201
|
de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, Sumners C, Stern JE, Krause EG. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology 2016; 157:3167-80. [PMID: 27267713 PMCID: PMC4967126 DOI: 10.1210/en.2016-1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.
Collapse
|
202
|
Vagal afferents, sympathetic efferents and the role of the PVN in heart failure. Auton Neurosci 2016; 199:38-47. [DOI: 10.1016/j.autneu.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023]
|
203
|
Marvar PJ, Hendy EB, Cruise TD, Walas D, DeCicco D, Vadigepalli R, Schwaber JS, Waki H, Murphy D, Paton JFR. Systemic leukotriene B 4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat. J Physiol 2016; 594:5975-5989. [PMID: 27230966 DOI: 10.1113/jp272065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. ABSTRACT Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology and Physiology Washington, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | - Emma B Hendy
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Thomas D Cruise
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dawid Walas
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hidefumi Waki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
204
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
205
|
Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respir Physiol Neurobiol 2016; 226:51-62. [DOI: 10.1016/j.resp.2015.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
|
206
|
Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats. Auton Neurosci 2016; 198:10-8. [PMID: 27260963 DOI: 10.1016/j.autneu.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 01/30/2023]
Abstract
Microglia are ubiquitously distributed throughout the central nervous system (CNS) and play a critical role in the maintenance of neuronal homeostasis. Recent advances have shown that microglia, never resting cells of the CNS, continuously monitor and influence neuronal/synaptic activity levels, by communicating with neurons with the aid of their dynamic processes. The brainstem contains many catecholaminergic nuclei that are key to many aspects of brain function. This includes C1 neurons of the ventrolateral medulla that are thought to play a critical role in control of the circulation. Despite the role of catecholaminergic brainstem neurons in normal physiology, the presence of microglia that surrounds them is poorly understood. Here, we investigate the spatial distribution and morphology of microglia in catecholaminergic nuclei of the brainstem in 3 strains of rat: Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Our data reveal that microglia are heterogeneously distributed within and across different strains of rats. Interestingly, intra-strain comparison of tyrosine hydroxylase-immunoreactive (TH-ir) neuronal and microglial number reveals that microglial number varies with the TH-ir neuronal number in the brainstem. Even though microglial spatial distribution varies across brainstem nuclei, microglial morphology (% area covered, number of end point processes and branch length) does not differ significantly. This work provides the first evidence that even though microglia, in their surveilling state, do not vary appreciably in their morphology across brainstem areas, they do have a heterogeneous pattern of distribution that may be influenced by their local environment.
Collapse
|
207
|
Kapoor K, Bhandare AM, Nedoboy PE, Mohammed S, Farnham MMJ, Pilowsky PM. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience 2016; 329:12-29. [PMID: 27155147 DOI: 10.1016/j.neuroscience.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
Microglia are present throughout the central nervous system (CNS) and express receptors for every known neurotransmitter. During inflammation, microglia change into a state that either promotes removal of debris (M1), or into a state that promotes soothing (M2). Caudal- and rostral- ventrolateral medullary regions (CVLM and RVLM, respectively) of the brainstem are key nuclei involved in all aspects of the cardiovascular system. In this study, we investigate a novel role for microglia in cardiovascular control in the brainstem of adult male Sprague-Dawley (SD) rat. Here we show, that increases and decreases in blood pressure (BP) triggers alertness in the physiology of microglia in the brainstem region; inducing changes in microglial spatial distribution and the number of synapses in contact with microglial end processes. Following 6h of acute hypertension, the number of synapses in contact with microglia increased by ≈30% in both regions of the brainstem, CVLM and RVLM. Induction of acute hypotension for 6h causes microglia to reduce the number of synaptic contacts by >20% in both, CVLM and RVLM, nuclei of the brainstem. Our analysis of the morphological characteristics of microglia, and expression levels of M1 and M2, reveals that the changes induced in microglial behavior do not require any obvious dramatic changes in their morphology. Taken together, our findings suggest that microglia play a novel, unexpected, physiological role in the uninjured autonomic nuclei of CNS; we therefore speculate that microglia act cooperatively with brainstem cardiovascular neurons to maintain them in a physiologically receptive state.
Collapse
Affiliation(s)
- Komal Kapoor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Amol M Bhandare
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Suja Mohammed
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
208
|
Marina N, Teschemacher AG, Kasparov S, Gourine AV. Glia, sympathetic activity and cardiovascular disease. Exp Physiol 2016; 101:565-76. [PMID: 26988631 PMCID: PMC5031202 DOI: 10.1113/ep085713] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we discuss recent findings that provide a novel insight into the mechanisms that link glial cell function with the pathogenesis of cardiovascular disease, including systemic arterial hypertension and chronic heart failure. What advances does it highlight? We discuss how glial cells may influence central presympathetic circuits, leading to maladaptive and detrimental increases in sympathetic activity and contributing to the development and progression of cardiovascular disease. Increased activity of the sympathetic nervous system is associated with the development of cardiovascular disease and may contribute to its progression. Vasomotor and cardiac sympathetic activities are generated by the neuronal circuits located in the hypothalamus and the brainstem. These neuronal networks receive multiple inputs from the periphery and other parts of the CNS and, at a local level, may be influenced by their non-neuronal neighbours, in particular glial cells. In this review, we discuss recent experimental evidence suggesting that astrocytes and microglial cells are able to modulate the activity of sympathoexcitatory neural networks in disparate physiological and pathophysiological conditions. We focus on the chemosensory properties of astrocytes residing in the rostral ventrolateral medulla oblongata and discuss signalling mechanisms leading to glial activation during brain hypoxia and inflammation. Alterations in these mechanisms may lead to heightened activity of sympathoexcitatory CNS circuits and contribute to maladaptive and detrimental increases in sympathetic tone associated with systemic arterial hypertension and chronic heart failure.
Collapse
Affiliation(s)
- Nephtali Marina
- Department of Clinical Pharmacology, University College London, London, WC1E 6JF, UK
| | - Anja G Teschemacher
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Sergey Kasparov
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
209
|
Lectin-like oxidized low-density lipoprotein receptor-1 regulates autophagy and Toll-like receptor 4 in the brain of hypertensive mice. J Hypertens 2016; 33:525-33; discussion 533. [PMID: 25380158 DOI: 10.1097/hjh.0000000000000411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) regulates blood pressure and is important for the development of inflammation, oxidative stress and autophagy. We posited that LOX-1 via NADPH oxidase activation may affect autophagy and Toll-like receptor (TLR)4 expression in the brains of hypertensive mice. METHODS To examine this postulate, wild-type mice were given continuous infusion of angiotensin II (50 ng/min) for 28 days. As expected, these mice developed significant increase in blood pressure. RESULTS Corpus callosum in the brains of these hypertensive mice revealed intense expression of NADPH oxidase (subunits P22phox and P47phox), activation of P38 MAPK and nuclear factor-kappaB (P65), autophagy-related proteins (beclin-1 and conversion of LC3-I to LC3-II), and TLR4 (and associated signaling molecules myeloid differentiation primary response gene (88) and TIR-domain-containing adapter-inducing interferon-β). These observations suggested activation of redox signals, autophagy and immune system. In parallel experiments, mice with LOX-1 deletion given similar infusion of angiotensin II showed much less expression of NADPH oxidase, activation of P38 MAPK and nuclear factor-kappaB, autophagy-related proteins and TLR4 [and myeloid differentiation primary response gene (88) and TIR-domain-containing adapter-inducing interferon-β]. Mice with LOX-1 deletion also showed a smaller rise in blood pressure than wild-type mice, both groups given similar infusion of angiotensin II. CONCLUSION These studies suggest immune activation in the brains of mice with angiotensin II-induced hypertension. Further, these observations imply the existence of a link between LOX-1, NADPH oxidase expression, development of autophagy and immune activation in hypertension.
Collapse
|
210
|
Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 2016; 1637:146-153. [DOI: 10.1016/j.brainres.2016.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
211
|
Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol 2016; 594:1591-600. [PMID: 26580484 PMCID: PMC4799983 DOI: 10.1113/jp271584] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (AngII) is a pivotal peptide implicated in the regulation of blood pressure. In addition to its systemic vascular and renal effects, AngII acts centrally to modulate the activities of neuroendocrine and sympathetic neuronal networks, influencing in turn sympatho-humoral outflows to the circulation. Moreover, a large body of evidence supports AngII signalling dysregulation as a key mechanism contributing to exacerbated sympathoexcitation during hypertension. Due to its hydrophilic actions, circulating AngII does not cross the blood-brain barrier (BBB), signalling to the brain via the circumventricular organs which lack a tight BBB. In this review, we present and discuss recent studies from our laboratory showing that elevated circulating levels of AngII during hypertension result in disruption of the BBB integrity, allowing access of circulating AngII to critical sympathoexcitatory brain centres such as the paraventricular nucleus of the hypothalamus and the rostral ventrolateral medulla. We propose the novel hypothesis that AngII-driven BBB breakdown constitutes a complementary mechanism by which circulating AngII, working in tandem with the central renin-angiotensin system, further exacerbates sympatho-humoral activation during hypertension. These results are discussed within the context of a growing body of evidence in the literature supporting AngII as a pro-inflammatory signal, and brain microglia as key cell targets mediating central AngII actions during hypertension.
Collapse
Affiliation(s)
- V C Biancardi
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - J E Stern
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
212
|
Abstract
Circulatory homeostasis is associated with interactions between multiple organs, and the disruption of dynamic circulatory homeostasis could be considered as heart failure. The brain is the central unit integrating neural and neurohormonal information from peripheral organs and controlling peripheral organs using the autonomic nervous system. Heart failure is worsened by abnormal sympathoexcitation associated with baroreflex failure and/or chemoreflex activation, and by vagal withdrawal, and autonomic modulation therapies have benefits for heart failure. Recently, we showed that baroreflex failure induces striking volume intolerance independent of left ventricular dysfunction. Many studies have indicated that an overactive renin-angiotensin system, excess oxidative stress and excess inflammation, and/or decreased nitric oxide in the brain cause sympathoexcitation in heart failure. We have demonstrated that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center, causes prominent sympathoexcitation in heart failure model rats. Interestingly, systemic infusion of angiotensin II directly affects brain AT1R with sympathoexcitation and left ventricular diastolic dysfunction. Moreover, we have demonstrated that targeted deletion of AT1R in astrocytes strikingly improved survival with prevention of left ventricular remodeling and sympathoinhibition in myocardial infarction-induced heart failure. From these results, we believe it is possible that AT1R in astrocytes, not in neurons, have a key role in the pathophysiology of heart failure. We would like to propose a novel concept that the brain works as a central processing unit integrating neural and hormonal input, and that the disruption of dynamic circulatory homeostasis mediated by the brain causes heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine
| |
Collapse
|
213
|
Gouraud SS, Takagishi M, Kohsaka A, Maeda M, Waki H. Altered neurotrophic factors' expression profiles in the nucleus of the solitary tract of spontaneously hypertensive rats. Acta Physiol (Oxf) 2016; 216:346-57. [PMID: 26485190 DOI: 10.1111/apha.12618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/19/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023]
Abstract
AIM Our previous findings suggest that the nucleus of the solitary tract (NTS), a pivotal region for regulating the set point of arterial pressure, exhibits abnormal inflammation in pre-hypertensive and spontaneously hypertensive rats (SHRs), with elevated anti-apoptotic and low apoptotic factor levels compared with that of normotensive Wistar-Kyoto (WKY) rats. Whether this chronic condition affects neuronal growth and plasticity in the NTS remains unknown. To unveil the characteristics of the neurodevelopmental environment in the NTS of SHRs, we investigated the expression of neurotrophic factors transcripts in SHRs. METHODS RT(2) Profiler PCR Array targeting rat neurotrophins and their receptors was used to screen for differentially expressed transcripts in the NTS of SHRs compared to that of WKY rats. Protein expression and physiological functions of some of the differentially expressed transcripts were also studied. RESULTS Gene and protein expressions of glial cell line-derived neurotrophic factor family receptor alpha-3 (Gfrα-3) factor were both upregulated in the NTS of adult SHRs. Gene expressions of corticotropin-releasing hormone-binding protein (Crhbp), interleukin-10 receptor alpha (Il-10ra) and hypocretin (Hcrt) were downregulated in the NTS of adult SHRs. The Gfrα-3 transcript was increased and the Hcrt transcript was decreased in the NTS of young pre-hypertensive SHRs, suggesting that these profiles are not secondary to hypertension. Moreover, microinjection in the NTS of hypocretin-1 decreased blood pressure in adult SHRs. CONCLUSION These results suggest that altered neurotrophic factors transcript profiles may affect the normal development and function of neuronal circuitry that regulates cardiovascular autonomic activity, thereby resulting in manifestations of neurogenic hypertension in SHRs.
Collapse
Affiliation(s)
- S. S. Gouraud
- Department of Biology; Faculty of Science; Ochanomizu University; Tokyo Japan
| | - M. Takagishi
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - A. Kohsaka
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - M. Maeda
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - H. Waki
- Graduate School of Sport and Health Science; Juntendo University; Chiba Japan
| |
Collapse
|
214
|
Takesue K, Kishi T, Hirooka Y, Sunagawa K. Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol 2016; 69:84-88. [PMID: 26874752 DOI: 10.1016/j.jjcc.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation within paraventricular nucleus of the hypothalamus (PVN), a key circulatory control center in the hypothalamus, is an important pathology of sympathetic hyperactivity. Brain inflammation is mainly mediated by microglia, innate immune cells in the brain. Activated microglia produce inflammatory cytokines with alteration of their morphology. Increase in inflammatory cytokines synthesis coincides with activation of microglia within PVN of angiotensin II-induced hypertensive model and myocardial infarction-induced heart failure model. Although the increase in inflammatory cytokines and the microglial activation within PVN were also seen in spontaneously hypertensive rats (SHR), the model of essential hypertension, their involvement in blood pressure regulation has still be fully clarified. In the present study, we examined whether activated microglia within PVN were involved in maintenance of established severe hypertension with sympathoexcitation. METHODS Minocycline (25mg/kg/day), an inhibitor of microglial activation, or vehicle were orally administered to stroke-prone SHR (SHRSP) and normotensive Wistar-Kyoto (WKY) rats for 2 weeks from 15-weeks-old, the age of established hypertension. RESULTS Systolic blood pressure was comparable between minocycline treated-SHRSP and vehicle treated-SHRSP, whereas morphological analysis of microglia revealed smaller cell size in minocycline treated-SHRSP than vehicle treated-SHRSP, implying that minocycline deactivated microglia within PVN. CONCLUSIONS Activated microglia with morphological alteration within PVN are not involved in the maintenance of established severe hypertension, and inflammation within PVN could not be the therapeutic target of established hypertension.
Collapse
Affiliation(s)
- Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| | - Kenji Sunagawa
- Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| |
Collapse
|
215
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016; 310:H404-15. [PMID: 26637556 PMCID: PMC4796625 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
216
|
Speretta GF, Silva AA, Vendramini RC, Zanesco A, Delbin MA, Menani JV, Bassi M, Colombari E, Colombari DSA. Resistance training prevents the cardiovascular changes caused by high-fat diet. Life Sci 2016; 146:154-62. [PMID: 26776833 DOI: 10.1016/j.lfs.2016.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
AIMS Aerobic exercise is indicated for prevention and treatment of obesity-induced cardiovascular disorders. Although the resistance training (RT) may also produce effects similar to aerobic exercise, this is not completely clear yet. In the present study, we tested if RT in moderate intensity might prevent alterations in blood pressure (BP), sympathetic modulation of systolic blood pressure (SBP), baroreflex function and the changes in renin-angiotensin system (RAS) and cytokines mRNA expression within the nucleus of the tract solitary (NTS) in rats fed with high-fat diet (HFD). MAIN METHODS Male Holtzman rats (300-320 g) were divided into 4 groups: sedentary with standard chow diet (SED-SD); sedentary with high-fat diet (SED-HFD); RT with standard chow diet (RT-SD); and RT with high-fat diet (RT-HFD). The trained groups performed a total of 10 weeks of moderate intensity RT in a vertical ladder. In the first 3 weeks all experimental groups were fed with SD. In the next 7 weeks, the SED-HFD and RT-HFD groups were fed with HFD. KEY FINDINGS In SED-HFD, BP and sympathetic modulation of SBP increased, whereas baroreflex bradycardic responses were attenuated. RT prevented the cardiovascular and inflammatory responses (increases in tumoral necrosis factor-α and interleukin-1β) produced by HFD in SED rats. The anti-inflammatory interleukin-10, angiotensin type 2 receptor, Mas receptor and angiotensin converting enzyme 2 mRNA expressions in the NTS increased in the RT-HFD compared to SED-HFD. SIGNIFICANCE The data demonstrated that moderate intensity RT prevented obesity-induced cardiovascular disorders simultaneously with reduced inflammatory responses and modifications of RAS in the NTS.
Collapse
Affiliation(s)
- Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - André A Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Regina C Vendramini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP, Araraquara, SP, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Bioscience, UNESP, Rio Claro, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
217
|
Kaur G, Sharma A, Gupta M, Kaur T. Obesity and Neuroinflammation. INFLAMMATION: THE COMMON LINK IN BRAIN PATHOLOGIES 2016:297-323. [DOI: 10.1007/978-981-10-1711-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
218
|
Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:21-35. [PMID: 27981434 DOI: 10.1007/5584_2016_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is the most common disease affecting humans and imparts a significant cardiovascular and renal risk to patients. Extensive research over the past few decades has enhanced our understanding of the underlying mechanisms in hypertension. However, in most instances, the cause of hypertension in a given patient continues to remain elusive. Nevertheless, achieving aggressive blood pressure goals significantly reduces cardiovascular morbidity and mortality, as demonstrated in the recently concluded SPRINT trial. Since a large proportion of patients still fail to achieve blood pressure goals, knowledge of novel pathophysiologic mechanisms and mechanism based treatment strategies is crucial. The following chapter will review the novel pathophysiological mechanisms in hypertension, with a focus on role of immunity, inflammation and vascular endothelial homeostasis. The therapeutic implications of these mechanisms will be discussed where applicable.
Collapse
Affiliation(s)
- Rohan Samson
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Andrew Lee
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Sean Lawless
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Robert Hsu
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gary Sander
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| |
Collapse
|
219
|
Lima VV, Zemse SM, Chiao CW, Bomfim GF, Tostes RC, Clinton Webb R, Giachini FR. Interleukin-10 limits increased blood pressure and vascular RhoA/Rho-kinase signaling in angiotensin II-infused mice. Life Sci 2016; 145:137-43. [DOI: 10.1016/j.lfs.2015.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/19/2015] [Accepted: 12/04/2015] [Indexed: 01/21/2023]
|
220
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
221
|
Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension - A case report. Int J Cardiol 2015; 201:157-8. [PMID: 26301638 PMCID: PMC4711349 DOI: 10.1016/j.ijcard.2015.07.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
Affiliation(s)
- YanFei Qi
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, FL 32610, USA
| | - Juan M Aranda
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, FL 32610, USA
| | - Vermali Rodriguez
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, FL 32610, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
222
|
Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition. Mol Neurobiol 2015; 53:6950-6967. [DOI: 10.1007/s12035-015-9584-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/29/2015] [Indexed: 01/02/2023]
|
223
|
Xue B, Thunhorst RL, Yu Y, Guo F, Beltz TG, Felder RB, Johnson AK. Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension. Hypertension 2015; 67:163-70. [PMID: 26573717 DOI: 10.1161/hypertensionaha.115.06263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Abstract
Obesity has been shown to promote renin-angiotensin system activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure. Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high-fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in renin-angiotensin system activity and inflammatory mechanisms in the brain. HFD did not increase baseline blood pressure, but enhanced the hypertensive response to Ang II compared with a normal-fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor-α synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor blocker, irbesartan, or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with tumor necrosis factor-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. Real-time quantitative reverse transcription-polymerase chain reaction analysis of lamina terminalis tissue indicated that HFD feeding, central tumor necrosis factor-α, or a central subpressor dose of Ang II upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines, whereas inhibition of Ang II type 1 receptor and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain renin-angiotensin system and of central proinflammatory cytokines.
Collapse
Affiliation(s)
- Baojian Xue
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City.
| | - Robert L Thunhorst
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Yang Yu
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Fang Guo
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Terry G Beltz
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Robert B Felder
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| | - Alan Kim Johnson
- From the Departments of Psychological and Brain Sciences (B.X., R.L.T., F.G., T.G.B., A.K.J.), Pharmacology (A.K.J.), Internal Medicine (Y.Y., R.B.F.), and the François M. Abboud Cardiovascular Research Center (B.X., R.B.F., A.K.J.), University of Iowa, Iowa City
| |
Collapse
|
224
|
Tazaki M, Endoh T, Kobayashi H, Ohkubo M, Sueishi K. Angiotensin II induces modulation of calcium channel currents in osteoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2015; 54:275-8. [PMID: 24521554 DOI: 10.2209/tdcpublication.54.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the maintenance of extracellular fluid volume and blood pressure. In addition to its well-established role in circulatory homeostasis, it has been implicated in the process of bone formation. Osteoblasts play a major role in bone formation, employing intracellular Ca(2+) as a second messenger to modulate hormonal responses and as a cofactor for mineralization. Voltage-dependent Ca(2+) channels (VDCCs) mediate the influx of Ca(2+) in response to membrane depolarization. The purpose of this study was to investigate the effects of Ang II on VDCC currents in osteoblasts using a patch-clamp recording method. To our knowledge, the data presented here demonstrate for the first time that Ang II facilitates VDCCs in osteoblasts.
Collapse
|
225
|
Liu M, Shi P, Sumners C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J Neurochem 2015; 136:163-71. [PMID: 26448556 DOI: 10.1111/jnc.13386] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023]
Abstract
Much evidence indicates that pro-inflammatory effects of the renin-angiotensin system within the hypothalamus, including microglial activation and production of pro-inflammatory cytokines, play a role in chronic neurogenic hypertension. Our objective here was to examine whether angiotensin-(1-7) [Ang-(1-7)], a protective component of the renin-angiotensin system, exerts direct actions at microglia to counteract these pro-inflammatory effects. Mas, the Ang-(1-7) receptor, was shown to be present on cultured hypothalamic microglia. Treatment of these cells with Ang-(1-7) (100-1000 nM, 3-12 h) elicited significant decreases in basal levels of mRNAs for the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor-necrosis factor α (TNFα) and of the microglia-macrophage marker CD11b, and increases in basal levels of the anti-inflammatory cytokine interleukin-10. Incubation of microglial cultures with (pro)renin (PRO) (10-50 nM; 6 h) elicited significant increases in mRNAs for IL-1β, TNFα and CD11b. The effects of PRO (10 nM) on IL-1β and TNFα mRNAs, and TNFα protein, were significantly attenuated by co-treatment with Ang-(1-7) (100 nM). Lastly, these actions of Ang-(1-7) were abolished by the Mas antagonist A-779, and were associated with reductions in NF-κB subunit expression. Collectively, these data provide the first evidence that Ang-(1-7) can exert direct effects at microglia to lower baseline and counteract PRO-induced increases in pro-inflammatory cytokines. Renin-Angiotensin system mediated microglial activation and pro-inflammatory cytokine production within the hypothalamus are components of the chronic neuroinflammation associated with 'neurogenic' hypertension. We demonstrated that angiotension-(1-7) acting via its receptor Mas on hypothalamic microglia lessens baseline and (pro)renin-induced increases in pro-inflammatory cytokine production by these cells. This is the first evidence that angiotensin-(1-7) has direct anti-inflammatory effects via microglia.
Collapse
Affiliation(s)
- Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peng Shi
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
226
|
Su Q, Liu JJ, Cui W, Shi XL, Guo J, Li HB, Huo CJ, Miao YW, Zhang M, Yang Q, Kang YM. Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicol Lett 2015; 241:152-8. [PMID: 26518973 DOI: 10.1016/j.toxlet.2015.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/06/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
AIMS High salt-induced oxidative stress plays an important role in the development of hypertension. Alpha lipoic acid (ALA) is extensively recognized as having a powerful superoxide inhibitory property. In this study, we determined whether ALA supplementation attenuates oxidative stress in hypothalamic paraventricular nucleus (PVN), decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by cross-talking with renin-angiotensin system (RAS) and pro-inflammatory cytokines (PICs). METHODS Male Wistar rats were administered a normal-salt diet (NS, 0.3% NaCl) or a high-salt diet (HS, 8.0% NaCl) for 8 weeks. These rats received ALA (60mg/kg) dissolved in vehicle (0.9% saline) or an equal voleme of vehicle, by gastric perfusion for 9 weeks. RESULTS High salt intake resulted in higher renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). These rats also had higher levels of superoxide, gp91(phox), gp47(phox) (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), angiotensin II type1 receptor (AT1-R), interleukin-1beta (IL-1β), interleukin-6 (IL-6), and lower levels of interleukin-10 (IL-10) and copper/zinc superoxide dismutase (Cu/Zn-SOD) than control animals. Treatment with ALA significantly attenuated the levels of superoxide, gp91(phox), gp47(phox), ACE, AT1-R, IL-1β and IL-6, increased the levels of IL-10 and Cu/Zn-SOD, and decreased MAP and RSNA compared with high-salt induced hypertensive rats. The mRNA expression of gp47(phox) and gp91(phox) are in accordance with their protein expression. CONCLUSION These findings suggest that supplementation of ALA obviously decreases the sympathetic activity and arterial pressure in high salt-induced hypertension by improving the superoxide inhibitory property, suppressing the activation of RAS and restoring the balance between pro- and anti-inflammatory cytokines in the PVN.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Qing Yang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China.
| |
Collapse
|
227
|
Macrophages dictate the progression and manifestation of hypertensive heart disease. Int J Cardiol 2015; 203:381-95. [PMID: 26539962 DOI: 10.1016/j.ijcard.2015.10.126] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/26/2015] [Accepted: 10/18/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammation has been implicated in the initiation, progression and manifestation of hypertensive heart disease. We sought to determine the role of monocytes/macrophages in hypertension and pressure overload induced left ventricular (LV) remodeling. METHODS AND RESULTS We used two models of LV hypertrophy (LVH). First, to induce hypertension and LVH, we fed Sabra salt-sensitive rats with a high-salt diet. The number of macrophages increased in the hypertensive hearts, peaking at 10 weeks after a high-salt diet. Surprisingly, macrophage depletion, by IV clodronate (CL) liposomes, inhibited the development of hypertension. Moreover, macrophage depletion reduced LVH by 17% (p<0.05), and reduced cardiac fibrosis by 75%, compared with controls (p=0.001). Second, to determine the role of macrophages in the development and progression of LVH, independent of high-salt diet, we depleted macrophages in mice subjected to transverse aortic constriction and pressure overload. Significantly, macrophage depletion, for 3 weeks, attenuated LVH: a 12% decrease in diastolic and 20% in systolic wall thickness (p<0.05), and a 13% in LV mass (p=0.04), compared with controls. Additionally, macrophage depletion reduced cardiac fibrosis by 80% (p=0.006). Finally, macrophage depletion down-regulated the expression of genes associated with cardiac remodeling and fibrosis: transforming growth factor beta-1 (by 80%) collagen type III alpha-1 (by 71%) and atrial natriuretic factor (by 86%). CONCLUSIONS Macrophages mediate the development of hypertension, LVH, adverse cardiac remodeling, and fibrosis. Macrophages, therefore, should be considered as a therapeutic target to reduce the adverse consequences of hypertensive heart disease.
Collapse
|
228
|
IL-10 gene transfer upregulates arcuate POMC and ameliorates hyperphagia, obesity and diabetes by substituting for leptin. Int J Obes (Lond) 2015; 40:425-33. [DOI: 10.1038/ijo.2015.201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/08/2022]
|
229
|
Lataro RM, Silva CAA, Tefé-Silva C, Prado CM, Salgado HC. Acetylcholinesterase Inhibition Attenuates the Development of Hypertension and Inflammation in Spontaneously Hypertensive Rats. Am J Hypertens 2015; 28:1201-8. [PMID: 25758777 DOI: 10.1093/ajh/hpv017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It is hypothesized that chronic increase of availability of acetylcholine, resulting from the effect of antiacetylcholinesterases, may prevent autonomic imbalance and reduce inflammation yielding benefic effects for cardiovascular disorders in hypertension. The effect of long-term administration of antiacetylcholinesterase agents with central and/or peripheral action, i.e., donepezil and pyridostigmine, were investigated on arterial pressure (AP), sympathovagal balance, plasma cytokine levels, and cardiac remodeling in spontaneously hypertensive rats (SHR). METHODS Chronic treatment with donepezil or pyridostigmine started before the onset of hypertension. AP was measured by plethysmography every 4 weeks. At the end of 16 weeks of treatment, methylatropine was used to evaluate the cardiac vagal tone; AP and pulse interval (PI) variability were also evaluated followed by plasma and heart collection for analysis. RESULTS Pyridostigmine, which does not cross the blood-brain barrier, increased cardiac vagal tone, and reduced cardiomyocyte diameter and collagen density, but did not affect the AP and plasma cytokine levels. Donepezil, which crosses the blood-brain barrier, attenuated the development of hypertension, increased cardiac vagal tone, and improved AP and PI variability. Likewise, donepezil reduced the plasma levels of tumor necrosis factor-α, interleukin 6, and interferon γ, besides reducing cardiomyocyte diameter and collagen density. CONCLUSIONS Donepezil attenuated the development of hypertension in SHR probably involving antiinflammatory effects, indicating that acetylcholinesterase inhibition yields benefic effects for antihypertensive therapy.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A A Silva
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane Tefé-Silva
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele M Prado
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio C Salgado
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;
| |
Collapse
|
230
|
Affiliation(s)
- Marc S Penn
- From the Department of Cardiology, Summa Cardiovascular Institute, Summa Health, Akron, OH.
| | - Deephak Swaminath
- From the Department of Cardiology, Summa Cardiovascular Institute, Summa Health, Akron, OH
| |
Collapse
|
231
|
Chronic estrogen exposure affects gene expression in the rostral ventrolateral medulla of young and aging rats: Possible role in hypertension. Brain Res 2015; 1627:134-42. [PMID: 26375620 DOI: 10.1016/j.brainres.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 08/03/2015] [Accepted: 09/05/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic exposure to estradiol-17β (E2) in adult female rats increases mean arterial pressure by stimulating superoxide production in the rostral ventrolateral medulla (RVLM). However the mechanisms behind this phenomenon are unknown. We hypothesized that E2 exposure induces the gene expression of cytokines, chemokines and NADPH oxidase (Nox) in the RVLM that promotes superoxide production and aging would exacerbate this effect. METHODS Young adult (3-4 month old) and middle-aged (6-8 month old) female Sprague Dawley rats were sham-implanted (YS and MS respectively) or implanted s.c. with slow-release E2 pellets (20 ng of E2/day for 90 days; YE and ME respectively). Blood pressure (BP) was measured during the last 3 weeks of exposure in a separate set of rats. At the end of treatment, the animals were sacrificed and RVLM was isolated from the brainstem. PCR array and Quantitative RT-PCR were performed with the tissue to quantify genes associated with hypertension and superoxide production. Superoxide dismutase (SOD) activity was also measured in the RVLM from a different set of animals. RESULTS E2 exposure increased mean arterial pressure in both YE and ME animals. Inflammatory genes such as interleukin-1β, interleukin-6 and monocyte chemoattractant protein-1 were significantly up-regulated in the RVLM of ME treated female rats compared to YS rats, but not in YE rats. Endothelin-1 (ET-1) gene was up-regulated in the RVLM of both YE and ME rats that were exposed to E2. Furthermore, chronic E2 treatment increased the mRNA levels of Nox1 and Nox2 genes in the RVLM of YE but not ME animals. SOD activity was reduced in MA animals, compared to young animals. E2 treatment had no significant effect on SOD activity. CONCLUSION Chronic E2 exposure stimulates the expression of inflammatory genes in older animals and increases the expression of Nox subunits in the RVLM of younger animals. SOD activity was reduced in older animals. This suggests increased superoxide production in younger animals, but reduced superoxide elimination in older animals. On the other hand, E2 exposure stimulates ET-1 expression in both young and aging animals. These findings suggest that hypertension caused by chronic E2 exposure may involve different molecular mediators in young and aging animals, however ET-1 and superoxide could be common mediators for both age groups.
Collapse
|
232
|
Young CN, Davisson RL. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015; 66:920-6. [PMID: 26324508 DOI: 10.1161/hypertensionaha.115.03624] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Colin N Young
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.).
| | - Robin L Davisson
- From the Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, DC (C.N.Y.); Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY (R.L.D.); and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (R.L.D.)
| |
Collapse
|
233
|
Masson GS, Nair AR, Silva Soares PP, Michelini LC, Francis J. Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR. Am J Physiol Heart Circ Physiol 2015; 309:H1115-22. [PMID: 26254332 DOI: 10.1152/ajpheart.00349.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/25/2015] [Indexed: 11/22/2022]
Abstract
Exercise training (ExT) is recommended to treat hypertension along with pharmaceutical antihypertensive therapies. Effects of ExT in hypothalamic content of high mobility box 1 (HMGB1) and microglial activation remain unknown. We examined whether ExT would decrease autonomic and cardiovascular abnormalities in spontaneously hypertensive rats (SHR), and whether these effects were associated with decreased HMGB1 content, microglial activation, and inflammation in the hypothalamic paraventricular nucleus (PVN). Normotensive Wistar-Kyoto (WKY) rats and SHR underwent moderate-intensity ExT for 2 wk. After ExT, cardiovascular (heart rate and arterial pressure) and autonomic parameters (arterial pressure and heart rate variability, peripheral sympathetic activity, cardiac vagal activity, and baroreflex function) were measured in conscious and freely-moving rats through chronic arterial and venous catheterization. Cerebrospinal fluid, plasma, and brain were collected for molecular and immunohistochemistry analyses of the PVN. In addition to reduced heart rate variability, decreased vagal cardiac activity and increased mean arterial pressure, heart rate, arterial pressure variability, cardiac, and vasomotor sympathetic activity, SHR had higher HMGB1 protein expression, IκB-α phosphorylation, TNF-α and IL-6 protein expression, and microglia activation in the PVN. These changes were accompanied by higher plasma and cerebrospinal fluid levels of HMGB1. The ExT + SHR group had decreased expression of HMGB1, CXCR4, SDF-1, and phosphorylation of p42/44 and IκB-α. ExT reduced microglial activation and proinflammatory cytokines content in the PVN, and improved autonomic control as well. Data suggest that training-induced downregulation of activated HMGB1/CXCR4/microglia/proinflammatory cytokines axis in the PVN of SHR is a prompt neural adaptation to counterbalance the deleterious effects of inflammation on autonomic control.
Collapse
Affiliation(s)
- Gustavo Santos Masson
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana; Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Anand R Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | | | - Lisete Compagno Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana;
| |
Collapse
|
234
|
Li HB, Qin DN, Cheng K, Su Q, Miao YW, Guo J, Zhang M, Zhu GQ, Kang YM. Central blockade of salusin β attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep 2015; 5:11162. [PMID: 26220637 PMCID: PMC4518230 DOI: 10.1038/srep11162] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Salusin β is a multifunctional bioactive peptide and is considered as a promising candidate biomarker for predicting atherosclerotic cardiovascular diseases. The present study was designed to investigate the roles and mechanisms of salusin β in the paraventricular nucleus (PVN) in attenuating hypertension and hypothalamic inflammation and whether central salusin β blockade has protective effects in essential hypertension. Normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were used in this study. The rats were chronic PVN infusion either specific salusin β blocker, antisalusin β IgG (SIgG), or control IgG (CIgG) for 2 weeks. Hypertensive rats had significantly increased salusin β expression compared with normotensive rats. Central blockade of salusin β attenuated hypertension, reduced circulating norepinephrine (NE) levels, and improved cardiac hypertrophy and function in hypertensive rats. Salusin β blockade significantly reduced proinflammatory cytokines (PICs), nuclear factor-kappa B (NF-κB) activity, reactive oxygen species (ROS) levels, and altered renin-angiotensin system (RAS) components in the PVN of hypertensive rats. These findings suggest that the beneficial effects of salusin β blockade in essential hypertension are possibly due to down-regulate of inflammatory molecules and ROS in the PVN.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Kang Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
235
|
Yu Y, Xue BJ, Wei SG, Zhang ZH, Beltz TG, Guo F, Johnson AK, Felder RB. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension. Hypertension 2015; 66:403-11. [PMID: 26101342 DOI: 10.1161/hypertensionaha.115.05726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 01/17/2023]
Abstract
Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Yang Yu
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Bao-Jian Xue
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Shun-Guang Wei
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Zhi-Hua Zhang
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Terry G Beltz
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Fang Guo
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Alan Kim Johnson
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert B Felder
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.).
| |
Collapse
|
236
|
de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015; 309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Meng Liu
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
237
|
Zhang M, Qin DN, Suo YP, Su Q, Li HB, Miao YW, Guo J, Feng ZP, Qi J, Gao HL, Mu JJ, Zhu GQ, Kang YM. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett 2015; 235:206-15. [PMID: 25891026 DOI: 10.1016/j.toxlet.2015.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1β), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Da-Nian Qin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yu-Ping Suo
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Wang Miao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
238
|
Affiliation(s)
- Eric Lazartigues
- From the Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Centers of Excellence, Louisiana State University Health Sciences Center, New Orleans.
| |
Collapse
|
239
|
Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, Shi P. Microglia participate in neurogenic regulation of hypertension. Hypertension 2015; 66:309-16. [PMID: 26056339 DOI: 10.1161/hypertensionaha.115.05333] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with neuroinflammation and increased sympathetic tone. Interference with neuroinflammation by an anti-inflammatory reagent or overexpression of interleukin-10 in the brain was found to attenuate hypertension. However, the cellular mechanism of neuroinflammation, as well as its impact on neurogenic regulation of blood pressure, is unclear. Here, we found that hypertension, induced by either angiotensin II or l-N(G)-nitro-l-arginine methyl ester, is accompanied by microglial activation as manifested by microgliosis and proinflammatory cytokine upregulation. Targeted depletion of microglia significantly attenuated neuroinflammation, glutamate receptor expression in the paraventricular nucleus, plasma vasopressin level, kidney norepinephrine concentration, and blood pressure. Furthermore, when microglia were preactivated and transferred into the brains of normotensive mice, there was a significantly prolonged pressor response to intracerebroventricular injection of angiotensin II, and inactivation of microglia eliminated these effects. These data demonstrate that microglia, the resident immune cells in the brain, are the major cellular factors in mediating neuroinflammation and modulating neuronal excitation, which contributes to the elevated blood pressure.
Collapse
Affiliation(s)
- Xiao Z Shen
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - You Li
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Liang Li
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kandarp H Shah
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kenneth E Bernstein
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Patrick Lyden
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Peng Shi
- From the Departments of Biomedical Sciences (X.Z.S., K.H.S., K.E.B.), Neurology (Y.L., L.L., P.L., P.S.), and Pathology and Laboratory Medicine (X.Z.S., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
240
|
Abstract
For >50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, deoxycorticosterone acetate-salt, and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including interleukin-17, interferon-γ, tumor necrosis factorα, and interleukin-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption, and increased renal fibrosis. Recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension, including myocardial infarction, heart failure, renal failure, and stroke.
Collapse
Affiliation(s)
- William G McMaster
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - Annet Kirabo
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - Meena S Madhur
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - David G Harrison
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
241
|
Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, Joseph J, Garcia-Pereira F, Johnson RD, Shenoy V, Raizada MK, Zubcevic J. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res 2015; 117:178-91. [PMID: 25963715 DOI: 10.1161/circresaha.117.305853] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022]
Abstract
RATIONALE Microglial activation in autonomic brain regions is a hallmark of neuroinflammation in neurogenic hypertension. Despite evidence that an impaired sympathetic nerve activity supplying the bone marrow (BM) increases inflammatory cells and decreases angiogenic cells, little is known about the reciprocal impact of BM-derived inflammatory cells on neuroinflammation in hypertension. OBJECTIVE To test the hypothesis that proinflammatory BM cells from hypertensive animals contribute to neuroinflammation and hypertension via a brain-BM interaction. METHODS AND RESULTS After BM ablation in spontaneously hypertensive rats, and reconstitution with normotensive Wistar Kyoto rat BM, the resultant chimeric spontaneously hypertensive rats displayed significant reduction in mean arterial pressure associated with attenuation of both central and peripheral inflammation. In contrast, an elevated mean arterial pressure along with increased central and peripheral inflammation was observed in chimeric Wistar-Kyoto rats reconstituted with spontaneously hypertensive rat BM. Oral treatment with minocycline, an inhibitor of microglial activation, attenuated hypertension in both the spontaneously hypertensive rats and the chronic angiotensin II-infused rats. This was accompanied by decreased sympathetic drive and inflammation. Furthermore, in chronic angiotensin II-infused rats, minocycline prevented extravasation of BM-derived cells to the hypothalamic paraventricular nucleus, presumably via a mechanism of decreased C-C chemokine ligand 2 levels in the cerebrospinal fluid. CONCLUSIONS The BM contributes to hypertension by increasing peripheral inflammatory cells and their extravasation into the brain. Minocycline is an effective therapy to modify neurogenic components of hypertension. These observations support the hypothesis that BM-derived cells are involved in neuroinflammation, and targeting them may be an innovative strategy for neurogenic resistant hypertension therapy.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Niousha Ahmari
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Jessica Marulanda Carvajal
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Michael B Zingler
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Yanfei Qi
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Seungbum Kim
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Jessica Joseph
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Fernando Garcia-Pereira
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Richard D Johnson
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Vinayak Shenoy
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville
| | - Mohan K Raizada
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville.
| | - Jasenka Zubcevic
- From the Physiology and Functional Genomics, College of Medicine (M.M.S., J.M.C., M.B.Z., S.K., J.J., M.K.R.), Physiological Sciences, College of Veterinary Medicine (N.A., F.G.-P., R.D.J., J.Z.), Cardiology, College of Medicine (Y.Q.), and Pharmacodynamics, College of Pharmacy (V.S.), University of Florida, Gainesville.
| |
Collapse
|
242
|
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.
Collapse
|
243
|
Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation 2015; 12:85. [PMID: 25935397 PMCID: PMC4432955 DOI: 10.1186/s12974-015-0306-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Inflammation of forebrain and hindbrain nuclei controlling the sympathetic nervous system (SNS) outflow from the brain to the periphery represents an emerging concept of the pathogenesis of neurogenic hypertension. Angiotensin II (Ang-II) and prorenin were shown to increase production of reactive oxygen species and pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)) while simultaneously decreasing production of interleukin-10 (IL-10) in the paraventricular nucleus of the hypothalamus and the rostral ventral lateral medulla. Peripheral chronic inflammation and Ang-II activity seem to share a common central mechanism contributing to an increase in sympathetic neurogenic vasomotor tone and entailing neurogenic hypertension. Both hypertension and obesity facilitate the penetration of peripheral immune cells in the brain parenchyma. We suggest that renin-angiotensin-driven hypertension encompasses feedback and feedforward mechanisms in the development of neurogenic hypertension while low-intensity, chronic peripheral inflammation of any origin may serve as a model of a feedforward mechanism in this condition.
Collapse
Affiliation(s)
- Pawel J Winklewski
- Institute of Human Physiology, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego Str. 3c, 02-106, Warsaw, Poland.
| | | | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Marszalkowska Str. 24, 00-576, Warsaw, Poland.
| |
Collapse
|
244
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
245
|
Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine CJ, Raizada MK, Mohamadzadeh M. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65:1331-40. [PMID: 25870193 DOI: 10.1161/hypertensionaha.115.05315] [Citation(s) in RCA: 1041] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. This study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension because genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of 2 rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes/Bacteroidetes ratio. These changes were accompanied by decreases in acetate- and butyrate-producing bacteria. In addition, the microbiota of a small cohort of human hypertensive patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes/Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes/Bacteroidetes ratio. These observations demonstrate that high blood pressure is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension.
Collapse
Affiliation(s)
- Tao Yang
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Monica M Santisteban
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Vermali Rodriguez
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Eric Li
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Niousha Ahmari
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Jessica Marulanda Carvajal
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Mojgan Zadeh
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Minghao Gong
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Yanfei Qi
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Jasenka Zubcevic
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Bikash Sahay
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Carl J Pepine
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville.
| | - Mansour Mohamadzadeh
- From the Department of Infectious Diseases and Pathology, College of Veterinary Medicine (T.Y., M.Z., M.G., B.S., M.M.), Division of Gastroenterology, Hematology and Nutrition, Department of Medicine (T.Y., M.Z., M.G., B.S., M.M.), Department of Physiology and Functional Genomics (M.M.S., V.R., J.M.C., M.K.R.), College of Medicine, Division of Cardiovascular Medicine, Department of Medicine (V.R., Y.Q., C.J.P.), Division of Infectious Diseases and Global Medicine, Department of Medicine (E.L.), and Department of Physiological Sciences, College of Veterinary Medicine (N.A., J.Z.), University of Florida, Gainesville.
| |
Collapse
|
246
|
Goel R, Bhat SA, Rajasekar N, Hanif K, Nath C, Shukla R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol Biochem Behav 2015; 133:132-45. [PMID: 25869103 DOI: 10.1016/j.pbb.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/17/2015] [Accepted: 04/06/2015] [Indexed: 01/06/2023]
Abstract
Hypertension is a risk factor for cognitive impairment. Furthermore, neuroinflammation and neurodegeneration are intricately associated with memory impairment. Therefore, the present study aimed to explore the involvement of hypertension and angiotensin system in neurodegeneration and memory dysfunction in the presence of neuroinflammatory stimulus. Memory impairment was induced by chronic neuroinflammation that was developed by repeated intracerebroventricular (ICV) injections of lipopolysaccharide (LPS) on the 1st, 4th, 7th, and 10th day. Memory functions were evaluated by the Morris water maze (MWM) test on days 13-15, followed by biochemical and molecular studies in the cortex and hippocampus regions of rat brain. LPS at the dose of 25μg ICV caused memory impairment in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar rats (NWRs). Memory deficit was obtained with 50μg of LPS (ICV) in NWRs. Control SHRs already exhibited increased angiotensin converting enzyme (ACE) activity and expression, neuroinflammation (increased TNF-α, GFAP, COX-2 and NF-kB), oxidative stress (increased iNOS, ROS and nitrite levels), TLR-4 expression and TUNEL positive cells as compared to control NWRs. Further, LPS (25μg ICV) exaggerated inflammatory response, oxidative stress and apoptosis in SHRs but similar effects were witnessed at 50μg of LPS (ICV) in NWRs. Oral administration of perindopril (ACE inhibitor), at non-antihypertensive dose (0.1mg/kg), for 15days attenuated LPS induced deleterious changes in both NWRs and SHRs. Our data suggest that susceptibility of the brain for neurodegeneration and memory impairment induced by neuroinflammation is enhanced in hypertension, and that can be protected by ACE inhibition.
Collapse
Affiliation(s)
- Ruby Goel
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahnawaz Ali Bhat
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
247
|
Masson GS, Nair AR, Dange RB, Silva-Soares PP, Michelini LC, Francis J. Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: role of endoplasmic reticulum stress. PLoS One 2015; 10:e0122850. [PMID: 25811788 PMCID: PMC4374971 DOI: 10.1371/journal.pone.0122850] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND & PURPOSE Toll-like receptor 4 (TLR4) signaling induces tissue pro-inflammatory cytokine release and endoplasmic reticulum (ER) stress. We examined the role of TLR4 in autonomic dysfunction and the contribution of ER stress. EXPERIMENTAL APPROACH Our study included animals divided in 6 experimental groups: rats treated with saline (i.v., 0.9%), LPS (i.v., 10mg/kg), VIPER (i.v., 0.1 mg/kg), or 4-PBA (i.p., 10 mg/kg). Two other groups were pretreated either with VIPER (TLR4 viral inhibitory peptide) LPS + VIPER (i.v., 0.1 mg/kg) or 4-Phenyl butyric acid (4-PBA) LPS + PBA (i.p., 10 mg/kg). Arterial pressure (AP) and heart rate (HR) were measured in conscious Sprague-Dawley rats. AP, HR variability, as well as baroreflex sensitivity (BrS), was determined after LPS or saline treatment for 2 hours. Immunofluorescence staining for NeuN, Ib1a, TLR4 and GRP78 in the hypothalamic paraventricular nucleus (PVN) was performed. TNF-α, TLR4 and GRP78 protein expression in the PVN were evaluated by western blot. Plasma norepinephrine levels were determined by ELISA. KEY RESULTS Acute LPS treatment increased HR and plasma norepinephrine concentration. It also decreased HR variability and high frequency (HF) components of HR variability, as well BrS. Acute LPS treatment increased TLR4 and TNF-α protein expression in the PVN. These hemodynamic and molecular effects were partially abrogated with TLR4 blocker or ER stress inhibitor pretreatment. In addition, immunofluorescence study showed that TLR4 is co-localized with GRP78in the neurons. Further inhibition of TLR4 or ER stress was able to attenuate the LPS-induced microglia activation. CONCLUSIONS & IMPLICATIONS TLR4 signaling promotes autonomic dysfunction, inflammation and microglia activation, through neuronal ER stress, in the PVN.
Collapse
Affiliation(s)
- Gustavo S. Masson
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Anand R. Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rahul B. Dange
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | - Lisete C. Michelini
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
248
|
Wei SG, Yu Y, Zhang ZH, Felder RB. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension 2015; 65:1126-33. [PMID: 25776070 DOI: 10.1161/hypertensionaha.114.05112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne proinflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating proinflammatory cytokines remain unclear. We hypothesized that proinflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of tumor necrosis factor (TNF)-α (25 ng) or interleukin (IL)-1β (25 ng) into SFO increased mean blood pressure, heart rate, and renal sympathetic nerve activity within 15 to 20 minutes, mimicking the response to systemically administered proinflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type-1 receptor blocker losartan (1 μg), angiotensin-converting enzyme inhibitor captopril (1 μg) or cyclooxygenase-2 inhibitor NS-398 (2 μg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for angiotensin-converting enzyme, angiotensin II type-1 receptor, TNF-α and the p55 TNF-α receptor, IL-1β and the IL-1R receptor, and cyclooxygenase-2 had increased in SFO, and mRNA for angiotensin-converting enzyme, angiotensin II type-1 receptor, and cyclooxygenase-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, colocalized with angiotensin-converting enzyme, angiotensin II type-1 receptor-like, cyclooxygenase-2, and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that proinflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation.
Collapse
Affiliation(s)
- Shun-Guang Wei
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Yang Yu
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Zhi-Hua Zhang
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA
| | - Robert B Felder
- From the Department of Internal Medicine, University of Iowa Carver College of Medicine (S.-G.W., Y.Y., Z.-H.Z., R.B.F.) and Veterans Affairs Medical Center (R.B.F.), Iowa City, IA.
| |
Collapse
|
249
|
Dai SY, Peng W, Zhang YP, Li JD, Shen Y, Sun XF. Brain endogenous angiotensin II receptor type 2 (AT2-R) protects against DOCA/salt-induced hypertension in female rats. J Neuroinflammation 2015; 12:47. [PMID: 25885968 PMCID: PMC4355980 DOI: 10.1186/s12974-015-0261-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/21/2023] Open
Abstract
Background Recent studies demonstrate that there are sex differences in the expression of angiotensin receptor type 2 (AT2-R) in the kidney and that AT2-R plays an enhanced role in regulating blood pressure (BP) in females. Also, brain AT2-R activation has been reported to negatively modulate BP and sympathetic outflow. The present study investigated whether the central blockade of endogenous AT2-R augments deoxycorticosterone acetate (DOCA)/salt-induced hypertension in both male and female rats. Methods All rats were subcutaneously infused with DOCA combined with 1% NaCl solution as the sole drinking fluid. BP and heart rate (HR) were recorded by telemetric transmitters. To determine the effect of central AT2-R on DOCA/salt-induced hypertension, male and female rats were intracerebroventricularly (icv) infused with AT2-R antagonist, PD123,319, during DOCA/salt treatment. Subsequently, the paraventricular nucleus (PVN) of the hypothalamus, a key cardiovascular regulatory region of the brain, was analyzed by quantitative real-time PCR and Western blot. Results DOCA/salt treatment elicited a greater increase in BP in male rats than that in females. Icv infusions of the AT2-R antagonist significantly augmented DOCA/salt pressor effects in females. However, this same treatment had no enhanced effect on DOCA/salt-induced increase in the BP in males. Real-time PCR and Western blot analysis of the female brain revealed that DOCA/salt treatment enhanced the mRNA and protein expression for both antihypertensive components including AT2-R, angiotensin-converting enzyme (ACE)-2, and interleukin (IL)-10 and hypertensive components including angiotensin receptor type 1 (AT1-R), ACE-1, tumor necrosis factor (TNF)-α, and IL-1β, but decreased mRNA expression of renin in the PVN. The central blockade of AT2-R reversed the changes in mRNA and protein expressions of ACE-2, IL-10, and renin, further increased the expressions of TNF-α and IL-1β, and kept higher the expressions of AT1-R, ACE-1, and AT2-R. Conclusions These results indicate that endogenous AT2-R activation in the brain plays an important protective role in the development of DOCA/salt-induced hypertension in females, but not in males. The protective effect of AT2-R in females involves regulating the expression of brain renin-angiotensin system components and proinflammatory cytokines.
Collapse
Affiliation(s)
- Shu-Yan Dai
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| | - Wei Peng
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Yu-Ping Zhang
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Jian-Dong Li
- Department of Physiology and Pathophysiology, Life Science Research Center, Hebei North University, Zhangjiakou City, Hebei, China.
| | - Ying Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| | - Xiao-Fei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 36, Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
250
|
Dange RB, Agarwal D, Teruyama R, Francis J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J Neuroinflammation 2015; 12:31. [PMID: 25879545 PMCID: PMC4337244 DOI: 10.1186/s12974-015-0242-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Despite the availability of several antihypertensive medications, the morbidity and mortality caused by hypertension is on the rise, suggesting the need for investigation of novel signaling pathways involved in its pathogenesis. Recent evidence suggests the role of toll-like receptor (TLR) 4 in various inflammatory diseases, including hypertension. The role of the brain in the initiation and progression of all forms of hypertension is well established, but the role of brain TLR4 in progression of hypertension has never been explored. Therefore, we investigated the role of TLR4 within the paraventricular nucleus (PVN; an important cardioregulatory center in the brain) in an animal model of human essential hypertension. We hypothesized that a TLR4 blockade within the PVN causes a reduction in mean arterial blood pressure (MAP), inflammatory cytokines and sympathetic drive in hypertensive animals. Methods Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were administered either a specific TLR4 blocker, viral inhibitory peptide (VIPER), or control peptide in their PVN for 14 days. MAP was recorded continuously by radiotelemetry. PVN and blood were collected for the measurement of pro-inflammatory cytokines (Tumor Necrosis Factor (TNF)-α, interleukin (IL)-1β), anti-inflammatory cytokine IL-10, inducible nitric oxide synthase (iNOS), TLR4, nuclear factor (NF) κB activity and plasma norepinephrine (NE) and high mobility group box (HMGB)1 expression, respectively. Results Hypertensive rats exhibited significantly higher levels of TLR4 in the PVN. TLR4 inhibition within the PVN attenuated MAP, improved cardiac hypertrophy, reduced TNF-α, IL-1β, iNOS levels, and NFκB activity in SHR but not in WKY rats. These results were associated with a reduction in plasma NE and HMGB1 levels and an increase in IL-10 levels in SHR. Conclusions This study demonstrates that TLR4 upregulation in PVN plays an important role in hypertensive response. Our results provide mechanistic evidence that hypertensive response in SHR are mediated, at least in part, by TLR4 in the PVN and that inhibition of TLR4 within the PVN attenuates blood pressure and improves inflammation, possibly via reduction in sympathetic activity.
Collapse
Affiliation(s)
- Rahul B Dange
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| | - Deepmala Agarwal
- William Hansel Cancer Prevention Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| | - Ryoichi Teruyama
- Department of Biological Sciences, College of Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|