival (OS). The secondary outcomes were progression-free survival (PFS), overall response rate (ORR) and safety. In total, 58 patients were included (combination, n = 22; chemotherapy, n = 36). The combination group showed a significantly longer OS than the chemotherapy group [median, 18.1 vs 6.1 months, hazard ratio (HR) 0.46 (0.23-0.90), P = 0.021]. The median PFSs were 3.2 months in the combination group and 2.0 months in the chemotherapy group [HR 0.57 (0.32-0.99), P = 0.041]. The combination group and the chemotherapy group had similar ORRs (18.2% vs 19.4%, P = 0.906). All patients who achieved a partial response received a doublet chemotherapy regimen regardless of co-treatment with ICIs. Grade 3 or higher adverse events occurred in 31.8% of the patients in the combination group and in 16.9% of those receiving chemotherapy. Although the incidence of serious treatment-related adverse events was higher in the combination group than in the chemotherapy group, the difference was not significant (P = 0.183). Our findings suggest that the combination of ICIs with chemotherapy is both effective and tolerable for advanced PC. ICIs combined with a doublet chemotherapy regimen might be a preferable choice.
Collapse
|
202
|
Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells 2019; 9:cells9010046. [PMID: 31878087 PMCID: PMC7017001 DOI: 10.3390/cells9010046] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
: Established evidence demonstrates that tumor-infiltrating myeloid cells promote rather than stop-cancer progression. Tumor-associated macrophages (TAMs) are abundantly present at tumor sites, and here they support cancer proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Their pro-tumor activities hamper the response of cancer patients to conventional therapies, such as chemotherapy or radiotherapy, and also to immunotherapies based on checkpoint inhibition. Active research frontlines of the last years have investigated novel therapeutic strategies aimed at depleting TAMs and/or at reprogramming their tumor-promoting effects, with the goal of re-establishing a favorable immunological anti-tumor response within the tumor tissue. In recent years, numerous clinical trials have included pharmacological strategies to target TAMs alone or in combination with other therapies. This review summarizes the past and current knowledge available on experimental tumor models and human clinical studies targeting TAMs for cancer treatment.
Collapse
|
203
|
Li J, Yuan S, Norgard RJ, Yan F, Yamazoe T, Blanco A, Stanger BZ. Tumor Cell-Intrinsic USP22 Suppresses Antitumor Immunity in Pancreatic Cancer. Cancer Immunol Res 2019; 8:282-291. [PMID: 31871120 DOI: 10.1158/2326-6066.cir-19-0661] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 01/04/2023]
Abstract
Although immune checkpoint blockade (ICB) improves clinical outcome in several types of malignancies, pancreatic ductal adenocarcinoma (PDA) remains refractory to this therapy. Preclinical studies have demonstrated that the relative abundance of suppressive myeloid cells versus cytotoxic T cells determines the efficacy of combination immunotherapies, which include ICB. Here, we evaluated the role of the ubiquitin-specific protease 22 (USP22) as a regulator of the immune tumor microenvironment (TME) in PDA. We report that deletion of USP22 in pancreatic tumor cells reduced the infiltration of myeloid cells and promoted the infiltration of T cells and natural killer (NK) cells, leading to an improved response to combination immunotherapy. We also showed that ablation of tumor cell-intrinsic USP22 suppressed metastasis of pancreatic tumor cells in a T-cell-dependent manner. Finally, we provide evidence that USP22 exerted its effects on the immune TME by reshaping the cancer cell transcriptome through its association with the deubiquitylase module of the SAGA/STAGA transcriptional coactivator complex. These results indicated that USP22 regulates immune infiltration and immunotherapy sensitivity in preclinical models of pancreatic cancer.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fangxue Yan
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taiji Yamazoe
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrés Blanco
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
204
|
Benzing C, Lam H, Tsang CM, Rimmer A, Arroyo-Berdugo Y, Calle Y, Wells CM. TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer 2019; 19:1214. [PMID: 31836008 PMCID: PMC6911299 DOI: 10.1186/s12885-019-6429-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. METHODS To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. RESULTS Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. CONCLUSIONS Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.
Collapse
Affiliation(s)
- Christian Benzing
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.,Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hongkong, Hong Kong SAR
| | - Alexander Rimmer
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | | | - Yolanda Calle
- Department of Life Sciences, University of Roehampton, London, UK
| | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
205
|
Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol Res Pract 2019; 215:152691. [PMID: 31676092 DOI: 10.1016/j.prp.2019.152691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Despite significant advances over the past decades of research, pancreatic cancer (PC) continues to have the worst 5-year survival of any malignancy. Dendritic cells (DCs) are the most potent professional antigen-presenting cells and are involved in the induction and regulation of antitumor immune responses. DC-based immunotherapy has been used in clinical trials for PC. Although safety, efficacy, and immune activation were reported in patients with PC, DC vaccines have not yet fulfilled their promise. Additional strategies for combinatorial approaches aimed to augment and sustain the antitumor specific immune response elicited by DC vaccines are currently being investigated. Here, we will discuss DC vaccination immunotherapies that are currently under preclinical and clinical investigation and potential combination approaches for treating and improving the survival of PC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Li
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Chongqing, China.
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
206
|
Abstract
Responses of solid tumors to chimeric antigen receptor (CAR) T cell therapy are often minimal. This is potentially due to a lack of sustained activation and proliferation of CAR T cells when encountering antigen in a profoundly immunosuppressive tumor microenvironment. In this study, we investigate if inducing an interaction between CAR T cells and antigen-presenting cells (APCs) in lymphoid tissue, away from an immunosuppressive microenvironment, could enhance solid-tumor responses. We combined CAR T cell transfer with the bacterial enterotoxin staphylococcal enterotoxin-B (SEB), which naturally links a proportion of T cell receptor (TCR) Vβ subtypes to MHC-II, present on APCs. CAR T cell proliferation and function was significantly enhanced by SEB. Solid tumor-growth inhibition in mice was increased when CAR T cells were administered in combination with SEB. CAR T cell expansion in lymphoid tissue was demonstrated, and inhibition of lymphocyte egress from lymph nodes using FTY720 abrogated the benefit of SEB. We also demonstrate that a bispecific antibody, targeting a c-Myc tag on CAR T cells and cluster of differentiation 40 (CD40), could also enhance CAR T cell activity and mediate increased antitumor activity of CAR T cells. These model systems serve as proof-of-principle that facilitating the interaction of CAR T cells with APCs can enhance their ability to mediate antitumor activity.
Collapse
|
207
|
Moffat GT, Epstein AS, O’Reilly EM. Pancreatic cancer-A disease in need: Optimizing and integrating supportive care. Cancer 2019; 125:3927-3935. [PMID: 31381149 PMCID: PMC6819216 DOI: 10.1002/cncr.32423] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that continues to be challenging to treat. PDAC has the lowest 5-year relative survival rate compared with all other solid tumor malignancies and is expected to become the second-leading cause of cancer-related death in the United States by 2030. Given the high mortality, there is an increasing role for concurrent anticancer and supportive care in the management of patients with PDAC with the aims of maximizing length of life, quality of life, and symptom control. Emerging trends in supportive care that can be integrated into the clinical management of patients with PDAC include standardized supportive care screening, early integration of supportive care into routine cancer care, early implementation of outpatient-based advance care planning, and utilization of electronic patient-reported outcomes for improved symptom management and quality of life. The most common symptoms experienced are nausea, constipation, weight loss, diarrhea, anorexia, and abdominal and back pain. This review article includes current supportive management strategies for these and others. Common disease-related complications include biliary and duodenal obstruction requiring endoscopic procedures and venous thromboembolic events. Patients with PDAC continue to have a poor prognosis. Systemic therapy options are able to palliate the high symptom burden but have a modest impact on overall survival. Early integration of supportive care can lead to improved outcomes.
Collapse
Affiliation(s)
- Gordon T. Moffat
- Memorial Sloan Kettering Cancer Center (MSK), New York, New York, USA
| | - Andrew S. Epstein
- Memorial Sloan Kettering Cancer Center (MSK), New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Eileen M. O’Reilly
- Memorial Sloan Kettering Cancer Center (MSK), New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, MSK
| |
Collapse
|
208
|
Fenton SE, Sosman JA, Chandra S. Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:744-761. [PMID: 35582566 PMCID: PMC8992532 DOI: 10.20517/cdr.2019.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022]
Abstract
Checkpoint inhibitors act by blocking physiologic mechanisms coopted by tumor cells to evade immune surveillance, restoring the immune system's ability to identify and kill malignant cells. These therapies have dramatically improved outcomes in multiple tumor types with durable responses in many patients, leading to FDA approval first in advanced melanoma, then in many other malignancies. However, as experience with checkpoint inhibitors has grown, populations of patients who are primary nonresponders or develop secondary resistance have been the majority of cases, even in melanoma. Mechanisms of resistance include those inherent to the tumor microenvironment, the tumor cells themselves, and the function of the patient's native immune cells. This review will discuss resistance to checkpoint inhibitors in melanoma as well as possible methods to restore sensitivity.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey A. Sosman
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Sunandana Chandra
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
209
|
Yoshida S, Ito Z, Suka M, Bito T, Kan S, Akasu T, Saruta M, Okamoto M, Kitamura H, Fujioka S, Misawa T, Akiba T, Yanagisawa H, Sugiyama H, Koido S. Clinical Significance of Tumor-Infiltrating T Cells and Programed Death Ligand-1 in Patients with Pancreatic Cancer. Cancer Invest 2019; 37:463-477. [PMID: 31490702 DOI: 10.1080/07357907.2019.1661427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The associations of the immunological status of the pancreatic ductal adenocarcinoma (PDA) microenvironment with prognosis were assessed. A high tumor-infiltrating lymphocyte (TIL) density was associated with a better prognosis. Importantly, even with a high density of TILs, the PDA cells with programed cell death-ligand 1 (PD-L1) expression showed a worse prognosis than the patients with negative PD-L1 expression. A significant association between a better prognosis and a tumor microenvironment with a high TIL density/negative PD-L1 expression was observed. Assessments of a combined immunological status in the tumor microenvironment may predict the prognosis of PDA patients following surgical resection.
Collapse
Affiliation(s)
- Sayumi Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| | - Takafumi Akasu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Masato Okamoto
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine , Kanagawa , Japan
| | - Hiroaki Kitamura
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Tadashi Akiba
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine , Osaka , Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| |
Collapse
|
210
|
Madduri D, Dhodapkar MV, Lonial S, Jagannath S, Cho HJ. SOHO State of the Art Updates and Next Questions: T-Cell–Directed Immune Therapies for Multiple Myeloma: Chimeric Antigen Receptor–Modified T Cells and Bispecific T-Cell–Engaging Agents. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:537-544. [DOI: 10.1016/j.clml.2019.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
|
211
|
Stone ML, Beatty GL. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol Ther 2019; 201:202-213. [PMID: 31158393 PMCID: PMC6708742 DOI: 10.1016/j.pharmthera.2019.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is a hallmark of cancer. For pancreatic ductal adenocarcinoma (PDAC), malignant cells arise in the context of a brisk inflammatory cell infiltrate surrounded by dense fibrosis that is seen beginning at the earliest stages of cancer conception. This inflammatory and fibrotic milieu supports cancer cell escape from immune elimination and promotes malignant progression and metastatic spread to distant organs. Targeting this inflammatory reaction in PDAC by inhibiting or depleting pro-tumor elements and by engaging the potential of inflammatory cells to acquire anti-tumor activity has garnered strong research and clinical interest. Herein, we describe the current understanding of key determinants of inflammation in PDAC; mechanisms by which inflammation drives immune suppression; the impact of inflammation on metastasis, therapeutic resistance, and clinical outcomes; and strategies to intervene on inflammation for providing therapeutic benefit.
Collapse
Affiliation(s)
- Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
212
|
Burrack AL, Spartz EJ, Raynor JF, Wang I, Olson M, Stromnes IM. Combination PD-1 and PD-L1 Blockade Promotes Durable Neoantigen-Specific T Cell-Mediated Immunity in Pancreatic Ductal Adenocarcinoma. Cell Rep 2019; 28:2140-2155.e6. [PMID: 31433988 PMCID: PMC7975822 DOI: 10.1016/j.celrep.2019.07.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer resistant to immunotherapy. We create a PDA mouse model and show that neoantigen expression is required for intratumoral T cell accumulation and response to immune checkpoint blockade. By generating a peptide:MHC tetramer, we identify that PDA induces rapid intratumoral, and progressive systemic, tumor-specific T cell exhaustion. Monotherapy PD-1 or PD-L1 blockade enhances systemic T cell expansion and induces objective responses that require systemic T cells. However, tumor escape variants defective in IFNγ-inducible Tap1 and MHC class I cell surface expression ultimately emerge. Combination PD-1 + PD-L1 blockade synergizes therapeutically by increasing intratumoral KLRG1+Lag3-TNFα+ tumor-specific T cells and generating memory T cells capable of expanding to spontaneous tumor recurrence, thereby prolonging animal survival. Our studies support that PD-1 and PD-L1 are relevant immune checkpoints in PDA and identify a combination for clinical testing in those patients with neoantigen-specific T cells.
Collapse
Affiliation(s)
- Adam L Burrack
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ellen J Spartz
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jackson F Raynor
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Iris Wang
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Margaret Olson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ingunn M Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Cancer Center of the University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
213
|
Abstract
CD40 is a cell-surface member of the TNF (tumor necrosis factor) receptor superfamily. Upon activation, CD40 can license dendritic cells to promote antitumor T cell activation and re-educate macrophages to destroy tumor stroma. Numerous agonist CD40 antibodies of varying formulations have been evaluated in the clinic and found to be tolerable and feasible. Administration is associated with mild to moderate (but transient) cytokine release syndrome, readily managed in the outpatient setting. Antitumor activity with or without anti-CTLA4 monoclonal antibody (mAb) therapy has been observed in patients with melanoma, and major tumor regressions have been observed in patients with pancreatic cancer, mesothelioma, and other tumors in combination with chemotherapy. In a recent study of chemotherapy plus CD40 mAb, with or without PD-1 mAb, the objective response rate in patients with untreated, metastatic pancreatic cancer was >50%. Mechanistically, the combination of chemotherapy followed by CD40 mAb functions as an in situ vaccine; in addition, destruction of stroma by CD40-activated macrophages may enhance chemotherapy delivery. Evidence to date suggests that CD40 activation is a critical and nonredundant mechanism to convert so-called cold tumors to hot ones (with prominent tumor infiltration of T cells), sensitizing them to checkpoint inhibition.
Collapse
Affiliation(s)
- Robert H Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
214
|
Quaranta V, Schmid MC. Macrophage-Mediated Subversion of Anti-Tumour Immunity. Cells 2019; 8:E747. [PMID: 31331034 PMCID: PMC6678757 DOI: 10.3390/cells8070747] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the incredible clinical benefits obtained by the use of immune checkpoint blockers (ICBs), resistance is still common for many types of cancer. Central for ICBs to work is activation and infiltration of cytotoxic CD8+ T cells following tumour-antigen recognition. However, it is now accepted that even in the case of immunogenic tumours, the effector functions of CD8+ T cells are highly compromised by the presence of an immunosuppressive tumour microenvironment (TME) at the tumour site. Tumour-associated macrophages (TAMs) are among the most abundant non-malignant stromal cell types within the TME and they are crucial drivers of tumour progression, metastasis and resistance to therapy. TAMs are able to regulate either directly or indirectly various aspects of tumour immunity, including T cell recruitment and functions. In this review we discuss the mechanisms by which TAMs subvert CD8+ T cell immune surveillance and how their targeting in combination with ICBs represents a very powerful therapeutic strategy.
Collapse
Affiliation(s)
- Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| |
Collapse
|
215
|
Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, Vignali M, Park JO, Daniel SK, Pollack SM, Kim TS, Yeung R, Crispe IN, Pierce RH, Robins H, Pillarisetty VG. Mobilization of CD8 + T Cells via CXCR4 Blockade Facilitates PD-1 Checkpoint Therapy in Human Pancreatic Cancer. Clin Cancer Res 2019; 25:3934-3945. [PMID: 30940657 PMCID: PMC6606359 DOI: 10.1158/1078-0432.ccr-19-0081] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is rarely cured, and single-agent immune checkpoint inhibition has not demonstrated clinical benefit despite the presence of large numbers of CD8+ T cells. We hypothesized that tumor-infiltrating CD8+ T cells harbor latent antitumor activity that can be reactivated using combination immunotherapy. EXPERIMENTAL DESIGN Preserved human PDA specimens were analyzed using multiplex IHC (mIHC) and T-cell receptor (TCR) sequencing. Fresh tumor was treated in organotypic slice culture to test the effects of combination PD-1 and CXCR4 blockade. Slices were analyzed using IHC, flow cytometry, and live fluorescent microscopy to assess tumor kill, in addition to T-cell expansion and mobilization. RESULTS mIHC demonstrated fewer CD8+ T cells in juxtatumoral stroma containing carcinoma cells than in stroma devoid of them. Using TCR sequencing, we found clonal expansion in each tumor; high-frequency clones had multiple DNA rearrangements coding for the same amino acid binding sequence, which suggests response to common tumor antigens. Treatment of fresh human PDA slices with combination PD-1 and CXCR4 blockade led to increased tumor cell death concomitant with lymphocyte expansion. Live microscopy after combination therapy demonstrated CD8+ T-cell migration into the juxtatumoral compartment and rapid increase in tumor cell apoptosis. CONCLUSIONS Endogenous tumor-reactive T cells are present within the human PDA tumor microenvironment and can be reactivated by combined blockade of PD-1 and CXCR4. This provides a new basis for the rational selection of combination immunotherapy for PDA.See related commentary by Medina and Miller, p. 3747.
Collapse
Affiliation(s)
- Yongwoo David Seo
- Department of Surgery, University of Washington, Seattle, Washington
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington
| | - Kevin M Sullivan
- Department of Surgery, University of Washington, Seattle, Washington
| | | | | | - Arezou Abbasi
- Department of Surgery, University of Washington, Seattle, Washington
| | | | - James O Park
- Department of Surgery, University of Washington, Seattle, Washington
| | - Sara K Daniel
- Department of Surgery, University of Washington, Seattle, Washington
| | - Seth M Pollack
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington
| | - Raymond Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | | | | | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Adaptive Biotechnologies, Seattle, Washington
| | | |
Collapse
|
216
|
Markosyan N, Li J, Sun YH, Richman LP, Lin JH, Yan F, Quinones L, Sela Y, Yamazoe T, Gordon N, Tobias JW, Byrne KT, Rech AJ, FitzGerald GA, Stanger BZ, Vonderheide RH. Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest 2019; 129:3594-3609. [PMID: 31162144 DOI: 10.1172/jci127755] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. WhileT cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell inflamed tumor microenvironment are not fully understood. We conducted an unbiased approach to identify tumor-intrinsic mechanisms shaping the immune tumor microenvironment(TME), focusing on pancreatic adenocarcinoma because it is refractory to immunotherapy and excludes T cells from the TME. From human tumors, we identified EPHA2 as a candidate tumor intrinsic driver of immunosuppression. Epha2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy. We found that PTGS2, the gene encoding cyclooxygenase-2, lies downstream of EPHA2 signaling through TGFβ and is associated with poor patient survival. Ptgs2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy; pharmacological inhibition of PTGS2 was similarly effective. Thus, EPHA2-PTGS2 signaling in tumor cells regulates tumor immune phenotypes; blockade may represent a novel therapeutic avenue for immunotherapy-refractory cancers. Our findings warrant clinical trials testing the effectiveness of therapies combining EPHA2-TGFβ-PTGS2 pathway inhibitors with anti-tumor immunotherapy, and may change the treatment of notoriously therapy-resistant pancreatic adenocarcinoma.
Collapse
Affiliation(s)
| | - Jinyang Li
- Abramson Family Cancer Research Institute
| | - Yu H Sun
- Center for RNA Biology, Department of Biochemistry and Biophysics, Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | - Yogev Sela
- Abramson Family Cancer Research Institute
| | | | | | | | - Katelyn T Byrne
- Department of Medicine.,Parker Institute for Cancer Immunotherapy
| | - Andrew J Rech
- Abramson Family Cancer Research Institute.,Parker Institute for Cancer Immunotherapy
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics.,Institute for Translational Medicine and Therapeutics
| | - Ben Z Stanger
- Department of Medicine.,Abramson Family Cancer Research Institute.,Parker Institute for Cancer Immunotherapy.,Department of Cell and Developmental Biology.,Abramson Cancer Center, and
| | - Robert H Vonderheide
- Department of Medicine.,Abramson Family Cancer Research Institute.,Parker Institute for Cancer Immunotherapy.,Abramson Cancer Center, and.,Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
217
|
Stromnes IM, Burrack AL, Hulbert A, Bonson P, Black C, Brockenbrough JS, Raynor JF, Spartz EJ, Pierce RH, Greenberg PD, Hingorani SR. Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res 2019; 7:977-989. [PMID: 31028033 PMCID: PMC6548612 DOI: 10.1158/2326-6066.cir-18-0448] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/05/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to therapies, including immune-checkpoint blockade. We investigated two distinct strategies to modulate tumor-associated macrophages (TAM) to enhance cellular therapy targeting mesothelin in an autochthonous PDA mouse model. Administration of an antibody to colony-stimulating factor (anti-Csf1R) depleted Ly6Clow protumorigenic TAMs and significantly enhanced endogenous T-cell intratumoral accumulation. Despite increasing the number of endogenous T cells at the tumor site, as previously reported, TAM depletion had only minimal impact on intratumoral accumulation and persistence of T cells engineered to express a murine mesothelin-specific T-cell receptor (TCR). TAM depletion interfered with the antitumor activity of the infused T cells in PDA, evidenced by reduced tumor cell apoptosis. In contrast, TAM programming with agonistic anti-CD40 increased both Ly6Chigh TAMs and the intratumoral accumulation and longevity of TCR-engineered T cells. Anti-CD40 significantly increased the frequency and number of proliferating and granzyme B+ engineered T cells, and increased tumor cell apoptosis. However, anti-CD40 failed to rescue intratumoral engineered T-cell IFNγ production. Thus, although functional modulation, rather than TAM depletion, enhanced the longevity of engineered T cells and increased tumor cell apoptosis, ultimately, anti-CD40 modulation was insufficient to rescue key effector defects in tumor-reactive T cells. This study highlights critical distinctions between how endogenous T cells that evolve in vivo, and engineered T cells with previously acquired effector activity, respond to modifications of the tumor microenvironment.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota.
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Adam L Burrack
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ayaka Hulbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Patrick Bonson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cheryl Black
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - J Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jackson F Raynor
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ellen J Spartz
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
218
|
Abstract
Macrophages are critical mediators of tissue homeostasis, with tumours distorting this proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy across therapeutic modalities and tumour types. Much of the observed efficacy can be traced to the suppressive capacity of macrophages, driven by microenvironmental cues such as hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell recruitment and function as well as to regulate other aspects of tumour immunity. With the increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in this context. Here, we discuss the results of clinical trials and the future of combinatorial immunotherapy.
Collapse
Affiliation(s)
- David G DeNardo
- Department of Medicine, ICCE Institute, Department of Pathology and Immunology, Siteman Cancer Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
219
|
Goepfert K, Dinsart C, Rommelaere J, Foerster F, Moehler M. Rational Combination of Parvovirus H1 With CTLA-4 and PD-1 Checkpoint Inhibitors Dampens the Tumor Induced Immune Silencing. Front Oncol 2019; 9:425. [PMID: 31192129 PMCID: PMC6546938 DOI: 10.3389/fonc.2019.00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
The recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human ex vivo melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab. The effect of this combination on activation of human T lymphocytes was demonstrated. Expression of CTLA-4, PD-1, and PD-L1 immune checkpoint proteins was upregulated in H-1PV-infected melanoma cells. Nevertheless, maturation of antigen presenting cells such as dendritic cells was triggered by H-1PV infected melanoma cells. Combining H-1PV with checkpoint inhibitors, ipilimumab enhanced TNFα release during maturation of dendritic cells; nivolumab increased the amount of IFNγ release. H-1PV mediated reduction of regulatory T cell activity was demonstrated by lower TGF-ß levels. The combination of ipilimumab and nivolumab resulted in a further decline of TGF-ß levels. Similar results were obtained regarding the activation of cytotoxic T cells. H-1PV infection alone and in combination with both checkpoint inhibitors caused strong activation of CTLs, which was reflected by an increased number of CD8+GranB+ cells and increased release of granzyme B, IFNγ, and TNFα. Our data support the concept of a treatment benefit from combining oncolytic H-1PV with the checkpoint inhibitors ipilimumab and nivolumab, with nivolumab inducing stronger effects on cytotoxic T cells, and ipilimumab strengthening T lymphocyte activity.
Collapse
Affiliation(s)
- Katrin Goepfert
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christiane Dinsart
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Infection, Inflammation and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Moehler
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
220
|
Kim VM, Blair AB, Lauer P, Foley K, Che X, Soares K, Xia T, Muth ST, Kleponis J, Armstrong TD, Wolfgang CL, Jaffee EM, Brockstedt D, Zheng L. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies. J Immunother Cancer 2019; 7:132. [PMID: 31113479 PMCID: PMC6529991 DOI: 10.1186/s40425-019-0601-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are not effective for pancreatic ductal adenocarcinoma (PDAC) as single agents. Vaccine therapy may sensitize PDACs to checkpoint inhibitor treatments. Annexin A2 (ANXA2) is a pro-metastasis protein, previously identified as a relevant PDAC antigen that is expressed by a GM-CSF-secreting allogenic whole pancreatic tumor cell vaccine (GVAX) to induce an anti-ANXA2 antibody response in patients with PDAC. We hypothesized that an ANXA2-targeting vaccine approach not only provokes an immune response but also mounts anti-tumor effects. METHODS We developed a Listeria-based, ANXA2-targeting cancer immunotherapy (Lm-ANXA2) and investigated its effectiveness within two murine models of PDAC. RESULTS We show that Lm-ANXA2 prolonged the survival in a transplant model of mouse PDACs. More importantly, priming with the Lm-ANXA2 treatment prior to administration of anti-PD-1 antibodies increased cure rates in the implanted PDAC model and resulted in objective tumor responses and prolonged survival in the genetically engineered spontaneous PDAC model. In tumors treated with Lm-ANXA2 followed by anti-PD-1 antibody, the T cells specific to ANXA2 had significantly increased INFγ expression. CONCLUSIONS For the first time, a listeria vaccine-based immunotherapy was shown to be able to induce a tumor antigen-specific T cell response within the tumor microenvironment of a "cold" tumor such as PDAC and sensitize the tumor to checkpoint inhibitor therapy. Moreover, this combination immunotherapy led to objective tumor responses and survival benefit in the mice with spontaneously developed PDAC tumors. Therefore, our study supports developing Lm-ANXA2 as a therapeutic agent in combination with anti-PD-1 antibody for PDAC treatment.
Collapse
Affiliation(s)
- Victoria M Kim
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alex B Blair
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peter Lauer
- Aduro Biotech, Inc., Berkeley, California, USA
| | - Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xu Che
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kevin Soares
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tao Xia
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen T Muth
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jennifer Kleponis
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Todd D Armstrong
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher L Wolfgang
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | | | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,The Pancreatic Cancer Precision Medicine Program of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
221
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
222
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
223
|
Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, Allen-Petersen BL, Link J, Kendsersky ND, Vringer E, Schug M, Novo D, Hwang RF, Evans RM, Nixon C, Dorrell C, Morton JP, Norman JC, Sears RC, Kamphorst JJ, Sherman MH. A Stromal Lysolipid-Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression. Cancer Discov 2019; 9:617-627. [PMID: 30837243 PMCID: PMC6497553 DOI: 10.1158/2159-8290.cd-18-1212] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/03/2019] [Accepted: 02/28/2019] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.
Collapse
Affiliation(s)
- Francesca R Auciello
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Chet Oon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Jacqueline Tait-Mulder
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark Berry
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sohinee Bhattacharyya
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sergey Tumanov
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jason Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Nicholas D Kendsersky
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Esmee Vringer
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Schug
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Novo
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Rosa F Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronald M Evans
- The Salk Institute for Biological Studies, Gene Expression Laboratory, Howard Hughes Medical Institute, La Jolla, California
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Craig Dorrell
- Oregon Health & Science University Brenden-Colson Center for Pancreatic Care, Portland, Oregon
| | | | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mara H Sherman
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
224
|
Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology 2019; 156:2097-2115.e2. [PMID: 30768986 DOI: 10.1053/j.gastro.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Our understanding of the microbiome and its role in immunity, cancer initiation, and cancer progression has evolved significantly over the past century. The "germ theory of cancer" was first proposed in the early 20th century, and shortly thereafter the bacterium Helicobacter pylori, and later Fusobacterium nucleatum, were implicated in the development of gastric and colorectal cancers, respectively. However, with the development of reliable mouse models and affordable sequencing technologies, the most fascinating aspect of the microbiome-cancer relationship, where microbes undermine cancer immune surveillance and indirectly promote oncogenesis, has only recently been described. In this review, we highlight the essential role of the microbiome in immune system development and maturation. We review how microbe-induced immune activation promotes oncogenesis, focusing particularly on pancreatic carcinogenesis, and show that modulation of the microbiome augments the anti-cancer immune response and enables successful immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
225
|
Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, Johnson BD, Dwinell MB. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer 2019; 7:115. [PMID: 31036082 PMCID: PMC6489306 DOI: 10.1186/s40425-019-0573-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice. Notably, STING agonist increased numbers and activity of cytotoxic T cells within tumors and decreased levels of suppressive regulatory T cells. Further, STING agonist treatment upregulated costimulatory molecule expression on cross-presenting dendritic cells and reprogrammed immune-suppressive macrophages into immune-activating subtypes. STING agonist promoted the coordinated and differential cytokine production by dendritic cells, macrophages, and pancreatic cancer cells. Cumulatively, these data demonstrate that pancreatic cancer progression is potently inhibited by STING agonist, which reignited immunologically cold pancreatic tumors to promote trafficking and activation of tumor-killing T cells.
Collapse
Affiliation(s)
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily P Vonderhaar
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katie Palen
- , Department of Medicine, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Matthew J Riese
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA
| | - Jill Gershan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA
| | - Bryon D Johnson
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,MCW Center for Immunology, Milwaukee, USA.
| |
Collapse
|
226
|
Inflammation, Biomarkers and Immuno-Oncology Pathways in Pancreatic Cancer. J Pers Med 2019; 9:jpm9020020. [PMID: 31035449 PMCID: PMC6616860 DOI: 10.3390/jpm9020020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
It is estimated that pancreatic cancer will be the second leading cause of cancer-related deaths globally by 2030, highlighting the ongoing lack of effective treatment options for this devastating condition. There is a lack of reliable prognostic or predictive markers in pancreatic cancer to guide management decisions, whether for systemic chemotherapy, molecularly targeted therapies, or immunotherapies. To date, the results for targeted agents and immunotherapies in unselected populations of chemo-refractory pancreatic cancer have not met expectations. The reasons for this lack of efficacy of immunotherapy in pancreatic cancer are not completely understood. The challenges in pancreatic cancer include the physical barrier created by the dense desmoplastic stroma surrounding the tumor, chemokine-mediated exclusion of T cells, relatively poorer antigenicity compared to other solid tumors, paucity of infiltrating T cells within the tumor, ultimately leading to an immunosuppressive microenvironment. A better understanding of the role of inflammation in pancreatic cancer, its tumor microenvironment and individualized patient-related features, be they molecular, clinical or histopathological, would enable a more effective tailored approach to the management of pancreatic cancer. In this review, the role of inflammation, the immune tumor microenvironment and potential immune biomarkers in pancreatic cancer are explored.
Collapse
|
227
|
Fang T, Li R, Li Z, Cho J, Guzman JS, Kamm RD, Ploegh HL. Remodeling of the Tumor Microenvironment by a Chemokine/Anti-PD-L1 Nanobody Fusion Protein. Mol Pharm 2019; 16:2838-2844. [DOI: 10.1021/acs.molpharmaceut.9b00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tao Fang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | | | - Zeyang Li
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | | | | | | | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
228
|
Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8⁺ T Cell Infiltration and High PD-L1 Expression Are Associated with Level of CD44⁺/CD133⁺ Cancer Stem Cells and Predict an Unfavorable Prognosis in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11040541. [PMID: 30991694 PMCID: PMC6520688 DOI: 10.3390/cancers11040541] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy targeting immune checkpoints has exhibited promising clinical outcomes in many cancers, but it offers only limited benefits for pancreatic cancer (PC). Cancer stem cells (CSCs), a minor subpopulation of cancer cells, play important roles in tumor initiation, progression, and drug resistance. Accumulating evidence suggests that CSCs employ immunosuppressive effects to evade immune system recognition. However, the clinical implications of the associations among CD8⁺ T cells infiltration, programmed death receptor ligand-1 (PD-L1) expression, and CSCs existence are poorly understood in PC. Immunostaining and quantitative analysis were performed to assess CD8⁺ T cells infiltration, PD-L1 expression, and their relationship with CD44⁺/CD133⁺ CSCs and disease progression in PC. CD8⁺ T cells infiltration was associated with better survival while PD-L1 expression was correlated with PC recurrence. Both the low CD8⁺ T cells infiltration/high PD-L1 expression group and the high CD8⁺ T cells infiltration/high PD-L1 expression group show high levels of CD44⁺/CD133⁺ CSCs, but patients with low CD8⁺ T cells infiltration/high PD-L1 expression had worse survival and higher recurrence risk than those with high CD8⁺ T cells infiltration/high PD-L1 expression. Moreover, high infiltration of CD8⁺ T cells could reduce unfavorable prognostic effect of high co-expression of PD-L1 and CD44/CD133. Our study highlights an interaction among CD8⁺ T cells infiltration, PD-L1 expression, and CD44⁺/CD133⁺ CSCs existence, which contributes to PC progression and immune evasion.
Collapse
Affiliation(s)
- Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Ying-Jui Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Min-Hua Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hui-Ling Tung
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
229
|
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38:162. [PMID: 30987642 PMCID: PMC6463646 DOI: 10.1186/s13046-019-1153-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME). MAIN BODY In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME. CONCLUSIONS It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Sri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
230
|
Lim SA, Kim J, Jeon S, Shin MH, Kwon J, Kim TJ, Im K, Han Y, Kwon W, Kim SW, Yee C, Kim SJ, Jang JY, Lee KM. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol 2019; 10:496. [PMID: 31024520 PMCID: PMC6465515 DOI: 10.3389/fimmu.2019.00496] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), found in patients with advanced pancreatic ductal adenocarcinoma (PDAC), are shown to correlate with overall survival (OS) rate. Although majority of TILs consist of CD8+/CD4+ T cells, the presence of NK cells and their role in the pathogenesis of PDAC remains elusive. We performed comprehensive analyses of TIL, PBMC, and autologous tumor cells from 80 enrolled resectable PDAC patients to comprehend the NK cell defects within PDAC. Extremely low frequencies of NK cells (<0.5%) were found within PDAC tumors, which was attributable not to the low expression of tumor chemokines, but to the lack of chemokine receptor, CXCR2. Forced expression of CXCR2 in patients' NK cells rendered them capable of trafficking into PDAC. Furthermore, NK cells exhibited impaired cell-mediated killing of autologous PDAC cells, primarily due to insufficient ligation of NKG2D and DNAM-1, and failed to proliferate within the hypoxic tumor microenvironment. Importantly, these defects could be overcome by ex-vivo stimulation of NK cells from such patients. Importantly, when the proliferative capacity of NK cells in vitro was used to stratify patients on the basis of cell expansion, patients whose NK cells proliferated <250-fold experienced significantly lower DFS and OS than those with ≥250-fold. Ex-vivo activation of NK cells restored tumor trafficking and reactivity, hence provided a therapeutic modality while their fold expansion could be a potentially significant prognostic indicator of OS and DFS in such patients.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Jungwon Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Seunghyun Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Min Hwa Shin
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Joonha Kwon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Kyungtaek Im
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX, United States
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.,Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX, United States.,Center for Bio- Integrated Electronics, Simpson Querrey Institute, Evanston, IL, United States
| |
Collapse
|
231
|
Sow HS, Ren J, Camps M, Ossendorp F, Ten Dijke P. Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models. Cells 2019; 8:cells8040320. [PMID: 30959852 PMCID: PMC6523576 DOI: 10.3390/cells8040320] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Antibodies blocking the programmed death-ligand 1 (PD-L1) have shown impressive and durable responses in clinical studies. However, this type of immunotherapy is only effective in a subset of patients and not sufficient for rejection of all tumor types. In this study, we explored in two mouse tumor models whether the antitumor effect could be enhanced by the combined blockade of PD-L1 and transforming growth factor-β (TGF-β), a potent immunosuppressive cytokine. The effect of anti-PD-L1 mouse monoclonal (mAb) and a TGF-β type I receptor small molecule kinase inhibitor (LY364947) was evaluated in the highly immunogenic mouse MC38 colon adenocarcinoma and the poorly immunogenic mouse KPC1 pancreatic tumor model. In the MC38 tumor model, LY364947 monotherapy did not show any antitumor effect, whereas treatment with anti-PD-L1 mAb significantly delayed tumor outgrowth. However, combination therapy showed the strongest therapeutic efficacy, resulting in improved long-term survival compared with anti-PD-L1 mAb monotherapy. This improved survival was associated with an increased influx of CD8+ T cells in the tumor microenvironment. In the KPC1 tumor model, LY364947 did not enhance the antitumor effect of anti-PD-L1 mAb. Despite this, delayed KPC1 tumor outgrowth was observed in the LY364947-treated group and this treatment led to a significant reduction of CD4+ T cells in the tumor microenvironment. Together, our data indicate that an additive anti-tumor response of dual targeting PD-L1 and TGF-β is dependent on the tumor model used, highlighting the importance of selecting appropriate cancer types, using in-depth analysis of the tumor microenvironment, which can benefit from combinatorial immunotherapy regimens.
Collapse
Affiliation(s)
- Heng Sheng Sow
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Jiang Ren
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Marcel Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
232
|
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD. Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clin Cancer Res 2019; 25:3352-3365. [PMID: 30944125 DOI: 10.1158/1078-0432.ccr-18-2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE A driving factor in pancreatic ductal adenocarcinoma (PDAC) treatment resistance is the tumor microenvironment, which is highly immunosuppressive. One potent immunologic adjuvant is radiotherapy. Radiation, however, has also been shown to induce immunosuppressive factors, which can contribute to tumor progression and formation of fibrotic tumor stroma. To capitalize on the immunogenic effects of radiation and obtain a durable tumor response, radiation must be rationally combined with targeted therapies to mitigate the influx of immunosuppressive cells and fibrosis. One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis.Experimental Design: On the basis of previous studies of ephrinB2 ligand-EphB4 receptor signaling, we hypothesized that inhibition of ephrinB2-EphB4 combined with radiation can regulate the microenvironment response postradiation, leading to increased tumor control in PDAC. This hypothesis was explored using both cell lines and in vivo human and mouse tumor models. RESULTS Our data show this treatment regimen significantly reduces regulatory T-cell, macrophage, and neutrophil infiltration and stromal fibrosis, enhances effector T-cell activation, and decreases tumor growth. Furthermore, our data show that depletion of regulatory T cells in combination with radiation reduces tumor growth and fibrosis. CONCLUSIONS These are the first findings to suggest that in PDAC, ephrinB2-EphB4 interaction has a profibrotic, protumorigenic role, presenting a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Shelby Lennon
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jorge L Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
233
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second most common cause of cancer-related death in the United States by 2030. So far surgery remains the only curative option for pancreatic cancer, but fewer than 20% of patients have surgically resectable disease. Furthermore, pancreatic cancer exhibits a remarkable resistance to established therapeutic options, including chemotherapy, radiotherapy, and targeted therapy, because pancreatic cancer exhibits numerous mechanisms of resistance like genetic and epigenetic alterations and a complex and dense tumor microenvironment. The tumor microenvironment is populated with different types of immune cells that play a critical role in therapy resistance, tumor progression, and carcinogenesis. Cancer immunotherapy has now been recognized as the fourth pillar of cancer care and a number of preclinical and clinical studies have been conducted for pancreatic cancer. Targeting and modulating the tumor immune microenvironment could not only switch the immune system toward anti-cancer, but also may improve sensitivity toward established chemotherapy. In this review, we discuss both preclinical and clinical studies on pancreatic cancer immunotherapy with natural killer cells, dendritic cells, and chimeric antigen receptor T cells. Furthermore, we summarize strategies for reprogramming the tumor immune microenvironment by targeting macrophages and stromal cell factors in pancreatic cancer. The development of systemic therapies is essential for improving the outcomes of pancreatic cancer patients, and cancer immunotherapy would improve effectiveness of other established therapeutic options, which might together improve the prognosis of pancreatic tumors.
Collapse
|
234
|
Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019; 15:1111-1122. [PMID: 30888929 DOI: 10.1080/21645515.2019.1571892] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed death-1 (PD-1) is a cell surface receptor that functions as a T cell checkpoint and plays a central role in regulating T cell exhaustion. Binding of PD-1 to its ligand, programmed death-ligand 1 (PD-L1), activates downstream signaling pathways and inhibits T cell activation. Moreover abnormally high PD-L1 expression on tumor cells and antigen-presenting cells in the tumor microenvironment mediates tumor immune escape, and the development of anti-PD-1/PD-L1 antibodies has recently become a hot topic in cancer immunotherapy. Here, we review the structure of PD-1 and PD-L1, the function of the PD-1/PD-L1 signaling pathway, the application of PD-1 or PD-L1 monoclonal antibodies and future directions for anti-PD-1/PD-L1 antibodies with combination therapies. Cancer immunotherapy using PD-1/PD-L1 immune checkpoint blockade may require more studies, and this approach may be curative for patients with many types of cancer in the future.
Collapse
Affiliation(s)
- Yongshuai Jiang
- a Shanghai Institute of Immunology, Department of Immunology and Microbiology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ming Chen
- b Department of Gynecology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hong Nie
- a Shanghai Institute of Immunology, Department of Immunology and Microbiology , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Department of Stomatology, Xin Hua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yuanyang Yuan
- a Shanghai Institute of Immunology, Department of Immunology and Microbiology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
235
|
Hu X, Ke G, Jang SRJ. Modeling Pancreatic Cancer Dynamics with Immunotherapy. Bull Math Biol 2019; 81:1885-1915. [PMID: 30843136 DOI: 10.1007/s11538-019-00591-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
We develop a mathematical model of pancreatic cancer that includes pancreatic cancer cells, pancreatic stellate cells, effector cells and tumor-promoting and tumor-suppressing cytokines to investigate the effects of immunotherapies on patient survival. The model is first validated using the survival data of two clinical trials. Local sensitivity analysis of the parameters indicates there exists a critical activation rate of pro-tumor cytokines beyond which the cancer can be eradicated if four adoptive transfers of immune cells are applied. Optimal control theory is explored as a potential tool for searching the best adoptive cellular immunotherapies. Combined immunotherapies between adoptive ex vivo expanded immune cells and TGF-[Formula: see text] inhibition by siRNA treatments are investigated. This study concludes that mono-immunotherapy is unlikely to control the pancreatic cancer and combined immunotherapies between anti-TGF-[Formula: see text] and adoptive transfers of immune cells can prolong patient survival. We show through numerical explorations that how these two types of immunotherapies are scheduled is important to survival. Applying TGF-[Formula: see text] inhibition first followed by adoptive immune cell transfers can yield better survival outcomes.
Collapse
Affiliation(s)
- Xiaochuan Hu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.,Department of Mathematics and Statistics, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Guoyi Ke
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.,Department of Mathematics and Physical Sciences, Louisiana State University of Alexandria, Alexandria, LA, 71302, USA
| | - Sophia R-J Jang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.
| |
Collapse
|
236
|
Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Lett 2019; 445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
237
|
Hu G, He N, Cai C, Cai F, Fan P, Zheng Z, Jin X. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology 2019; 19:383-389. [PMID: 30670333 DOI: 10.1016/j.pan.2019.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the second leading cause of cancer-related deaths worldwide. Despite immune checkpoints based immunotherapy highlights a new therapeutic strategy and achieves a remarkable therapeutic effect in various types of malignant tumors. Pancreatic cancer is one of the non-immunogenic cancers and is resistant to immunotherapy. Programmed death ligand 1 (PD-L1) is expressed on the surface of tumor cells and its level is a key determinant of the checkpoint immunotherapy efficacy. Here, we reported that the specific inhibitor of histone deacetylase 3 (HDAC3) decreased the protein and mRNA level of PD-L1 in pancreatic cancer cells. Furthermore, we showed that HDAC3 was critical for PD-L1 regulation and positively correlated with PD-L1 in PDAC patient specimens. Finally, we demonstrated that HDAC3/signal transducer and activator of transcription 3 (STAT3) pathway transcriptionally regulated PD-L1 expression. Collectively, our data contributes to a better understanding of the function of HDAC3 in cancer immunity and the regulatory mechanism of PD-L1. More importantly, these data suggest that the HDAC3 inhibitors might be used to improve immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan He
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Fan
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
238
|
POLE Score: a comprehensive profiling of programmed death 1 ligand 1 expression in pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:1572-1588. [PMID: 30899426 PMCID: PMC6422186 DOI: 10.18632/oncotarget.26705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) being characterized by a pronounced stromal compartment is commonly diagnosed at an advanced stage limiting curative treatment options. Although therapeutical targeting of immune checkpoint regulators like programmed death 1 ligand 1 (PD-L1) represent a promising approach that substantially improved survival of several highly aggressive malignancies, convincing indicators for response prediction are still lacking for PDAC which might be attributed to the insufficient characterization of PD-L1 status. Therefore, we investigated PD-L1 expression by immunohistochemistry in a well characterized cohort of 59 PDAC and 18 peritumoral tissues. Despite the histopathological homogeneity within our cohort, tumor tissues exhibited a great heterogeneity regarding PD-L1 expression. Considering distinct PD-L1 expression patterns, we established the novel POLE Score that incorporates overall PD-L1 expression (P), cellular Origin of PD-L1 (O), PD-L1 level in tumor-associated Lymph follicles (L) and Enumerated local PD-L1 distribution (E). We show that tumoral PD-L1 expression is higher compared to peritumoral areas. Furthermore, POLE Score parameters correlated with overall survival, tumor grade, Ki67 status, local proximity of tumor cells and particular stroma composition. For the first time, we demonstrate that PD-L1 is mostly expressed by stroma and rarely by tumor cells in PDAC. Moreover, our in situ analyses on serial tissue sections and in vitro data suggest that PD-L1 is prominently expressed by tumor-associated macrophages. In conclusion, POLE Score represents a comprehensive characterization of PD-L1 expression in tumor and stroma compartment and might provide the basis for improved patient stratification in future clinical trials on PD-1/PD-L1 targeting therapies in PDAC.
Collapse
|
239
|
Molecular Diagnostics in the Neoplasms of the Pancreas, Liver, Gallbladder, and Extrahepatic Biliary Tract: 2018 Update. Clin Lab Med 2019; 38:367-384. [PMID: 29776636 DOI: 10.1016/j.cll.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic neoplasms, including ductal adenocarcinoma, solid pseudopapillary neoplasm, pancreatic endocrine neoplasms, acinar cell carcinoma, and pancreatoblastoma, are associated with different genetic abnormalities. Hepatic adenomas with beta-catenin exon 3 mutation are associated with a high risk of malignancy. Hepatic adenoma with arginosuccinate synthetase 1 expression or sonic hedgehog mutations are associated with a risk of bleeding. Hepatocellular carcinoma and choangiocarcinoma display heterogeneity at both morphologic and molecular levels Cholangiocellular carcinoma is most commonly associated with IDH 1/2 mutations.
Collapse
|
240
|
Batista IA, Melo SA. Exosomes and the Future of Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20030567. [PMID: 30699928 PMCID: PMC6387297 DOI: 10.3390/ijms20030567] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, associated with a late diagnosis and a five-year survival rate of 8%. Currently available treatments fall short in improving the survival and quality of life of PDAC patients. The only possible curative option is still the surgical resection of the tumor. Exosomes are extracellular vesicles secreted by cells that transport proteins, lipids, and nucleic acids to other cells, triggering phenotypic changes in the recipient cells. Tumor cells often secrete increased amounts of exosomes. Tumor exosomes are now accepted as important players in the remodeling of PDAC tumor stroma, particularly in the establishment of an immunosuppressive microenvironment. This has sparked the interest in their usefulness as mediators of immunomodulatory effects for the treatment of PDAC. In fact, exosomes are now under study to understand their potential as nanocarriers to stimulate an immune response against cancer. This review highlights the latest findings regarding the function of exosomes in tumor-driven immunomodulation, and the challenges and advantages associated with the use of these vesicles to potentiate immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ines A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Sonia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| |
Collapse
|
241
|
Omar HA, Tolba MF. Tackling molecular targets beyond PD-1/PD-L1: Novel approaches to boost patients' response to cancer immunotherapy. Crit Rev Oncol Hematol 2019; 135:21-29. [PMID: 30819443 DOI: 10.1016/j.critrevonc.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
In the new era of immunotherapy, which has changed the clinical oncology practice guidelines, there is a pressing need for finding novel approaches to tune up the clinical outcomes of immunotherapy and extend its benefits to a wider cohort of cancer patients. Several non-classical molecular immune targets beyond PD-1/PD-L1 signaling were shown to be engaged as feedback resistance circuits to shut down the antitumor immune response mediated by the classical immune checkpoint inhibitors. Those include T-cell inducible co-stimulator (ICOS), CD40, CD47, V-domain Ig suppressor of T-cell activation (VISTA), cyclin-dependent kinase (CDK)12, enhancer of Zeste homolog 2 (EZH2), toll-like receptors (TLRs) and OX-40 (CD134). Herein we critically discussed the latest studies concerned with understanding the mechanisms involved in the negative clinical response to classical immunotherapies and strategies to optimize the efficacy of cancer immunotherapy through novel combinatorial approaches.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
242
|
Liang Z, Li Y, Tian Y, Zhang H, Cai W, Chen A, Chen L, Bao Y, Xiang B, Kan H, Li Y. High-affinity human programmed death-1 ligand-1 variant promotes redirected T cells to kill tumor cells. Cancer Lett 2019; 447:164-173. [PMID: 30677447 DOI: 10.1016/j.canlet.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Tumor cells can escape immune surveillance through the programmed cell death protein 1 (PD-1) axis suppressing T cells. However, we recently demonstrated that high-affinity variants of soluble human programmed death-ligand 1 (shPD-L1) could diminish the suppression. We propose that in comparison to the wild-type shPD-L1, the further affinity enhancement will confer the molecule with opposite characteristics that augment T-cell activation and immunotherapeutic drug potential. In this study, a new shPD-L1 variant, L3C7c, has been generated to demonstrate ∼167 fold greater affinity than wild-type hPD-L1. The L3C7c-Fc fusion protein demonstrated completely opposite effects of conventional PD-1 axis by promoting redirected T-cell proliferation, activation and cytotoxicity in vitro, as being slightly better than that of anti-PD1-Ab (Pembrolizumab). Moreover, L3C7c-Fc was more effective than Pembrolizumab in enhancing redirected T cells' ability to suppress Mel624 melanoma growth in vivo. As a downsized L3C7c-Fc variant, L3C7v-Fc improved the anti-tumor efficacy in vivo when combined with dendritic cell vaccines. In conclusion, our studies demonstrate that high-affinity hPD-L1 variants could be developed as the next generation reagents for tumor immunotherapy based on the blockade of the PD-1 axis.
Collapse
Affiliation(s)
- Zhaoduan Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Yanyan Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China; School of Life Sciences, University of Science and Technology of China, No. 96, Jinzhai road, Hefei, Anhui province, China.
| | - Ye Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Huanling Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China; School of Life Sciences, University of Science and Technology of China, No. 96, Jinzhai road, Hefei, Anhui province, China.
| | - Wenxuan Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Anan Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Lin Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Yifeng Bao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| | - Bo Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong province, China.
| | - Heping Kan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Baiyun District, Guangzhou, Guangdong province, China.
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, Guangdong province, China.
| |
Collapse
|
243
|
Ma HS, Poudel B, Torres ER, Sidhom JW, Robinson TM, Christmas B, Scott B, Cruz K, Woolman S, Wall VZ, Armstrong T, Jaffee EM. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity. Cancer Immunol Res 2019; 7:428-442. [PMID: 30642833 DOI: 10.1158/2326-6066.cir-18-0061] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
In cancers with tumor-infiltrating lymphocytes (TILs), monoclonal antibodies (mAbs) that block immune checkpoints such as CTLA-4 and PD-1/PD-L1 promote antitumor T-cell immunity. Unfortunately, most cancers fail to respond to single-agent immunotherapies. T regulatory cells, myeloid derived suppressor cells (MDSCs), and extensive stromal networks within the tumor microenvironment (TME) dampen antitumor immune responses by preventing T-cell infiltration and/or activation. Few studies have explored combinations of immune-checkpoint antibodies that target multiple suppressive cell populations within the TME, and fewer have studied the combinations of both agonist and antagonist mAbs on changes within the TME. Here, we test the hypothesis that combining a T-cell-inducing vaccine with both a PD-1 antagonist and CD40 agonist mAbs (triple therapy) will induce T-cell priming and TIL activation in mouse models of nonimmunogenic solid malignancies. In an orthotopic breast cancer model and both subcutaneous and metastatic pancreatic cancer mouse models, only triple therapy was able to eradicate most tumors. The survival benefit was accompanied by significant tumor infiltration of IFNγ-, Granzyme B-, and TNFα-secreting effector T cells. Further characterization of immune populations was carried out by high-dimensional flow-cytometric clustering analysis and visualized by t-distributed stochastic neighbor embedding (t-SNE). Triple therapy also resulted in increased infiltration of dendritic cells, maturation of antigen-presenting cells, and a significant decrease in granulocytic MDSCs. These studies reveal that combination CD40 agonist and PD-1 antagonist mAbs reprogram immune resistant tumors in favor of antitumor immunity.
Collapse
Affiliation(s)
- Hayley S Ma
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bibhav Poudel
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evanthia Roussos Torres
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John-William Sidhom
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tara M Robinson
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian Christmas
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blake Scott
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kayla Cruz
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Skylar Woolman
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valerie Z Wall
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Todd Armstrong
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
244
|
Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci U S A 2019; 116:1692-1697. [PMID: 30635425 DOI: 10.1073/pnas.1811067116] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint therapy (ICT) has transformed cancer treatment in recent years; however, treatment response is not uniform across tumor types. The tumor immune microenvironment plays a critical role in determining response to ICT; therefore, understanding the differential immune infiltration between ICT-sensitive and ICT-resistant tumor types will help to develop effective treatment strategies. We performed a comprehensive analysis of the immune tumor microenvironment of an ICT-sensitive tumor (melanoma, n = 44) and an ICT-resistant tumor (pancreatic cancer, n = 67). We found that a pancreatic tumor has minimal to moderate infiltration of CD3, CD4, and CD8 T cells; however, the immune infiltrates are predominantly present in the stromal area of the tumor and are excluded from tumoral area compared with melanoma, where the immune infiltrates are primarily present in the tumoral area. Metastatic pancreatic ductal adenocarcinomas (PDACs) had a lower infiltration of total T cells compared with resectable primary PDACs, suggesting that metastatic PDACs have poor immunogenicity. Further, a significantly higher number of CD68+ macrophages and VISTA+ cells (also known as V-domain immunoglobulin suppressor of T cell activation) were found in the pancreatic stromal area compared with melanoma. We identified VISTA as a potent inhibitory checkpoint that is predominantly expressed on CD68+ macrophages on PDACs. These data suggest that VISTA may be a relevant immunotherapy target for effective treatment of patients with pancreatic cancer.
Collapse
|
245
|
Zhu SK, Xu T, Wang R. Prospects and challenges of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:6-12. [DOI: 10.11569/wcjd.v27.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shi-Kai Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tian Xu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
246
|
Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li SP, Martin RCG. Evaluating the Regulatory Immunomodulation Effect of Irreversible Electroporation (IRE) in Pancreatic Adenocarcinoma. Ann Surg Oncol 2019; 26:800-806. [PMID: 30610562 DOI: 10.1245/s10434-018-07144-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) has been demonstrated as an effective local method for locally advanced (stage 3) pancreatic adenocarcinoma. Immune regulatory T cells (Tregs) induce immunosuppression of tumors by inhibiting patients' anti-tumor adaptive immune response. This study aimed to evaluate the immunomodulation effect of IRE to identify an ideal time point for potential adjuvant immunotherapy. METHODS This study prospectively evaluated an institutional review board-approved study of patients undergoing either in situ IRE or pancreatectomy. Patient blood samples were collected at different time points (before surgery [preOP] and on postoperative day [POD] 1, POD3, and POD5). Peripheral blood mononuclear cells (PBMCs) were isolated and evaluated for three different CD4 + Treg subsets (CD25 + CD4 +, CD4 + CD25 + FoxP3 +, CD4 + CD25 + FoxP3 -) by flow cytometry and analyzed for median fold change (MFC) between each two consecutive time points (MFC = log2(T2/T1)). RESULTS The study analyzed 15 patients with in situ IRE (n = 11) or pancreatectomy (PAN) (n = 4). In both groups, CD25 + CD4 + Tregs decreased on POD1 followed by a steady increase in pancreatectomy, whereas the trend in the IRE group reversed between D3 and D5 (MFC: IRE [- 0.01], PAN [+ 0.39]). For each period, CD4 + CD25 + FoxP3 + Tregs showed the most dramatic inverse effect, with D3 to D5 showing the most change (MFC: IRE [- 0.18], PAN [+ 0.39]). Also, CD4 + CD25 + FoxP3 - Tregs showed an inverse effect between D3 and D5 (MFC: IRE [- 0.25], PAN [+ 0.49]). Altogether, the Treg trend was inversely affected by the in situ IRE procedure, with the greatest cumulative significant change for all three Treg subsets between D3 and D5 (MFC ± SEM: IRE [- 0.24 ± 0.05], PAN [+ 0.37 ± 0.02]; p = 0.016). CONCLUSIONS The study data suggest that in situ IRE procedure-mediated Treg attenuation between POD3 and POD5 can provide a clinical window of opportunity for potentiating clinical efficacy in combination with immunotherapy.
Collapse
Affiliation(s)
- Harshul Pandit
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Young K Hong
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jack Rostas
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zachary Pulliam
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Su Ping Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA. .,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
247
|
Patel K, Siraj S, Smith C, Nair M, Vishwanatha JK, Basha R. Pancreatic Cancer: An Emphasis on Current Perspectives in Immunotherapy. Crit Rev Oncog 2019; 24:105-118. [PMID: 31679206 PMCID: PMC8038975 DOI: 10.1615/critrevoncog.2019031417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic cancer affects both male and female individuals with higher incidences and death rates among the male population. Detection of this malignancy is delayed due to the lack of symptoms in the early-stage cancer, which makes it extremely difficult to treat. Identifying effective strategies has been a challenge for improving the survival rates in pancreatic cancer patients. Resistance to chemotherapy is often developed in pancreatic cancer treatment. Although many strategies are under clinical trials to target certain markers associated with cancer, immunotherapeutic approaches are currently gaining importance. Immunotherapy for pancreatic cancer is in the limelight after preclinical research showed some promise. Immunotherapy approaches were tested along with other treatment options to enhance the treatment effect. Adoptive cell transfer and immune checkpoint inhibitors are currently in clinical trials. The Food and Drug Administration approved pembrolizumab in a fast-tracked review for advanced pancreatic cancer patients. Pembrolizumab blocks the checkpoint protein, programmed cell death protein 1 (PD-1), on T cells to boost the response of the immune system against cancer cells, thereby shrinking tumors. The recent developments in immunotherapy and the early success in other cancers are encouraging to further test immunotherapy in pancreatic cancer. The combination of pembrolizumab and pelareorep, an isolate of human reovirus, is in phase II clinical study in metastatic disease. Depending on the results of current clinical trials and testing, the strategies in the pipeline are expected to increase the use of immunotherapy in the clinical testing setting. Success in immunotherapy is urgently needed to address the side-effects, treating patients with advanced disease and reducing metastasis for increasing the survival rate in pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | - Chloe Smith
- Old Dominion University, Norfolk, Virginia 23529
| | - Maya Nair
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas 76107
| | - Jamboor K. Vishwanatha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, Texas 76107
| | | |
Collapse
|
248
|
Dahl O, Brydøy M. The pioneers behind immune checkpoint blockers awarded the Nobel Prize in physiology or medicine 2018. Acta Oncol 2019; 58:1-8. [PMID: 30698061 DOI: 10.1080/0284186x.2018.1555375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Olav Dahl
- Department of Clinical Science Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
249
|
Bozeman EN, Yang L. Biological Events and Barriers to Effective Delivery of Cancer Therapeutics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
250
|
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019; 68:159-171. [PMID: 30177543 DOI: 10.1136/gutjnl-2018-316451] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is notoriously aggressive and hard to treat. The tumour microenvironment (TME) in PDA is highly dynamic and has been found to promote tumour progression, metastasis niche formation and therapeutic resistance. Intensive research of recent years has revealed an incredible heterogeneity and complexity of the different components of the TME, including cancer-associated fibroblasts, immune cells, extracellular matrix components, tumour vessels and nerves. It has been hypothesised that paracrine interactions between neoplastic epithelial cells and TME compartments may result in either tumour-promoting or tumour-restraining consequences. A better preclinical understanding of such complex and dynamic network systems is required to develop more powerful treatment strategies for patients. Scientific activity and the number of compelling findings has virtually exploded during recent years. Here, we provide an update of the most recent findings in this area and discuss their translational and clinical implications for basic scientists and clinicians alike.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, Goettingen, Germany
| | - Christian Alexander Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Matthias Lauth
- Department of Medicine, Philipps University, Center for Tumour and Immune Biology, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin, Luther University Halle-Wittenberg, Halle, Germany
| | - David A Tuveson
- Lustgarten Foundation Designated Pancreatic Cancer Research Lab at Cold Spring Harbor Laboratory, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| |
Collapse
|