201
|
Kanaporis G, Treinys R, Fischmeister R, Jurevičius J. Metabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis. PLoS One 2017; 12:e0184246. [PMID: 28859158 PMCID: PMC5578678 DOI: 10.1371/journal.pone.0184246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/21/2017] [Indexed: 01/14/2023] Open
Abstract
Metabolic stress evoked by myocardial ischemia leads to impairment of cardiac excitation and contractility. We studied the mechanisms by which metabolic inhibition affects the activity of L-type Ca2+ channels (LTCCs) in frog ventricular myocytes. Metabolic inhibition induced by the protonophore FCCP (as well as by 2,4- dinitrophenol, sodium azide or antimycin A) resulted in a dose-dependent reduction of LTCC current (ICa,L) which was more pronounced during β-adrenergic stimulation with isoprenaline. ICa,L was still reduced by metabolic inhibition even in the presence of 3 mM intracellular ATP, or when the cell was dialysed with cAMP or ATP-γ-S to induce irreversible thiophosphorylation of LTCCs, indicating that reduction in ICa,L is not due to ATP depletion and/or reduced phosphorylation of the channels. However, the effect of metabolic inhibition on ICa,L was strongly attenuated when the mitochondrial F1F0-ATP-synthase was blocked by oligomycin or when the cells were dialysed with the non-hydrolysable ATP analogue AMP-PCP. Moreover, increasing the intracellular pH buffering capacity or intracellular dialysis of the myocytes with an alkaline solution strongly attenuated the inhibitory effect of FCCP on ICa,L. Thus, our data demonstrate that metabolic inhibition leads to excessive ATP hydrolysis by the mitochondrial F1F0-ATP-synthase operating in the reverse mode and this results in intracellular acidosis causing the suppression of ICa,L. Limiting ATP break-down by F1F0-ATP-synthase and the consecutive development of intracellular acidosis might thus represent a potential therapeutic approach for maintaining a normal cardiac function during ischemia.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
202
|
Tsai FJ, Ho TJ, Cheng CF, Shiao YT, Chien WK, Chen JH, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin CW, Lin JG, Lan YC, Liu YH, Hung CH, Lin JC, Lin CC, Lai CH, Liang WM, Lin YJ. Characteristics of Chinese herbal medicine usage in ischemic heart disease patients among type 2 diabetes and their protection against hydrogen peroxide-mediated apoptosis in H9C2 cardiomyoblasts. Oncotarget 2017; 8:15470-15489. [PMID: 28099940 PMCID: PMC5362500 DOI: 10.18632/oncotarget.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence for long-term use of Chinese herbal medicine (CHM) as an adjuvant treatment in patients with type 2 diabetes (T2D) remains limited. This study aimed to assess the frequency of use, utilization patterns, and therapeutic effects of adjuvant CHM for ischemic heart disease (IHD) in patients with T2D in Taiwan. We identified 4620 IHD patients with T2D. After matching for age, gender, and insulin use, 988 subjects each were allocated to a CHM group and a non-CHM group. There were no differences in baseline characteristics except for comorbidities. The CHM group contained more cases with chronic obstructive pulmonary disease, hepatitis, ulcer disease, and hyperlipidemia. The cumulative survival probability was higher in CHM users than in matched non-CHM users aged 60 years or older (P < .0001, log rank test) regardless of gender (P = .0046 for men, P = .0010 for women, log rank test). Among the top 12 CHM combinations, Shu-Jing-Huo-Xue-Tang and Shao-Yao-Gan-Cao-Tang (13.6%) were the most common. This dual combination improved antiapoptotic activity in H2O2-exposed H9C2 cells by enhancing phosphorylation of glycogen synthase kinase-3β and p38 mitogen-activated protein kinase and could increase the survival of myocardial cells. Our study suggests that adjuvant CHM therapy may increase the survival probability and provides a comprehensive list for future investigations of the safety and efficacy of CHM for IHD patients with T2D.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan.,Division of Chinese Medicine, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Tzone Shiao
- Heart Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuei Chien
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan.,School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ching Lan
- Department of Health Risk Management, China Medical University, Taichung, Taiwan
| | - Yu-Huei Liu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Miin Liang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
203
|
Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2302896. [PMID: 28828145 PMCID: PMC5554558 DOI: 10.1155/2017/2302896] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries.
Collapse
|
204
|
Jeganathan J, Saraf R, Mahmood F, Pal A, Bhasin MK, Huang T, Mittel A, Knio Z, Simons R, Khabbaz K, Senthilnathan V, Liu D, Sellke F, Matyal R. Mitochondrial Dysfunction in Atrial Tissue of Patients Developing Postoperative Atrial Fibrillation. Ann Thorac Surg 2017; 104:1547-1555. [PMID: 28760472 DOI: 10.1016/j.athoracsur.2017.04.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mitochondria are the major site of cellular oxidation. Metabolism and oxidative stress have been implicated as possible mechanisms for postoperative atrial fibrillation (POAF) after cardiac operations. Establishing the precise nature of mitochondrial dysfunction as an etiologic factor for oxidative stress-related cell death and apoptosis could further the understanding of POAF. To establish this relationship, mitochondrial function was studied in patients undergoing cardiac operations that developed POAF and compared it with patients without POAF. METHODS Right atrial tissue and serum samples were collected from 85 patients before and after cardiopulmonary bypass. Microarray analysis (36 patients) and RNA sequencing (5 patients) were performed on serum and atrial tissues, respectively, for identifying significantly altered genes in patients who developed POAF. On the basis of these results, Western blot was performed in 52 patients for the genes that were most altered, and functional pathways were established. RESULTS POAF developed in 30.6% (n = 26) of patients. Serum microarray showed significant fold changes in the expression of 49 genes involved in inflammatory response, oxidative stress, apoptosis, and amyloidosis (p < 0.05) in the POAF group. Similarly, RNA sequencing demonstrated an increased expression of genes associated with inflammatory response, fatty acid metabolism, and apoptosis in the POAF group (false discovery rate > 0.05). Immunoblotting showed a significant increase in TNFAIP6 (tumor necrosis factor, α-induced protein 6; p = 0.02) and transforming growth factor-β (p = 0.04) after cardiopulmonary bypass in the POAF group. There was a significant decrease in PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α; p = 0.002) and CPT1 (carnitine palmitoyltransferase I; p < 0.0005) in the POAF group after cardiopulmonary bypass. CONCLUSIONS Compared with patients without POAF, those with POAF demonstrated mitochondrial dysfunction at various levels that are suitable for potential pharmacotherapy.
Collapse
Affiliation(s)
- Jelliffe Jeganathan
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rabya Saraf
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Anam Pal
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Manoj K Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas Huang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Aaron Mittel
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ziyad Knio
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Russell Simons
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Kamal Khabbaz
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Venkatachalam Senthilnathan
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Liu
- Division of Cardiac Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Frank Sellke
- Department of Cardiac Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Robina Matyal
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
205
|
Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 2017. [DOI: 10.1007/s10495-017-1384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
206
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
207
|
|
208
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
209
|
Weil BR, Young RF, Shen X, Suzuki G, Qu J, Malhotra S, Canty JM. Brief Myocardial Ischemia Produces Cardiac Troponin I Release and Focal Myocyte Apoptosis in the Absence of Pathological Infarction in Swine. JACC Basic Transl Sci 2017; 2:105-114. [PMID: 28979949 PMCID: PMC5624553 DOI: 10.1016/j.jacbts.2017.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High-sensitivity cTnI assays have increasingly identified a rise and fall in situations not typically thought to be associated with infarction, such as exercise stress in patients with coronary disease and prolonged exercise in apparently healthy marathon runners. Using a porcine model of brief ischemia leading to myocardial stunning following a 10-min coronary occlusion, the authors demonstrate a delayed release of cTnI after what had previously been felt to be completely reversible ischemia. Although tissue necrosis, sarcolemmal disruption, and infarction are absent after brief ischemia, TUNEL staining demonstrates rare single myocytes undergoing irreversible injury from apoptosis. These studies demonstrate that significant cTnI release can occur after a brief duration of ischemia that could be compatible with angina. In the absence of an acute coronary syndrome or a prolonged myocardial supply/demand imbalance, it may be more appropriate to ascribe significant cTnI elevations after brief ischemia to myocardial injury rather than infarction.
In a porcine model of brief ischemia leading to reversible stunning in the absence of tissue necrosis, we demonstrated delayed release of cardiac troponin I (cTnI) that exceeded the 99th percentile for normal animals 60 min after reperfusion and rose to readily detectable levels 24 h later. Although tissue analysis at 60 min showed no evidence of infarction, TUNEL staining demonstrated isolated myocytes undergoing apoptosis, which was absent after 24 h. These results demonstrate that cTnI elevations occur after ischemia of a duration that is insufficient to produce myocyte necrosis and reflect myocyte injury associated with apoptosis in the absence of pathological evidence of infarction.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY USA.,The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY USA
| | - Rebeccah F Young
- Department of Medicine, University at Buffalo, Buffalo, NY USA.,The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY USA
| | - Xiaomeng Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY USA
| | - Gen Suzuki
- Department of Medicine, University at Buffalo, Buffalo, NY USA.,The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY USA
| | - Saurabh Malhotra
- Department of Medicine, University at Buffalo, Buffalo, NY USA.,The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY USA
| | - John M Canty
- VA WNY Health Care System, University at Buffalo, Buffalo, NY USA.,Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY USA.,Department of Medicine, University at Buffalo, Buffalo, NY USA.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY USA.,The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY USA
| |
Collapse
|
210
|
Feng N, Anderson ME. CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 2017; 103:102-109. [PMID: 28025046 PMCID: PMC5404235 DOI: 10.1016/j.yjmcc.2016.12.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/08/2016] [Accepted: 12/18/2016] [Indexed: 01/01/2023]
Abstract
Sustained Ca2+/calmodulin-dependent kinase II (CaMKII) activation plays a central role in the pathogenesis of a variety of cardiac diseases. Emerging evidence suggests CaMKII evoked programmed cell death, including apoptosis and necroptosis, is one of the key underlying mechanisms for the detrimental effect of sustained CaMKII activation. CaMKII integrates β-adrenergic, Gq coupled receptor, reactive oxygen species (ROS), hyperglycemia, and pro-death cytokine signaling to elicit myocardial apoptosis by intrinsic and extrinsic pathways. New evidence demonstrates CaMKII is also a key mediator of receptor interacting serine/threonine kinase 3 (RIP3)-induced myocardial necroptosis. The role of CaMKII in cell death is dependent upon subcellular localization and varies across isoforms and splice variants. While CaMKII is now an extensively validated nodal signal for promoting cardiac myocyte death, the upstream and downstream pathways and targets remain incompletely understood, demanding further investigation.
Collapse
Affiliation(s)
- Ning Feng
- Department of Medicine/Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Mark E Anderson
- Department of Medicine/Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Physiology and the Program in Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
211
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
212
|
Abstract
Although substantial improvements have been made in majority of cardiac disorders, heart failure (HF) remains a major health problem, with both increasing incidence and prevalence over the past decades. For that reason, the number of potential biomarkers that could contribute to diagnosis and treatment of HF patients is, almost exponentially, increasing over the recent years. The biomarkers that are, at the moment, more or less ready for use in everyday clinical practice, reflect different pathophysiological processes present in HF. In this review, seven groups of biomarkers associated to myocardial stretch (mid-regional proatrial natriuretic peptide, MR-proANP), myocyte injury (high-sensitive troponins, hs-cTn; heart-type fatty acid-binding protein, H-FABP; glutathione transferase P1, GSTP1), matrix remodeling (galectin-3; soluble isoform of suppression of tumorigenicity 2, sST2), inflammation (growth differentiation factor-15, GDF-15), renal dysfunction (neutrophil gelatinase-associated lipocalin, NGAL; kidney injury molecule-1, KIM-1), neurohumoral activation (adrenomedullin, MR-proADM; copeptin), and oxidative stress (ceruloplasmin; myeloperoxidase, MPO; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; thioredoxin 1, Trx1) in HF will be overviewed. It is important to note that clinical value of individual biomarkers within the single time points in both diagnosis and outcome prediction in HF is limited. Hence, the future of biomarker application in HF lies in the multimarker panel strategy, which would include specific combination of biomarkers that reflect different pathophysiological processes underlying HF.
Collapse
|
213
|
Abstract
A core feature of ischemic heart disease is injury to cardiomyocytes (CMC). Ischemic CMC manifest the molecular mechanisms to undergo the major forms of cell injury and death, namely, oncotic necrosis, necroptosis, apoptosis and unregulated autophagy. Important modulators of ischemic injury are reperfusion and conditioning. Mitochondria have a major role in mediating the injury to CMC through membrane protein complexes referred to as death channels. Apoptosis is mediated by activation of a channel regulated by the Bcl-2 protein family leading to mitochondrial outer membrane permeabilization (MOMP). Oncotic type injury is mediated by opening of the mitochondrial permeability transition pore (mPTP). Mitochondria also have a reperfusion salvage kinase pathway (RISK). With cyclosporine A serving as a prototype, ongoing research is aimed at developing pharmacological approaches to condition and preserve mitochondrial integrity in order to promote CMC survival during episodes of myocardial ischemia.
Collapse
|
214
|
Affiliation(s)
- João A.C. Lima
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Hospital and School of Medicine, Baltimore, MD
| |
Collapse
|
215
|
Abstract
All multicellular organisms develop during evolution the highly regulated and interconnected pathways of cell death. This complex network contributes to the pathogenesis of various cardiovascular disorders including ischemia/reperfusion injury, myocardial infarction, heart failure, dysrhythmias and atherosclerosis. Chronic cardiac remodeling response and transition to overt HF have been associated with modestly increased apoptosis, although the actual burden of chronic cell loss attributable to apoptosis is not clear. Central mediators of cardiomyocyte survival and death are the mitochondrial organelles. Based on its morphological characteristics, cell death can be classified into three major types: apoptosis, necrosis and autophagy. Recently, a new pathway of regulated necrosis, necroptosis, has also been reported in the failing heart. The mitochondrial (intrinsic) and the death-receptor-mediated (extrinsic) converge at mitochondria inducing release of mitochondrial apoptogens to initiate the caspase cascade and eventually degradation of the doomed cardiomyocyte. Activation of death receptors can initiate not only extrinsic apoptotic pathway, but also necrosis. On the other hand, autophagy, which is characterized by the massive formation of lysosomal-derived vesicles, containing degenerating cytoplasmic contents, is primarily a survival response to nutrient deprivation, and a selective form of autophagy, mitophagy, is also a protective mechanism that allows to eliminate damaged mitochondria and thereby to attenuate mitochondria-mediated apoptosis and necrosis in the myocardium. Further insight into the molecular mechanisms underlying cell death will increase the efficiency and repertoire of therapeutic interventions available in cardiovascular disease.
Collapse
Affiliation(s)
- Gordon W Moe
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| | - José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue. 2nd. Floor, Suite 225, Highland Park, NJ, 08904, USA.
| |
Collapse
|
216
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
217
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
218
|
Liao P, Sun G, Zhang C, Wang M, Sun Y, Zhou Y, Sun X, Jian J. Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction. Molecules 2016; 21:molecules21111469. [PMID: 27827932 PMCID: PMC6273835 DOI: 10.3390/molecules21111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
This study aimed to determine the effects of Bauhinia championii flavone (BCF) on hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cardiomyocytes and to explore potential mechanisms. The H/R model in H9c2 cardiomyocytes was established by 6 h of hypoxia and 12 h of reoxygenation. Cell viability was detected by CCK-8 assay. Apoptotic rate was measured by Annexin V/PI staining. Levels of mitochondria-associated ROS, mitochondrial transmembrane potential (∆Ψm) and mitochondrial permeability transition pores (MPTP) opening were assessed by fluorescent probes. ATP production was measured by ATP assay kit. The release of cytochrome c, translocation of Bax, and related proteins were measured by western blotting. Our results showed that pretreatment with BCF significantly improved cell viability and attenuated the cardiomyocyte apoptosis caused by H/R. Furthermore, BCF increased ATP production and inhibited ROS-generating mitochondria, depolarization of ΔΨm, and MPTP opening. Moreover, BCF pretreatment decreased Bax mitochondrial translocation, cytochrome c release, and activation of caspase-3, as well as increased the expression of p-PI3K, p-Akt, and the ratio of Bcl-2 to Bax. Interestingly, a specific inhibitor of phosphatidylinositol 3-kinase, LY294002, partly reversed the anti-apoptotic effect of BCF. These observations indicated that BCF pretreatment attenuates H/R-induced myocardial apoptosis strength by improving mitochondrial dysfunction via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ping Liao
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Chan Zhang
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yao Sun
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Yuehan Zhou
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| |
Collapse
|
219
|
Hu DX, Liu XB, Song WC, Wang JA. Roles of SIRT3 in heart failure: from bench to bedside. J Zhejiang Univ Sci B 2016; 17:821-830. [PMID: 27819129 PMCID: PMC5120224 DOI: 10.1631/jzus.b1600253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) represents the most common endpoint of most cardiovascular diseases (CVDs) which are the leading causes of death around the world. Despite the advances in treating CVDs, the prevalence of HF continues to increase. It is believed that better results of prognosis are obtained from prevention rather than additional treatment for HF. Therefore, it is reasonable to prevent the development of CVDs or other complications to HF. Most types of HF are attributed to contractile dysfunction, cardiac hypertrophy or remodeling, and ischemic injuries. SIRT3 is a mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase whose substrates vary from metabolic biogenesis-associated proteins to stress-responsive proteins. In recent years, a number of studies have highlighted the cardio-protective role of SIRT3 and, as such, efforts have been made to induce over-expression or increased activity of this protein. In this review, we provide an overview of the roles of SIRT3 in cardiac hypertrophy induced by pressure overload or agonists and cardiomyocytes ischemic injuries. Moreover, we will introduce the application of SIRT3 agonists in the prevention of cardiac hypertrophy and ischemia reperfusion injury.
Collapse
Affiliation(s)
- De-xing Hu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
- Department of Cardiology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo 315100, China
| | - Xian-bao Liu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
| | - Wen-chao Song
- Department of Cardiology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo 315100, China
| | - Jian-an Wang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Provincial Key Laboratory of Cardiovascular Research of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
220
|
Tang JY, Jin P, He Q, Lu LH, Ma JP, Gao WL, Bai HP, Yang J. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation. Mol Cell Biochem 2016; 424:111-122. [PMID: 27785700 DOI: 10.1007/s11010-016-2848-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Naringenin, a flavanone mainly derived from grapes and citrus fruits, has been reported to exhibit cardioprotective effects. Accumulating evidence has confirmed that endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of myocardial ischemia/reperfusion injury and inhibiting ER stress is a potential therapeutic target/strategy in preventing cardiovascular diseases. Herein, the current study was designed to investigate whether naringenin protects H9c2 myocardial cells against hypoxia/reoxygenation (H/R) injury via attenuating ER stress or ER stress-mediated apoptosis. Our results showed that naringenin treatment resulted in obvious increases in the viability of H9c2 cells and the expression of Bcl-2 (anti-apoptotic protein), and decreases in the morphological changes of apoptotic cells, the activity of caspase-3 and the expression of Bax (pro-apoptotic protein) in H/R-treated H9c2 cells, implying the protective effects of naringenin against H/R-induced injury. In addition, naringenin also significantly reversed H/R-induced ER stress as evidenced by the up-regulation of Glucose-regulated protein 78, C/EBP homologous protein and Cleaved caspase-12 proteins. Meanwhile, naringenin remarkably reversed H/R-induced the increases in the expression of cleaved activating transcription factor 6 (ATF6) and phosphorylation levels of phospho-extracellular regulated protein kinases (PERK) and inositol-requiring enzyme-1α (IRE1α) in H9c2 cells. Finally, we found that ATF6 siRNA, PERK siRNA or IRE1α siRNA abolished H/R-induced cytotoxicity and apoptosis in H9c2 cells. In conclusion, these results confirmed that ER stress-mediated apoptosis contributes to the protection effects of naringenin against H/R injury, which is potentially involved in ATF6, IRE1α and PERK signaling activation.
Collapse
Affiliation(s)
- Jia-You Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Qing He
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Lin-He Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Ji-Peng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Wei-Lun Gao
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - He-Ping Bai
- Department of Thoracic and Cardiovascular Surgery, The Second Hospital of Yulin, Yulin, 719000, Shanxi, People's Republic of China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China.
| |
Collapse
|
221
|
Wang F, Wei ZL, Sun XR, Zhang Q, Zhang CX, Jiang WX, Yan X, Liu JN, Yuan X. Apoptosis Inducing Factor Is Involved in Stretch-Induced Apoptosis of Myoblast via a Caspase-9 Independent Pathway. J Cell Biochem 2016; 118:829-838. [PMID: 27735993 DOI: 10.1002/jcb.25759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fang Wang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Zhu-Liang Wei
- Department of Orthodontics; Jinan Stomatological Hospital; Jinan Shandong Province 250001 People's Republic of China
| | - Xian-Rui Sun
- Department of Orthodontics; Weihai Stomatological Hospital; Weihai Shandong Province 264200 People's Republic of China
| | - Qiang Zhang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Cai-Xia Zhang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Wen-Xin Jiang
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Xiao Yan
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Jia-Ning Liu
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| | - Xiao Yuan
- Department of Orthodontics; The Affiliated Qingdao Municipal Hospital, Qingdao University; Qingdao Shandong Province 266011 People's Republic of China
| |
Collapse
|
222
|
Qin D, Wang X, Li Y, Yang L, Wang R, Peng J, Essandoh K, Mu X, Peng T, Han Q, Yu KJ, Fan GC. MicroRNA-223-5p and -3p Cooperatively Suppress Necroptosis in Ischemic/Reperfused Hearts. J Biol Chem 2016; 291:20247-59. [PMID: 27502281 DOI: 10.1074/jbc.m116.732735] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that myocardial ischemia/reperfusion (I/R)-induced necrosis can be controlled by multiple genes. In this study, we observed that both strands (5p and 3p) of miR-223 were remarkably dysregulated in mouse hearts upon I/R. Precursor miR-223 (pre-miR-223) transgenic mouse hearts exhibited better recovery of contractile performance over reperfusion period and lesser degree of myocardial necrosis than wild type hearts upon ex vivo and in vivo myocardial ischemia. Conversely, pre-miR-223 knock-out (KO) mouse hearts displayed opposite effects. Furthermore, we found that the RIP1/RIP3/MLKL necroptotic pathway and inflammatory response were suppressed in transgenic hearts, whereas they were activated in pre-miR-223 KO hearts upon I/R compared with wild type controls. Accordingly, treatment of pre-miR-223 KO mice with necrostatin-1s, a potent necroptosis inhibitor, significantly decreased I/R-triggered cardiac necroptosis, infarction size, and dysfunction. Mechanistically, we identified two critical cell death receptors, TNFR1 and DR6, as direct targets of miR-223-5p, whereas miR-223-3p directly suppressed the expression of NLRP3 and IκB kinase α, two important mediators known to be involved in I/R-induced inflammation and cell necroptosis. Our findings indicate that miR-223-5p/-3p duplex works together and cooperatively inhibits I/R-induced cardiac necroptosis at multiple layers. Thus, pre-miR-223 may constitute a new therapeutic agent for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Dongze Qin
- From the Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China, Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Xiaohong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yutian Li
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Liwang Yang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Ruitao Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Heilongjiang 150081, China, and
| | - Jiangtong Peng
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Kobina Essandoh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Xingjiang Mu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, Ontario N6A 4G5, Canada
| | - Qinghua Han
- From the Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Kai-Jiang Yu
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Heilongjiang 150081, China, and
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267,
| |
Collapse
|
223
|
Ishikita A, Matoba T, Ikeda G, Koga JI, Mao Y, Nakano K, Takeuchi O, Sadoshima J, Egashira K. Nanoparticle-Mediated Delivery of Mitochondrial Division Inhibitor 1 to the Myocardium Protects the Heart From Ischemia-Reperfusion Injury Through Inhibition of Mitochondria Outer Membrane Permeabilization: A New Therapeutic Modality for Acute Myocardial Infarction. J Am Heart Assoc 2016; 5:e003872. [PMID: 27451459 PMCID: PMC5015412 DOI: 10.1161/jaha.116.003872] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mitochondria-mediated cell death plays a critical role in myocardial ischemia-reperfusion (IR) injury. We hypothesized that nanoparticle-mediated drug delivery of mitochondrial division inhibitor 1 (Mdivi1) protects hearts from IR injury through inhibition of mitochondria outer membrane permeabilization (MOMP), which causes mitochondrial-mediated cell death. METHODS AND RESULTS We formulated poly (lactic-co-glycolic acid) nanoparticles containing Mdivi1 (Mdivi1-NP). We recently demonstrated that these nanoparticles could be successfully delivered to the cytosol and mitochondria of cardiomyocytes under H2O2-induced oxidative stress that mimicked IR injury. Pretreatment with Mdivi1-NP ameliorated H2O2-induced cell death in rat neonatal cardiomyocytes more potently than Mdivi1 alone, as indicated by a lower estimated half-maximal effective concentration and greater maximal effect on cell survival. Mdivi1-NP treatment of Langendorff-perfused mouse hearts through the coronary arteries at the time of reperfusion reduced infarct size after IR injury more effectively than Mdivi1 alone. Mdivi1-NP treatment also inhibited Drp1-mediated Bax translocation to the mitochondria and subsequent cytochrome c leakage into the cytosol, namely, MOMP, in mouse IR hearts. MOMP inhibition was also observed in cyclophilin D knockout (CypD-KO) mice, which lack the mitochondrial permeability transition pore (MPTP) opening. Intravenous Mdivi1-NP treatment in vivo at the time of reperfusion reduced IR injury in wild-type and CypD-KO mice, but not Bax-KO mice. CONCLUSIONS Mdivi1-NP treatment reduced IR injury through inhibition of MOMP, even in the absence of a CypD/MPTP opening. Thus, nanoparticle-mediated drug delivery of Mdivi1 may be a novel treatment strategy for IR injury.
Collapse
Affiliation(s)
- Ayako Ishikita
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Gentaro Ikeda
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan Department of Cardiovascular Research, Development, and Translational Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yajing Mao
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan Department of Cardiovascular Research, Development, and Translational Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Osamu Takeuchi
- Labolatory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ
| | - Kensuke Egashira
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan Department of Cardiovascular Research, Development, and Translational Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
224
|
Chan HYS, Cheung MC, Gao Y, Miller AL, Webb SE. Expression and reconstitution of the bioluminescent Ca(2+) reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:811-24. [PMID: 27430888 DOI: 10.1007/s11427-016-5094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2016] [Indexed: 02/05/2023]
Abstract
In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor (IP3R) agonist, small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB, a known IP3R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor (RyR) agonist, a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike RyRs, IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Harvey Y S Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Man Chun Cheung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Gao
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
225
|
Li H, Zhang S, Li F, Qin L. NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol Immunol 2016; 76:90-7. [PMID: 27393910 DOI: 10.1016/j.molimm.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/07/2023]
Abstract
Increasing evidence suggests that inflammation and apoptosis are involved in the development of acute myocardial ischemia (AMI). Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) have recently been identified as key mediators of inflammatory responses. The aim of this study was to explore the specific role and the underlying regulatory mechanism of NLRX1 in myocardial ischemic injury. The results show that NLRX1, located in mitochondria, was significantly down-regulated in AMI tissues and hypoxia-induced H9c2 cells. Overexpression of NLRX1 markedly decreased the levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin-I (cTn-I), down-regulated the production of IL-1β,IL-18 and IL-6, and reduced apoptosis induced by hypoxia. Conversely, depletion of NLRX1 with small interfering RNA (siRNA) aggravated hypoxia-induced ischemic injury. We then demonstrated that NLRX1 was associated with the mitochondrial antiviral signaling protein (MAVS) and regulated MAVS-dependent NLRP3 inflammasome activation. NLRX1 overexpression significantly inhibited hypoxia-induced up-regulation of MAVS, NLRP3 and Caspase-1 expression. Additionally, the negative effects of NLRX1 overexpression on hypoxia-induced inflammatory factor production and apoptosis were neutralized by MAVS or NLRP3 overexpression. Taken together, these findings suggest that NLRX1 may function as a cardiac-protective molecule in myocardial ischemic injury by repressing inflammation and apoptosis; the biological effects appear to be mediated by the inhibition of MAVS-dependent NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Emergency, Henan Province People' Hospital, Zhengzhou, Henan Province, 450003, China
| | - Shanshan Zhang
- Department of Emergency, Henan Province People' Hospital, Zhengzhou, Henan Province, 450003, China
| | - Faliang Li
- Department of Emergency, Henan Province People' Hospital, Zhengzhou, Henan Province, 450003, China
| | - Lijie Qin
- Department of Emergency, Henan Province People' Hospital, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
226
|
Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG, Nolan K, Gumina RJ, Thompson TB, Magnuson MA, Harrison DG, Hatzopoulos AK. BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circ Res 2016; 119:434-49. [PMID: 27283840 DOI: 10.1161/circresaha.116.308700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown. OBJECTIVE To investigate the role of Grem2 during cardiac repair and assess its potential to improve ventricular function after injury. METHODS AND RESULTS Our data show that Grem2 is transiently induced after MI in peri-infarct area cardiomyocytes during the inflammatory phase of cardiac tissue repair. By engineering loss- (Grem2(-/-)) and gain- (TG(Grem2)) of-Grem2-function mice, we discovered that Grem2 controls the magnitude of the inflammatory response and limits infiltration of inflammatory cells in peri-infarct ventricular tissue, improving cardiac function. Excessive inflammation in Grem2(-/-) mice after MI was because of overactivation of canonical BMP signaling, as proven by the rescue of the inflammatory phenotype through administration of the canonical BMP inhibitor, DMH1. Furthermore, intraperitoneal administration of Grem2 protein in wild-type mice was sufficient to reduce inflammation after MI. Cellular analyses showed that BMP2 acts with TNFα to induce expression of proinflammatory proteins in endothelial cells and promote adhesion of leukocytes, whereas Grem2 specifically inhibits the BMP2 effect. CONCLUSIONS Our results indicate that Grem2 provides a molecular barrier that controls the magnitude and extent of inflammatory cell infiltration by suppressing canonical BMP signaling, thereby providing a novel mechanism for limiting the adverse effects of excessive inflammation after MI.
Collapse
Affiliation(s)
- Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - John A Schoenhard
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mohamed A Saleh
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Amrita Mukherjee
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - William G McMaster
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Kristof Nolan
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Richard J Gumina
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Thomas B Thompson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mark A Magnuson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - David G Harrison
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.).
| |
Collapse
|
227
|
Boal F, Timotin A, Roumegoux J, Alfarano C, Calise D, Anesia R, Parini A, Valet P, Tronchere H, Kunduzova O. Apelin-13 administration protects against ischaemia/reperfusion-mediated apoptosis through the FoxO1 pathway in high-fat diet-induced obesity. Br J Pharmacol 2016; 173:1850-63. [PMID: 27005319 PMCID: PMC4867747 DOI: 10.1111/bph.13485] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Apelin-13, an endogenous ligand for the apelin (APJ) receptor, behaves as a potent modulator of metabolic and cardiovascular disorders. Here, we examined the effects of apelin-13 on myocardial injury in a mouse model combining ischaemia/reperfusion (I/R) and obesity and explored their underlying mechanisms. EXPERIMENTAL APPROACH Adult male C57BL/6J mice were fed a normal diet (ND) or high-fat diet (HFD) for 6 months and then subjected to cardiac I/R. The effects of apelin-13 post-treatment on myocardial injury were evaluated in HFD-fed mice after 24 h I/R. Changes in protein abundance, phosphorylation, subcellular localization and mRNA expression were determined in cardiomyoblast cell line H9C2, primary cardiomyocytes and cardiac tissue from ND- and HFD-fed mice. Apoptosis was evaluated by TUNEL staining and caspase-3 activity. Mitochondrial ultrastructure was analysed by electron microscopy. KEY RESULTS In HFD-fed mice subjected to cardiac I/R, i.v. administration of apelin-13 significantly reduced infarct size, myocardial apoptosis and mitochondrial damage compared with vehicle-treated animals. In H9C2 cells and primary cardiomyocytes, apelin-13 induced FoxO1 phosphorylation and nuclear exclusion. FoxO1 silencing by siRNA abolished the protective effects of apelin-13 against hypoxia-induced apoptosis and mitochondrial ROS generation. Finally, apelin deficiency in mice fed a HFD resulted in reduced myocardial FoxO1 expression and impaired FoxO1 distribution. CONCLUSIONS AND IMPLICATIONS These data reveal apelin as a novel regulator of FoxO1 in cardiac cells and provide evidence for the potential of apelin-13 in prevention of apoptosis and mitochondrial damage in conditions combining I/R injury and obesity.
Collapse
Affiliation(s)
- Frederic Boal
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Andrei Timotin
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Jessica Roumegoux
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Chiara Alfarano
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Denis Calise
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
- US006, Microsurgery ServicesToulouseCedex 4France
| | - Rodica Anesia
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Angelo Parini
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Philippe Valet
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Helene Tronchere
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1048ToulouseCedex 4France
- University of Toulouse, UPS, Institute of Metabolic and Cardiovascular DiseasesToulouseFrance
| |
Collapse
|
228
|
Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway. Molecules 2016; 21:molecules21060683. [PMID: 27248986 PMCID: PMC6273438 DOI: 10.3390/molecules21060683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022] Open
Abstract
Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize that AR may improve mitochondrial function to inhibit MI/R-induced cardiomyocyte apoptosis. In this study, we replicated an in vitro H9c2 cardiomyocyte MI/R model by hypoxia/reoxygenation (H/R) treatment. The viability of H9c2 cardiomyocytes was determined by MTT assay; apoptosis was evaluated by flow cytometry and TUNEL experiments; mitochondrial permeability transition pore (mPTP) opening was analyzed by a calcein-cobalt quenching method; and mitochondrial membrane potential (ΔΨm) was detected by JC-1. Moreover, we used western blots to determine the mitochondrial cytochrome c translocation to cytosolic and the expression of caspase-3, Bcl-2, and Bax proteins. These results showed that the application of AR decreased the ratio of apoptosis and the extent of mPTP opening, but increased ΔΨm. AR also inhibited H/R-induced release of mitochondrial cytochrome c and decreased the expression of the caspase-3, Bax proteins. Conversely, it remarkably increased the expression of Bcl-2 protein. Taken together, these results revealed that AR protects H9c2 cardiomyocytes against H/R-induced apoptosis through mitochondrial-mediated apoptotic signaling pathway.
Collapse
|
229
|
Studies on the role of apoptosis after transient myocardial ischemia: genetic deletion of the executioner caspases-3 and -7 does not limit infarct size and ventricular remodeling. Basic Res Cardiol 2016; 111:18. [PMID: 26924441 DOI: 10.1007/s00395-016-0537-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Although it is widely accepted that apoptosis may contribute to cell death in myocardial infarction, experimental evidence suggests that adult cardiomyocytes repress the expression of the caspase-dependent apoptotic pathway. The aim of this study was to analyze the contribution of caspase-mediated apoptosis to myocardial ischemia-reperfusion injury. Cardiac-specific caspase-3 deficient/full caspase-7-deficient mice (Casp3/7DKO) and wild type control mice (WT) were subjected to in situ ischemia by left anterior coronary artery ligation for 45 min followed by 24 h or 28 days of reperfusion. Heart function was assessed using M-mode echocardiography. Deletion of caspases did not modify neither infarct size determined by triphenyltetrazolium staining after 24 h of reperfusion (40.0 ± 5.1 % in WT vs. 36.2 ± 3.6 % in Casp3/7DKO), nor the scar area measured by pricosirius red staining after 28 days of reperfusion (41.1 ± 5.4 % in WT vs. 44.6 ± 8.7 % in Casp3/7DKO). Morphometric and echocardiographic studies performed 28 days after the ischemic insult revealed left ventricular dilation and severe cardiac dysfunction without statistically significant differences between WT and Casp3/7DKO groups. These data demonstrate that the executioner caspases-3 and -7 do not significantly contribute to cardiomyocyte death induced by transient coronary occlusion and provide the first evidence obtained in an in vivo model that argues against a relevant role of apoptosis through the canonical caspase pathway in this context.
Collapse
|
230
|
Palomer X, Barroso E, Zarei M, Botteri G, Vázquez-Carrera M. PPARβ/δ and lipid metabolism in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1569-78. [PMID: 26825692 DOI: 10.1016/j.bbalip.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/23/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Cardiac lipid metabolism is the focus of attention due to its involvement in the development of cardiac disorders. Both a reduction and an increase in fatty acid utilization make the heart more prone to the development of lipotoxic cardiac dysfunction. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)β/δ modulates different aspects of cardiac fatty acid metabolism, and targeting this nuclear receptor can improve heart diseases caused by altered fatty acid metabolism. In addition, PPARβ/δ regulates glucose metabolism, the cardiac levels of endogenous antioxidants, mitochondrial biogenesis, cardiomyocyte apoptosis, the insulin signaling pathway and lipid-induced myocardial inflammatory responses. As a result, PPARβ/δ ligands can improve cardiac function and ameliorate the pathological progression of cardiac hypertrophy, heart failure, cardiac oxidative damage, ischemia-reperfusion injury, lipotoxic cardiac dysfunction and lipid-induced cardiac inflammation. Most of these findings have been observed in preclinical studies and it remains to be established to what extent these intriguing observations can be translated into clinical practice. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Xavier Palomer
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Emma Barroso
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mohammad Zarei
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gaia Botteri
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
231
|
Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca(2+), catabolism, and catastrophic cell death. Biochim Biophys Acta Mol Basis Dis 2016; 1862:763-777. [PMID: 26775029 DOI: 10.1016/j.bbadis.2016.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Robust successes have been achieved in recent years in conquering the acutely lethal manifestations of heart disease. Many patients who previously would have died now survive to enjoy happy and productive lives. Nevertheless, the devastating impact of heart disease continues unabated, as the spectrum of disease has evolved with new manifestations. In light of this ever-evolving challenge, insights that culminate in novel therapeutic targets are urgently needed. Here, we review fundamental mechanisms of heart failure, both with reduced (HFrEF) and preserved (HFpEF) ejection fraction. We discuss pathways that regulate cardiomyocyte remodeling and turnover, focusing on Ca(2+) signaling, autophagy, and apoptosis. In particular, we highlight recent insights pointing to novel connections among these events. We also explore mechanisms whereby potential therapeutic approaches targeting these processes may improve morbidity and mortality in the devastating syndrome of heart failure.
Collapse
Affiliation(s)
- Geoffrey W Cho
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
232
|
Jewhurst K, McLaughlin KA. Beyond the Mammalian Heart: Fish and Amphibians as a Model for Cardiac Repair and Regeneration. J Dev Biol 2015; 4:jdb4010001. [PMID: 29615574 PMCID: PMC5831815 DOI: 10.3390/jdb4010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
The epidemic of heart disease, the leading cause of death worldwide, is made worse by the fact that the adult mammalian heart is especially poor at repair. Damage to the mammal heart-such as that caused by myocardial infarction-leads to scarring, resulting in cardiac dysfunction and heart failure. In contrast, the hearts of fish and urodele amphibians are capable of complete regeneration of cardiac tissue from multiple types of damage, with full restoration of functionality. In the last decades, research has revealed a wealth of information on how these animals are able to perform this remarkable feat, and non-mammalian models of heart repair have become a burgeoning new source of data on the morphological, cellular, and molecular processes necessary to heal cardiac damage. In this review we present the major findings from recent research on the underlying mechanisms of fish and amphibian heart regeneration. We also discuss the tools and techniques that have been developed to answer these important questions.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
233
|
Linkermann A, Konstantinidis K, Kitsis RN. Catch me if you can: targeting the mitochondrial permeability transition pore in myocardial infarction. Cell Death Differ 2015; 23:1-2. [PMID: 26586571 DOI: 10.1038/cdd.2015.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- A Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - K Konstantinidis
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R N Kitsis
- Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| |
Collapse
|
234
|
Dlamini Z, Tshidino SC, Hull R. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases. Int J Mol Sci 2015; 16:27171-90. [PMID: 26580598 PMCID: PMC4661875 DOI: 10.3390/ijms161126017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.
Collapse
Affiliation(s)
- Zodwa Dlamini
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban 4026, South Africa.
| | - Shonisani C Tshidino
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Polokwane 0727, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, Department of Life and Consumer Sciences, Florida Science Campus, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
235
|
Dhingra R, Kirshenbaum LA. Succinate dehydrogenase/complex II activity obligatorily links mitochondrial reserve respiratory capacity to cell survival in cardiac myocytes. Cell Death Dis 2015; 6:e1956. [PMID: 26512964 PMCID: PMC5399179 DOI: 10.1038/cddis.2015.310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - L A Kirshenbaum
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
236
|
Duan L, Lei H, Zhang Y, Wan B, Chang J, Feng Q, Huang W. Calcitonin Gene-Related Peptide Improves Hypoxia-Induced Inflammation and Apoptosis via Nitric Oxide in H9c2 Cardiomyoblast Cells. Cardiology 2015; 133:44-53. [PMID: 26430901 DOI: 10.1159/000439123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this work was to investigate whether calcitonin gene-related peptide (CGRP) plays a protective role in cardiomyocytes against hypoxia-induced inflammation and apoptosis via an NO-mediated pathway. METHODS H9c2 cardiac cells were exposed to hypoxia for 2 h to establish a model of myocardial hypoxic-ischemic injury. The cells were pretreated with either CGRP or nitric oxide synthase (NOS) inhibitor (L-NAME) before being exposed to hypoxia for 30 min. Cell viability was analyzed using a cell counter kit 8 (CCK-8). The levels of IL-6 and TNF-α were determined by the corresponding enzyme-linked immunosorbent assay. The expression levels of several apoptosis proteins (p53, caspase-3, cytochrome C) and NOS were detected by Western blot assays. An NO kit was used to evaluate the production of NO. RESULTS Pretreatment of H9c2 cardiac cells with CGRP for 30 min prior to exposure to hypoxia markedly improved cell viability (83.57 ± 3.21 vs. 62.83 ± 8.30%, p < 0.001); the same effect was observed following pretreatment with the NOS inhibitor L-NAME (89.34 ± 5.95 vs. 75.01 ± 5.61%, p < 0.01). Pretreatment with CGRP also significantly attenuated the inflammatory responses induced by hypoxia, as evidenced by decreases of the levels of both IL-6 (193.21 ± 13.54 vs. 293.38 ± 56.49%, p < 0.001) and TNF-α (207.71 ± 44.27 vs. 281.46 ± 64.88%, p < 0.001). Additionally, CGRP significantly decreased the hypoxia-induced overexpression of the apoptotic proteins (p53: 0.27 ± 0.10 vs. 0.87 ± 0.30, p < 0.001; caspase-3: 0.65 ± 0.15 vs. 0.98 ± 0.26, p < 0.001; cytochrome C: 1.51 ± 0.39 vs. 2.80 ± 0.69, p < 0.001) and enhanced the expression of both endothelial NOS (eNOS; 0.59 ± 0.24 vs. 0.37 ± 0.14, p < 0.05) and phosphorylated eNOS (0.60 ± 0.13 vs. 0.40 ± 0.07, p < 0.05). Furthermore, the application of both L-NAME and CGRP attenuated the hypoxia-induced expression of inducible NOS (iNOS; p < 0.05) and enhanced a hypoxia-mediated decrease in NO (p < 0.01). Interestingly, the expression levels of cell apoptosis (p < 0.05), iNOS and eNOS (p < 0.05) were decreased with L-NAME and CGRP cotreatment following 2 h of acute hypoxia, but the apoptotic factors (p < 0.05) were increased compared with only CGRP pretreatment. CONCLUSION CGRP protects cardiomyocytes from hypoxia-induced inflammation and apoptosis by modulating NO production.
Collapse
Affiliation(s)
- Lixiao Duan
- Cardiovascular Laboratory, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
238
|
Kumar R, Kumar Pate S, Rami Reddy B, Bhatt M, Karthik K, Gandham RK, Singh Mali Y, Dhama K. Apoptosis and Other Alternate Mechanisms of Cell Death. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.646.668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
239
|
Paik DT, Rai M, Ryzhov S, Sanders LN, Aisagbonhi O, Funke MJ, Feoktistov I, Hatzopoulos AK. Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circ Res 2015; 117:804-16. [PMID: 26338900 DOI: 10.1161/circresaha.115.306886] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
Abstract
RATIONALE Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown. OBJECTIVE To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury. METHODS AND RESULTS Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopoietin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels. CONCLUSION Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.
Collapse
Affiliation(s)
- David T Paik
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Meena Rai
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Omonigho Aisagbonhi
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Mitchell J Funke
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Igor Feoktistov
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R.); Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston (O.A.); and Golden Rule Medical, Cincinnati, OH (M.J.F.).
| |
Collapse
|
240
|
Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Cha MJ, Choi E, Kim S, Hwang KC. let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3. Stem Cell Res Ther 2015; 6:147. [PMID: 26296645 PMCID: PMC4546263 DOI: 10.1186/s13287-015-0134-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/17/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have therapeutic potential for the repair of myocardial injury. The efficacy of MSC therapy for myocardial regeneration mainly depends on the survival of cells after transplantation into the infarcted heart. In the transplanted regions, reactive oxygen species (ROS) can cause cell death, and this process depends on caspase activation and autophagosome formation. Methods A Software TargetScan was utilized to search for microRNAs (miRNAs) that target caspase-3 mRNA. Six candidate miRNAs including let-7b were selected and transfected into human MSCs in vitro. Expression of MEK-EKR signal pathways and autophagy-related genes were detected. Using ischemia/reperfusion model (I/R), the effect of MSCs enriched with let-7b was determined after transplantation into infarcted heart area. Miller catheter was used to evaluate cardiac function. Results Here, we report that let-7b targets caspase-3 to regulate apoptosis and autophagy in MSCs exposed to ROS. Let-7b-transfected MSCs (let-7b-MSCs) showed high expression of survival-related proteins, including p-MEK, p-ERK and Bcl-2, leading to a decrease in Annexin V/PI- and TUNEL-positive cells under ROS-rich conditions. Moreover, autophagy-related genes, including Atg5, Atg7, Atg12 and beclin-1, were significantly downregulated in let-7b-MSCs. Using a rat model of acute myocardial infarction, we found that intramyocardial injection of let-7b-MSCs markedly enhanced left ventricular (LV) function and microvessel density, in accordance with a reduced infarct size and the expression of caspase-3. Conclusions Taken together, these data indicate that let-7b may protect MSCs implanted into infarcted myocardium from apoptosis and autophagy by directly targeting caspase-3 signaling.
Collapse
Affiliation(s)
- Onju Ham
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Se-Yeon Lee
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea.
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea.
| | - Min-Ji Cha
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Eunhyun Choi
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Soonhag Kim
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Ki-Chul Hwang
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| |
Collapse
|
241
|
Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR. The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:111-28. [PMID: 26033200 DOI: 10.1016/j.pbiomolbio.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
The incidence of CVD increases with aging, because of long-term exposure to risk factors/stressors. Aging is a complex biological process resulting in progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. The main hallmarks of aging are cellular senescence, stem cell exhaustion, and altered intracellular communication. The major hallmarks of senescence are mitochondrial dysfunction, genomic instability, telomere attrition and epigenetic alterations, all of which contributing to cellular aging. Such events are controls by a family of small, non-coding RNAs (miRNAs) that interact with component of cellular senescence pathway; mitochondrial biogenesis/removal, DNA damage response machinery and IGF-1 signaling pathway. Here, we review recent in vivo/in vitro reports that miRNAs are key modulators of heart senescence, and act as master switchers to influence reprogramming pathway. We discuss evidence that abrupt deregulation of some mit-miRNAs governing senescence programs underlies age-associated CVD. In particular, due to the highly conserved nature and well-recognized target sites, miRNAs have been defined as master switchers in controlling heart progenitor cell biology. Modulation of mit-miRNA expression holds the great promise in switching off/on cellular senescence/reprogramming to rejuvenate stem cells to aid regenerative process.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abbas Vakili Zarch
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
242
|
Stein AB, Goonewardena SN, Jones TA, Prusick PJ, Bazzi AA, Belyavskaya JM, McCoskey MM, Dandar RA. The PTIP-Associated Histone Methyltransferase Complex Prevents Stress-Induced Maladaptive Cardiac Remodeling. PLoS One 2015; 10:e0127839. [PMID: 26001054 PMCID: PMC4441468 DOI: 10.1371/journal.pone.0127839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/20/2015] [Indexed: 12/31/2022] Open
Abstract
Pressure overload induces stress-induced signaling pathways and a coordinated transcriptional response that begets concentric cardiac hypertrophy. Although concentric hypertrophy initially attenuates wall stress and maintains cardiac function, continued stress can result in maladaptive cardiac remodeling. Cardiac remodeling is orchestrated by transcription factors that act within the context of an epigenetic landscape. Since the epigenetic landscape serves as a molecular link between environmental factors (stress) and cellular phenotype (disease), defining the role of the epigenome in the development and progression of cardiac remodeling could lead to new therapeutic approaches. In this study, we hypothesized that the epigenetic landscape is important in the development of cardiac hypertrophy and the progression to maladaptive remodeling. To demonstrate the importance of the epigenome in HF, we targeted the PTIP-associated histone methyltransferase complex in adult cardiac myocytes. This complex imparts histone H3 lysine 4 (H3K4) methylation marks at actively expressed genes. We subjected PTIP null (PTIP-) mice to 2 weeks of transverse aortic constriction, a stress that induces concentric hypertrophy in control mice (PTIP+). PTIP- mice have a maladaptive response to 2wk of transverse aortic constriction (TAC)-induced pressure overload characterized by cardiac dilatation, decreased LV function, cardiac fibrosis, and increased cell death. PTIP deletion resulted in altered stress-induced gene expression profiles including blunted expression of ADRA1A, ADRA1B, JUN, ATP2A2, ATP1A2, SCN4B, and CACNA1G. These results suggest that H3K4 methylation patterns and the complexes that regulate them, specifically the PTIP-associated HMT, are necessary for the adaptive response to TAC.
Collapse
Affiliation(s)
- Adam B. Stein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
- * E-mail:
| | - Sascha N. Goonewardena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Thomas A. Jones
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Parker J. Prusick
- Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, United States of America
| | - Ahmad A. Bazzi
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Jane M. Belyavskaya
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Makayla M. McCoskey
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Rachel A. Dandar
- Department of Biology, Kalamazoo College, Kalamazoo, MI, 49006, United States of America
| |
Collapse
|
243
|
Takatani-Nakase T, Takahashi K. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA(2) activity. Biochem Biophys Res Commun 2015; 463:13-7. [PMID: 25979360 DOI: 10.1016/j.bbrc.2015.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/25/2022]
Abstract
Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA2, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.
| |
Collapse
|
244
|
Wu Z, He EY, Scott GI, Ren J. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress. ENVIRONMENTAL TOXICOLOGY 2015; 30:638-647. [PMID: 24376112 DOI: 10.1002/tox.21941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.
Collapse
Affiliation(s)
- Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
| | - Emily Y He
- Department of Clinical Immunology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, China
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| | - Glenda I Scott
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, Wyoming, 82071
| |
Collapse
|
245
|
Wang K, An T, Zhou LY, Liu CY, Zhang XJ, Feng C, Li PF. E2F1-regulated miR-30b suppresses Cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death. Cell Death Differ 2015; 22:743-54. [PMID: 25301066 PMCID: PMC4392072 DOI: 10.1038/cdd.2014.165] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/10/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Cell death is a hallmark characteristic of various cardiac diseases, including myocardial infarction and heart failure. Emerging evidences suggest that necrosis is programmed and is one of the main forms of cell death in the pathological process in cardiac diseases. However, the molecular components regulating programmed necrosis in heart remain largely unidentified. Here we report that miR-30b, Cyclophilin D (CypD) and E2F1 constitute an axis that regulates necrosis. The results show that knockdown of CypD attenuated necrosis in the cellular model and also myocardial infarction in the animal model. miR-30b suppresses the translation of CypD and thus inhibits CypD-mediated necrotic cell death in cardiomyocytes. Cardiac-specific miR-30b transgenic mice exhibit reduced necrosis and myocardial infarct size upon ischemia/reperfusion (I/R) injury. Further, we identify that E2F1 transcriptionally represses miR-30b expression. Knockdown of E2F1 in cardiomyocytes inhibits necrotic cell death, and E2F1 knockout mice show reduced necrosis and myocardial infarct size upon I/R. Our present study identifies a novel signaling pathway composed of E2F1, miR-30b and CypD that regulates myocardial necrosis. This discovery will not only provide de novo regulators in the necrotic process but will also shed new light on the effective therapy of myocardial infarction and heart failure.
Collapse
Affiliation(s)
- K Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - T An
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - L-Y Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - C-Y Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - X-J Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - C Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - P-F Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
246
|
Kohr MJ. Mitsugumin-53: potential biomarker and therapeutic for myocardial ischemic injury? J Mol Cell Cardiol 2015; 81:46-8. [PMID: 25655937 PMCID: PMC4696490 DOI: 10.1016/j.yjmcc.2015.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Mark J Kohr
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Room E7616, Baltimore, MD 21205, USA.
| |
Collapse
|
247
|
Bironaite D, Daunoravicius D, Bogomolovas J, Cibiras S, Vitkus D, Zurauskas E, Zasytyte I, Rucinskas K, Labeit S, Venalis A, Grabauskiene V. Molecular mechanisms behind progressing chronic inflammatory dilated cardiomyopathy. BMC Cardiovasc Disord 2015; 15:26. [PMID: 25888309 PMCID: PMC4466865 DOI: 10.1186/s12872-015-0017-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/27/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Inflammatory dilated cardiomyopathy (iDCM) is a common debilitating disease with poor prognosis that often leads to heart failure and may require heart transplantation. The aim of this study was to evaluate sera and biopsy samples from chronic iDCM patients, and to investigate molecular mechanism associated with left ventricular remodeling and disease progression in order to improve therapeutic intervention. METHODS Patients were divided into inflammatory and non-inflammatory DCM groups according to the immunohistochemical expression of inflammatory infiltrates markers: T-lymphocytes (CD3), active-memory T lymphocyte (CD45Ro) and macrophages (CD68). The inflammation, apoptosis, necrosis and fibrosis were investigated by ELISA, chemiluminescent, immunohistochemical and histological assays. RESULTS The pro-inflammatory cytokine IL-6 was significantly elevated in iDCM sera (3.3 vs. 10.98 μg/ml; P < 0.05). Sera levels of caspase-9, -8 and -3 had increased 6.24-, 3.1- and 3.62-fold, (P < 0.05) and only slightly (1.3-, 1.22- and 1.03-fold) in biopsies. Significant release of Hsp60 in sera (0.0419 vs. 0.36 ng/mg protein; P < 0.05) suggested a mechanistic involvement of mitochondria in cardiomyocyte apoptosis. The significant MMP9/TIMP1 upregulation in biopsies (0.1931 - 0.476, P < 0.05) and correlation with apoptosis markers show its involvement in initiation of cell death and ECM degradation. A slight activation of the extrinsic apoptotic pathway and the release of hsTnT might support the progression of chronic iDCM. CONCLUSIONS Data of this study show that significant increase of IL-6, MMP9/TIMP1 and caspases-9, -8, -3 in sera corresponds to molecular mechanisms dominating in chronic iDCM myocardium. The initial apoptotic pathway was more activated by the intramyocardial inflammation and might be associated with extrinsic apoptotic pathway through the pro-apoptotic Bax. The activated intrinsic form of myocardial apoptosis, absence of necrosis and decreased fibrosis are most typical characteristics of chronic iDCM. Clinical use of anti-inflammatory drugs together with specific anti-apoptotic treatment might improve the efficiency of therapies against chronic iDCM before heart failure occurs.
Collapse
Affiliation(s)
- Daiva Bironaite
- Dept. of Stem Cell Biology, State Research Institute, Center for Innovative Medicine, Zygimantu 9, LT01102, Vilnius, Lithuania.
| | - Dainius Daunoravicius
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
| | - Julius Bogomolovas
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, Mannheim, Germany.
| | - Sigitas Cibiras
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Faculty of Medicine, Vilnius, Lithuania. .,Vilnius University, Faculty of Medicine, Clinic of Cardiovascular Diseases, Vilnius, Lithuania.
| | - Dalius Vitkus
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
| | - Edvardas Zurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
| | - Ieva Zasytyte
- Vilnius University, Faculty of Medicine, Clinic of Cardiovascular Diseases, Vilnius, Lithuania.
| | - Kestutis Rucinskas
- Vilnius University, Faculty of Medicine, Clinic of Cardiovascular Diseases, Vilnius, Lithuania.
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, Mannheim, Germany.
| | - Algirdas Venalis
- Dept. of Stem Cell Biology, State Research Institute, Center for Innovative Medicine, Zygimantu 9, LT01102, Vilnius, Lithuania.
| | - Virginija Grabauskiene
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Faculty of Medicine, Vilnius, Lithuania. .,Vilnius University, Faculty of Medicine, Clinic of Cardiovascular Diseases, Vilnius, Lithuania.
| |
Collapse
|
248
|
PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis. Int J Mol Sci 2015; 16:5618-34. [PMID: 25768344 PMCID: PMC4394496 DOI: 10.3390/ijms16035618] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF’s effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size.
Collapse
|
249
|
Smyrnias I, Zhang X, Zhang M, Murray TV, Brandes RP, Schröder K, Brewer AC, Shah AM. Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4–Dependent Upregulation of Nuclear Factor Erythroid–Derived 2-Like 2 Protects the Heart During Chronic Pressure Overload. Hypertension 2015; 65:547-53. [DOI: 10.1161/hypertensionaha.114.04208] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ioannis Smyrnias
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Xiaohong Zhang
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Min Zhang
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Thomas V.A. Murray
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Ralf P. Brandes
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Katrin Schröder
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Alison C. Brewer
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| | - Ajay M. Shah
- From the Department of Cardiology, Cardiovascular Division, King’s College London British Heart Foundation Centre, London, United Kingdom (I.S., X.Z., M.Z., T.V.A.M., A.C.B., A.M.S.); and Vascular Research Centre, Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (R.P.B., K.S.)
| |
Collapse
|
250
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|