201
|
Smaers JB, Steele J, Case CR, Amunts K. Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann N Y Acad Sci 2013; 1288:59-69. [PMID: 23647442 PMCID: PMC4298027 DOI: 10.1111/nyas.12047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech.
Collapse
Affiliation(s)
- Jeroen B Smaers
- Department of Anthropology, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
202
|
Peelen MV, Bracci S, Lu X, He C, Caramazza A, Bi Y. Tool selectivity in left occipitotemporal cortex develops without vision. J Cogn Neurosci 2013; 25:1225-34. [PMID: 23647514 DOI: 10.1162/jocn_a_00411] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous studies have provided evidence for a tool-selective region in left lateral occipitotemporal cortex (LOTC). This region responds selectively to pictures of tools and to characteristic visual tool motion. The present human fMRI study tested whether visual experience is required for the development of tool-selective responses in left LOTC. Words referring to tools, animals, and nonmanipulable objects were presented auditorily to 14 congenitally blind and 16 sighted participants. Sighted participants additionally viewed pictures of these objects. In whole-brain group analyses, sighted participants showed tool-selective activity in left LOTC in both visual and auditory tasks. Importantly, virtually identical tool-selective LOTC activity was found in the congenitally blind group performing the auditory task. Furthermore, both groups showed equally strong tool-selective activity for auditory stimuli in a tool-selective LOTC region defined by the picture-viewing task in the sighted group. Detailed analyses in individual participants showed significant tool-selective LOTC activity in 13 of 14 blind participants and 14 of 16 sighted participants. The strength and anatomical location of this activity were indistinguishable across groups. Finally, both blind and sighted groups showed significant resting state functional connectivity between left LOTC and a bilateral frontoparietal network. Together, these results indicate that tool-selective activity in left LOTC develops without ever having seen a tool or its motion. This finding puts constraints on the possible role that this region could have in tool processing and, more generally, provides new insights into the principles shaping the functional organization of OTC.
Collapse
Affiliation(s)
- Marius V Peelen
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy.
| | | | | | | | | | | |
Collapse
|
203
|
A right visual field advantage for visual processing of manipulable objects. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2013; 12:813-25. [PMID: 22864955 DOI: 10.3758/s13415-012-0106-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Information about object-associated manipulations is lateralized to left parietal regions, while information about the visual form of tools is represented bilaterally in ventral occipito-temporal cortex. It is unknown how lateralization of motor-relevant information in left-hemisphere dorsal stream regions may affect the visual processing of manipulable objects. We used a lateralized masked priming paradigm to test for a right visual field (RVF) advantage in tool processing. Target stimuli were tools and animals, and briefly presented primes were identical to or scrambled versions of the targets. In Experiment 1, primes were presented either to the left or to the right of the centrally presented target, while in Experiment 2, primes were presented in one of eight locations arranged radially around the target. In both experiments, there was a RVF advantage in priming effects for tool but not for animal targets. Control experiments showed that participants were at chance for matching the identity of the lateralized primes in a picture-word matching experiment and also ruled out a general RVF speed-of-processing advantage for tool images. These results indicate that the overrepresentation of tool knowledge in the left hemisphere affects visual object recognition and suggests that interactions between the dorsal and ventral streams occurs during object categorization.
Collapse
|
204
|
Phillips KA, Thompson CR. Hand preference for tool-use in capuchin monkeys (Cebus apella) is associated with asymmetry of the primary motor cortex. Am J Primatol 2013; 75:435-40. [PMID: 22987442 PMCID: PMC3527644 DOI: 10.1002/ajp.22079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
Abstract
Skilled motor actions are associated with handedness and neuroanatomical specializations in humans. Recent reports have documented similar neuroanatomical asymmetries and their relationship to hand preference in some nonhuman primate species, including chimpanzees and capuchin monkeys. We investigated whether capuchins displayed significant hand preferences for a tool-use task and whether such preferences were associated with motor-processing regions of the brain. Handedness data on a dipping tool-use task and high-resolution 3T MRI scans were collected from 15 monkeys. Capuchins displayed a significant group-level left-hand preference for this type of tool use, and handedness was associated with asymmetry of the primary motor cortex. Left-hand preferent individuals displayed a deeper central sulcus in the right hemisphere. Our results suggest that capuchins show an underlying right-hemisphere bias for skilled movement.
Collapse
|
205
|
Kemmerer D, Miller L, MacPherson MK, Huber J, Tranel D. An investigation of semantic similarity judgments about action and non-action verbs in Parkinson's disease: implications for the Embodied Cognition Framework. Front Hum Neurosci 2013; 7:146. [PMID: 23616759 PMCID: PMC3629304 DOI: 10.3389/fnhum.2013.00146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The Embodied Cognition Framework maintains that understanding actions requires motor simulations subserved in part by premotor and primary motor regions. This hypothesis predicts that disturbances to these regions should impair comprehension of action verbs but not non-action verbs. We evaluated the performances of 10 patients with Parkinson's disease (PD) and 10 normal comparison (NC) participants on a semantic similarity judgment task (SSJT) that included four classes of action verbs and two classes of non-action verbs. The patients were tested both ON and OFF medication. The most salient results involved the accuracies and reaction times (RTs) for the action verbs taken as a whole and the non-action verbs taken as a whole. With respect to accuracies, the patients did not perform significantly worse than the NC participants for either the action verbs or the non-action verbs, regardless of whether they were ON or OFF their medication. And with respect to RTs, although the patients' responses were significantly slower than those of the NC participants for the action verbs, comparable processing delays were also observed for the non-action verbs; moreover, there was again no notable influence of medication. The major dissociation was therefore not between action and non-action verbs, but rather between accuracies (relatively intact) and RTs (relatively delayed). Overall, the data suggest that semantic similarity judgments for both action and non-action verbs are correct but slow in individuals with PD. These results provide new insights about language processing in PD, and they raise important questions about the explanatory scope of the Embodied Cognition Framework.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
- Department of Psychological Sciences, Purdue UniversityWest Lafayette, IN, USA
- Division of Cognitive Neuroscience, Department of Neurology, University of IowaIowa city, IA, USA
| | - Luke Miller
- Department of Cognitive Science, University of CaliforniaSan Diego, CA, USA
| | - Megan K. MacPherson
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Jessica Huber
- Department of Speech, Language, and Hearing Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Daniel Tranel
- Division of Cognitive Neuroscience, Department of Neurology, University of IowaIowa city, IA, USA
| |
Collapse
|
206
|
Juan E, Frum C, Bianchi-Demicheli F, Wang YW, Lewis JW, Cacioppo S. Beyond human intentions and emotions. Front Hum Neurosci 2013; 7:99. [PMID: 23543838 PMCID: PMC3608908 DOI: 10.3389/fnhum.2013.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/08/2013] [Indexed: 11/29/2022] Open
Abstract
Although significant advances have been made in our understanding of the neural basis of action observation and intention understanding in the last few decades by studies demonstrating the involvement of a specific brain network (action observation network; AON), these have been largely based on experimental studies in which people have been considered as strictly isolated entities. However, we, as social species, spend much more of our time performing actions interacting with others. Research shows that a person's position along the continuum of perceived social isolation/bonding to others is associated with a variety of physical and mental health effects. Thus, there is a crucial need to better understand the neural basis of intention understanding performed in interpersonal and emotional contexts. To address this issue, we performed a meta-analysis using of functional magnetic resonance imaging (fMRI) studies over the past decade that examined brain and cortical network processing associated with understanding the intention of others actions vs. those associated with passionate love for others. Both overlapping and distinct cortical and subcortical regions were identified for intention and love, respectively. These findings provide scientists and clinicians with a set of brain regions that can be targeted for future neuroscientific studies on intention understanding, and help develop neurocognitive models of pair-bonding.
Collapse
Affiliation(s)
- Elsa Juan
- Psychology Department, University of Geneva Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
207
|
Mruczek REB, von Loga IS, Kastner S. The representation of tool and non-tool object information in the human intraparietal sulcus. J Neurophysiol 2013; 109:2883-96. [PMID: 23536716 DOI: 10.1152/jn.00658.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans have an amazing ability to quickly and efficiently recognize and interact with visual objects in their environment. The underlying neural processes supporting this ability have been mainly explored in the ventral visual stream. However, the dorsal stream has been proposed to play a critical role in guiding object-directed actions. This hypothesis is supported by recent neuroimaging studies that have identified object-selective and tool-related activity in human parietal cortex. In the present study, we sought to delineate tool-related information in the anterior portions of the human intraparietal sulcus (IPS) and relate it to recently identified motor-defined and topographic regions of interest (ROIs) using functional MRI in individual subjects. Consistent with previous reports, viewing pictures of tools compared with pictures of animals led to a higher blood oxygenation level-dependent (BOLD) response in the left anterior IPS. For every subject, this activation was located lateral, anterior, and inferior to topographic area IPS5 and lateral and inferior to a motor-defined human parietal grasp region (hPGR). In a separate experiment, subjects viewed pictures of tools, animals, graspable (non-tool) objects, and scrambled objects. An ROI-based time-course analysis showed that tools evoked a stronger BOLD response than animals throughout topographic regions of the left IPS. Additionally, graspable objects evoked stronger responses than animals, equal to responses to tools, in posterior regions and weaker responses than tools, equal to responses to animals, in anterior regions. Thus the left anterior tool-specific region may integrate visual information encoding graspable features of objects from more posterior portions of the IPS with experiential knowledge of object use and function to guide actions.
Collapse
Affiliation(s)
- Ryan E B Mruczek
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
208
|
Yoo K, Sohn WS, Jeong Y. Tool-use practice induces changes in intrinsic functional connectivity of parietal areas. Front Hum Neurosci 2013; 7:49. [PMID: 23550165 PMCID: PMC3582314 DOI: 10.3389/fnhum.2013.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/13/2022] Open
Abstract
Intrinsic functional connectivity from resting state functional magnetic resonance imaging (rsfMRI) has increasingly received attention as a possible predictor of cognitive function and performance. In this study, we investigated the influence of practicing skillful tool manipulation on intrinsic functional connectivity in the resting brain. Acquisition of tool-use skill has two aspects such as formation of motor representation for skillful manipulation and acquisition of the tool concept. To dissociate these two processes, we chose chopsticks-handling with the non-dominant hand. Because participants were already adept at chopsticks-handling with their dominant hand, practice with the non-dominant hand involved only acquiring the skill for tool manipulation with existing knowledge. Eight young participants practiced chopsticks-handling with their non-dominant hand for 8 weeks. They underwent functional magnetic resonance imaging (fMRI) sessions before and after the practice. As a result, functional connectivity among tool-use-related regions of the brain decreased after practice. We found decreased functional connectivity centered on parietal areas, mainly the supramarginal gyrus (SMG) and superior parietal lobule (SPL) and additionally between the primary sensorimotor area and cerebellum. These results suggest that the parietal lobe and cerebellum purely mediate motor learning for skillful tool-use. This decreased functional connectivity may represent increased efficiency of functional network.
Collapse
Affiliation(s)
- Kwangsun Yoo
- Laboratory for Cognitive Neuroscience and NeuroImaging, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | | | | |
Collapse
|
209
|
Evidence for a basic level in a taxonomy of everyday action sounds. Exp Brain Res 2013; 226:253-64. [PMID: 23411674 DOI: 10.1007/s00221-013-3430-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
We searched for evidence that the auditory organization of categories of sounds produced by actions includes a privileged or "basic" level of description. The sound events consisted of single objects (or substances) undergoing simple actions. Performance on sound events was measured in two ways: sounds were directly verified as belonging to a category, or sounds were used to create lexical priming. The category verification experiment measured the accuracy and reaction time to brief excerpts of these sounds. The lexical priming experiment measured reaction time benefits and costs caused by the presentation of these sounds prior to a lexical decision. The level of description of a sound varied in how specifically it described the physical properties of the action producing the sound. Both identification and priming effects were superior when a label described the specific interaction causing the sound (e.g. trickling) in comparison to the following: (1) more general descriptions (e.g. pour, liquid: trickling is a specific manner of pouring liquid), (2) more detailed descriptions using adverbs to provide detail regarding the manner of the action (e.g. trickling evenly). These results are consistent with neuroimaging studies showing that auditory representations of sounds produced by actions familiar to the listener activate motor representations of the gestures involved in sound production.
Collapse
|
210
|
Context and hand posture modulate the neural dynamics of tool–object perception. Neuropsychologia 2013; 51:506-19. [DOI: 10.1016/j.neuropsychologia.2012.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/12/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
|
211
|
Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 2013; 92:1651-97. [PMID: 23073629 DOI: 10.1152/physrev.00048.2011] [Citation(s) in RCA: 1087] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.
Collapse
Affiliation(s)
- Uwe Proske
- Department of Physiology, Monash University, Victoria, Australia.
| | | |
Collapse
|
212
|
Praxis and language are linked: Evidence from co-lateralization in individuals with atypical language dominance. Cortex 2013; 49:172-83. [PMID: 22172977 DOI: 10.1016/j.cortex.2011.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022]
|
213
|
Human handedness: An inherited evolutionary trait. Behav Brain Res 2013; 237:200-6. [DOI: 10.1016/j.bbr.2012.09.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 12/31/2022]
|
214
|
Hermsdörfer J, Li Y, Randerath J, Roby-Brami A, Goldenberg G. Tool use kinematics across different modes of execution. Implications for action representation and apraxia. Cortex 2013; 49:184-99. [DOI: 10.1016/j.cortex.2011.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 08/19/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
|
215
|
Pseudocortical and dissociate discriminative sensory dysfunction in a thalamic stroke. Cortex 2013; 49:336-9. [DOI: 10.1016/j.cortex.2012.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/06/2011] [Accepted: 07/20/2012] [Indexed: 11/20/2022]
|
216
|
Carlson BA, Arnegard ME. Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 2012; 4:720-5. [PMID: 22446537 DOI: 10.4161/cib.17483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In African mormyrid fishes, evolutionary change in a sensory region of the brain established an ability to detect subtle variation in electric communication signals. In one lineage, this newfound perceptual ability triggered a dramatic increase in the rates of signal evolution and species diversification. This particular neural innovation is just one in a series of nested evolutionary novelties that characterize the sensory and motor systems of mormyrids, the most speciose group of extant osteoglossomorph fishes. Here we discuss the behavioral significance of these neural innovations, relate them to differences in extant species diversity, and outline possible scenarios by which some of these traits may have fueled diversification. We propose that sensory and motor capabilities limit the extent to which signals evolve and, by extension, the role of communication behavior in the process of speciation. By expanding these capabilities, neural innovations increase the potential for signal evolution and species diversification.
Collapse
|
217
|
Vingerhoets G, Stevens L, Meesdom M, Honoré P, Vandemaele P, Achten E. Influence of perspective on the neural correlates of motor resonance during natural action observation. Neuropsychol Rehabil 2012; 22:752-67. [DOI: 10.1080/09602011.2012.686885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
218
|
Manuel AL, Radman N, Mesot D, Chouiter L, Clarke S, Annoni JM, Spierer L. Inter- and Intrahemispheric Dissociations in Ideomotor Apraxia: A Large-Scale Lesion–Symptom Mapping Study in Subacute Brain-Damaged Patients. Cereb Cortex 2012; 23:2781-9. [DOI: 10.1093/cercor/bhs280] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
219
|
The very same thing: Extending the object token concept to incorporate causal constraints on individual identity. Adv Cogn Psychol 2012; 8:234-47. [PMID: 22956989 PMCID: PMC3434681 DOI: 10.2478/v10053-008-0119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023] Open
Abstract
The contributions of feature recognition, object categorization, and recollection
of episodic memories to the re-identification of a perceived object as the very
same thing encountered in a previous perceptual episode are well understood in
terms of both cognitive-behavioral phenomenology and neurofunctional
implementation. Human beings do not, however, rely solely on features and
context to re-identify individuals; in the presence of featural change and
similarly-featured distractors, people routinely employ causal constraints to
establish object identities. Based on available cognitive and neurofunctional
data, the standard object-token based model of individual re-identification is
extended to incorporate the construction of unobserved and hence fictive causal
histories (FCHs) of observed objects by the pre-motor action planning system. It
is suggested that functional deficits in the construction of FCHs are associated
with clinical outcomes in both autism spectrum disorders and later-stage stage
Alzheimer’s disease.
Collapse
|
220
|
Giordano BL, McAdams S, Zatorre RJ, Kriegeskorte N, Belin P. Abstract encoding of auditory objects in cortical activity patterns. ACTA ACUST UNITED AC 2012; 23:2025-37. [PMID: 22802575 DOI: 10.1093/cercor/bhs162] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The human brain is thought to process auditory objects along a hierarchical temporal "what" stream that progressively abstracts object information from the low-level structure (e.g., loudness) as processing proceeds along the middle-to-anterior direction. Empirical demonstrations of abstract object encoding, independent of low-level structure, have relied on speech stimuli, and non-speech studies of object-category encoding (e.g., human vocalizations) often lack a systematic assessment of low-level information (e.g., vocalizations are highly harmonic). It is currently unknown whether abstract encoding constitutes a general functional principle that operates for auditory objects other than speech. We combined multivariate analyses of functional imaging data with an accurate analysis of the low-level acoustical information to examine the abstract encoding of non-speech categories. We observed abstract encoding of the living and human-action sound categories in the fine-grained spatial distribution of activity in the middle-to-posterior temporal cortex (e.g., planum temporale). Abstract encoding of auditory objects appears to extend to non-speech biological sounds and to operate in regions other than the anterior temporal lobe. Neural processes for the abstract encoding of auditory objects might have facilitated the emergence of speech categories in our ancestors.
Collapse
Affiliation(s)
- Bruno L Giordano
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
221
|
Bogart SL, Mangin JF, Schapiro SJ, Reamer L, Bennett AJ, Pierre PJ, Hopkins WD. Cortical sulci asymmetries in chimpanzees and macaques: a new look at an old idea. Neuroimage 2012; 61:533-41. [PMID: 22504765 PMCID: PMC3358493 DOI: 10.1016/j.neuroimage.2012.03.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 12/16/2022] Open
Abstract
Functional and neuroanatomical asymmetries are an important characteristic of the human brain. The evolution of such specializations in the human cortex has provoked great interest in primate brain evolution. Most research on cortical sulci has revolved around linear measurements, which represent only one dimension of sulci organization. Here, we used a software program (BrainVISA) to quantify asymmetries in cortical depth and surface area from magnetic resonance images in a sample of 127 chimpanzees and 49 macaques. Population brain asymmetries were determined from 11 sulci in chimpanzees and seven sulci in macaques. Sulci were taken from the frontal, temporal, parietal, and occipital lobes. Population-level asymmetries were evident in chimpanzees for several sulci, including the fronto-orbital, superior precentral, and sylvian fissure sulci. The macaque population did not reveal significant population-level asymmetries, except for surface area of the superior temporal sulcus. The overall results are discussed within the context of the evolution of higher order cognition and motor functions.
Collapse
Affiliation(s)
- Stephanie L. Bogart
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia 30322
- Neuroscience Institute, , Georgia State University, Atlanta, Georgia 30302
| | | | - Steven J. Schapiro
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, Texas 78602
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Reamer
- Department of Veterinary Sciences, The University of Texas M. D. Anderson Cancer Center, Bastrop, Texas 78602
| | - Allyson J Bennett
- Harlow Center for Biological Psychology, Psychology Department, University of Wisconsin, Madison, WI 53715
| | - Peter J. Pierre
- Department of Behavior Management, Wisconsin National Primate Research Center, Madison, WI 53115
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia 30322
- Neuroscience Institute, , Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
222
|
Kemmerer D, Rudrauf D, Manzel K, Tranel D. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 2012; 48:826-48. [PMID: 21159333 PMCID: PMC3965329 DOI: 10.1016/j.cortex.2010.11.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/28/2010] [Accepted: 09/24/2010] [Indexed: 11/28/2022]
Abstract
To further investigate the neural substrates of lexical and conceptual knowledge of actions, we administered a battery of six tasks to 226 brain-damaged patients with widely distributed lesions in the left and right cerebral hemispheres. The tasks probed lexical and conceptual knowledge of actions in a variety of verbal and non-verbal ways, including naming, word-picture matching, attribute judgments involving both words and pictures, and associative comparisons involving both words and pictures. Of the 226 patients who were studied, 61 failed one or more of the six tasks, with four patients being impaired on the entire battery, and varied numbers of patients being impaired on varied combinations of tasks. Overall, the 61 patients manifested a complex array of associations and dissociations across the six tasks. The lesion sites of 147 of the 226 patients were also investigated, using formal methods for lesion-deficit statistical mapping and power analysis of lesion overlap maps. Significant effects for all six tasks were found in the following left-hemisphere regions: the inferior frontal gyrus; the ventral precentral gyrus, extending superiorly into what are likely to be hand-related primary motor and premotor areas; and the anterior insula. In addition, significant effects for 4-5 tasks were found in not only the regions just mentioned, but also in several other left-hemisphere areas: the ventral postcentral gyrus; the supramarginal gyrus; and the posterior middle temporal gyrus. These results converge with previous research on the neural underpinnings of action words and concepts. However, the current study goes considerably beyond most previous investigations by providing extensive behavioral and lesion data for an unusually large and diverse sample of brain-damaged patients, and by incorporating multiple measures of verb comprehension. Regarding theoretical implications, the study provides new support for the Embodied Cognition Framework, which maintains that conceptual knowledge is grounded in sensorimotor systems.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa College of Medicine, IA, USA.
| | | | | | | |
Collapse
|
223
|
Abstract
AbstractA comparative fMRI study by Peeters et al. (2009) provided evidence that a specific sector of left inferior parietal lobule is devoted to tool use in humans, but not in monkeys. We propose that this area represents the neural substrate of the human capacity to understand tool use by using causal reasoning.
Collapse
|
224
|
Abstract
For humans, daily life is characterized by routine interaction with many different tools for which corresponding actions are specified and performed according to well-learned procedures. The current study used functional MRI (fMRI) repetition suppression (RS) to identify brain areas underlying the transformation of visually defined tool properties to corresponding motor programs for conventional use. Before grasping and demonstrating how to use a specific tool, participants passively viewed either the same (repeated) tool or a different (non-repeated) tool. Repetition of tools led to reduced fMRI signals (RS) within a selective network of parietal and premotor areas. Comparison with newly learned, arbitrarily defined control actions revealed specificity of RS for tool use, thought to reflect differences in the extent of previous sensorimotor experience. The findings indicate that familiar tools are visually represented within the same sensorimotor areas underlying their dexterous use according to learned properties defined by previous experience. This interpretation resonates with the broader concept of affordance specification considered fundamental to action planning and execution whereby action-relevant object properties (affordances) are visually represented in sensorimotor areas. The current findings extend this view to reveal that affordance specification in humans includes learned object properties defined by previous sensorimotor experience. From an evolutionary perspective, the neural mechanisms identified in the current study offer clear survival advantage, providing fast efficient transformation of visual information to appropriate motor responses based on previous experience.
Collapse
|
225
|
Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex 2012; 49:1110-25. [PMID: 22608404 DOI: 10.1016/j.cortex.2012.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/01/2012] [Accepted: 03/28/2012] [Indexed: 11/21/2022]
Abstract
Sensory/functional accounts of semantic memory organization emphasize that object representations in the brain reflect the modalities involved in object knowledge acquisition. The present study aimed to elucidate the impact of different types of object-related sensorimotor experience on the neural representations of novel objects. Sixteen subjects engaged in an object matching task while their brain activity was assessed with functional magnetic resonance imaging (fMRI), before and after they acquired knowledge about previously unfamiliar objects. In three training sessions subjects learned about object function, actively manipulating only one set of objects (manipulation training objects, MTO), and visually exploring a second set (visual training objects, VTO). A third object set served as control condition and was not part of the training (no training objects, NTO). While training-related activation increases were observed in the fronto-parietal cortex for both VTO and MTO, post training activity in the left inferior/middle frontal gyrus and the left posterior inferior parietal lobule was higher for MTO than VTO and NTO. As revealed by Dynamic Causal Modeling of effective connectivity between the regions with enhanced post training activity, these effects were likely caused, respectively, by a down-regulation of a fronto-parietal tool use network in response to VTO, and by an increased connectivity for MTO. This pattern of findings indicates that the modalities involved in sensorimotor experience influence the formation of neural representations of objects in semantic memory, with manipulation experience specifically yielding higher activity in regions of the fronto-parietal cortex.
Collapse
|
226
|
Hopkins WD, Russell JL, Schaeffer JA. The neural and cognitive correlates of aimed throwing in chimpanzees: a magnetic resonance image and behavioural study on a unique form of social tool use. Philos Trans R Soc Lond B Biol Sci 2012; 367:37-47. [PMID: 22106425 DOI: 10.1098/rstb.2011.0195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been hypothesized that neurological adaptations associated with evolutionary selection for throwing may have served as a precursor for the emergence of language and speech in early hominins. Although there are reports of individual differences in aimed throwing in wild and captive apes, to date there has not been a single study that has examined the potential neuroanatomical correlates of this very unique tool-use behaviour in non-human primates. In this study, we examined whether differences in the ratio of white (WM) to grey matter (GM) were evident in the homologue to Broca's area as well as the motor-hand area of the precentral gyrus (termed the KNOB) in chimpanzees that reliably throw compared with those that do not. We found that the proportion of WM in Broca's homologue and the KNOB was significantly higher in subjects that reliably throw compared with those that do not. We further found that asymmetries in WM within both brain regions were larger in the hemisphere contralateral to the chimpanzee's preferred throwing hand. We also found that chimpanzees that reliably throw show significantly better communication abilities than chimpanzees that do not. These results suggest that chimpanzees that have learned to throw have developed greater cortical connectivity between primary motor cortex and the Broca's area homologue. It is suggested that during hominin evolution, after the split between the lines leading to chimpanzees and humans, there was intense selection on increased motor skills associated with throwing and that this potentially formed the foundation for left hemisphere specialization associated with language and speech found in modern humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Psychology and Neuroscience, Agnes Scott College, 141 E. College Avenue, Decatur, GA 30030, USA.
| | | | | |
Collapse
|
227
|
Stout D, Chaminade T. Stone tools, language and the brain in human evolution. Philos Trans R Soc Lond B Biol Sci 2012; 367:75-87. [PMID: 22106428 DOI: 10.1098/rstb.2011.0099] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-standing speculations and more recent hypotheses propose a variety of possible evolutionary connections between language, gesture and tool use. These arguments have received important new support from neuroscientific research on praxis, observational action understanding and vocal language demonstrating substantial functional/anatomical overlap between these behaviours. However, valid reasons for scepticism remain as well as substantial differences in detail between alternative evolutionary hypotheses. Here, we review the current status of alternative 'gestural' and 'technological' hypotheses of language origins, drawing on current evidence of the neural bases of speech and tool use generally, and on recent studies of the neural correlates of Palaeolithic technology specifically.
Collapse
Affiliation(s)
- Dietrich Stout
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA.
| | | |
Collapse
|
228
|
Iriki A, Taoka M. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc Lond B Biol Sci 2012; 367:10-23. [PMID: 22106423 PMCID: PMC3223791 DOI: 10.1098/rstb.2011.0190] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices.
Collapse
Affiliation(s)
- Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
229
|
Roby-Brami A, Hermsdörfer J, Roy AC, Jacobs S. A neuropsychological perspective on the link between language and praxis in modern humans. Philos Trans R Soc Lond B Biol Sci 2012; 367:144-60. [PMID: 22106433 DOI: 10.1098/rstb.2011.0122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hypotheses about the emergence of human cognitive abilities postulate strong evolutionary links between language and praxis, including the possibility that language was originally gestural. The present review considers functional and neuroanatomical links between language and praxis in brain-damaged patients with aphasia and/or apraxia. The neural systems supporting these functions are predominantly located in the left hemisphere. There are many parallels between action and language for recognition, imitation and gestural communication suggesting that they rely partially on large, common networks, differentially recruited depending on the nature of the task. However, this relationship is not unequivocal and the production and understanding of gestural communication are dependent on the context in apraxic patients and remains to be clarified in aphasic patients. The phonological, semantic and syntactic levels of language seem to share some common cognitive resources with the praxic system. In conclusion, neuropsychological observations do not allow support or rejection of the hypothesis that gestural communication may have constituted an evolutionary link between tool use and language. Rather they suggest that the complexity of human behaviour is based on large interconnected networks and on the evolution of specific properties within strategic areas of the left cerebral hemisphere.
Collapse
Affiliation(s)
- Agnes Roby-Brami
- Laboratory of Neurophysics and Physiology, University Paris Descartes, CNRS UMR 8119, 45 rue des Saints Pères, 75006 Paris, France.
| | | | | | | |
Collapse
|
230
|
Bril B, Smaers J, Steele J, Rein R, Nonaka T, Dietrich G, Biryukova E, Hirata S, Roux V. Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain. Philos Trans R Soc Lond B Biol Sci 2012; 367:59-74. [PMID: 22106427 DOI: 10.1098/rstb.2011.0147] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various authors have suggested behavioural similarities between tool use in early hominins and chimpanzee nut cracking, where nut cracking might be interpreted as a precursor of more complex stone flaking. In this paper, we bring together and review two separate strands of research on chimpanzee and human tool use and cognitive abilities. Firstly, and in the greatest detail, we review our recent experimental work on behavioural organization and skill acquisition in nut-cracking and stone-knapping tasks, highlighting similarities and differences between the two tasks that may be informative for the interpretation of stone tools in the early archaeological record. Secondly, and more briefly, we outline a model of the comparative neuropsychology of primate tool use and discuss recent descriptive anatomical and statistical analyses of anthropoid primate brain evolution, focusing on cortico-cerebellar systems. By juxtaposing these two strands of research, we are able to identify unsolved problems that can usefully be addressed by future research in each of these two research areas.
Collapse
Affiliation(s)
- Blandine Bril
- École des Hautes Études en Sciences Sociales-Groupe de recherche Apprentissage et Contexte, 190 Avenue de France, 75013 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Cacioppo S, Bianchi-Demicheli F, Frum C, Pfaus JG, Lewis JW. The common neural bases between sexual desire and love: a multilevel kernel density fMRI analysis. J Sex Med 2012; 9:1048-54. [PMID: 22353205 DOI: 10.1111/j.1743-6109.2012.02651.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION One of the most difficult dilemmas in relationship science and couple therapy concerns the interaction between sexual desire and love. As two mental states of intense longing for union with others, sexual desire and love are, in fact, often difficult to disentangle from one another. AIM The present review aims to help understand the differences and similarities between these two mental states using a comprehensive statistical meta-analyses of all functional magnetic resonance imaging (fMRI) studies on sexual desire and love. METHODS Systematic retrospective review of pertinent neuroimaging literature. MAIN OUTCOME MEASURES Review of published literature on fMRI studies illustrating brain regions associated with love and sexual desire to date. RESULTS Sexual desire and love not only show differences but also recruit a striking common set of brain areas that mediate somatosensory integration, reward expectation, and social cognition. More precisely, a significant posterior-to-anterior insular pattern appears to track sexual desire and love progressively. CONCLUSIONS This specific pattern of activation suggests that love builds upon a neural circuit for emotions and pleasure, adding regions associated with reward expectancy, habit formation, and feature detection. In particular, the shared activation within the insula, with a posterior-to-anterior pattern, from desire to love, suggests that love grows out of and is a more abstract representation of the pleasant sensorimotor experiences that characterize desire. From these results, one may consider desire and love on a spectrum that evolves from integrative representations of affective visceral sensations to an ultimate representation of feelings incorporating mechanisms of reward expectancy and habit learning.
Collapse
|
232
|
Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions. Exp Brain Res 2012; 218:189-200. [DOI: 10.1007/s00221-012-3016-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
|
233
|
Grab an object with a tool and change your body: tool-use-dependent changes of body representation for action. Exp Brain Res 2012; 218:259-71. [PMID: 22349501 DOI: 10.1007/s00221-012-3028-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
234
|
Tool use without a tool: kinematic characteristics of pantomiming as compared to actual use and the effect of brain damage. Exp Brain Res 2012; 218:201-14. [PMID: 22349499 DOI: 10.1007/s00221-012-3021-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Movement goals and task mechanics differ substantially between actual tool use and corresponding pantomimes. In addition, apraxia seems to be more severe during pantomime than during actual tool use. Comparisons of these two modes of action execution using quantitative methods of movement analyses are rare. In the present study, repetitive scooping movements with a ladle from a bowl into a plate were recorded and movement kinematics was analyzed. Brain-damaged patients using their ipsilesional hand and healthy control subjects were tested in three conditions: pantomime, demonstration with the tool only, and actual use in the normal context. Analysis of the hand trajectories during the transport component revealed clear differences between the tasks, such as slower actual use and moderate deficits in patients with left brain damage (LBD). LBD patients were particularly impaired in the scooping component: LBD patients with apraxia exhibited reduced hand rotation at the bowl and the plate. The deficit was most obvious during pantomime but actual use was also affected, and reduced hand rotation was consistent across conditions as indicated by strong pair-wise correlations between task conditions. In healthy control subjects, correlations between movement parameters were most evident between the pantomime and demonstration conditions but weak in correlation pairs involving actual use. From these findings and published neuroimaging evidence, we conclude that for a specific tool-use action, common motor schemas are activated but are adjusted and modified according to the actual task constraints and demands. An apraxic LBD individual can show a deficit across all three action conditions, but the severity can differ substantially between conditions.
Collapse
|
235
|
Straube B, Green A, Bromberger B, Kircher T. The differentiation of iconic and metaphoric gestures: common and unique integration processes. Hum Brain Mapp 2012; 32:520-33. [PMID: 21391245 DOI: 10.1002/hbm.21041] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent research on the neural integration of speech and gesture has examined either gesture in the context of concrete [iconic (IC) gestures] or abstract sentence content [metaphoric (MP) gestures]. However, there has not yet been a direct comparison of the processing of both gesture types. This study tested the theory that left posterior temporal and inferior frontal brain regions are each uniquely involved in the integration of IC and MP gestures. During fMRI-data acquisition, participants were shown videos of an actor performing IC and MP gestures and associated sentences. An isolated gesture (G) and isolated sentence condition (S) were included to separate unimodal from bimodal effects at the neural level. During IC conditions, we found increased activity in the left posterior middle temporal gyrus and its right hemispheric homologue. The same regions in addition to the left inferior frontal gyrus (IFG) were activated during MP conditions in contrast to the isolated conditions (G&S). These findings support the hypothesis that there are distinct integration processes for IC and MP gestures. In line with recent claims of the semantic unification theory, there seems to be a division between perceptual-matching processes within the posterior temporal lobe and higher-order relational processes within the IFG.
Collapse
Affiliation(s)
- Benjamin Straube
- Department of Neurology and the Center for Cognitive Neuroscience, The University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
236
|
Yang J, Shu H, Bi Y, Liu Y, Wang X. Dissociation and association of the embodied representation of tool-use verbs and hand verbs: An fMRI study. BRAIN AND LANGUAGE 2011; 119:167-174. [PMID: 21741081 DOI: 10.1016/j.bandl.2011.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/28/2011] [Accepted: 06/05/2011] [Indexed: 05/31/2023]
Abstract
Embodied semantic theories suppose that representation of word meaning and actual sensory-motor processing are implemented in overlapping systems. According to this view, association and dissociation of different word meaning should correspond to dissociation and association of the described sensory-motor processing. Previous studies demonstrate that although tool-use actions and hand actions have overlapping neural substrates, tool-use actions show greater activations in frontal-parietal-temporal regions that are responsible for motor control and tool knowledge processing. In the present study, we examined the association and the dissociation of the semantic representation of tool-use verbs and hand action verbs. Chinese verbs describing tool-use or hand actions without tools were included, and a passive reading task was employed. All verb conditions showed common activations in areas of left middle frontal gyrus, left inferior frontal gyrus (BA 44/45) and left inferior parietal lobule relative to rest, and all conditions showed significant effects in premotor areas within the mask of hand motion effects. Contrasts between tool-use verbs and hand verbs demonstrated that tool verbs elicited stronger activity in left superior parietal lobule, left middle frontal gyrus and left posterior middle temporal gyrus. Additionally, psychophysiological interaction analyses demonstrated that tool verbs indicated greater connectivity among these regions. These results suggest that the brain regions involved in tool-use action processing also play more important roles in tool-use verb processing and that similar systems may be responsible for word meaning representation and actual sensory-motor processing.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | |
Collapse
|
237
|
Bracci S, Cavina-Pratesi C, Ietswaart M, Caramazza A, Peelen MV. Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. J Neurophysiol 2011; 107:1443-56. [PMID: 22131379 DOI: 10.1152/jn.00619.2011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perception of object-directed actions performed by either hands or tools recruits regions in left fronto-parietal cortex. Here, using functional MRI (fMRI), we tested whether the common role of hands and tools in object manipulation is also reflected in the distribution of response patterns to these categories in visual cortex. In two experiments we found that static pictures of hands and tools activated closely overlapping regions in left lateral occipitotemporal cortex (LOTC). Left LOTC responses to tools selectively overlapped with responses to hands but not with responses to whole bodies, nonhand body parts, other objects, or visual motion. Multivoxel pattern analysis in left LOTC indicated a high degree of similarity between response patterns to hands and tools but not between hands or tools and other body parts. Finally, functional connectivity analysis showed that the left LOTC hand/tool region was selectively connected, relative to neighboring body-, motion-, and object-responsive regions, with regions in left intraparietal sulcus and left premotor cortex that have previously been implicated in hand/tool action-related processing. Taken together, these results suggest that action-related object properties shared by hands and tools are reflected in the organization of high-order visual cortex. We propose that the functional organization of high-order visual cortex partly reflects the organization of downstream functional networks, such as the fronto-parietal action network, due to differences within visual cortex in the connectivity to these networks.
Collapse
Affiliation(s)
- Stefania Bracci
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | | | | | | | | |
Collapse
|
238
|
Abstract
Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old children and adults listening to stories accompanied by hand movements, either meaningful co-speech gestures or meaningless self-adaptors. When listening to stories accompanied by both types of hand movement, both children and adults recruited inferior frontal, inferior parietal, and posterior temporal brain regions known to be involved in processing language not accompanied by hand movements. There were, however, age-related differences in activity in posterior superior temporal sulcus (STSp), inferior frontal gyrus, pars triangularis (IFGTr), and posterior middle temporal gyrus (MTGp) regions previously implicated in processing gesture. Both children and adults showed sensitivity to the meaning of hand movements in IFGTr and MTGp, but in different ways. Finally, we found that hand movement meaning modulates interactions between STSp and other posterior temporal and inferior parietal regions for adults, but not for children. These results shed light on the developing neural substrate for understanding meaning contributed by co-speech gesture.
Collapse
Affiliation(s)
- Anthony Steven Dick
- Department of Psychology, Florida International University, Modesto A. Maidique Campus, Deuxieme Maison 296B, 11200 S. W. 8th Street, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
239
|
Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 2011; 22:2241-62. [PMID: 22047963 DOI: 10.1093/cercor/bhr291] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm(2) per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer "fsaverage" atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average "fs_LR" midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque.
Collapse
Affiliation(s)
- David C Van Essen
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
240
|
Nilsson L, Eklund M, Nyberg P, Thulesius H. Driving to Learn in a Powered Wheelchair: The Process of Learning Joystick Use in People With Profound Cognitive Disabilities. Am J Occup Ther 2011; 65:652-60. [DOI: 10.5014/ajot.2011.001750] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
The Driving to Learn project explored ways to help people with profound cognitive disabilities practice operating a joystick-operated powered wheelchair. The project used a grounded theory approach with constant comparative analysis and was carried out over 12 yr. The participants were 45 children and adults with profound cognitive disabilities. Reference groups included 17 typically developing infants and 64 participants with lesser degrees of cognitive disability. The data sources included video recordings, field notes, open interviews, and a rich mixture of literature. The findings that emerged yielded strategies for facilitating achievements, an 8-phase learning process, an assessment tool, and a grounded theory of deplateauing explaining the properties necessary for participants to exceed expected limitations and plateaus. Eight participants with profound cognitive disabilities reached goal-directed driving or higher. Participants were empowered by attaining increased control over tool use, improving their autonomy and quality of life.
Collapse
Affiliation(s)
- Lisbeth Nilsson
- Lisbeth Nilsson, PhD, is Occupational Therapist, Division of Occupational Therapy and Gerontology, Lund University, PO Box 157, SE-221 00 Lund, Sweden;
| | - Mona Eklund
- Mona Eklund, PhD, is Professor, Division of Occupational Therapy and Gerontology, Lund University, Lund, Sweden
| | - Per Nyberg
- Per Nyberg, PhD, is Senior Lecturer, Division of Nursing, Lund University, Lund, Sweden
| | - Hans Thulesius
- Hans Thulesius, PhD, is General Practitioner, Welfare Research and Development Center of Southern Småland, Kronoberg County Council, Växjö, Sweden
| |
Collapse
|
241
|
Voss JL, Galvan A, Gonsalves BD. Cortical regions recruited for complex active-learning strategies and action planning exhibit rapid reactivation during memory retrieval. Neuropsychologia 2011; 49:3956-66. [PMID: 22023912 DOI: 10.1016/j.neuropsychologia.2011.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/03/2011] [Accepted: 10/09/2011] [Indexed: 11/17/2022]
Abstract
Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during retrieval. For example, learning in non-laboratory settings generally involves active exploration of memoranda, thus requiring the generation of action plans for behavior and the use of strategies deployed to improve subsequent memory performance. Is information pertaining to action planning and strategic processing retained and reactivated during retrieval? To address this question, we compared ERP correlates of memory retrieval for objects that had been studied in an active manner involving action planning and strategic processing to those for objects that had been studied passively. Memory performance was superior for actively studied objects, and unique ERP retrieval correlates for these objects were identified when subjects remembered the specific spatial locations at which objects were studied. Early-onset frontal shifts in ERP correlates of retrieval were noted for these objects, which parallel the recruitment of frontal cortex during learning object locations previously identified using fMRI with the same paradigm. Notably, ERPs during recall for items studied with a specific viewing strategy localized to the same supplementary motor cortex region previously identified with fMRI when this strategy was implemented during study, suggesting rapid reactivation of regions directly involved in strategic action planning. Collectively, these results implicate neural populations involved in learning in important retrieval functions, even for those populations involved in strategic control and action planning. Notably, these episodic features are not generally reported during recollective experiences, suggesting that reactivation is a more general property of memory retrieval that extends beyond those fragments of perceptual information that might be needed to re-live the past.
Collapse
Affiliation(s)
- Joel L Voss
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
242
|
Bilalić M, Turella L, Campitelli G, Erb M, Grodd W. Expertise modulates the neural basis of context dependent recognition of objects and their relations. Hum Brain Mapp 2011; 33:2728-40. [PMID: 21998070 DOI: 10.1002/hbm.21396] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 11/07/2022] Open
Abstract
Recognition of objects and their relations is necessary for orienting in real life. We examined cognitive processes related to recognition of objects, their relations, and the patterns they form by using the game of chess. Chess enables us to compare experts with novices and thus gain insight in the nature of development of recognition skills. Eye movement recordings showed that experts were generally faster than novices on a task that required enumeration of relations between chess objects because their extensive knowledge enabled them to immediately focus on the objects of interest. The advantage was less pronounced on random positions where the location of chess objects, and thus typical relations between them, was randomized. Neuroimaging data related experts' superior performance to the areas along the dorsal stream-bilateral posterior temporal areas and left inferior parietal lobe were related to recognition of object and their functions. The bilateral collateral sulci, together with bilateral retrosplenial cortex, were also more sensitive to normal than random positions among experts indicating their involvement in pattern recognition. The pattern of activations suggests experts engage the same regions as novices, but also that they employ novel additional regions. Expert processing, as the final stage of development, is qualitatively different than novice processing, which can be viewed as the starting stage. Since we are all experts in real life and dealing with meaningful stimuli in typical contexts, our results underline the importance of expert-like cognitive processing on generalization of laboratory results to everyday life.
Collapse
Affiliation(s)
- Merim Bilalić
- Department of Neuroradiology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
243
|
Mizelle JC, Tang T, Pirouz N, Wheaton LA. Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure. J Cogn Neurosci 2011; 23:2920-34. [DOI: 10.1162/jocn_a_00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools. A separate group of subjects engaged in video-based observation (indirect exposure) of the same tools to understand how these learning strategies create representations. To assess neural mechanisms engaged for pantomime after different modes of exposure, a pantomime task was performed for both tools while recording neural activation with high-density EEG. Motor planning–related neural activation was evaluated using beta band (13–22 Hz) event-related desynchronization. Hemispheric dominance was assessed, and activation maps were generated to understand topography of activations. Comparison of conditions (effects of tool familiarity and tool exposure) was performed with standardized low-resolution brain electromagnetic tomography. Novel tool pantomime following direct exposure resulted in greater activations of bilateral parietofrontal regions. Activations following indirect training varied by tool familiarity; pantomime of the familiar tool showed greater activations in left parietofrontal areas, whereas the novel tool showed greater activations at right temporoparieto-occipital areas. These findings have relevance to the mechanisms for understanding motor-related behaviors involved in new tools that we have little or no experience with and can extend into advancing theories of tool use motor learning.
Collapse
|
244
|
Inui N, Walsh LD, Taylor JL, Gandevia SC. Dynamic changes in the perceived posture of the hand during ischaemic anaesthesia of the arm. J Physiol 2011; 589:5775-84. [PMID: 21946853 DOI: 10.1113/jphysiol.2011.219949] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Contorted 'phantom' limbs often form when sensory inputs are removed, but the neural mechanisms underlying their formation are poorly understood. We tracked the evolution of an experimental phantom hand during ischaemic anaesthesia of the arm. In the first study subjects showed the perceived posture of their hand and fingers using a model hand. Surprisingly, if the wrist and fingers were held straight before and during anaesthesia, the final phantom hand was bent at the wrist and fingers, but if the wrist and fingers were flexed before and during anaesthesia, the final phantom was extended at wrist and fingers. Hence, no 'default' posture existed for the phantom hand. The final perceived posture may depend on the initial and evolving sensory input during the block rather than the final sensory input (which should not differ for the two postures). In the second study subjects selected templates to indicate the perceived size of their hand. Perceived hand size increased by 34 ± 4% (mean ± 95% CI) during the block. Sensory changes were monitored. In all subjects, impairment of large-fibre cutaneous sensation began distally with von Frey thresholds increasing before cold detection thresholds (Aδ fibres) increased. Some C fibres subserving heat pain still conducted at the end of cuff inflation. These data suggest that changes in both perceived hand size and perceived position of the finger joints develop early when large-fibre cutaneous sensation is beginning to degrade. Hence it is unlikely that block of small-fibre afferents is critical for phantom formation in an ischaemic block.
Collapse
Affiliation(s)
- N Inui
- Neuroscience Research Australia, Sydney, 2031, Australia
| | | | | | | |
Collapse
|
245
|
Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 2011; 31:9599-610. [PMID: 21715625 DOI: 10.1523/jneurosci.0080-11.2011] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How and where in the human brain high-level sensorimotor processes such as intentions and decisions are coded remain important yet essentially unanswered questions. This is in part because, to date, decoding intended actions from brain signals has been primarily constrained to invasive neural recordings in nonhuman primates. Here we demonstrate using functional MRI (fMRI) pattern recognition techniques that we can also decode movement intentions from human brain signals, specifically object-directed grasp and reach movements, moments before their initiation. Subjects performed an event-related delayed movement task toward a single centrally located object (consisting of a small cube attached atop a larger cube). For each trial, after visual presentation of the object, one of three hand movements was instructed: grasp the top cube, grasp the bottom cube, or reach to touch the side of the object (without preshaping the hand). We found that, despite an absence of fMRI signal amplitude differences between the planned movements, the spatial activity patterns in multiple parietal and premotor brain areas accurately predicted upcoming grasp and reach movements. Furthermore, the patterns of activity in a subset of these areas additionally predicted which of the two cubes were to be grasped. These findings offer new insights into the detailed movement information contained in human preparatory brain activity and advance our present understanding of sensorimotor planning processes through a unique description of parieto-frontal regions according to the specific types of hand movements they can predict.
Collapse
|
246
|
Vogler JN, Titchener K. Cross-modal conflicts in object recognition: determining the influence of object category. Exp Brain Res 2011; 214:597-605. [DOI: 10.1007/s00221-011-2858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 08/28/2011] [Indexed: 11/29/2022]
|
247
|
Verma A, Brysbaert M. A right visual field advantage for tool-recognition in the visual half-field paradigm. Neuropsychologia 2011; 49:2342-8. [DOI: 10.1016/j.neuropsychologia.2011.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 11/28/2022]
|
248
|
Yalachkov Y, Naumer MJ. Involvement of action-related brain regions in nicotine addiction. J Neurophysiol 2011; 106:1-3. [DOI: 10.1152/jn.00195.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of Wagner et al. ( J Neurosci 31: 894–898, 2011) reveals the neural correlates of spontaneously activated action representations in smokers when subjects watch movie characters smoke. We stress the importance of differentiating how these representations are activated: while the anterior intraparietal sulcus and inferior frontal gyrus are part of the mirror neuron system of smokers, the middle frontal gyrus, premotor cortex, and superior parietal lobule represent the smoking-related tool use skills and action knowledge activated by smoking paraphernalia.
Collapse
Affiliation(s)
- Yavor Yalachkov
- Institute of Medical Psychology, Goethe-University, Frankfurt am Main, Germany; and
| | - Marcus J. Naumer
- Institute of Medical Psychology, Goethe-University, Frankfurt am Main, Germany; and
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
249
|
Simmons WK, Martin A. Spontaneous resting-state BOLD fluctuations reveal persistent domain-specific neural networks. Soc Cogn Affect Neurosci 2011; 7:467-75. [PMID: 21586527 DOI: 10.1093/scan/nsr018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resting-state functional connectivity MRI (rs-fcMRI) analyses have identified intrinsic neural networks supporting domain-general cognitive functions including language, attention, executive control and memory. The brain, however, also has a domain-specific organization, including regions that contribute to perceiving and knowing about others (the 'social' system) or manipulable objects designed to perform specific functions (the 'tool' system). These 'social' and 'tool' systems, however, might not constitute intrinsic neural networks per se, but rather only come online as needed to support retrieval of domain-specific information during social- or tool-related cognitive tasks. To address this issue, we functionally localized two regions in lateral temporal cortex activated when subjects perform social- and tool conceptual tasks. We then compared the strength of the correlations with these seed regions during rs-fcMRI. Here, we show that the 'social' and 'tool' neural networks are maintained even when subjects are not engaged in social- and tool-related information processing, and so constitute intrinsic domain-specific neural networks.
Collapse
Affiliation(s)
- W Kyle Simmons
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
250
|
Vingerhoets G, Acke F, Alderweireldt AS, Nys J, Vandemaele P, Achten E. Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength. Hum Brain Mapp 2011; 33:763-77. [PMID: 21500314 DOI: 10.1002/hbm.21247] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 11/06/2022] Open
Abstract
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans.
Collapse
Affiliation(s)
- Guy Vingerhoets
- Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|