201
|
Cano I, Selivanov V, Gomez-Cabrero D, Tegnér J, Roca J, Wagner PD, Cascante M. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation. PLoS One 2014; 9:e111068. [PMID: 25375931 PMCID: PMC4222897 DOI: 10.1371/journal.pone.0111068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2). Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.
Collapse
Affiliation(s)
- Isaac Cano
- Center for respiratory diagnoses, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES) and Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Vitaly Selivanov
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine (IBUB), Barcelona, Catalonia, Spain
| | - David Gomez-Cabrero
- Unit of Computational Medicine of the Center for Molecular Medicine, Karolinska Institutet and Karoliska University Hospital - Department of Medicine, Stockholm, Sweden
| | - Jesper Tegnér
- Unit of Computational Medicine of the Center for Molecular Medicine, Karolinska Institutet and Karoliska University Hospital - Department of Medicine, Stockholm, Sweden
| | - Josep Roca
- Center for respiratory diagnoses, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES) and Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Peter D. Wagner
- Division of Physiology, Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, California, United States of America
| | - Marta Cascante
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine (IBUB), Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
202
|
Abstract
Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy.
Collapse
Affiliation(s)
- Simran S Sabharwal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
203
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
204
|
Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 2014; 32:556-563. [PMID: 25282035 DOI: 10.1016/j.tibtech.2014.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment (TME) is a complex heterogeneous assembly composed of a variety of cell types and physical features. One such feature, hypoxia, is associated with metabolic reprogramming, the epithelial-mesenchymal transition, and therapeutic resistance. Many questions remain regarding the effects of hypoxia on these outcomes; however, only a few experimental methods enable both precise control over oxygen concentration and real-time imaging of cell behavior. Recent efforts with microfluidic platforms offer a promising solution to these limitations. In this review, we discuss conventional methods and tools used to control oxygen concentration for cell studies, and then highlight recent advances in microfluidic-based approaches for controlling oxygen in engineered platforms.
Collapse
|
205
|
Awad H, Nolette N, Hinton M, Dakshinamurti S. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol 2014; 49:885-97. [PMID: 24167160 DOI: 10.1002/ppul.22919] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 08/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypoxia and reactive oxygen species (ROS) including H(2)O(2) play major roles in triggering and progression of pulmonary vascular remodeling in persistent pulmonary hypertension. Catalase (CAT), the major endogenous enzyme scavenging H(2)O(2), is regulated in a tissue- and context-specific manner. OBJECTIVE To investigate mechanisms by which hypoxia and H(2)O(2) regulate catalase expression, and the role of AMPK-FoxO pathway, in neonatal porcine pulmonary artery smooth muscle (PASMC). DESIGN/METHODS PASMC were grown in hypoxia (10% O(2)) or normoxia (21% O(2)) for 72 hr. We measured catalase activity and lipid peroxidation; CAT, FoxO1, and FoxO3a expression by qPCR; protein contents of CAT, FoxOs, p-AMPK, p-AKT, p-JNK, p-ERK1/2 in whole lysates, and FoxOs in nuclear extracts, by immunoblot; and FoxO-1 nuclear localization by immunocytochemistry, quantified by laser scanning cytometry. RESULTS Hypoxia upregulated CAT transcription, content and activity, by increasing CAT transcription factors FoxO1 and FoxO3a mRNA, and promoting nuclear translocation of FoxO1. However, lipid peroxidation increased in hypoxic PASMC. Among candidate FoxO regulatory kinases, hypoxia activated AMPK, and decreased p-Akt and ERK1/2. AMPK activation increased FoxO1 (total and nuclear) and CAT, while AMPK inhibition inhibited FoxO1 and CAT, but not FoxO3a. Exogenous H(2)O(2) decreased p-AMPK and increased p-AKT in hypoxic PASMC. This decreased active FoxO1, and reduced mRNA and protein content of CAT. Hypoxic induction of CAT, AKT inhibition (LY294002), or addition of PEG-catalase partly ameliorated the H(2)O(2) -mediated loss of nuclear FoxO1. CONCLUSIONS Hypoxia induces catalase expression, though this adaptation is insufficient to protect PASMC from hypoxia-induced lipid peroxidation. This occurs via hypoxic activation of AMPK, which promotes nuclear FoxO1 and thus catalase expression. Exogenous ROS may downregulate cellular antioxidant defenses; H(2)O(2) activates survival factor Akt, decreasing nuclear FoxO1 and thus catalase.
Collapse
Affiliation(s)
- Hanan Awad
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Canada
| | | | | | | |
Collapse
|
206
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
207
|
Perez M, Wedgwood S, Lakshminrusimha S, Farrow KN, Steinhorn RH. Hydrocortisone normalizes phosphodiesterase-5 activity in pulmonary artery smooth muscle cells from lambs with persistent pulmonary hypertension of the newborn. Pulm Circ 2014; 4:71-81. [PMID: 25006423 DOI: 10.1086/674903] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/09/2013] [Indexed: 12/15/2022] Open
Abstract
Phosphodiesterase-5 (PDE5) is the primary phosphodiesterase in the pulmonary vasculature. It degrades cyclic guanosine monophosphate (cGMP) and inhibits cGMP-mediated vasorelaxation. We previously reported that hydrocortisone treatment decreased hyperoxia-induced PDE5 activity and markers of oxidative stress in lambs with persistent pulmonary hypertension of the newborn (PPHN) ventilated with 100% O2. The objective of our study was to determine the molecular mechanism by which hydrocortisone downregulates PDE5 and oxidative stress in fetal pulmonary artery smooth muscle cells (FPASMCs) from PPHN lambs. PPHN FPASMC were incubated for 24 hours in either 21% or 95% O2. Some cells were treated with 100 nM hydrocortisone and/or ±1 μM helenalin, an inhibitor of nuclear factor κ B (NFκB), a redox-sensitive transcription factor. Exposure to hyperoxia led to increased PDE5 activity, oxidative stress, and NFκB activity. Pretreatment of PPHN FPASMC with hydrocortisone normalized PDE5 activity, decreased cytosolic oxidative stress, increased expression of extracellular superoxide dismutase and NFκB inhibitory protein, and decreased NFκB activity. Similarly, treatment with NFκB inhibitor, helenalin, decreased PDE5 activity. These data suggest that hyperoxia activates NFκB, which in turn induces PDE5 activity in PPHN FPASMC, whereas treatment with hydrocortisone attenuates these changes by blocking reactive oxygen species-induced NFκB activity.
Collapse
Affiliation(s)
- Marta Perez
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | - Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California, USA
| | | | - Kathryn N Farrow
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | - Robin H Steinhorn
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
208
|
Plomaritas DR, Herbert LM, Yellowhair TR, Resta TC, Gonzalez Bosc LV, Walker BR, Jernigan NL. Chronic hypoxia limits H2O2-induced inhibition of ASIC1-dependent store-operated calcium entry in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 307:L419-30. [PMID: 24993130 DOI: 10.1152/ajplung.00095.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Our laboratory shows that acid-sensing ion channel 1 (ASIC1) contributes to the development of hypoxic pulmonary hypertension by augmenting store-operated Ca(2+) entry (SOCE) that is associated with enhanced agonist-induced vasoconstriction and arterial remodeling. However, this enhanced Ca(2+) influx following chronic hypoxia (CH) is not dependent on an increased ASIC1 protein expression in pulmonary arterial smooth muscle cells (PASMC). It is well documented that hypoxic pulmonary hypertension is associated with changes in redox potential and reactive oxygen species homeostasis. ASIC1 is a redox-sensitive channel showing increased activity in response to reducing agents, representing an alternative mechanism of regulation. We hypothesize that the enhanced SOCE following CH results from removal of an inhibitory effect of hydrogen peroxide (H2O2) on ASIC1. We found that CH increased PASMC superoxide (O2 (·-)) and decreased rat pulmonary arterial H2O2 levels. This decrease in H2O2 is a result of decreased Cu/Zn superoxide dismutase expression and activity, as well as increased glutathione peroxidase (GPx) expression and activity following CH. Whereas H2O2 inhibited ASIC1-dependent SOCE in PASMC from control and CH animals, addition of catalase augmented ASIC1-mediated SOCE in PASMC from control rats but had no further effect in PASMC from CH rats. These data suggest that, under control conditions, H2O2 inhibits ASIC1-dependent SOCE. Furthermore, H2O2 levels are decreased following CH as a result of diminished dismutation of O2 (·-) and increased H2O2 catalysis through GPx-1, leading to augmented ASIC1-dependent SOCE.
Collapse
Affiliation(s)
- Danielle R Plomaritas
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Tracylyn R Yellowhair
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
209
|
Affiliation(s)
- Roxane Paulin
- From the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
210
|
Sanchez-Padilla J, Guzman JN, Ilijic E, Kondapalli J, Galtieri DJ, Yang B, Schieber S, Oertel W, Wokosin D, Schumacker PT, Surmeier DJ. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci 2014; 17:832-40. [PMID: 24816140 PMCID: PMC4131291 DOI: 10.1038/nn.3717] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging-related neurodegenerative diseases, such as Parkinson's disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, we studied LC neurons using electrophysiological and optical approaches in ex vivo mouse brain slices. We found that autonomous activity in LC neurons was accompanied by oscillations in dendritic Ca(2+) concentration that were attributable to the opening of L-type Ca(2+) channels. This oscillation elevated mitochondrial oxidant stress and was attenuated by inhibition of nitric oxide synthase. The relationship between activity and stress was malleable, as arousal and carbon dioxide increased the spike rate but differentially affected mitochondrial oxidant stress. Oxidant stress was also increased in an animal model of PD. Thus, our results point to activity-dependent Ca(2+) entry and a resulting mitochondrial oxidant stress as factors contributing to the vulnerability of LC neurons.
Collapse
Affiliation(s)
- Javier Sanchez-Padilla
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jaime N Guzman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ema Ilijic
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel J Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ben Yang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Simon Schieber
- Department of Neurology, Philipps University, Marburg, Germany
| | - Wolfgang Oertel
- Department of Neurology, Philipps University, Marburg, Germany
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
211
|
Hernansanz-Agustín P, Izquierdo-Álvarez A, Sánchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A. Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 2014; 71:146-156. [PMID: 24637263 DOI: 10.1016/j.freeradbiomed.2014.03.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 01/08/2023]
Abstract
Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen species production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Francisco J Sánchez-Gómez
- Laboratorio Mixto, Consejo Superior de Investigaciones Científicas/Fundación Renal "Iñigo Alvarez de Toledo," E-28049 Madrid, Spain; Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Tamara Villa-Piña
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain
| | - Santiago Lamas
- Laboratorio Mixto, Consejo Superior de Investigaciones Científicas/Fundación Renal "Iñigo Alvarez de Toledo," E-28049 Madrid, Spain; Departamento de Biología Celular e Inmunología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, E-28006 Madrid, Spain.
| |
Collapse
|
212
|
Schumacker PT, Gillespie MN, Nakahira K, Choi AMK, Crouser ED, Piantadosi CA, Bhattacharya J. Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol 2014; 306:L962-74. [PMID: 24748601 DOI: 10.1152/ajplung.00073.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An explosion of new information about mitochondria reveals that their importance extends well beyond their time-honored function as the "powerhouse of the cell." In this Perspectives article, we summarize new evidence showing that mitochondria are at the center of a reactive oxygen species (ROS)-dependent pathway governing the response to hypoxia and to mitochondrial quality control. The potential role of the mitochondrial genome as a sentinel molecule governing cytotoxic responses of lung cells to ROS stress also is highlighted. Additional attention is devoted to the fate of damaged mitochondrial DNA relative to its involvement as a damage-associated molecular pattern driving adverse lung and systemic cell responses in severe illness or trauma. Finally, emerging strategies for replenishing normal populations of mitochondria after damage, either through promotion of mitochondrial biogenesis or via mitochondrial transfer, are discussed.
Collapse
Affiliation(s)
- Paul T Schumacker
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, Illinois
| | - Mark N Gillespie
- University of South Alabama College of Medicine, Department of Pharmacology, Mobile, Alabama;
| | - Kiichi Nakahira
- Weill Cornell Medical College, Department of Medicine, New York, New York
| | - Augustine M K Choi
- Weill Cornell Medical College, Department of Medicine, New York, New York
| | - Elliott D Crouser
- The Ohio State University College of Medicine, Department of Internal Medicine, Columbus, Ohio
| | - Claude A Piantadosi
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, and
| | - Jahar Bhattacharya
- Columbia University Medical Center, Department of Physiology and Cellular Biophysics, New York, New York
| |
Collapse
|
213
|
Kolossov VL, Hanafin WP, Beaudoin JN, Bica DE, DiLiberto SJ, Kenis PJA, Gaskins HR. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise. Exp Biol Med (Maywood) 2014; 239:394-403. [PMID: 24586100 DOI: 10.1177/1535370214522179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glutathione couple GSH/GSSG is the most abundant cellular redox buffer and is not at equilibrium among intracellular compartments. Perturbation of glutathione poise has been associated with tumorigenesis; however, due to analytical limitations, the underlying mechanisms behind this relationship are poorly understood. In this regard, we have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real-time glutathione redox potentials in the cytosol and mitochondrial matrix of tumorigenic and non-tumorigenic cells. First, we demonstrated that recovery time in both compartments depended upon the length of exposure to oxidative challenge with diamide, a thiol-oxidizing agent. We then monitored changes in glutathione poise in cytosolic and mitochondrial matrices following inhibition of glutathione (GSH) synthesis with L-buthionine sulphoximine (BSO). The mitochondrial matrix showed higher oxidation in the BSO-treated cells indicating distinct compartmental alterations in redox poise. Finally, the contributory role of the p53 protein in supporting cytosolic redox poise was demonstrated. Inactivation of the p53 pathway by expression of a dominant-negative p53 protein sensitized the cytosol to oxidation in BSO-treated tumor cells. As a result, both compartments of PF161-T+p53(DD) cells were equally oxidized ≈20 mV by inhibition of GSH synthesis. Conversely, mitochondrial oxidation was independent of p53 status in GSH-deficient tumor cells. Taken together, these findings indicate different redox requirements for the glutathione thiol/disulfide redox couple within the cytosol and mitochondria of resting cells and reveal distinct regulation of their redox poise in response to inhibition of glutathione biosynthesis.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Waypa GB, Osborne SW, Marks JD, Berkelhamer SK, Kondapalli J, Schumacker PT. Sirtuin 3 deficiency does not augment hypoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 49:885-91. [PMID: 24047466 DOI: 10.1165/rcmb.2013-0191oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3(-/-)) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)-induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3(+/+) cells. Acute hypoxia-induced cytosolic calcium signaling in Sirt3(-/-) PASMCs was also indistinguishable from Sirt3(+/+) cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3(-/-) mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3(+/+) littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology 1 , Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | |
Collapse
|
215
|
Dehne N, Brüne B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story. Antioxid Redox Signal 2014; 20:339-52. [PMID: 22794181 DOI: 10.1089/ars.2012.4776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. RECENT ADVANCES Mitochondria are at the center of a hypoxia sensing and responding relay system. CRITICAL ISSUES Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. FUTURE DIRECTIONS Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
Collapse
Affiliation(s)
- Nathalie Dehne
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt , Frankfurt, Germany
| | | |
Collapse
|
216
|
Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 2013; 3:1011-34. [PMID: 23897679 DOI: 10.1002/cphy.c120024] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress, and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the antioxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting cofactor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
217
|
Abstract
High-altitude pulmonary edema (HAPE), a not uncommon form of acute altitude illness, can occur within days of ascent above 2500 to 3000 m. Although life-threatening, it is avoidable by slow ascent to permit acclimatization or with drug prophylaxis. The critical pathophysiology is an excessive rise in pulmonary vascular resistance or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular pressures. The resultant hydrostatic stress causes dynamic changes in the permeability of the alveolar capillary barrier and mechanical injurious damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage and hemodynamic pressure measurements in humans confirm that elevated capillary pressure induces a high-permeability noninflammatory lung edema. Reduced nitric oxide availability and increased endothelin in hypoxia are the major determinants of excessive HPV in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial active fluid reabsorption likely contribute additionally to HAPE susceptibility. Recent studies strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level causes leakage. In areas of high blood flow due to lesser HPV, edema develops due to pressures that exceed the dynamic and structural capacity of the alveolar capillary barrier to maintain normal fluid balance. This article will review the pathophysiology of the vasculature, alveolar epithelium, innervation, immune response, and genetics of the lung at high altitude, as well as therapeutic and prophylactic strategies to reduce the morbidity and mortality of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
218
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
219
|
A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor α. Mol Cell Biol 2013; 34:110-22. [PMID: 24190966 DOI: 10.1128/mcb.00839-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor (PDGF) receptors (PDGFRs) are central to a spectrum of human diseases. When PDGFRs are activated by PDGF, reactive oxygen species (ROS) and Src family kinases (SFKs) act downstream of PDGFRs to enhance PDGF-mediated tyrosine phosphorylation of various signaling intermediates. In contrast to these firmly established principles of signal transduction, much less is known regarding the recently appreciated ability of ROS and SFKs to indirectly and chronically activate monomeric PDGF receptor α (PDGFRα) in the setting of a blinding condition called proliferative vitreoretinopathy (PVR). In this context, we made a series of discoveries that substantially expands our appreciation of epigenetic-based mechanisms to chronically activate PDGFRα. Vitreous, which contains growth factors outside the PDGF family but little or no PDGFs, promoted formation of a unique SFK-PDGFRα complex that was dependent on SFK-mediated phosphorylation of PDGFRα and activated the receptor's kinase activity. While vitreous engaged a total of five receptor tyrosine kinases, PDGFRα was the only one that was activated persistently (at least 16 h). Prolonged activation of PDGFRα involved mTOR-mediated inhibition of autophagy and accumulation of mitochondrial ROS. These findings reveal that growth factor-containing biological fluids, such as vitreous, are able to tirelessly activate PDGFRα by engaging a ROS-mediated, self-perpetuating loop.
Collapse
|
220
|
Lee KJ, Czech L, Waypa GB, Farrow KN. Isolation of pulmonary artery smooth muscle cells from neonatal mice. J Vis Exp 2013:e50889. [PMID: 24193306 DOI: 10.3791/50889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
Collapse
Affiliation(s)
- Keng Jin Lee
- Department of Pediatrics, Northwestern University Feinberg School of Medicine
| | | | | | | |
Collapse
|
221
|
Majzunova M, Dovinova I, Barancik M, Chan JYH. Redox signaling in pathophysiology of hypertension. J Biomed Sci 2013; 20:69. [PMID: 24047403 PMCID: PMC3815233 DOI: 10.1186/1423-0127-20-69] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are products of normal cellular metabolism and derive from various sources in different cellular compartments. Oxidative stress resultant from imbalance between ROS generation and antioxidant defense mechanisms is important in pathogenesis of cardiovascular diseases, such as hypertension, heart failure, atherosclerosis, diabetes, and cardiac hypertrophy. In this review we focus on hypertension and address sources of cellular ROS generation, mechanisms involved in regulation of radical homeostasis, superoxide dismutase isoforms in pathophysiology of hypertension; as well as radical intracellular signaling and phosphorylation processes in proteins of the affected cardiovascular tissues. Finally, we discuss the transcriptional factors involved in redox-sensitive gene transcription and antioxidant response, as well as their roles in hypertension.
Collapse
Affiliation(s)
- Miroslava Majzunova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
222
|
Policastro LL, Ibañez IL, Notcovich C, Duran HA, Podhajcer OL. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013; 19:854-95. [PMID: 22794113 DOI: 10.1089/ars.2011.4367] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tumor microenvironment is a complex system that involves the interaction between malignant and neighbor stromal cells embedded in a mesh of extracellular matrix (ECM) components. Stromal cells (fibroblasts, endothelial, and inflammatory cells) are co-opted at different stages to help malignant cells invade the surrounding ECM and disseminate. Malignant cells have developed adaptive mechanisms to survive under the extreme conditions of the tumor microenvironment such as restricted oxygen supply (hypoxia), nutrient deprivation, and a prooxidant state among others. These conditions could be eventually used to target drugs that will be activated specifically in this microenvironment. Preclinical studies have shown that modulating cellular/tissue redox state by different gene therapy (GT) approaches was able to control tumor growth. In this review, we describe the most relevant features of the tumor microenvironment, addressing reactive oxygen species-generating sources that promote a prooxidative microenvironment inside the tumor mass. We describe different GT approaches that promote either a decreased or exacerbated prooxidative microenvironment, and those that make use of the differential levels of ROS between cancer and normal cells to achieve tumor growth inhibition.
Collapse
Affiliation(s)
- Lucia Laura Policastro
- Department of Micro and Nanotechnology, National Atomic Energy Commission, Buenos Aires 1650, Argentina.
| | | | | | | | | |
Collapse
|
223
|
Kolossov VL, Beaudoin JN, Hanafin WP, DiLiberto SJ, Kenis PJA, Gaskins HR. Transient light-induced intracellular oxidation revealed by redox biosensor. Biochem Biophys Res Commun 2013; 439:517-21. [PMID: 24025674 DOI: 10.1016/j.bbrc.2013.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/20/2022]
Abstract
We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
224
|
Hewitt VL, Gabriel K, Traven A. The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochim Biophys Acta Gen Subj 2013; 1840:1246-53. [PMID: 23994494 DOI: 10.1016/j.bbagen.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). SCOPE OF REVIEW Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. MAJOR CONCLUSIONS There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. GENERAL SIGNIFICANCE We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Kipros Gabriel
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
225
|
Yan G, Wang Q, Shi H, Han Y, Ma G, Tang C, Gu Y. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia. PLoS One 2013; 8:e73839. [PMID: 24013220 PMCID: PMC3754945 DOI: 10.1371/journal.pone.0073839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/30/2013] [Indexed: 12/11/2022] Open
Abstract
AIMS Arachidonic acid (AA) and its metabolites, prostaglandins (PG) are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV) remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs). METHODS AND RESULTS We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM) and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM), an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV. CONCLUSION Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca(2+) channels.
Collapse
Affiliation(s)
- Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China ; Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
226
|
Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 2013; 61:51-60. [PMID: 23499839 PMCID: PMC3723750 DOI: 10.1016/j.freeradbiomed.2013.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/24/2013] [Accepted: 03/04/2013] [Indexed: 01/11/2023]
Abstract
Exposure of newborn mice to high inspired oxygen elicits a distinct phenotype of compromised alveolar and vascular development, although lethality during long-term exposure is lower in newborns compared to adults. As the effects of hyperoxia are mediated by excessive reactive oxygen species (ROS) generation, we hypothesized that newborn mice may exhibit enhanced expression of antioxidant defenses or attenuated ROS generation compared with adults. We measured subcellular oxidant responses to acute hyperoxia in lung slices and alveolar epithelial cells at varying time points during postnatal murine lung development. Oxidant stress was assessed using RoGFP, a ratiometric protein thiol redox sensor, targeted to the cytosol or the mitochondrial matrix. In contrast to newborn resistance to oxygen-induced mortality, cells of lung slices from younger mice demonstrated exaggerated mitochondrial matrix oxidant stress compared to adults, whereas oxidant stress responses in the cytosol were absent. Cell death in lung slices from newborn mice exposed to 48h of hyperoxia was also greater than for adults. Consistent with these findings, expression of antioxidant enzymes in newborn lungs was lower than in adults, and induction of antioxidant levels and activity during 24h of in vivo exposure was absent. However, expression of the reactive oxygen species-generating enzyme NADPH oxidase 1 was increased with hyperoxic exposure in the young but not the adult lung. Collectively, these results suggest that the greater lethality in adult animals may be more likely attributed to processes such as inflammation than to differences in antioxidant defenses. Therapies for neonatal and adult oxidative lung injury should therefore consider and address developmental differences in oxidative stress responses.
Collapse
Affiliation(s)
- Sara K. Berkelhamer
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Gina A. Kim
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Josiah E. Radder
- Department of Pulmonary and Critical Care Medicine, 240 E. Huron Ave, McGaw Mezzanine, Northwestern University, Chicago, IL. 60611 USA
| | - Stephen Wedgwood
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Lyubov Czech
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Robin H. Steinhorn
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| | - Paul T. Schumacker
- Department of Pediatrics, 310 E. Superior St, Morton Building, Northwestern University, Chicago IL. 60611 USA
| |
Collapse
|
227
|
Olson KR, Deleon ER, Gao Y, Hurley K, Sadauskas V, Batz C, Stoy GF. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol 2013; 305:R592-603. [PMID: 23804280 DOI: 10.1152/ajpregu.00421.2012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
H2S derived from organic thiol metabolism has been proposed serve as an oxygen sensor in a variety of systems because of its susceptibility to oxidation and its ability to mimic hypoxic responses in numerous oxygen-sensing tissues. Thiosulfate, an intermediate in oxidative H2S metabolism can alternatively be reduced and regenerate H2S. We propose that this contributes to the H2S-mediated oxygen-sensing mechanism. H2S formation from thiosulfate in buffers and in a variety of mammalian tissues and in lamprey dorsal aorta was examined in real time using a polarographic H2S sensor. Inferences of intracellular H2S production were made by examining hypoxic pulmonary vasoconstriction (HPV) in bovine pulmonary arteries under conditions in which increased H2S production would be expected and in mouse and rat aortas, where reducing conditions should mediate vasorelaxation. In Krebs-Henseleit (mammalian) and Cortland (lamprey) buffers, H2S was generated from thiosulfate in the presence of the exogenous reducing agent, DTT, or the endogenous reductant dihydrolipoic acid (DHLA). Both the magnitude and rate of H2S production were greatly increased by these reductants in the presence of tissue, with the most notable effects occurring in the liver. H2S production was only observed when tissues were hypoxic; exposure to room air, or injecting oxygen inhibited H2S production and resulted in net H2S consumption. Both DTT and DHLA augmented HPV, and DHLA dose-dependently relaxed precontracted mouse and rat aortas. These results indicate that thiosulfate can contribute to H2S signaling under hypoxic conditions and that this is not only a ready source of H2S production but also serves as a means of recycling sulfur and thereby conserving biologically relevant thiols.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | | | | | | | | | | | | |
Collapse
|
228
|
Connolly MJ, Prieto-Lloret J, Becker S, Ward JPT, Aaronson PI. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. J Physiol 2013; 591:4473-98. [PMID: 23774281 DOI: 10.1113/jphysiol.2013.253682] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) maintains blood oxygenation during acute hypoxia but contributes to pulmonary hypertension during chronic hypoxia. The mechanisms of HPV remain controversial, in part because HPV is usually studied in the presence of agonist-induced preconstriction ('pretone'). This potentiates HPV but may obscure and distort its underlying mechanisms. We therefore carried out an extensive assessment of proposed mechanisms contributing to HPV in isolated intrapulmonary arteries (IPAs) in the absence of pretone by using a conventional small vessel myograph. Hypoxia elicited a biphasic constriction consisting of a small transient (phase 1) superimposed upon a sustained (phase 2) component. Neither phase was affected by the L-type Ca2+ channel antagonists diltiazem (10 and 30 μm) or nifedipine (3 μm). Application of the store-operated Ca2+ entry (SOCE) blockers BTP2 (10 μm) or SKF96365 (50 μm) attenuated phase 2 but not phase 1, whereas a lengthy (30 min) incubation in Ca2+-free physiological saline solution similarly reduced phase 2 but abolished phase 1. No further effect of inhibition of HPV was observed if the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (30 μm) was also applied during the 30 min incubation in Ca2+-free physiological saline solution. Pretreatment with 10 μm ryanodine and 15 mm caffeine abolished both phases, whereas treatment with 100 μm ryanodine attenuated both phases. The two-pore channel blocker NED-19 (1 μm) and the nicotinic acid adenine dinucleotide phosphate (NAADP) antagonist BZ194 (200 μm) had no effect on either phase of HPV. The lysosomal Ca2+-depleting agent concanamycin (1 μm) enhanced HPV if applied during hypoxia, but had no effect on HPV during a subsequent hypoxic challenge. The cyclic ADP ribose antagonist 8-bromo-cyclic ADP ribose (30 μm) had no effect on either phase of HPV. Neither the Ca2+-sensing receptor (CaSR) blocker NPS2390 (0.1 and 10 μm) nor FK506 (10 μm), a drug which displaces FKBP12.6 from ryanodine receptor 2 (RyR2), had any effect on HPV. HPV was virtually abolished by the rho kinase blocker Y-27632 (1 μm) and attenuated by the protein kinase C inhibitor Gö6983 (3 μm). Hypoxia for 45 min caused a significant increase in the ratio of oxidised to reduced glutathione (GSSG/GSH). HPV was unaffected by the NADPH oxidase inhibitor VAS2870 (10 μm), whereas phase 2 was inhibited but phase 1 was unaffected by the antioxidants ebselen (100 μm) and TEMPOL (3 mm). We conclude that both phases of HPV in this model are mainly dependent on [Ca2+]i release from the sarcoplasmic reticulum. Neither phase of HPV requires voltage-gated Ca2+ entry, but SOCE contributes to phase 2. We can detect no requirement for cyclic ADP ribose, NAADP-dependent lysosomal Ca2+ release, activation of the CaSR, or displacement of FKBP12.6 from RyR2 for either phase of HPV. Sustained HPV is associated with an oxidising shift in the GSSG/GSH redox potential and is inhibited by the antioxidants ebselen and TEMPOL, consistent with the concept that it requires an oxidising shift in the cell redox state or the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Michelle J Connolly
- P. I. Aaronson: Room 1.19, Henriette Raphael House, Guy's Campus, King's College London, London SE1 9HN, UK.
| | | | | | | | | |
Collapse
|
229
|
Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH. Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 2013; 18:1765-76. [PMID: 23244636 PMCID: PMC3619152 DOI: 10.1089/ars.2012.4766] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM To determine if the NADPH oxidase isoform Nox4 contributes to increased H(2)O(2) generation in persistent pulmonary hypertension of the newborn (PPHN) pulmonary arteries (PA), and to identify downstream signaling targets of Nox4 that contribute to vascular remodeling and vasoconstriction. RESULTS PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs, PA, and PA smooth muscle cells (PASMC) were isolated from control and PPHN lambs. Increased expression of p22(phox) and Nox4 in PPHN lungs, PA, and PASMC was associated with increased reactive oxygen species in PPHN PA, increased protein thiol oxidation in PPHN PASMC, and a decreased activity of extracellular superoxide dismutase (ecSOD) in the lungs and PASMC. Nox4 small interfering RNA (siRNA) decreased Nox4 expression and thiol oxidation and increased the ecSOD activity in PPHN PASMC. An increased activity of nuclear factor-kappa B (NFκB) and expression of its target gene cyclin D1 were detected in PPHN lungs, PA, and PASMC. Nox4 siRNA and catalase attenuated these increases in PASMC, and catalase decreased cyclin D1 expression in PPHN lungs. INNOVATION This study demonstrates for the first time that Nox4 expression is elevated in a lamb model of neonatal pulmonary hypertension. It identifies increased NFκB and cyclin D1 expression and a decreased ecSOD activity as targets of increased Nox4 signaling. CONCLUSION PPHN increases p22(phox) and Nox4 expression and activity resulting in elevated H(2)O(2) levels in PPHN PA. Increased H(2)O(2) induces vasoconstriction via mechanisms involving ecSOD inactivation, and stimulates vascular remodeling via NFκB activation and increased cyclin D1 expression. Approaches that inhibit the pulmonary arterial Nox4 activity may attenuate vasoconstriction and vascular remodeling in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
230
|
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2013; 48:158-67. [PMID: 23102266 DOI: 10.1016/j.molcel.2012.09.025] [Citation(s) in RCA: 1919] [Impact Index Per Article: 159.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/28/2012] [Accepted: 09/21/2012] [Indexed: 12/11/2022]
Abstract
Historically, mitochondrial reactive oxygen species (mROS) were thought to exclusively cause cellular damage and lack a physiological function. Accumulation of ROS and oxidative damage have been linked to multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. Thus, mROS were originally envisioned as a necessary evil of oxidative metabolism, a product of an imperfect system. Yet few biological systems possess such flagrant imperfections, thanks to the persistent optimization of evolution, and it appears that oxidative metabolism is no different. More and more evidence suggests that mROS are critical for healthy cell function. In this Review, we discuss this evidence following some background on the generation and regulation of mROS.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
231
|
Olson KR. A theoretical examination of hydrogen sulfide metabolism and its potential in autocrine/paracrine oxygen sensing. Respir Physiol Neurobiol 2013; 186:173-9. [DOI: 10.1016/j.resp.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/20/2022]
|
232
|
Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 2013; 187:424-32. [PMID: 23328522 DOI: 10.1164/rccm.201207-1294oc] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses. OBJECTIVES We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA). METHODS A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC). MEASUREMENTS AND MAIN RESULTS In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in [Ca(2+)](i). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in [Ca(2+)](i) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice. CONCLUSIONS Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in [Ca(2+)](i) that cause acute hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Freund-Michel V, Guibert C, Dubois M, Courtois A, Marthan R, Savineau JP, Muller B. Reactive oxygen species as therapeutic targets in pulmonary hypertension. Ther Adv Respir Dis 2013; 7:175-200. [PMID: 23328248 DOI: 10.1177/1753465812472940] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by a progressive elevation of pulmonary arterial pressure due to alterations of both pulmonary vascular structure and function. This disease is rare but life-threatening, leading to the development of right heart failure. Current PH treatments, designed to target altered pulmonary vascular reactivity, include vasodilating prostanoids, phosphodiesterase-5 inhibitors and endothelin-1 receptor antagonists. Although managing to slow the progression of the disease, these molecules still do not cure PH. More effective treatments need to be developed, and novel therapeutic strategies, targeting in particular vascular remodelling, are currently under investigation. Reactive oxygen species (ROS) are important physiological messengers in vascular cells. In addition to atherosclerosis and other systemic vascular diseases, emerging evidence also support a role of ROS in PH pathogenesis. ROS production is increased in animal models of PH, associated with NADPH oxidases increased expression, in particular of several Nox enzymes thought to be the major source of ROS in the pulmonary vasculature. These increases have also been observed in vitro and in vivo in humans. Moreover, several studies have shown either the deleterious effect of agents promoting ROS generation on pulmonary vasculature or, conversely, the beneficial effect of antioxidant agents in animal models of PH. In these studies, ROS production has been directly linked to pulmonary vascular remodelling, endothelial dysfunction, altered vasoconstrictive responses, inflammation and modifications of the extracellular matrix, all important features of PH pathophysiology. Altogether, these findings indicate that ROS are interesting therapeutic targets in PH. Blockade of ROS-dependent signalling pathways, or disruption of sources of ROS in the pulmonary vasculature, targeting in particular Nox enzymes, represent promising new therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Véronique Freund-Michel
- Laboratoire de Pharmacologie-INSERM U1045, UFR des Sciences Pharmaceutiques, Université Bordeaux Segalen, Case 83, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
234
|
Han JA, Seo EY, Kim HJ, Park SJ, Yoo HY, Kim JY, Shin DM, Kim JK, Zhang YH, Kim SJ. Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle. Am J Physiol Cell Physiol 2013; 304:C78-88. [DOI: 10.1152/ajpcell.00176.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In contrast to the conventional belief that systemic arteries dilate under hypoxia, we found that α-adrenergic contraction of rat deep femoral artery (DFA) is largely augmented by hypoxia (HVCDFA) while hypoxia (3% Po2) alone had no effect. HVCDFA was consistently observed in both endothelium-intact and -denuded vessels with partial pretone by phenylephrine (PhE) or by other conditions (e.g., K+ channel blocker). Patch-clamp study showed no change in the membrane conductance of DFA myocytes by hypoxia. The RhoA-kinase inhibitor Y27632 attenuated HVCDFA. The nitric oxide synthase inhibitor [nitro-l-arginine methyl ester (l-NAME)] and soluble guanylate cyclase inhibitor [oxadiazole quinoxalin (ODQ)] strongly augmented the PhE-pretone, while neither of the agents had effect without pretone. NADPH oxidase type 4 (NOX4) inhibitors (diphenylene iodonium and plumbagin) also potentiated PhE-pretone, which was reversed by NO donor. No additive HVCDFA was observed under the pretreatment with l-NAME, ODQ, or plumbagin. Western blot and immunohistochemistry analysis showed that both NOX4 and endothelial nitric oxide synthase (eNOS) are expressed in smooth muscle layer of DFA. Various mitochondria inhibitors (rotenone, myxothiazol, and cyanide) prevented HVCDFA. From the pharmacological data, as a mechanism for HVCDFA, we suggest hypoxic inhibition of eNOS in myocytes. The putative role of NOX4 and mitochondria requires further investigation. The HVCDFA may prevent imbalance between cardiac output and skeletal blood flow under emergent hypoxia combined with increased sympathetic tone.
Collapse
Affiliation(s)
- Jung-A. Han
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Yeoung Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Young Yoo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Young Kim
- Department of Anesthesiology-Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea; and
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin Kyoung Kim
- Department of Anesthesiology-Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea; and
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
235
|
Bleier L, Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1320-31. [PMID: 23269318 DOI: 10.1016/j.bbabio.2012.12.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Lea Bleier
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
236
|
Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci 2012; 13:17160-84. [PMID: 23242154 PMCID: PMC3546744 DOI: 10.3390/ijms131217160] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Nitric oxide (NO) has been implicated in several cellular processes as a signaling molecule and also as a source of reactive nitrogen species (RNS). NO is produced by three isoenzymes called nitric oxide synthases (NOS), all present in skeletal muscle. While neuronal NOS (nNOS) and endothelial NOS (eNOS) are isoforms constitutively expressed, inducible NOS (iNOS) is mainly expressed during inflammatory responses. Recent studies have demonstrated that NO is also involved in the mitochondrial biogenesis pathway, having PGC-1α as the main signaling molecule. Increased NO synthesis has been demonstrated in the sarcolemma of skeletal muscle fiber and NO can also reversibly inhibit cytochrome c oxidase (Complex IV of the respiratory chain). Investigation on cultured skeletal myotubes treated with NO donors, NO precursors or NOS inhibitors have also showed a bimodal effect of NO that depends on the concentration used. The present review will discuss the new insights on NO roles on mitochondrial biogenesis and function in skeletal muscle. We will also focus on potential therapeutic strategies based on NO precursors or analogs to treat patients with myopathies and mitochondrial deficiency.
Collapse
|
237
|
Abstract
The eukaryote's mitochondrial network is perhaps the cell's most sophisticated and dynamic responsive sensing system. Integrating metabolic, oxygen, or danger signals with inputs from other organelles, as well as local and systemic signals, mitochondria have a profound impact on vascular function in both health and disease. This review highlights recently discovered aspects of mitochondrial function (oxygen sensing, inflammation, autophagy, and apoptosis) and discusses their role in diseases of both systemic and pulmonary vessels. We also emphasize the role of mitochondria as therapeutic targets for vascular disease. We highlight the intriguing similarities of mitochondria-driven molecular mechanisms in terms of both pathogenesis and therapies in very diverse diseases, such as atherosclerosis, pulmonary hypertension, and cancer, to support the foundation of a new field in medicine: mitochondrial medicine.
Collapse
Affiliation(s)
- Peter Dromparis
- Department of Medicine, University of Alberta, Edmonton, T6G2B7, Canada
| | | |
Collapse
|
238
|
Ye L, Liu J, Liu H, Ying L, Dou D, Chen Z, Xu X, Raj JU, Gao Y. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide. Pflugers Arch 2012; 465:333-41. [PMID: 23143201 DOI: 10.1007/s00424-012-1176-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023]
Abstract
The dimeric status of nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is obligatory for its catalyzing activity to synthesis the second messenger cyclic guanosine monophosphate (cGMP), which leads to vasodilatation. The present study was conducted to determine whether or not the dimerization of sGC is modulated by thiol-reducing agents and its influences on relaxation of pulmonary arteries caused by NO. The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analyzed by Western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Relaxations of isolated porcine pulmonary arteries were determined by organ chamber technique. Protein levels of sGC dimers were decreased by thiol reductants dithiothreitol (DTT), reduced L-glutathione, L-cysteine, and tris(2-carboxyethyl)phosphine (TCEP), associated with decreased cGMP elevation, attenuated relaxations to NO. DTT at concentrations that affected sGC dimerization and activity showed no effect on PKG dimerization nor relaxation to 8-Br-cGMP. Hypoxia decreased the dimerization and activity of sGC of the arteries. The suppression of DTT and TCEP on sGC dimerization and activity was augmented by hypoxia. In the presence of DTT and TCEP, relaxations of porcine pulmonary artery caused by NO were significantly less under hypoxia compared with those under normoxia. These results suggest that the dimerization and activity of sGC along with NO-induced vasodilatation can be modulated in a thiol-dependent manner. Such a mechanism may be involved in the diminished response of pulmonary arteries to NO under hypoxia.
Collapse
Affiliation(s)
- Liping Ye
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Oxygen versus Reactive Oxygen in the Regulation of HIF-1α: The Balance Tips. Biochem Res Int 2012; 2012:436981. [PMID: 23091723 PMCID: PMC3474226 DOI: 10.1155/2012/436981] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 12/02/2022] Open
Abstract
Hypoxia inducible factor (HIF) is known as the master regulator of the cellular response to hypoxia and is of pivotal importance during development as well as in human disease, particularly in cancer. It is composed of a constitutively expressed β subunit (HIF-1β) and an oxygen-regulated α subunit (HIF-1α and HIF-2α), whose stability is tightly controlled by a family of oxygen- and iron-dependent prolyl hydroxylase enzymes. Whether or not mitochondria-derived reactive oxygen species (ROS) are involved in the regulation of Hypoxia Inducible Factor-1α has been a matter of contention for the last 10 years, with equally compelling evidence in favor and against their contribution. A number of recent papers appear to tip the balance against a role for ROS. Thus, it has been demonstrated that HIF prolyl hydroxylases are unlikely to be physiological targets of ROS and that the increase in ROS that is associated with downregulation of Thioredoxin Reductase in hypoxia does not affect HIF-1α stabilization. Finally, the protein CHCHD4, which modulates cellular HIF-1α concentrations by promoting mitochondrial electron transport chain activity, has been proposed to exert its regulatory effect by affecting cellular oxygen availability. These reports are consistent with the hypothesis that mitochondria play a critical role in the regulation of HIF-1α by controlling intracellular oxygen concentrations.
Collapse
|
240
|
Pucciariello C, Banti V, Perata P. ROS signaling as common element in low oxygen and heat stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:3-10. [PMID: 22417734 DOI: 10.1016/j.plaphy.2012.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/17/2012] [Indexed: 05/09/2023]
Abstract
The activation of the oxidative metabolism in plants under low oxygen conditions has prompted controversial views. The presence of a ROS component in the transcriptome in response to low oxygen has been observed and an overlap with heat stress has been proved. It has been also demonstrated that ROS are produced during both anoxia and heat, but the site of their production remain contentious. Membrane NADPH oxidase and mitochondrial electron transport flow have been indicated as possible ROS generation systems. Both anoxia and heat have been shown to induce the transcription of Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), among which HSFA2 and some of its targets. HSFA2 over-expressing plant has been shown to be more tolerant to anoxia, while the knockout hsfa2 lose the capability of wild type plants to cross-acclimate to anoxia through mild heat pre-treatment. The production of ROS seems to be an integral part of the anoxia and heat response, where HSFs likely play a central role in activating the HSP pathway. This mechanism is suggested to result in enhanced plant tolerance to both anoxia and heat.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | | | | |
Collapse
|
241
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/circresaha.112.279091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
242
|
Lung oxidative damage by hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:856918. [PMID: 22966417 PMCID: PMC3433143 DOI: 10.1155/2012/856918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
Collapse
|
243
|
Singh DK, Sarkar J, Raghavan A, Reddy SP, Raj JU. Hypoxia modulates the expression of leucine zipper-positive MYPT1 and its interaction with protein kinase G and Rho kinases in pulmonary arterial smooth muscle cells. Pulm Circ 2012; 1:487-98. [PMID: 22530104 PMCID: PMC3329079 DOI: 10.4103/2045-8932.93548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have shown previously that acute hypoxia downregulates protein kinase G (PKG) expression and activity in ovine fetal pulmonary vessels and pulmonary arterial smooth muscle cells (SMC). Here, we report that acute hypoxia also reduces the expression of leucinezipper-positive MYPT1 (LZ+MYPT1), a subunit of myosin light chain (MLC) phosphatase, in ovine fetal pulmonary arterial SMC. We found that in hypoxia, there is greater interaction between LZ+ MYPT1 and RhoA and Rho kinase 1 (ROCK1)/Rho kinase 2 (ROCK2) and decreased interaction between LZ+ MYPT1 and PKG, resulting in increased MLC20 phosphorylation, a higher pMLC20/MLC20 ratio and SMC contraction. In normoxic SMC PKG overexpression, LZ+ MYPT1 expression is upregulated while PKG knockdown had an opposite effect. LZ+ MYPT1 overexpression enhanced the interaction between PKG and LZ+ MYPT1. Overexpression of a mutant LZ- MYPT1 isoform in SMC mimicked the effects of acute hypoxia and decreased pMLC20/MLC20 ratio. Collectively, our data suggest that hypoxia downregulates LZ+ MYPT1 expression by suppressing PKG levels, reduces the interaction of LZ+ MYPT1 with PKG and promotes LZ+ MYPT1 interaction with RhoA or ROCK1/ROCK2, thereby promoting pulmonary arterial SMC contraction.
Collapse
Affiliation(s)
- Dev K Singh
- Department of Pediatrics, Division of Developmental Biology and Basic Research, University of Illinois at Chicago, Children's Hospital University of Illinois, Chicago, IL, USA, 1 & 2 Author contributed equally
| | | | | | | | | |
Collapse
|
244
|
Farrow KN, Lee KJ, Perez M, Schriewer JM, Wedgwood S, Lakshminrusimha S, Smith CL, Steinhorn RH, Schumacker PT. Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal 2012; 17:460-70. [PMID: 22229392 PMCID: PMC3365357 DOI: 10.1089/ars.2011.4184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Oxygen is a pulmonary vasodilator, but data suggest high O(2) concentrations impede that response. We previously reported 24 h of 100% O(2) increased phosphodiesterase 5 (PDE5) activity in fetal pulmonary artery smooth muscle cells (FPASMC) and in ventilated neonatal lambs. PDE5 degrades cyclic GMP (cGMP) and inhibits nitric oxide (NO)-mediated cGMP-dependent vasorelaxation. We sought to determine the mechanism by which hyperoxia initiates reactive oxygen species (ROS) production and regulates PDE5. RESULTS Thirty minutes of hyperoxia increased mitochondrial ROS versus normoxia (30.3±1.7% vs. 21.1±2.8%), but had no effect on cytosolic ROS, measured by roGFP, a ratiometric protein thiol redox sensor. Hyperoxia increased PDE5 activity (220±39%) and decreased cGMP responsiveness to NO (37±17%). Mitochondrial catalase overexpression attenuated hyperoxia-induced mitochondrial roGFP oxidation, compared to FPASMC infected with empty adenoviral vector (50±3% of control) or mitochondrial superoxide dismutase. MitoTEMPO, mitochondrial catalase, and DT-3, a cGMP-dependent protein kinase I alpha inhibitor, decreased PDE5 activity (32±13%, 26±21%, and 63±10% of control, respectively), and restored cGMP responsiveness to NO (147±16%,172±29%, and 189±43% of control, respectively). C57Bl6 mice exposed to 90%-100% O(2) for 45 min±mechanical ventilation had increased PA PDE5 activity (206±39% and 235±75%, respectively). INNOVATION This is the first description that hyperoxia induces ROS in the mitochondrial matrix prior to the cytosol. Our results indicate that short hyperoxia exposures can produce significant changes in critical cellular signaling pathways. CONCLUSIONS These results indicate that mitochondrial matrix oxidant signals generated during hyperoxia, specifically H(2)O(2), activate PDE5 in a cGMP-dependent protein kinase-dependent manner in pulmonary vascular smooth muscle cells.
Collapse
Affiliation(s)
- Kathryn N Farrow
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Zhang J, Zhou J, Cai L, Lu Y, Wang T, Zhu L, Hu Q. Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal 2012; 17:471-84. [PMID: 22098336 DOI: 10.1089/ars.2011.4168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS The initiation of hypoxic pulmonary vasoconstriction (HPV) involves an increase in cytosolic calcium ([Ca(2+)](i)) in pulmonary artery (PA) smooth muscle cells (PASMCs). Both the processes depend on extracellular Ca(2+). Extracellular Ca(2+) can be sensed by extracellular calcium-sensing receptor (CaSR). This study aims at determining whether CaSR is pivotal in the initiation of HPV. RESULTS Experiments were performed in cultured PASMCs, isolated PAs, and rats including CaSR knockdown preparations. Both hypoxia and H(2)O(2) equivalent to the level achieved by hypoxia increased [Ca(2+)](i) in an extracellular Ca(2+)-dependent manner in PASMCs, and this was inhibited by CaSR knockdown or its negative allosteric modulator, Calhex231. Hypoxia-increased H(2)O(2) generation was diminished by mitochondria depletion. Mitochondria depletion abolished hypoxia-induced [Ca(2+)](i) increase (HICI), which was reversed by H(2)O(2) repletion. CaSR knockdown or Calhex231, however, prevented the reversible effect of H(2)O(2). HICI was abolished by catalase-polyethylene glycol (PEG-Catalase), not superoxide dismutase-polyethylene glycol (PEG-SOD) pretreatment, attenuated by ryanodine receptor3-knockdown or inhibition of store-operated Ca(2+) entry. HPV in vitro and in vivo was inhibited by Calhex231 and by CaSR knockdown. INNOVATION A novel mechanism underlying HPV is revealed by the role of CaSR in orchestrating reactive oxygen species and [Ca(2+)](i) signaling. CONCLUSIONS The activation of mitochondrial H(2)O(2)-sensitized CaSR by extracellular Ca(2+) mediates HICI in PASMCs and, thus, initiates HPV.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
246
|
Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. J Proteomics 2012; 75:5449-62. [PMID: 22800641 DOI: 10.1016/j.jprot.2012.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
Adaptation to decreased oxygen availability (hypoxia) is crucial for proper cell function and survival. In metazoans, this is partly achieved through gene transcriptional responses mediated by hypoxia-inducible factors (HIFs). There is abundant evidence that production of reactive oxygen species (ROS) increases during hypoxia, which contributes to the activation of the HIF pathway. In addition to altering the cellular redox balance, leading to oxidative stress, ROS can transduce signals by reversibly modifying the redox state of cysteine residues in certain proteins. Using the "redox fluorescence switch" (RFS), a thiol redox proteomic technique that fluorescently labels reversibly oxidized cysteines, we analyzed endothelial cells subjected to acute hypoxia and subsequent reoxygenation. We observed a general increase in cysteine oxidation during hypoxia, which was reversed by reoxygenation, and two-dimensional electrophoresis revealed the differential oxidation of specific proteins. Using complementary derivatization techniques, we confirmed the modification of individual target proteins and identified specific cysteine residues that were oxidized in hypoxic conditions, thereby overcoming several limitations associated with fluorescence derivatization. These findings provide an important basis for future studies of the role of these modifications in HIF activation and in other acute adaptive responses to hypoxia.
Collapse
|
247
|
Mallikarjun V, Clarke DJ, Campbell CJ. Cellular redox potential and the biomolecular electrochemical series: a systems hypothesis. Free Radic Biol Med 2012; 53:280-8. [PMID: 22609360 DOI: 10.1016/j.freeradbiomed.2012.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/21/2023]
Abstract
The role of cellular redox potential in the regulation of protein activity is becoming increasingly appreciated and characterized. In this paper we put forward a new hypothesis relating to redox regulation of cellular physiology. We have exemplified our hypothesis using apoptosis since its redox phenomenology is well established, but believe that it is equally applicable to several other pathways. Our hypothesis is that since multiple proteins in the apoptosis pathway are thought to be regulated via oxidation/reduction reactions and since cellular redox potentials have been shown to become progressively more oxidative during apoptosis, that the proteins could be arranged in an electrochemical series where the protein's standard potential correlates with its position in the pathway. Since the most stable oxidation state of the protein is determined by its standard potential and the redox potential of its environment (in a way predictable by the Nernst equation), a quantitative model of the redox regulation of the pathway could be developed. We have outlined our hypothesis, illustrating it using a pathway map which assembles a selection of the literature on apoptosis into a readable graphical format. We have also outlined experimental approaches suitable for testing our hypothesis.
Collapse
|
248
|
Metabolic sensors and their interplay with cell signalling and transcription. Biochem Soc Trans 2012; 40:311-23. [PMID: 22435805 DOI: 10.1042/bst20110767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is an intimate, yet poorly understood, link between cellular metabolic status, cell signalling and transcription. Central metabolic pathways are under the control of signalling pathways and, vice versa, the cellular metabolic profile influences cell signalling through the incorporation of various metabolic sensors into the signalling networks. Thus information about nutrients availability directly and crucially influences crucial cell decisions. In the present review, I summarize our current knowledge of various metabolic sensors and give some examples of the integration of metabolically derived inputs into the signalling system and the regulation of transcription. I also discuss the Warburg effect where the cross-talk between metabolism and signalling is used to orchestrate rapid cell growth and division. It is becoming clear that future research will concentrate on the collection of small-molecule metabolites, whose concentration fluctuates in response to cellular energy levels, searching for their sensors that connect them to the signalling and transcriptional networks.
Collapse
|
249
|
Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC, Pastukh VV, Alexeyev MF, Gillespie MN. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal 2012; 5:ra47. [PMID: 22763339 DOI: 10.1126/scisignal.2002712] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria can govern local concentrations of second messengers, such as reactive oxygen species (ROS), and mitochondrial translocation to discrete subcellular regions may contribute to this signaling function. Here, we report that exposure of pulmonary artery endothelial cells to hypoxia triggered a retrograde mitochondrial movement that required microtubules and the microtubule motor protein dynein and resulted in the perinuclear clustering of mitochondria. This subcellular redistribution of mitochondria was accompanied by the accumulation of ROS in the nucleus, which was attenuated by suppressing perinuclear clustering of mitochondria with nocodazole to destabilize microtubules or with small interfering RNA-mediated knockdown of dynein. Although suppression of perinuclear mitochondrial clustering did not affect the hypoxia-induced increase in the nuclear abundance of hypoxia-inducible factor 1α (HIF-1α) or the binding of HIF-1α to an oligonucleotide corresponding to a hypoxia response element (HRE), it eliminated oxidative modifications of the VEGF (vascular endothelial growth factor) promoter. Furthermore, suppression of perinuclear mitochondrial clustering reduced HIF-1α binding to the VEGF promoter and decreased VEGF mRNA accumulation. These findings support a model for hypoxia-induced transcriptional regulation in which perinuclear mitochondrial clustering results in ROS accumulation in the nucleus and causes oxidative base modifications in the VEGF HRE that are important for transcriptional complex assembly and VEGF mRNA expression.
Collapse
Affiliation(s)
- Abu-Bakr Al-Mehdi
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 2012; 31:3169-82. [PMID: 22705944 DOI: 10.1038/emboj.2012.165] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023] Open
Abstract
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells.
Collapse
|