201
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
202
|
Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med 2017; 58:65-71. [PMID: 28257820 DOI: 10.1016/j.mam.2017.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/26/2017] [Indexed: 12/31/2022]
Abstract
The resolution of inflammation is a highly regulated process enacted by endogenous mediators including specialized pro-resolving lipid mediators (SPMs): the lipoxins, resolvins, protectins and maresins. SPMs activate specific cellular receptors to temper the production of pro-inflammatory mediators, diminish the recruitment of neutrophils, and promote the clearance of dead cells by macrophages. These mediators also enhance host-defense and couple resolution of inflammation to subsequent phases of tissue repair. Given that unresolved inflammation plays a causal role in the development of cardiovascular diseases, an understanding of these endogenous pro-resolving processes is critical for determining why cardiovascular inflammation does not resolve. Here, we discuss the receptor-dependent actions of resolvins and related pro-resolving mediators and highlight their emerging roles in the cardiovascular system. We propose that stimulating resolution could be a novel approach for treating chronic cardiovascular inflammation without promoting immunosuppression.
Collapse
|
203
|
Reduced Necrosis and Content of Apoptotic M1 Macrophages in Advanced Atherosclerotic Plaques of Mice With Macrophage-Specific Loss of Trpc3. Sci Rep 2017; 7:42526. [PMID: 28186192 PMCID: PMC5301208 DOI: 10.1038/srep42526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro. Here, we addressed these questions using Ldlr knockout (Ldlr−/−) mice with macrophage-specific loss of Trpc3 (MacTrpc3−/−/Ldlr−/− → Ldlr−/−). Compared to controls, we observed decreased plaque necrosis and number of apoptotic macrophages in MacTrpc3−/−/Ldlr−/− → Ldlr−/− mice. Immunohistochemical analysis revealed a reduction in apoptotic M1, but not apoptotic M2 macrophages. These findings confirm an effect of TRPC3 on plaque necrosis and support the notion that this is likely a reflection of the reduced susceptibility of Trpc3-deficient M1 macrophages to apoptosis.
Collapse
|
204
|
Tabas I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular-Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:183-189. [PMID: 27979856 PMCID: PMC5269511 DOI: 10.1161/atvbaha.116.308036] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is initiated by the subendothelial accumulation of apoB-lipoproteins, which initiates a sterile inflammatory response dominated by monocyte-macrophages but including all classes of innate and adaptive immune cells. These inflammatory cells, together with proliferating smooth muscle cells and extracellular matrix, promote the formation of subendothelial lesions or plaques. In the vast majority of cases, these lesions do not cause serious clinical symptoms, which is due in part to a resolution-repair response that limits tissue damage. However, a deadly minority of lesions progress to the point where they can trigger acute lumenal thrombosis, which may then cause unstable angina, myocardial infarction, sudden cardiac death, or stroke. Many of these clinically dangerous lesions have hallmarks of defective inflammation resolution, including defective clearance of dead cells (efferocytosis), necrosis, a defective scar response, and decreased levels of lipid mediators of the resolution response. Efferocytosis is both an effector arm of the resolution response and an inducer of resolution mediators, and thus its defect in advanced atherosclerosis amplifies plaque progression. Preclinical causation/treatment studies have demonstrated that replacement therapy with exogenously administered resolving mediators can improve lesional efferocytosis and prevent plaque progression. Work in this area has the potential to potentiate the cardiovascular benefits of apoB-lipoprotein-lowering therapy.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York.
| |
Collapse
|
205
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
206
|
Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the Dead to Keep Atherosclerosis at Bay. Front Cardiovasc Med 2017; 4:2. [PMID: 28194400 PMCID: PMC5277199 DOI: 10.3389/fcvm.2017.00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is the primary cause of coronary heart disease (CHD), ischemic stroke, and peripheral arterial disease. Despite effective lipid-lowering therapies and prevention programs, atherosclerosis is still the leading cause of mortality in the United States. Moreover, the prevalence of CHD in developing countries worldwide is rapidly increasing at a rate expected to overtake those of cancer and diabetes. Prominent risk factors include the hardening of arteries and high levels of cholesterol, which lead to the initiation and progression of atherosclerosis. However, cell death and efferocytosis are critical components of both atherosclerotic plaque progression and regression, yet, few currently available therapies focus on these processes. Thus, understanding the causes of cell death within the atherosclerotic plaque, the consequences of cell death, and the mechanisms of apoptotic cell clearance may enable the development of new therapies to treat cardiovascular disease. Here, we review how endoplasmic reticulum stress and cholesterol metabolism lead to cell death and inflammation, how dying cells affect plaque progression, and how autophagy and the clearance of dead cells ameliorates the inflammatory environment of the plaque. In addition, we review current research aimed at alleviating these processes and specifically targeting therapeutics to the site of the plaque.
Collapse
Affiliation(s)
- Megan L Brophy
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yunzhou Dong
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hao Wu
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - H N Ashiqur Rahman
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Kai Song
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hong Chen
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|
207
|
Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy. Sci Rep 2017; 7:40657. [PMID: 28094778 PMCID: PMC5240568 DOI: 10.1038/srep40657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases.
Collapse
|
208
|
Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJAP, Dorweiler B, Spite M, Fredman G, Tabas I. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J Clin Invest 2017; 127:564-568. [PMID: 28067670 DOI: 10.1172/jci90520] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Atherothrombotic vascular disease is often triggered by a distinct type of atherosclerotic lesion that displays features of impaired inflammation resolution, notably a necrotic core and thinning of a protective fibrous cap that overlies the core. A key cause of plaque necrosis is defective clearance of apoptotic cells, or efferocytosis, by lesional macrophages, but the mechanisms underlying defective efferocytosis and its possible links to impaired resolution in atherosclerosis are incompletely understood. Here, we provide evidence that proteolytic cleavage of the macrophage efferocytosis receptor c-Mer tyrosine kinase (MerTK) reduces efferocytosis and promotes plaque necrosis and defective resolution. In human carotid plaques, MerTK cleavage correlated with plaque necrosis and the presence of ischemic symptoms. Moreover, in fat-fed LDL receptor-deficient (Ldlr-/-) mice whose myeloid cells expressed a cleavage-resistant variant of MerTK, atherosclerotic lesions exhibited higher macrophage MerTK, lower levels of the cleavage product soluble Mer, improved efferocytosis, smaller necrotic cores, thicker fibrous caps, and increased ratio of proresolving versus proinflammatory lipid mediators. These findings provide a plausible molecular-cellular mechanism that contributes to defective efferocytosis, plaque necrosis, and impaired resolution during the progression of atherosclerosis.
Collapse
|
209
|
Gonzalez L, Trigatti BL. Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis: A Rapidly Advancing Field with Clinical Relevance to Imaging and Therapy. Can J Cardiol 2016; 33:303-312. [PMID: 28232016 DOI: 10.1016/j.cjca.2016.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases represent 1 of the main causes of death worldwide, and atherosclerosis is 1 of the major contributors leading to ischemic heart disease. Macrophages actively participate in all stages of atherosclerosis development, from plaque initiation to the transition to vulnerable plaques. Macrophage apoptosis, in particular, has been recognized as a critical step in the formation of the necrotic core, a key characteristic of unstable lesions. In this review, we discuss the role of macrophage apoptosis and clearance of apoptotic cells by efferocytosis in the development of atherosclerosis, with particular emphasis on their contribution to the development of the necrotic core and the clinical implications of this process for plaque stabilization. We consider the molecular triggers of macrophage apoptosis during atherogenesis, the role of endoplasmic reticulum (ER) stress, the roles of key cellular mediators of apoptosis and efferocytosis, and mechanisms of defective efferocytosis in the progression of atherosclerotic plaques. Finally, we discuss the important clinical implications of rapidly evolving macrophage science, such as novel approaches to imaging vulnerable atherosclerotic plaques with macrophage-sensitive positron emission tomography and magnetic resonance imaging, the role of macrophages in mediating beneficial pleiotropic actions of lipid-lowering therapies, and novel therapeutic modalities targeting ER stress, autophagy, and deficient efferocytosis. Advances in understanding the critical role of macrophages in the progression and destabilization of atherosclerosis have the potential to greatly improve the prevention and management of atherosclerotic diseases over the next decade.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo Louis Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
210
|
NaoXinTong Inhibits the Advanced Atherosclerosis and Enhances the Plaque Stability in Apolipoprotein E Deficient Mice. J Cardiovasc Pharmacol 2016; 67:203-11. [PMID: 26485209 DOI: 10.1097/fjc.0000000000000334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Buchang NaoXinTong (NXT), a Chinese medicine, has been widely used to treat patients with coronary heart disease in China. However, the underlying mechanisms need more elucidations. In this study, we investigated if NXT can inhibit the progression of the established lesions while stabilizing plaques. Apolipoprotein E deficient (apoE(-/-)) mice in 3 groups received following treatment: group 1 was fed a high-fat diet (HFD) for 18 weeks; group 2 was prefed HFD for 12 weeks followed by HFD containing NXT for additional 6 weeks; group 3 was prefed HFD for 8 weeks followed by HFD containing NXT for additional 10 weeks. After treatment, serum and aorta samples were collected and determined lipid profiles, lesions, collagen content, mineralization, and macrophage accumulation in aortic root, respectively. NXT had slight effect on serum lipid profiles but significantly reduced progression of the advanced lesions. In aortic wall, NXT increased smooth muscle cell/collagen content in lesion cap while reducing buried fibrous caps, mineralization, and macrophage accumulation within lesions, which suggests that NXT can stabilize plaques. In addition, NXT increased expression of smooth muscle 22α mRNA while inhibiting expression of matrix metalloproteinase-2 and tumor necrosis factor α mRNA in aortas. Our study demonstrates that NXT can reduce advanced atherosclerosis and enhance the plaque stability in apoE(-/-) mice.
Collapse
|
211
|
Fakhry M, Roszkowska M, Briolay A, Bougault C, Guignandon A, Diaz-Hernandez JI, Diaz-Hernandez M, Pikula S, Buchet R, Hamade E, Badran B, Bessueille L, Magne D. TNAP stimulates vascular smooth muscle cell trans-differentiation into chondrocytes through calcium deposition and BMP-2 activation: Possible implication in atherosclerotic plaque stability. Biochim Biophys Acta Mol Basis Dis 2016; 1863:643-653. [PMID: 27932058 DOI: 10.1016/j.bbadis.2016.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/12/2016] [Accepted: 12/04/2016] [Indexed: 01/15/2023]
Abstract
Atherosclerotic plaque calcification varies from early, diffuse microcalcifications to a bone-like tissue formed by endochondral ossification. Recently, a paradigm has emerged suggesting that if the bone metaplasia stabilizes the plaques, microcalcifications are harmful. Tissue-nonspecific alkaline phosphatase (TNAP), an ectoenzyme necessary for mineralization by its ability to hydrolyze inorganic pyrophosphate (PPi), is stimulated by inflammation in vascular smooth muscle cells (VSMCs). Our objective was to determine the role of TNAP in trans-differentiation of VSMCs and calcification. In rodent MOVAS and A7R5 VSMCs, addition of exogenous alkaline phosphatase (AP) or TNAP overexpression was sufficient to stimulate the expression of several chondrocyte markers and induce mineralization. Addition of exogenous AP to human mesenchymal stem cells cultured in pellets also stimulated chondrogenesis. Moreover, TNAP inhibition with levamisole in mouse primary chondrocytes dropped mineralization as well as the expression of chondrocyte markers. VSMCs trans-differentiated into chondrocyte-like cells, as well as primary chondrocytes, used TNAP to hydrolyze PPi, and PPi provoked the same effects as TNAP inhibition in primary chondrocytes. Interestingly, apatite crystals, associated or not to collagen, mimicked the effects of TNAP on VSMC trans-differentiation. AP and apatite crystals increased the expression of BMP-2 in VSMCs, and TNAP inhibition reduced BMP-2 levels in chondrocytes. Finally, the BMP-2 inhibitor noggin blocked the rise in aggrecan induced by AP in VSMCs, suggesting that TNAP induction in VSMCs triggers calcification, which stimulates chondrogenesis through BMP-2. Endochondral ossification in atherosclerotic plaques may therefore be induced by crystals, probably to confer stability to plaques with microcalcifications.
Collapse
Affiliation(s)
- Maya Fakhry
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France; Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | - Monika Roszkowska
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France; Laboratory of Biochemistry of Lipids, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anne Briolay
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Carole Bougault
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Alain Guignandon
- Univ Lyon, Université Jean Monnet Saint-Etienne, LBTO, UMR INSERM 1059, F-42023 Saint-Etienne, France
| | - Juan Ignacio Diaz-Hernandez
- Universidad Complutense de Madrid, Facultad de Veterinaria, Dpt. Bioquimica y Biologia Molecular IV, Madrid, Spain
| | - Miguel Diaz-Hernandez
- Universidad Complutense de Madrid, Facultad de Veterinaria, Dpt. Bioquimica y Biologia Molecular IV, Madrid, Spain
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - René Buchet
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Eva Hamade
- Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | | | - David Magne
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France.
| |
Collapse
|
212
|
Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2016; 22:51-73. [PMID: 27884085 PMCID: PMC6837458 DOI: 10.1080/13510002.2016.1256119] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is the main pathophysiological process underlying coronary artery disease (CAD). Acute complications of atherosclerosis, such as myocardial infarction, are caused by the rupture of vulnerable atherosclerotic plaques, which are characterized by thin, highly inflamed, and collagen-poor fibrous caps. Several lines of evidence mechanistically link the heme peroxidase myeloperoxidase (MPO), inflammation as well as acute and chronic manifestations of atherosclerosis. MPO and MPO-derived oxidants have been shown to contribute to the formation of foam cells, endothelial dysfunction and apoptosis, the activation of latent matrix metalloproteinases, and the expression of tissue factor that can promote the development of vulnerable plaque. As such, detection, quantification and imaging of MPO mass and activity have become useful in cardiac risk stratification, both for disease assessment and in the identification of patients at risk of plaque rupture. This review summarizes the current knowledge about the role of MPO in CAD with a focus on its possible roles in plaque rupture and recent advances to quantify and image MPO in plasma and atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathaniel Teng
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Ghassan J Maghzal
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Jihan Talib
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Imran Rashid
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Antony K Lau
- b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia.,c Faculty of Medicine , University of New South Wales , Sydney , New South Wales , Australia
| | - Roland Stocker
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,d School of Medical Sciences , University of New South Wales , Sydney , New South Wales , Australia
| |
Collapse
|
213
|
Short JD, Downs K, Tavakoli S, Asmis R. Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxid Redox Signal 2016; 25:816-835. [PMID: 27288099 PMCID: PMC5107717 DOI: 10.1089/ars.2016.6697] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. CRITICAL ISSUES Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. FUTURE DIRECTIONS The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
Collapse
Affiliation(s)
- John D Short
- 1 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 2 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 3 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,5 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
214
|
Yu EPK, Bennett MR. The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radic Biol Med 2016; 100:223-230. [PMID: 27320189 DOI: 10.1016/j.freeradbiomed.2016.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria are the cellular powerhouses, fuelling metabolic processes through their generation of ATP. However we now recognise that these organelles also have pivotal roles in producing reactive oxygen species (ROS) and in regulating cell death, inflammation and metabolism. Mitochondrial dysfunction therefore leads to oxidative stress, cell death, metabolic dysfunction and inflammation, which can all promote atherosclerosis. Recent evidence indicates that mitochondrial DNA (mtDNA) damage is present and promotes atherosclerosis through mitochondrial dysfunction. We will review the mechanisms that link mtDNA damage with atherosclerotic disease, and identify mitochondrial processes that may have therapeutic benefit.
Collapse
Affiliation(s)
- Emma P K Yu
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom.
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
215
|
Abstract
The burden of type 2 diabetes and its major complication cardiovascular disease is rapidly increasing worldwide. Understanding the underlying pathogenic mechanisms of these diseases is crucial to develop novel therapeutics. Recent work using genetic and biochemical methods in mouse models and human samples have identified disturbed calcium signalling and endoplasmic reticulum stress as emerging factors involved in the pathogenesis of many metabolic diseases. In this review, we will highlight the specific roles of calcium signalling and endoplasmic reticulum stress response in the development of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- L Ozcan
- Department of Medicine, Columbia University, New York, NY, USA.
| | - I Tabas
- Department of Medicine, Columbia University, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
216
|
Linton MF, Babaev VR, Huang J, Linton EF, Tao H, Yancey PG. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis. Circ J 2016; 80:2259-2268. [PMID: 27725526 DOI: 10.1253/circj.cj-16-0924] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH2-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. (Circ J 2016; 80: 2259-2268).
Collapse
Affiliation(s)
- MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | | | | | | | | | | |
Collapse
|
217
|
Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA, Dorweiler B, Connolly ES, Solomon R, Jones DM, Heyer EJ, Spite M, Tabas I. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7:12859. [PMID: 27659679 PMCID: PMC5036151 DOI: 10.1038/ncomms12859] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr−/− mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:LTB4 ratio to that of less advanced lesions and promotes plaque stability, including decreased lesional oxidative stress and necrosis, improved lesional efferocytosis, and thicker fibrous caps. These findings provide molecular support for the concept that defective inflammation resolution contributes to the formation of clinically dangerous plaques and offer a mechanistic rationale for SPM therapy to promote plaque stability. Atherosclerosis progression is linked to inflammatory processes in the blood vessel wall. Here, the authors show that, with the progression of atherosclerosis, the resolution of inflammation is impaired as the result of an imbalance between specialized pro-resolving lipid mediators and leukotrienes.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Anesthesiology, Perioperative and Pain Medicine, Departments of Medicine, Pathology &Cell Biology, and Physiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA.,The Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Jason Hellmann
- Department of Anesthesiology, Perioperative and Pain Medicine, The Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonathan D Proto
- Department of Anesthesiology, Perioperative and Pain Medicine, Departments of Medicine, Pathology &Cell Biology, and Physiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA
| | - George Kuriakose
- Department of Anesthesiology, Perioperative and Pain Medicine, Departments of Medicine, Pathology &Cell Biology, and Physiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA
| | - Romain A Colas
- Department of Anesthesiology, Perioperative and Pain Medicine, The Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bernhard Dorweiler
- Division of Vascular Surgery, Department of Cardiothoracic and Vascular Surgery, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, Mainz D-55131, Germany
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University Medical Center, New York, New York 10032, USA
| | - Robert Solomon
- Department of Neurosurgery, Columbia University Medical Center, New York, New York 10032, USA
| | - David M Jones
- The Department of Pathology, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Eric J Heyer
- Department of Anesthesiology, Columbia University Medical Center, New York, New York 10032, USA
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, The Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ira Tabas
- Department of Anesthesiology, Perioperative and Pain Medicine, Departments of Medicine, Pathology &Cell Biology, and Physiology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
218
|
Atkin-Smith GK, Poon IKH. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol 2016; 27:151-162. [PMID: 27647018 DOI: 10.1016/j.tcb.2016.08.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023]
Abstract
The disassembly of an apoptotic cell into subcellular fragments, termed apoptotic bodies (ApoBDs), is a hallmark of apoptosis. Although the generation of ApoBDs is generally understood as being stochastic, it is becoming increasingly clear that ApoBD formation is a highly regulated process involving distinct morphological steps and molecular factors. Functionally, ApoBDs could facilitate the efficient clearance of apoptotic material by surrounding phagocytes as well as mediate the transfer of biomolecules including microRNAs and proteins between cells to aid in intercellular communications. Therefore, the formation of ApoBDs is an important process downstream from apoptotic cell death. We discuss here the mechanisms and functions of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
219
|
Wei Y, Schober A. MicroRNA regulation of macrophages in human pathologies. Cell Mol Life Sci 2016; 73:3473-95. [PMID: 27137182 PMCID: PMC11108364 DOI: 10.1007/s00018-016-2254-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
220
|
|
221
|
CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016; 536:86-90. [PMID: 27437576 PMCID: PMC4980260 DOI: 10.1038/nature18935] [Citation(s) in RCA: 481] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is the disease process that underlies heart attack and stroke. Advanced lesions at risk of rupture are characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Why these cells are not cleared remains unknown. Here we show that atherogenesis is associated with upregulation of CD47, a key anti-phagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or 'efferocytosis'. We find that administration of CD47-blocking antibodies reverses this defect in efferocytosis, normalizes the clearance of diseased vascular tissue, and ameliorates atherosclerosis in multiple mouse models. Mechanistic studies implicate the pro-atherosclerotic factor TNF-α as a fundamental driver of impaired programmed cell removal, explaining why this process is compromised in vascular disease. Similar to recent observations in cancer, impaired efferocytosis appears to play a pathogenic role in cardiovascular disease, but is not a fixed defect and may represent a novel therapeutic target.
Collapse
|
222
|
Zhu L, Giunzioni I, Tavori H, Covarrubias R, Ding L, Zhang Y, Ormseth M, Major AS, Stafford JM, Linton MF, Fazio S. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition. Arterioscler Thromb Vasc Biol 2016; 36:1483-95. [PMID: 27365402 DOI: 10.1161/atvbaha.116.307736] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. APPROACH AND RESULTS Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. CONCLUSIONS Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1.
Collapse
Affiliation(s)
- Lin Zhu
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Ilaria Giunzioni
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Hagai Tavori
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Roman Covarrubias
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Lei Ding
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Youmin Zhang
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Michelle Ormseth
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Amy S Major
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - John M Stafford
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - MacRae F Linton
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.)
| | - Sergio Fazio
- From the Division of Cardiovascular Medicine (L.Z., R.C., L.D., Y.Z., A.S.M., M.F.L.), Division of Diabetes, Endocrinology, and Metabolism (L.Z., J.M.S.), Division of Rheumatology, Department of Medicine (M.O.), Vanderbilt University Medical Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville (L.Z., J.M.S.); and Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland (I.G., H.T., S.F.).
| |
Collapse
|
223
|
Abstract
The historical view of vascular smooth muscle cells (VSMCs) in atherosclerosis is that aberrant proliferation of VSMCs promotes plaque formation, but that VSMCs in advanced plaques are entirely beneficial, for example preventing rupture of the fibrous cap. However, this view has been based on ideas that there is a homogenous population of VSMCs within the plaque, that can be identified separate from other plaque cells (particularly macrophages) using standard VSMC and macrophage immunohistochemical markers. More recent genetic lineage tracing studies have shown that VSMC phenotypic switching results in less-differentiated forms that lack VSMC markers including macrophage-like cells, and this switching directly promotes atherosclerosis. In addition, VSMC proliferation may be beneficial throughout atherogenesis, and not just in advanced lesions, whereas VSMC apoptosis, cell senescence, and VSMC-derived macrophage-like cells may promote inflammation. We review the effect of embryological origin on VSMC behavior in atherosclerosis, the role, regulation and consequences of phenotypic switching, the evidence for different origins of VSMCs, and the role of individual processes that VSMCs undergo in atherosclerosis in regard to plaque formation and the structure of advanced lesions. We think there is now compelling evidence that a full understanding of VSMC behavior in atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Martin R Bennett
- From the Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom (M.R.B., S.S.); and University of Virginia School of Medicine, Charlottesville (G.K.O.).
| | - Sanjay Sinha
- From the Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom (M.R.B., S.S.); and University of Virginia School of Medicine, Charlottesville (G.K.O.)
| | - Gary K Owens
- From the Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom (M.R.B., S.S.); and University of Virginia School of Medicine, Charlottesville (G.K.O.)
| |
Collapse
|
224
|
Hasegawa H, Watanabe T, Kato S, Toshima T, Yokoyama M, Aida Y, Nishiwaki M, Kadowaki S, Narumi T, Honda Y, Otaki Y, Honda S, Shunsuke N, Funayama A, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyamoto T, Abe S, Shibata Y, Kubota I. The role of macrophage transcription factor MafB in atherosclerotic plaque stability. Atherosclerosis 2016; 250:133-43. [PMID: 27214395 DOI: 10.1016/j.atherosclerosis.2016.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/16/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Macrophage differentiation is associated with the development of atherosclerosis and plaque vulnerability and is regulated by transcription factor MafB. We previously reported that MafB attenuates macrophage apoptosis, which is associated with atherosclerotic plaque instability. The aim of this study was to elucidate the role of MafB in the progression of atherosclerotic plaque. METHODS We generated macrophage-specific dominant-negative (DN) MafB transgenic mice and intercrossed DN-MafB mice with apolipoprotein E (ApoE) knockout (KO) mice. RESULTS There was no significant difference in advanced atherosclerotic lesion area between DN-MafB/ApoE KO mice and littermate control ApoE KO mice 9 weeks after high-cholesterol diet. However, DN-MafB/ApoE KO mice showed significantly larger necrotic cores and lower collagen content in atherosclerotic plaques than ApoE KO mice. Although there was no difference in intraplaque macrophage infiltration and efferocytosis, DN-MafB/ApoE KO mice showed significantly more apoptotic macrophages at the plaque edges than did ApoE KO mice. Real-time PCR analysis revealed that peritoneal macrophages of DN-MafB/ApoE KO mice had a greater increase in matrix metalloproteinase-9 and mRNA expression of inflammatory/M1 macrophage markers (tissue necrosis factor-α, interleukin-6, CD11c, and p47phox) after lipopolysaccharide stimulation than those of ApoE KO mice. CONCLUSION Macrophage-specific inhibition of MafB may destabilize atherosclerotic plaques in advanced lesions.
Collapse
Affiliation(s)
- Hiromasa Hasegawa
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan.
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Miyuki Yokoyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yasuko Aida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shinpei Kadowaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yuki Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shintaro Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Netsu Shunsuke
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| |
Collapse
|
225
|
|
226
|
Li Y, Kanellakis P, Hosseini H, Cao A, Deswaerte V, Tipping P, Toh BH, Bobik A, Kyaw T. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE −/−mice by reducing lesion necrosis and inflammation. Cardiovasc Res 2016; 109:305-317. [DOI: 10.1093/cvr/cvv259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
227
|
Vazquez G, Solanki S, Dube P, Smedlund K, Ampem P. On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:185-99. [PMID: 27161230 DOI: 10.1007/978-3-319-26974-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the cardiovascular and hematopoietic systems the Transient Receptor Potential Canonical 3 (TRPC3) channel has a well-recognized role in a number of signaling mechanisms that impact the function of diverse cells and tissues in physiology and disease. The latter includes, but is not limited to, molecular and cellular mechanisms associated to the pathogenesis of cardiac hypertrophy, hypertension and endothelial dysfunction. Despite several of these functions being closely related to atherorelevant mechanisms, the potential roles of TRPC3 in atherosclerosis, the major cause of coronary artery disease, have remained largely unexplored. Over recent years, a series of studies from the authors' laboratory revealed novel functions of TRPC3 in mechanisms related to endothelial inflammation, monocyte adhesion to endothelium and survival and apoptosis of macrophages. The relevance of these new TRPC3 functions to atherogenesis has recently began to receive validation through studies in mouse models of atherosclerosis with conditional gain or loss of TRPC3 function. This chapter summarizes these novel findings and provides a discussion of their impact in the context of atherosclerosis, in an attempt to delineate a framework for further exploration of this terra incognita in the TRPC field.
Collapse
Affiliation(s)
- Guillermo Vazquez
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA.
| | - Sumeet Solanki
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prabhatachandra Dube
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| | - Prince Ampem
- Department of Physiology and Pharmacology, and Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Transverse Dr., UTHSC Mail stop 1008, Toledo, OH, 43614, USA
| |
Collapse
|
228
|
Verweij SL, van der Valk FM, Stroes ESG. Novel directions in inflammation as a therapeutic target in atherosclerosis. Curr Opin Lipidol 2015; 26:580-5. [PMID: 26382552 DOI: 10.1097/mol.0000000000000233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic disease of the arterial wall largely driven by inflammation; hence, therapeutics targeting inflammatory pathways are considered an attractive strategy in atherosclerotic cardiovascular disease (ASCVD). The purpose of this review is to describe the randomized, placebo-controlled clinical trials currently investigating the impact of anti-inflammatory strategies in ASCVD patients, to discuss novel insights and targets into the role of innate immunity in atherosclerosis and to address the promise of local drug delivery as opposed to systemic therapies in atherosclerotic disease. RECENT FINDINGS The first clinical trials using systemic anti-inflammatory drugs in ASCVD patients might be able to strengthen the case for immunomodulation once showing an improved ASCVD outcome. Several specific targets in innate immunity bear therapeutic potential, of which some have already entered the clinical arena. To prevent immunosuppression by systemic effects, drug delivery systems are increasingly being applied to locally attenuate plaque inflammation. SUMMARY Anti-inflammatory therapies seem promising for future treatment of ASCVD. In view of the risk of immunosuppression in case of long term and systemic use of anti-inflammatory drugs, there is a clinical need for highly selective and targeted therapies in patients with atherosclerosis.
Collapse
Affiliation(s)
- Simone L Verweij
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
229
|
Grootaert MOJ, da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GRY, Martinet W, Schrijvers DM. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 2015; 11:2014-2032. [PMID: 26391655 PMCID: PMC4824610 DOI: 10.1080/15548627.2015.1096485] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Autophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis. Tissue-specific deletion of the essential autophagy gene Atg7 in murine VSMCs (atg7-/- VSMCs) caused accumulation of SQSTM1/p62 and accelerated the development of stress-induced premature senescence as shown by cellular and nuclear hypertrophy, CDKN2A-RB-mediated G1 proliferative arrest and senescence-associated GLB1 activity. Transfection of SQSTM1-encoding plasmid DNA in Atg7+/+ VSMCs induced similar features, suggesting that accumulation of SQSTM1 promotes VSMC senescence. Interestingly, atg7-/- VSMCs were resistant to oxidative stress-induced cell death as compared to controls. This effect was attributed to nuclear translocation of the transcription factor NFE2L2 resulting in upregulation of several antioxidative enzymes. In vivo, defective VSMC autophagy led to upregulation of MMP9, TGFB and CXCL12 and promoted postinjury neointima formation and diet-induced atherogenesis. Lesions of VSMC-specific atg7 knockout mice were characterized by increased total collagen deposition, nuclear hypertrophy, CDKN2A upregulation, RB hypophosphorylation, and GLB1 activity, all features typical of cellular senescence. To conclude, autophagy is crucial for VSMC function, phenotype, and survival. Defective autophagy in VSMCs accelerates senescence and promotes ligation-induced neointima formation and diet-induced atherogenesis, implying that autophagy inhibition as therapeutic strategy in the treatment of neointimal stenosis and atherosclerosis would be unfavorable. Conversely, stimulation of autophagy could be a valuable new strategy in the treatment of arterial disease.
Collapse
Affiliation(s)
- Mandy OJ Grootaert
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | - Paula A da Costa Martins
- Department of Cardiology; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Nicole Bitsch
- Department of Cardiology; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology; University of Antwerp; Antwerp, Belgium
| | - Guido RY De Meyer
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology; University of Antwerp; Antwerp, Belgium
| | | |
Collapse
|
230
|
Abstract
Atherosclerosis is a maladaptive, nonresolving chronic inflammatory disease that occurs at sites of blood flow disturbance. The disease usually remains silent until a breakdown of integrity at the arterial surface triggers the formation of a thrombus. By occluding the lumen, the thrombus or emboli detaching from it elicits ischaemic symptoms that may be life-threatening. Two types of surface damage can cause atherothrombosis: plaque rupture and endothelial erosion. Plaque rupture is thought to be caused by loss of mechanical stability, often due to reduced tensile strength of the collagen cap surrounding the plaque. Therefore, plaques with reduced collagen content are thought to be more vulnerable than those with a thick collagen cap. Endothelial erosion, on the other hand, may occur after injurious insults to the endothelium instigated by metabolic disturbance or immune insults. This review discusses the molecular mechanisms involved in plaque vulnerability and the development of atherothrombosis.
Collapse
Affiliation(s)
- G K Hansson
- Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - P Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - I Tabas
- Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
231
|
Chang TY, Hsu CY, Huang PH, Chiang CH, Leu HB, Huang CC, Chen JW, Lin SJ. Usefulness of Circulating Decoy Receptor 3 in Predicting Coronary Artery Disease Severity and Future Major Adverse Cardiovascular Events in Patients With Multivessel Coronary Artery Disease. Am J Cardiol 2015; 116:1028-33. [PMID: 26254707 DOI: 10.1016/j.amjcard.2015.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Abstract
Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an antiapoptotic soluble receptor considered to play an important role in immune modulation and has pro-inflammatory functions. This study was designed to test whether circulating DcR3 levels are associated with coronary artery disease (CAD) severity and predict future major adverse cardiovascular events (MACEs) in patients with CAD. Circulating DcR3 levels and the Syntax score (SXscore) were determined in patients with multivessel CAD. The primary end point was the MACE within 12 months. In total, 152 consecutive patients with angiographically confirmed multivessel CAD who had received percutaneous coronary intervention were enrolled and were divided into 3 groups according to CAD lesion severity. Group 1 was defined as low SXscore (≤13), group 2 as intermediate SXscore (>13 and ≤22), and group 3 as high SXscore (>22). DcR3 levels were significantly higher in the high SXscore group than the other 2 groups (13,602 ± 7,256 vs 8,025 ± 7,789 vs 4,637 ± 4,403 pg/ml, p <0.001). By multivariate analysis, circulating DcR3 levels were identified as an independent predictor for high SXscore (adjusted odds ratio 1.15, 95% confidence interval 1.09 to 1.21; p <0.001). The Kaplan-Meier analysis showed that increased circulating DcR3 levels are associated with enhanced 1-year MACE in patients with multivessel CAD (log-rank p <0.001). In conclusion, increased circulating DcR3 levels are associated with CAD severity and predict future MACE in patients with multivessel CAD.
Collapse
Affiliation(s)
- Ting-Yung Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Hsu
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chia-Hung Chiang
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Division of Clinical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
232
|
Romero ME, Yahagi K, Kolodgie FD, Virmani R. Neoatherosclerosis From a Pathologist’s Point of View. Arterioscler Thromb Vasc Biol 2015; 35:e43-9. [DOI: 10.1161/atvbaha.115.306251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
233
|
Using image-based flow cytometry to measure monocyte oxidized LDL phagocytosis: A potential risk factor for CVD? J Immunol Methods 2015; 423:78-84. [DOI: 10.1016/j.jim.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/16/2015] [Accepted: 03/28/2015] [Indexed: 11/22/2022]
|
234
|
Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci 2015; 72:2475-89. [PMID: 25746430 PMCID: PMC11113748 DOI: 10.1007/s00018-015-1876-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
Abstract
It is today acknowledged that aging is associated with a low-grade chronic inflammatory status, and that inflammation exacerbates age-related diseases such as osteoporosis, Alzheimer's disease, atherosclerosis and type 2 diabetes mellitus (T2DM). Vascular calcification is a complication that also occurs during aging, in particular in association with atherosclerosis and T2DM. Recent studies provided compelling evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. In the present review, we propose on one hand to highlight the most important and recent findings on the cellular and molecular mechanisms of vascular inflammation in atherosclerosis and T2DM. On the other hand, we will present the effects of inflammatory mediators on the trans-differentiation of vascular smooth muscle cell and on the deposition of crystals. Since vascular calcification significantly impacts morbidity and mortality in affected individuals, a better understanding of its induction and development will pave the way to develop new therapeutic strategies.
Collapse
Affiliation(s)
- L. Bessueille
- University of Lyon, ICBMS UMR CNRS 5246, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - D. Magne
- University of Lyon, ICBMS UMR CNRS 5246, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
235
|
Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. ACTA ACUST UNITED AC 2015; 209:13-22. [PMID: 25869663 PMCID: PMC4395483 DOI: 10.1083/jcb.201412052] [Citation(s) in RCA: 742] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Atherosclerosis occurs in the subendothelial space (intima) of medium-sized arteries at regions of disturbed blood flow and is triggered by an interplay between endothelial dysfunction and subendothelial lipoprotein retention. Over time, this process stimulates a nonresolving inflammatory response that can cause intimal destruction, arterial thrombosis, and end-organ ischemia. Recent advances highlight important cell biological atherogenic processes, including mechanotransduction and inflammatory processes in endothelial cells, origins and contributions of lesional macrophages, and origins and phenotypic switching of lesional smooth muscle cells. These advances illustrate how in-depth mechanistic knowledge of the cellular pathobiology of atherosclerosis can lead to new ideas for therapy.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032
| | - Guillermo García-Cardeña
- Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, MA 02115 Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
236
|
Svenungsson E, Engelbertsen D, Wigren M, Gustafsson JT, Gunnarsson I, Elvin K, Jensen-Urstad K, Fredrikson GN, Nilsson J. Decreased levels of autoantibodies against apolipoprotein B-100 antigens are associated with cardiovascular disease in systemic lupus erythematosus. Clin Exp Immunol 2015; 181:417-26. [PMID: 25959453 DOI: 10.1111/cei.12651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
Increased production of autoantibodies is a characteristic feature of systemic lupus erythematosus (SLE) and there is evidence that several of these autoantibodies may contribute to increased cardiovascular disease (CVD) in SLE. Autoantibodies against the apolipoprotein (apo) B-100 peptides p45 and p210 have been associated with a lower CVD risk in non-SLE cohorts. The aim of the present study was to investigate how SLE affects the occurrence of these potentially protective autoantibodies. The study cohort consisted of 434 SLE patients and 322 age- and sex-matched population controls. Antibodies against native and malondialdehyde (MDA)-modified p45 and p210 were measured by enzyme-linked immunosorbent assay (ELISA). SLE patients had significantly lower levels of p210 immunoglobulin (Ig)G and p45 IgM (both the native and malondialdehyde (MDA)-modified forms). SLE patients with manifest CVD (myocardial infarction, ischaemic cerebrovascular disease or peripheral vascular disease) had lower levels p210 IgG and p45 IgM than SLE patients without CVD. Decreased levels of these autoantibodies were also observed in SLE patients with permanent organ damage, as assessed by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology (ACR) Damage Index (SDI). The present findings show that patients with SLE, a condition generally characterized by abundance of autoantibodies of multiple specificities, have reduced levels of antibodies against the apo B-100 antigens p45 and p210 and that the levels of these antibodies are reduced further in SLE patients with CVD. These observations suggest the possibility that an impaired antibody-mediated removal of damaged LDL particles may contribute to the development of vascular complications and organ damage in SLE.
Collapse
Affiliation(s)
- Elisabet Svenungsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Maria Wigren
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Johanna T Gustafsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Elvin
- Unit of Clinical Immunology, Department of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Jensen-Urstad
- Department of Clinical Physiology, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| |
Collapse
|
237
|
Park JY, Loh S, Cho EH, Choi HJ, Na TY, Nemeno JGE, Lee JI, Yoon TJ, Choi IS, Lee M, Lee JS, Kang YS. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice. Biochem Biophys Res Commun 2015; 463:1064-70. [PMID: 26079881 DOI: 10.1016/j.bbrc.2015.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3(+) apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b(+) cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation.
Collapse
Affiliation(s)
- Jin-Yeon Park
- Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - SoHee Loh
- Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Eun-hee Cho
- Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Hyeong-Jwa Choi
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706, Republic of Korea
| | - Tae-Young Na
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741, Republic of Korea
| | - Judee Grace E Nemeno
- Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Taek Joon Yoon
- Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Minyoung Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706, Republic of Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712, Republic of Korea
| | - Young-Sun Kang
- Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
238
|
Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:351827. [PMID: 26180584 PMCID: PMC4477133 DOI: 10.1155/2015/351827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power.
Collapse
|
239
|
Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells. Cell Death Dis 2015; 6:e1772. [PMID: 26018733 PMCID: PMC4669715 DOI: 10.1038/cddis.2015.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways.
Collapse
|
240
|
Otsuka F, Kramer MCA, Woudstra P, Yahagi K, Ladich E, Finn AV, de Winter RJ, Kolodgie FD, Wight TN, Davis HR, Joner M, Virmani R. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis 2015; 241:772-82. [PMID: 26058741 DOI: 10.1016/j.atherosclerosis.2015.05.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/21/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle cells, macrophage infiltration and accumulation of lipids, proteoglycans, collagen matrix and calcification play a central role in atherosclerosis. The early histologic changes of plaque progression from pathologic intimal thickenings (PIT) to late fibroatheroma lesions have not been fully characterized. METHODS A total of 151 atherosclerotic coronary lesions were collected from 67 sudden death victims. Atherosclerotic plaques were classified as PIT without macrophage infiltration, PIT with macrophages, and early and late fibroatheromas. Presence of macrophages and proteoglycans (versican, decorin and biglycan) were recognized by specific antibodies while hyaluronan was detected by affinity histochemistry. Lipid deposition was identified by oil-red-O, and calcification was assessed following von Kossa and alizarin red staining. RESULTS Lesion progression from PIT to late fibroatheroma was associated with increase in macrophage accumulation (p < 0.001) and decreasing apoptotic body clearance by macrophages (ratio of engulfed-to-total apoptotic bodies) (p < 0.001). Lipid deposition in lipid pool of PIT had a microvesicular appearance whereas those in the necrotic core were globular in nature. Overall, the accumulation of hyaluronan (p < 0.001), and proteoglycan versican (p < 0.001) and biglycan (p = 0.013) declined along with lesion progression from PIT to fibroatheromas. Microcalcification was first observed only within areas of lipid pools and its presence and size increased in lesions with necrotic core. CONCLUSIONS PIT to fibroatheroma lesions are accompanied by early lipid accumulation, followed by macrophage infiltration with defective clearance of apoptotic bodies along with decrease in proteoglycan and hyaluronan in lipid pools that convert to necrotic cores. Calcification starts in PIT and increases with plaque progression.
Collapse
Affiliation(s)
| | | | - Pier Woudstra
- Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | - Aloke V Finn
- Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Thomas N Wight
- The Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
241
|
Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol 2015; 27:184-93. [PMID: 25865626 DOI: 10.1016/j.smim.2015.03.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries.
Collapse
Affiliation(s)
- Joana Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
242
|
Abstract
BACKGROUND Anxiety is a common experience among patients with acute coronary syndrome (ACS) that can have a negative impact on health outcomes. Nonetheless, the negative role of anxiety remains underappreciated, as reflected by clinicians' underrecognition and undertreatment of anxious hospitalized and nonhospitalized patients with ACS. Underappreciation of the role of anxiety is possibly related to inadequate understanding of the mechanisms whereby anxiety may adversely affect health outcomes. PURPOSE The aim of this study was to synthesize the evidence about potential mechanisms by which anxiety and adverse health outcomes are related. CONCLUSIONS A biobehavioral model links anxiety to the development of thrombogenic and arrhythmic events in patients with ACS. Biologically, anxiety may interfere with the immune system, lipid profile, automatic nervous system balance, and the coagulation cascade, whereas behaviorally, anxiety may adversely affect adoption of healthy habits and cardiac risk-reducing behaviors. The biological and behavioral pathways complement each other in the production of poor outcomes. CLINICAL IMPLICATIONS Anxiety requires more attention from clinical cardiology. The adverse impact of anxiety on health outcomes could be avoided by efficient assessment and treatment of anxiety.
Collapse
|
243
|
Abstract
Apoptosis is a key process occurring in atherosclerosis, both in humans and in animal models. Apoptosis occurs in all cell types studied thus far, and thus lineage marking is often necessary. Apoptosis should be ascertained using a combination of morphological features and activation of specific pathways (e.g., terminal UTP nick end labeling-TUNEL). Both TUNEL and cryptic epitope antibodies (e.g., cleaved caspase 3) can be used, although they will often give different frequencies. Apoptotic frequency but not rate can be estimated from these methods, as we do not know the timing of apoptosis or how much of the process is marked by each method. We describe the morphological and immunohistochemical methods used in our laboratory to detect apoptotic cells in animal and human atherosclerotic plaques.
Collapse
Affiliation(s)
- Nichola L Figg
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Box 110, Hills Road, Cambridge, CB2 0QQ, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Box 110, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
244
|
Abstract
During development, stress, infection, or normal homeostasis, billions of cells die on a daily basis, and the responsibility of clearing these cellular corpses lies with the phagocytes of innate immune system. This process, termed efferocytosis , is critical for the prevention of inflammation and autoimmunity , as well as modulation of the adaptive immune response. Defective clearance of dead cells is characteristic of many human autoimmune or autoinflammatory disorders, such as systemic lupus erythematosus (SLE), atherosclerosis, and diabetes. The mechanisms that phagocytes employ to sense, engulf, and process dead cells for an appropriate immune response have been an area of great interest. However, insight into novel mechanisms of programmed cell death , such as necroptosis, has shed light on the fact that while the diner (or phagocyte) is important, the meal itself (the type of dead cell) can play a crucial role in shaping the pursuant immune response.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
245
|
Park J, Pyee J, Park H. Pinosylvin at a high concentration induces AMPK-mediated autophagy for preventing necrosis in bovine aortic endothelial cells. Can J Physiol Pharmacol 2014; 92:993-9. [DOI: 10.1139/cjpp-2014-0271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pinosylvin is a known functional compound of the Pinus species. Pinosylvin at low concentrations (∼pmol/L) was reported to promote cell proliferation in endothelial cells. However, this study found that pinosylvin at a high concentration (100 μmol/L) induces cell death in bovine aortic endothelial cells. Therefore, we examined how pinosylvin was associated with apoptosis, autophagy, and necrosis. Pinosylvin at a high concentration appeared to promote caspase-3 activation, nuclear condensation, and the “flip-flop” of phosphatidylserine, indicating that pinosylvin induces apoptosis. However, based on flow cytometry data obtained from double-staining with annexin V and propidium iodide, pinosylvin was shown to inhibit necrosis, a postapoptotic process. Pinosylvin induced LC3 conversion from LC3-I to LC3-II and p62 degradation, which are important indicators of autophagy. In addition, AMP-activated protein kinase (AMPK) appeared to be activated by pinosylvin, and an AMPK inhibitor was markedly shown to reduce the LC3 conversion. The inhibitory effect of an AMPK inhibitor was reversed by pinosylvin. These results suggest that pinosylvin induces autophagy via AMPK activation. Further, necrosis was found to be promoted by an autophagy inhibitor and then restored by pinosylvin, while the caspase-3 inhibitor had no effect on necrosis. These findings indicate that pinosylvin-induced autophagy blocks necrotic progress in endothelial cells.
Collapse
Affiliation(s)
- Jinsun Park
- Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, South Korea
| | - Jaeho Pyee
- Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, South Korea
| | - Heonyong Park
- Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, South Korea
| |
Collapse
|
246
|
Medbury HJ, Williams H, Fletcher JP. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin Transl Med 2014; 3:63. [PMID: 25635207 PMCID: PMC4303745 DOI: 10.1186/s40169-014-0042-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023] Open
Abstract
The emerging understanding of macrophage subsets and their functions in the atherosclerotic plaque has led to the consensus that M1 macrophages are pro-atherogenic while M2 macrophages may promote plaque stability, primarily though their tissue repair and anti-inflammatory properties. As such, modulating macrophage function to promote plaque stability is an exciting therapeutic prospect. This review will outline the involvement of the different macrophage subsets throughout atherosclerosis progression and in models of regression. It is evident that much of our understanding of macrophage function comes from in vitro or small animal models and, while such knowledge is valuable, we have much to learn about the roles of the macrophage subsets in the clinical setting in order to identify the key pathways to target to possibly promote plaque stability.
Collapse
Affiliation(s)
- Heather J Medbury
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - Helen Williams
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - John P Fletcher
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| |
Collapse
|
247
|
Subramanian M, Thorp E, Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res 2014; 116:e13-24. [PMID: 25348165 DOI: 10.1161/circresaha.116.304794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown. OBJECTIVE To understand the role of GM-CSF in advanced atherosclerotic plaque progression. METHODS AND RESULTS Ldlr(-/-) mice and Csf2(-/-)Ldlr(-/-) mice were fed a Western-type diet for 12 weeks, and then parameters of advanced plaque progression in the aortic root were quantified. Lesions from the GM-CSF-deficient mice showed a substantial decrease in 2 key hallmarks of advanced atherosclerosis, lesional macrophage apoptosis and plaque necrosis, which indicates that GM-CSF promotes plaque progression. Based on a combination of in vitro and in vivo studies, we show that the mechanism involves GM-CSF-mediated production of interleukin-23, which increases apoptosis susceptibility in macrophages by promoting proteasomal degradation of the cell survival protein Bcl-2 (B-cell lymphoma 2) and by increasing oxidative stress. CONCLUSIONS In low-density lipoprotein-driven atherosclerosis in mice, GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. This action of GM-CSF is mediated by its interleukin-23-inducing activity rather than its role as a growth factor.
Collapse
Affiliation(s)
- Manikandan Subramanian
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.)
| | - Edward Thorp
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.)
| | - Ira Tabas
- From the Departments of Medicine (M.S., I.T.), Pathology and Cell Biology (I.T.), and Physiology and Cellular Biophysics (I.T.), Columbia University, New York, NY; and Department of Pathology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (E.T.).
| |
Collapse
|
248
|
Marsch E, Theelen TL, Demandt JAF, Jeurissen M, van Gink M, Verjans R, Janssen A, Cleutjens JP, Meex SJR, Donners MM, Haenen GR, Schalkwijk CG, Dubois LJ, Lambin P, Mallat Z, Gijbels MJ, Heemskerk JWM, Fisher EA, Biessen EAL, Janssen BJ, Daemen MJAP, Sluimer JC. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol 2014; 34:2545-53. [PMID: 25256233 DOI: 10.1161/atvbaha.114.304023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Advanced murine and human plaques are hypoxic, but it remains unclear whether plaque hypoxia is causally related to atherogenesis. Here, we test the hypothesis that reversal of hypoxia in atherosclerotic plaques by breathing hyperoxic carbogen gas will prevent atherosclerosis. APPROACH AND RESULTS Low-density lipoprotein receptor-deficient mice (LDLR(-/-)) were fed a Western-type diet, exposed to carbogen (95% O2, 5% CO2) or air, and the effect on plaque hypoxia, size, and phenotype was studied. First, the hypoxic marker pimonidazole was detected in murine LDLR(-/-) plaque macrophages from plaque initiation onwards. Second, the efficacy of breathing carbogen (90 minutes, single exposure) was studied. Compared with air, carbogen increased arterial blood pO2 5-fold in LDLR(-/-) mice and reduced plaque hypoxia in advanced plaques of the aortic root (-32%) and arch (-84%). Finally, the effect of repeated carbogen exposure on progression of atherosclerosis was studied in LDLR(-/-) mice fed a Western-type diet for an initial 4 weeks, followed by 4 weeks of diet and carbogen or air (both 90 min/d). Carbogen reduced plaque hypoxia (-40%), necrotic core size (-37%), and TUNEL(+) (terminal uridine nick-end labeling positive) apoptotic cell content (-50%) and increased efferocytosis of apoptotic cells by cluster of differentiation 107b(+) (CD107b, MAC3) macrophages (+36%) in advanced plaques of the aortic root. Plaque size, plasma cholesterol, hematopoiesis, and systemic inflammation were unchanged. In vitro, hypoxia hampered efferocytosis by bone marrow-derived macrophages, which was dependent on the receptor Mer tyrosine kinase. CONCLUSIONS Carbogen restored murine plaque oxygenation and prevented necrotic core expansion by enhancing efferocytosis, likely via Mer tyrosine kinase. Thus, plaque hypoxia is causally related to necrotic core expansion.
Collapse
Affiliation(s)
- Elke Marsch
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Thomas L Theelen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Jasper A F Demandt
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mike Jeurissen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mathijs van Gink
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Robin Verjans
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Anique Janssen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Jack P Cleutjens
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Steven J R Meex
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Marjo M Donners
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Guido R Haenen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Casper G Schalkwijk
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ludwig J Dubois
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Philippe Lambin
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ziad Mallat
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Marion J Gijbels
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Johan W M Heemskerk
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Edward A Fisher
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Erik A L Biessen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ben J Janssen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mat J A P Daemen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Judith C Sluimer
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.).
| |
Collapse
|
249
|
Tucka J, Yu H, Gray K, Figg N, Maguire J, Lam B, Bennett M, Littlewood T. Akt1 regulates vascular smooth muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial remodeling and atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:2421-8. [PMID: 25234814 DOI: 10.1161/atvbaha.114.304284] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) apoptosis occurs at low levels in atherosclerotic plaques and in vessel remodeling; however, the consequences and mediators of these levels are not known. Akt1 protects against VSMC apoptosis largely through inactivating target proteins such as forkhead class O transcription factor 3a (FoxO3a), but Akt1 signaling is reduced and FoxO3a activity is increased in human atherosclerosis. We therefore sought to determine whether inhibition of VSMC apoptosis via Akt1 activation regulates vessel remodeling and atherogenesis and to identify FoxO3a target proteins that mediate VSMC apoptosis. APPROACH AND RESULTS We generated mice that express an Akt1 protein that can be activated specifically in arterial VSMCs. Akt1 activation did not affect normal arteries, but inhibited VSMC apoptosis and negative remodeling after carotid ligation, indicating that VSMC apoptosis is a major determinant of vessel caliber after changes in flow. Akt1 activation inhibited VSMC apoptosis during atherogenesis and increased relative fibrous cap area in plaques. Microarray studies identified multiple FoxO3a-regulated genes involved in VSMC apoptosis, including apoptotic protease activating factor 1 as a novel target. Apoptotic protease activating factor 1 mediated the proapoptotic activity of FoxO3a, was increased in human atherosclerosis, but reduced by Akt1 activity in vivo. CONCLUSIONS Akt1 is a major regulator of VSMC survival in vivo during vessel remodeling and atherogenesis, mediated in large part through inhibition of FoxO3a and its downstream genes, including apoptotic protease activating factor 1. Our data suggest that even the low-level VSMC apoptosis seen during changes in flow determines vessel wall structure and promotes fibrous cap thinning during atherogenesis.
Collapse
Affiliation(s)
- Joanna Tucka
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Haixiang Yu
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Kelly Gray
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Nichola Figg
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Janet Maguire
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Brian Lam
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Martin Bennett
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.)
| | - Trevor Littlewood
- From the Divisions of Cardiovascular Medicine (J.T., H.Y., K.G., N.F., M.B., T.L.), Clinical Pharmacology (J.M.), and Metabolic Research Laboratories (B.L.), University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (T.L.).
| |
Collapse
|
250
|
Joshi-Barr S, de Gracia Lux C, Mahmoud E, Almutairi A. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxid Redox Signal 2014; 21:730-54. [PMID: 24328819 PMCID: PMC4098119 DOI: 10.1089/ars.2013.5754] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Reactive oxygen species and reactive nitrogen species (ROS/RNS) play an important role in cell signaling pathways. However, the increased production of these species may disrupt cellular homeostasis, giving rise to pathological conditions. Biomaterials that are responsive to ROS/RNS can be strategically used to specifically release therapeutics and diagnostic agents to regions undergoing oxidative stress. RECENT ADVANCES Many nanocarriers intended to exploit redox micro-environments as triggers for drug release, summarized and compared in this review, have recently been developed. We describe these carriers' chemical structures, strategies for payload protection and oxidation-selective release, and ROS/RNS sensitivity as tested in initial studies. CRITICAL ISSUES ROS/RNS are unstable, so reliable measures of their concentrations in various conditions are scarce. Combined with the dearth of materials shown to respond to physiologically relevant levels of ROS/RNS, evaluations of their true sensitivity are difficult. FUTURE DIRECTIONS Oxidation-responsive nanocarriers developed thus far show tremendous potential for applicability in vivo; however, the sensitivity of these chemistries needs to be fine tuned to enable responses to physiological levels of ROS and RNS.
Collapse
Affiliation(s)
- Shivanjali Joshi-Barr
- 1 Skaggs School of Pharmacy and Pharmaceutical Sciences, Laboratory of Bioresponsive Materials, University of California , San Diego, San Diego, California
| | | | | | | |
Collapse
|