201
|
Huang Y, Chen Y, Lu S, Zhao C. Recent advance of <i>in vitro</i> models in natural phytochemicals absorption and metabolism. EFOOD 2022. [DOI: 10.53365/efood.k/146945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Natural phytochemicals absorption and metabolic process are mainly in the human gut. Simulating the absorption and metabolism of natural phytochemicals in vitro to predict the rate and degree of absorption of natural phytochemicals provides convenience for many researchers. However, in this process, many physiological factors <i>in vitro</i> are affected, such as stomach and intestinal juice composition, pH, intestinal transmission rate and so on. In recent years, the research methods have gradually improved to make these models more suitable for the natural phytochemicals absorption process, <i>in vitro</i> simulation models have become an essential means to study natural phytochemicals absorption. Therefore, this paper introduces the advantages and disadvantages of commonly used <i>in vitro</i> simulation models of natural phytochemicals absorption and metabolism, as well as briefly introduces the working principle of each model. To provide a theoretical basis for simulating natural phytochemicals absorption <i>in vitro</i> and development and utilization of natural phytochemicals.
Collapse
|
202
|
Xu J, Pan D, Liao W, Jia Z, Pan M, Weng J, Han X, Li S, Li Y, Liang K, Zhou S, Peng Q, Gao Y. Application of 3D Hepatic Plate-Like Liver Model for Statin-Induced Hepatotoxicity Evaluation. Front Bioeng Biotechnol 2022; 10:826093. [PMID: 35372314 PMCID: PMC8968918 DOI: 10.3389/fbioe.2022.826093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Drug-induced liver injury is one of the main reasons of withdrawals of drugs in postmarketing stages. However, an experimental model(s) which can accurately recapitulates liver functions and reflects the level of drug hepatotoxicity is lack. In this study, we assessed drug hepatotoxicity using a novel three-dimensional hepatic plate-like hydrogel fiber (3D-P) co-culture system. Methods: During the 28-days culture period, the liver-specific functions, hepatocyte polarity, sensitivity of drug-induced toxicity of 3D-P co-culture system were evaluated with 2D co-culture, collagen sandwich co-culture, 3D hybrid hydrogel fiber co-culture and human primary hepatocytes as controls. High-content imaging and analysis (HCA) methods were used to explore the hepatotoxicity mechanism of five statins. Results: The 3D-P co-culture system showed enhancing liver-specific functions, cytochrome P450 enzymes (CYPs) metabolic activity and bile excretion, which were considered to result from improved hepatocyte polarity. Three of the statins may cause acute or chronic hepatotoxicity by via different mechanisms, such as cholestatic liver injury. Conclusion: Our 3D-P co-culture system is characterized by its biomimetic hepatic plate-like structure, long-term stable liver specificity, and prominent bile secretion function, making it applicable for acute/chronic drug hepatotoxicity assessments.
Collapse
Affiliation(s)
- Jiecheng Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Daogang Pan
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhidong Jia
- Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qing Peng, ; Yi Gao,
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
- *Correspondence: Qing Peng, ; Yi Gao,
| |
Collapse
|
203
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
204
|
Van Breedam E, Nijak A, Buyle-Huybrecht T, Di Stefano J, Boeren M, Govaerts J, Quarta A, Swartenbroekx T, Jacobs EZ, Menten B, Gijsbers R, Delputte P, Alaerts M, Hassannia B, Loeys B, Berneman Z, Timmermans JP, Jorens PG, Vanden Berghe T, Fransen E, Wouters A, De Vos WH, Ponsaerts P. Luminescent Human iPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen-glucose Deprivation. Neurotherapeutics 2022; 19:550-569. [PMID: 35289376 PMCID: PMC9226265 DOI: 10.1007/s13311-022-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Despite the considerable impact of stroke on both the individual and on society, a neuroprotective therapy for stroke patients is missing. This is partially due to the current lack of a physiologically relevant human in vitro stroke model. To address this problem, we have developed a luminescent human iPSC-derived neurospheroid model that enables real-time read-out of neural viability after ischemia-like conditions. We subjected 1- and 4-week-old neurospheroids, generated from iPSC-derived neural stem cells, to 6 h of oxygen-glucose deprivation (OGD) and measured neurospheroid luminescence. For both, we detected a decrease in luminescent signal due to ensuing neurotoxicity, as confirmed by conventional LDH assay and flow cytometric viability analysis. Remarkably, 1-week-old, but not 4-week-old neurospheroids recovered from OGD-induced injury, as evidenced by their reduced but overall increasing luminescence over time. This underscores the need for more mature neurospheroids, more faithfully recapitulating the in vivo situation. Furthermore, treatment of oxygen- and glucose-deprived neurospheroids with the pan-caspase inhibitor Z-VAD-FMK did not increase overall neural survival, despite its successful attenuation of apoptosis, in a human-based 3D environment. Nevertheless, owing to its three-dimensional organization and real-time viability reporting potential, the luminescent neurospheroids may become readily adopted in high-throughput screens aimed at identification of new therapeutic agents to treat acute ischemic stroke patients.
Collapse
Affiliation(s)
- Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Aleksandra Nijak
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Jonas Govaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Tine Swartenbroekx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
- Leuven Viral Vector Core (LVVC), KU Leuven, 3000, Leuven, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, 2610, Wilrijk, Belgium
| | - Maaike Alaerts
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Behrouz Hassannia
- Center for Inflammation Research (IRC), VIB-UGent, 9052, Zwijnaarde, Belgium
- Laboratory of Pathophysiology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Bart Loeys
- Cardiogenomics Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650, Edegem, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Philippe G Jorens
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610, Wilrijk, Belgium
- Department of Intensive Care Medicine, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Tom Vanden Berghe
- Center for Inflammation Research (IRC), VIB-UGent, 9052, Zwijnaarde, Belgium
- Laboratory of Pathophysiology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, 2000, Antwerp, Belgium
- Human Molecular Genetics group, Center of Medical Genetics, University of Antwerp, 2610, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium.
| |
Collapse
|
205
|
Gupta P, Miller A, Olayanju A, Madhuri TK, Velliou E. A Systematic Comparative Assessment of the Response of Ovarian Cancer Cells to the Chemotherapeutic Cisplatin in 3D Models of Various Structural and Biochemical Configurations-Does One Model Type Fit All? Cancers (Basel) 2022; 14:1274. [PMID: 35267582 PMCID: PMC8909317 DOI: 10.3390/cancers14051274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Epithelial Ovarian Cancer (EOC) is a silent, deadly and aggressive gynaecological disease with a relatively low survival rate. This has been attributed, to some extent, to EOC's high recurrence rate and resistance to currently available platinum-based chemotherapeutic treatment methods. Multiple groups have studied and reported the effect of chemotherapeutic agents on various EOC 3D in vitro models. However, there are very few studies wherein a direct comparative study has been carried out between the different in vitro 3D models of EOC and the effect of chemotherapy within them. Herein, we report, for the first time, a direct comprehensive systematic comparative study of three different 3D in vitro platforms, namely (i) spheroids, (ii) synthetic PeptiGels/hydrogels of various chemical configurations and (iii) polymeric scaffolds with coatings of various extracellular matrices (ECMs) on the cell growth and response to the chemotherapeutic (Cisplatin) for ovary-derived (A2780) and metastatic (SK-OV-3) EOC cell lines. We report that all three 3D models are able to support the growth of EOC, but for different time periods (varying from 7 days to 4 weeks). We have also reported that chemoresistance to Cisplatin, in vitro, observed especially for metastatic EOC cells, is platform-dependent, in terms of both the structural and biochemical composition of the model/platform. Our study highlights the importance of selecting an appropriate 3D platform for in vitro tumour model development. We have demonstrated that the selection of the best platform for producing in vitro tumour models depends on the cancer/cell type, the experimental time period and the application for which the model is intended.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK;
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Surrey GU2 7XH, UK
| | - Aline Miller
- Manchester BIOGEL, 19F4, Mereside, Alderley Park, Alderley Edge, Chesire SK10 4TG, UK; (A.M.); (A.O.)
| | - Adedamola Olayanju
- Manchester BIOGEL, 19F4, Mereside, Alderley Park, Alderley Edge, Chesire SK10 4TG, UK; (A.M.); (A.O.)
| | - Thumuluru Kavitha Madhuri
- Department of Gynaecological Oncology Royal Surrey NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK;
- Honorary Senior Lecturer in Cancer Research, School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK;
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Surrey GU2 7XH, UK
| |
Collapse
|
206
|
Kpeglo D, Hughes MD, Dougan L, Haddrick M, Knowles MA, Evans SD, Peyman SA. Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biol Plus 2022; 14:100109. [PMID: 35399702 PMCID: PMC8990173 DOI: 10.1016/j.mbplus.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
The PDAC stroma stiffness underlines its malignant behavior and drug resistance. 3D in vitro cultures must model the PDAC stroma to effectively drug efficacy. PSCs are responsible for the stroma, and its activity is increased with TGF-β. Develop a 3D culture model of PDAC, which includes PSCs and TGF-β. Assess the mechanical stiffness, stain for collagen, and investigate gemcitabine efficacy.
Despite improvements in the understanding of disease biology, pancreatic ductal adenocarcinoma (PDAC) remains the most malignant cancer of the pancreas. PDAC constitutes ∼95% of all pancreatic cancers, and it is highly resistant to therapeutics. The increased tissue rigidity, which stems from the rich fibrotic stroma in the tumor microenvironment, is central to disease development, physiology, and resistance to drug perfusion. Pancreatic stellate cells (PSCs) are responsible for overproduction of extracellular matrix in the fibrotic stroma, and this is exacerbated by the overexpression of transforming growth factor-β (TGF-β). However, there are few in vitro PDAC models, which include both PSCs and TGF-β or mimic in vivo-like tumor stiffness. In this study, we present a three-dimensional in vitro PDAC model, which includes PSCs and TGF-β, and recapitulates PDAC tissue mechanical stiffness. Using oscillatory shear rheology, we show the mechanical stiffness of the model is within range of the PDAC tissue stiffness by day 21 of culture and highlight that the matrix environment is essential to adequately capture PDAC disease. PDAC is a complex, aggressive disease with poor prognosis, and biophysically relevant in vitro PDAC models, which take into account tissue mechanics, will provide improved tumor models for effective therapeutic assessment.
Collapse
Affiliation(s)
- Delanyo Kpeglo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
| | - Matthew D.G. Hughes
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Block 35, Mereside Alderley Park, Alderley Edge, SK10 4TG, UK
| | - Margaret A. Knowles
- Leeds Institute of Medical Research at St James’s (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
| | - Stephen D. Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK
- Leeds Institute of Medical Research at St James’s (LIMR), School of Medicine, University of Leeds, LS2 9 JT, UK
- Corresponding author at: Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LS2 9 JT, UK.
| |
Collapse
|
207
|
Sandhurst ES, Jaswandkar SV, Kundu K, Katti DR, Katti KS, Sun H, Engebretson D, Francis KR. Nanoarchitectonics of a Microsphere-Based Scaffold for Modeling Neurodevelopment and Neurological Disease. ACS APPLIED BIO MATERIALS 2022; 5:528-544. [PMID: 35045249 PMCID: PMC8865216 DOI: 10.1021/acsabm.1c01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional cellular constructs derived from pluripotent stem cells allow the ex vivo study of neurodevelopment and neurological disease within a spatially organized model. However, the robustness and utility of three-dimensional models is impacted by tissue self-organization, size limitations, nutrient supply, and heterogeneity. In this work, we have utilized the principles of nanoarchitectonics to create a multifunctional polymer/bioceramic composite microsphere system for stem cell culture and differentiation in a chemically defined microenvironment. Microspheres could be customized to produce three-dimensional structures of defined size (ranging from >100 to <350 μm) with lower mechanical properties compared with a thin film. Furthermore, the microspheres softened in solution, approaching more tissue-like mechanical properties over time. With neural stem cells (NSCs) derived from human induced pluripotent stem cells, microsphere-cultured NSCs were able to utilize multiple substrates to promote cell adhesion and proliferation. Prolonged culture of NSC-bound microspheres under differentiating conditions allowed the formation of both neural and glial cell types from control and patient-derived stem cell models. Human NSCs and differentiated neurons could also be cocultured with astrocytes and human umbilical vein endothelial cells, demonstrating application for tissue-engineered modeling of development and human disease. We further demonstrated that microspheres allow the loading and sustained release of multiple recombinant proteins to support cellular maintenance and differentiation. While previous work has principally utilized self-organizing models or protein-rich hydrogels for neural culture, the three-dimensional matrix developed here through nanoarchitectonics represents a chemically defined and robust alternative for the in vitro study of neurodevelopment and nervous system disorders.
Collapse
Affiliation(s)
- Eric S. Sandhurst
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States
| | - Sharad V. Jaswandkar
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Krishna Kundu
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh R. Katti
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kalpana S. Katti
- Civil,
Construction and Environmental Engineering Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hongli Sun
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States
| | - Daniel Engebretson
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States
| | - Kevin R. Francis
- Department
of Biomedical Engineering, University of
South Dakota, Sioux
Falls, South Dakota 57107, United States,BioSystems
Networks and Translational Research Center, Brookings, South Dakota 57006, United States,Cellular
Therapies and Stem Cell Biology Group, Sanford
Research, Sioux Falls, South Dakota 57104, United States,Department
of Pediatrics, University of South Dakota
Sanford School of Medicine, Sioux
Falls, South Dakota 57105, United States,
| |
Collapse
|
208
|
Tregnago C, Benetton M, Da Ros A, Borella G, Longo G, Polato K, Francescato S, Biffi A, Pigazzi M. Novel Compounds Synergize With Venetoclax to Target KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Front Pharmacol 2022; 12:820191. [PMID: 35153769 PMCID: PMC8830338 DOI: 10.3389/fphar.2021.820191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
In pediatric acute myeloid leukemia (AML), fusions involving lysine methyltransferase 2A (KMT2A) are considered hallmarks of aggressive AML, for whom the development of targeted specific therapeutic agents to ameliorate classic chemotherapy and obtain a complete eradication of disease is urgent. In this study, we investigated the antiapoptotic proteins in a cohort of 66 pediatric AML patients, finding that 75% of the KMT2A-r are distributed in Q3 + Q4 quartiles of BCL-2 expression, and KMT2A-r have statistically significant high levels of BCL-2, phospho-BCL-2 S70, and MCL-1, indicating a high anti-apoptotic pathway activation. In an attempt to target it, we tested novel drug combinations of venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, in KMT2A-MLLT3, for being the most recurrent, and KMT2A-AFDN, for mediating the worst prognosis, rearranged AML cell lines. Our screening revealed that both the bromodomain and extra-terminal domain (BET) inhibitor, I-BET151, and kinase inhibitor, sunitinib, decreased the BCL-2 family protein expression and significantly synergized with venetoclax, enhancing KMT2A-r AML cell line death. Blasts t (6; 11) KMT2A-AFDN rearranged, both from cell lines and primary samples, were shown to be significantly highly responsive to the combination of venetoclax and thioridazine, with the synergy being induced by a dramatic increase of mitochondrial depolarization that triggered blast apoptosis. Finally, the efficacy of novel combined drug treatments was confirmed in KMT2A-r AML cell lines or ex vivo primary KMT2A-r AML samples cultured in a three-dimensional system which mimics the bone marrow niche. Overall, this study identified that, by high-throughput screening, the most KMT2A-selective drugs converged in different but all mitochondrial apoptotic network activation, supporting the use of venetoclax in this AML setting. The novel drug combinations here unveiled provide a rationale for evaluating these combinations in preclinical studies to accelerate the introduction of targeted therapies for the life-threatening KMT2A-AML subgroup of pediatric AML.
Collapse
Affiliation(s)
- Claudia Tregnago
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Maddalena Benetton
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Ambra Da Ros
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Giulia Borella
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Giorgia Longo
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Katia Polato
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Alessandra Biffi
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Martina Pigazzi
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| |
Collapse
|
209
|
The Advances in Glioblastoma On-a-Chip for Therapy Approaches. Cancers (Basel) 2022; 14:cancers14040869. [PMID: 35205617 PMCID: PMC8870462 DOI: 10.3390/cancers14040869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This systematic review showed different therapeutic approaches to glioblastoma on-a-chip with varying levels of complexity, answering, from the simplest question to the most sophisticated questions, in a biological system integrated in an efficient way. With advances in manufacturing protocols, soft lithography in PDMS material was the most used in the studies, applying different strategy geometrics in device construction. The microenvironment showed the relevant elaborations in co-culture between mainly human tumor cells and support cells involved in the collagen type I matrix; remaining an adequate way to assess the therapeutic approach. The most complex devices showed efficient intersection between different systems, allowing in vitro studies with major human genetic similarity, reproducibility, and low cost, on a highly customizable platform. Abstract This systematic review aimed to verify the use of microfluidic devices in the process of implementing and evaluating the effectiveness of therapeutic approaches in glioblastoma on-a-chip, providing a broad view of advances to date in the use of this technology and their perspectives. We searched studies with the variations of the keywords “Glioblastoma”, “microfluidic devices”, “organ-on-a-chip” and “therapy” of the last ten years in PubMed and Scopus databases. Of 446 articles identified, only 22 articles were selected for analysis according to the inclusion and exclusion criteria. The microfluidic devices were mainly produced by soft lithography technology, using the PDMS material (72%). In the microenvironment, the main extracellular matrix used was collagen type I. Most studies used U87-MG glioblastoma cells from humans and 31.8% were co-cultivated with HUVEC, hCMEC/D3, and astrocytes. Chemotherapy was the majority of therapeutic approaches, assessing mainly the cellular viability and proliferation. Furthermore, some alternative therapies were reported in a few studies (22.6%). This study identified a diversity of glioblastoma on-a-chip to assess therapeutic approaches, often using intermediate levels of complexity. The most advanced level implemented the intersection between different biological systems (liver–brain or intestine–liver–brain), BBB model, allowing in vitro studies with greater human genetic similarity, reproducibility, and low cost, in a highly customizable platform.
Collapse
|
210
|
Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J Biol Chem 2022; 298:101779. [PMID: 35231442 PMCID: PMC8988011 DOI: 10.1016/j.jbc.2022.101779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although 3D cell culture models are considered to reflect the physiological microenvironment and exhibit high concordance with in vivo conditions, one disadvantage has been that cell proliferation is slower in 3D culture as compared to 2D culture. However, the signaling differences that lead to this slower proliferation are unclear. Here, we conducted a cell-based high-throughput screening study and identified novel small molecules that promote cell proliferation, particularly under 3D conditions. We found that one of these molecules, designated GA-017, increases the number and size of spheroids of various cell-types in both scaffold-based and scaffold-independent cultures. In addition, GA-017 also enhances the ex vivo formation of mouse intestinal organoids. Importantly, we demonstrate that GA-017 inhibits the serine/threonine protein kinases large tumor suppressor kinase 1/2, which phosphorylate Yes-associated protein and transcriptional coactivator with PDZ-binding motif , key effectors of the growth- and proliferation-regulating Hippo signaling pathway. We showed that GA-017 facilitates the growth of spheroids and organoids by stabilizing and translocating Yes-associated protein and transcriptional coactivator with PDZ-binding motif into the cell nucleus. Another chemical analog of GA-017 obtained in this screening also exhibited similar activities and functions. We conclude that experiments with these small molecule large tumor suppressor kinase inhibitors will contribute to further development of efficient 3D culture systems for the ex vivo expansion of spheroids and organoids.
Collapse
|
211
|
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:41-91. [PMID: 35094781 DOI: 10.1016/bs.pmbts.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.
Collapse
|
212
|
Hashemzadeh H, Kelkawi AHA, Allahverdi A, Rothbauer M, Ertl P, Naderi-Manesh H. Fingerprinting Metabolic Activity and Tissue Integrity of 3D Lung Cancer Spheroids under Gold Nanowire Treatment. Cells 2022; 11:478. [PMID: 35159286 PMCID: PMC8834455 DOI: 10.3390/cells11030478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inadequacy of most animal models for drug efficacy assessments has led to the development of improved in vitro models capable of mimicking in vivo exposure scenarios. Among others, 3D multicellular spheroid technology is considered to be one of the promising alternatives in the pharmaceutical drug discovery process. In addition to its physiological relevance, this method fulfills high-throughput and low-cost requirements for preclinical cell-based assays. Despite the increasing applications of spheroid technology in pharmaceutical screening, its application, in nanotoxicity testing is still in its infancy due to the limited penetration and uptake rates into 3D-cell assemblies. To gain a better understanding of gold nanowires (AuNWs) interactions with 3D spheroids, a comparative study of 2D monolayer cultures and 3D multicellular spheroids was conducted using two lung cancer cell lines (A549 and PC9). Cell apoptosis (live/dead assay), metabolic activity, and spheroid integrity were evaluated following exposure to AuNWs at different dose-time manners. Results revealed a distinct different cellular response between 2D and 3D cell cultures during AuNWs treatment including metabolic rates, cell viability, dose-response curves and, uptake rates. Our data also highlighted further need for more physiologically relevant tissue models to investigate in depth nanomaterial-biology interactions. It is important to note that higher concentrations of AuNWs with lower exposure times and lower concentrations of AuNWs with higher exposure times of 3 days resulted in the loss of spheroid integrity by disrupting cell-cell contacts. These findings could help to increase the understanding of AuNWs-induced toxicity on tissue levels and also contribute to the establishment of new analytical approaches for toxicological and drug screening studies.
Collapse
Affiliation(s)
- Hadi Hashemzadeh
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
| | - Ali Hamad Abd Kelkawi
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
| | - Abdollah Allahverdi
- Biophysics Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran;
| | - Mario Rothbauer
- Faculty of Technical Chemistry, Vienna University of Technology (TUW), Getreidemarkt 9/163-164, 1060 Vienna, Austria;
- Orthopedic Microsystems Group, Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology (TUW), Getreidemarkt 9/163-164, 1060 Vienna, Austria;
| | - Hossein Naderi-Manesh
- Nanobiotechnology Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran; (H.H.); (A.H.A.K.)
- Biophysics Department, Faculty of Biosciences, Tarbiat Modares University, Tehran 14115-111, Iran;
| |
Collapse
|
213
|
Wang X, Wen C, Davis B, Shi P, Abune L, Lee K, Dong C, Wang Y. Synthetic DNA for Cell Surface Engineering: Experimental Comparison between Click Conjugation and Lipid Insertion in Terms of Cell Viability, Engineering Efficiency, and Displaying Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3900-3909. [PMID: 35020367 PMCID: PMC12056530 DOI: 10.1021/acsami.1c22774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cell surface can be engineered with synthetic DNA for various applications ranging from cancer immunotherapy to tissue engineering. However, while elegant methods such as click conjugation and lipid insertion have been developed to engineer the cell surface with DNA, little effort has been made to systematically evaluate and compare these methods. Resultantly, it is often challenging to choose a right method for a certain application or to interpret data from different studies. In this study, we systematically evaluated click conjugation and lipid insertion in terms of cell viability, engineering efficiency, and displaying stability. Cells engineered with both methods can maintain high viability when the concentration of modified DNA is less than 25-50 μM. However, lipid insertion is faster and more efficient in displaying DNA on the cell surface than click conjugation. The efficiency of displaying DNA with lipid insertion is 10-40 times higher than that with click conjugation for a large range of DNA concentration. However, the half-life of physically inserted DNA on the cell surface is 3-4 times lower than that of covalently conjugated DNA, which depends on the working temperature. While the half-life of physically inserted DNA molecules on the cell surface is shorter than that of DNA molecules clicked onto the cell surface, lipid insertion is more effective than click conjugation in the promotion of cell-cell interactions under the two different experimental settings. The data acquired in this work are expected to act as a guideline for choosing an approximate method for engineering the cell surface with synthetic DNA or even other biomolecules.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
214
|
The Fast Track for Intestinal Tumor Cell Differentiation and In Vitro Intestinal Models by Inorganic Topographic Surfaces. Pharmaceutics 2022; 14:pharmaceutics14010218. [PMID: 35057113 PMCID: PMC8781367 DOI: 10.3390/pharmaceutics14010218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional (3D) complex in vitro cell systems are well suited to providing meaningful and translatable results in drug screening, toxicity measurements, and biological studies. Reliable complex gastrointestinal in vitro models as a testbed for oral drug administration and toxicity are very valuable in achieving predictive results for clinical trials and reducing animal testing. However, producing these models is time-consuming due to the lengthy differentiation of HT29 or other cells into mucus-producing goblet cells or other intestinal cell lineages. In the present work, HT29 cells were grown on an inorganic topographic surface decorated with a periodic pattern of micrometre-sized amorphous SiO2 structures for up to 35 days. HT29 cells on topographic surfaces were compared to undifferentiated HT29 in glucose-containing medium on glass or culture dish and with HT29 cells differentiated for 30 days in the presence of methotrexate (HT29-MTX). The cells were stained with Alcian blue for mucus, antibodies for mucus 2 (goblet cells), villin (enterocytes), lysozyme (Paneth cells), and FITC-labeled lectins to identify different cells, glycomic profiles, and cell features. We observed that HT29 cells on topographic surfaces showed more similarities with the differentiated HT29-MTX than with undifferentiated HT29. They formed islands of cell clusters, as observed for HT29-MTX. Already after 2 days, the first mucus secretion was shown by Alcian blue stain and FITC-wheat germ agglutinin. After 4–6 days, mucus was observed on the cell surface and in the intercellular space. The cell layer was undulated, and in 3D reconstruction, the cells showed a clear polarisation with a strong actin signal to one membrane. The lectins and the antibody-staining confirmed the heterogeneous composition of differentiated HT29 cells on topographic surfaces after 6–8 days, or after 6–8 days following MTX differentiation (30 days).
Collapse
|
215
|
Chen Z, Han S, Sanny A, Chan DLK, van Noort D, Lim W, Tan AHM, Park S. 3D hanging spheroid plate for high-throughput CAR T cell cytotoxicity assay. J Nanobiotechnology 2022; 20:30. [PMID: 35012567 PMCID: PMC8744335 DOI: 10.1186/s12951-021-01213-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. Results The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300–350 μm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. Conclusions The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01213-8.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Dorothy Leung-Kwan Chan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Danny van Noort
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia - UTEC, Lima 04, Peru.,Biotechnology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea. .,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
216
|
Mukundan S, Bell J, Teryek M, Hernandez C, Love AC, Parekkadan B, Chan LLY. Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewell™400 Plates Using Image Cytometry. J Fluoresc 2022; 32:521-531. [PMID: 34989923 DOI: 10.1007/s10895-021-02881-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
Tumor spheroid models have proven useful in the study of cancer cell responses to chemotherapeutic compounds by more closely mimicking the 3-dimensional nature of tumors in situ. Their advantages are often offset, however, by protocols that are long, complicated, and expensive. Efforts continue for the development of high-throughput assays that combine the advantages of 3D models with the convenience and simplicity of traditional 2D monolayer methods. Herein, we describe the development of a breast cancer spheroid image cytometry assay using T47D cells in Aggrewell™400 spheroid plates. Using the Celigo® automated imaging system, we developed a method to image and individually track thousands of spheroids within the Aggrewell™400 microwell plate over time. We demonstrate the use of calcein AM and propidium iodide staining to study the effects of known anti-cancer drugs Doxorubicin, Everolimus, Gemcitabine, Metformin, Paclitaxel and Tamoxifen. We use the image cytometry results to quantify the fluorescence of calcein AM and PI as well as spheroid size in a dose dependent manner for each of the drugs. We observe a dose-dependent reduction in spheroid size and find that it correlates well with the viability obtained from the CellTiter96® endpoint assay. The image cytometry method we demonstrate is a convenient and high-throughput drug-response assay for breast cancer spheroids under 400 μm in diameter, and may lay a foundation for investigating other three-dimensional spheroids, organoids, and tissue samples.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jordan Bell
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Matthew Teryek
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Charles Hernandez
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Andrea C Love
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.,Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA.
| |
Collapse
|
217
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2022; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
218
|
Asante EC, Pallegar NK, Viloria-Petit AM, Christian SL. Three-Dimensional Co-Culture Method for Studying Interactions Between Adipocytes, Extracellular Matrix, and Cancer Cells. Methods Mol Biol 2022; 2508:69-77. [PMID: 35737234 DOI: 10.1007/978-1-0716-2376-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional (D) culture models are increasingly becoming the model of choice for studying different biological phenomena such as cell-cell interaction, drug resistance, and gene expression. These models include extracellular matrix (ECM) proteins that better model the in vivo conditions as it allows cells to have both cell-cell and cell-ECM contacts. In the context of the tumor microenvironment, there are additional types of cells present in addition to the ECM. Thus, an intermediate between 2D cell culture and in vivo mouse models can be desired to interrogate the interactions between multiple cell types under the influence of the ECM. Here we describe a 3D co-culture technique for studying breast cancer-adipocyte interactions. This technique could easily be modified to analyze interactions between other cancer cell types and different fibroblast-like cells.
Collapse
Affiliation(s)
- Emmanuel C Asante
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nikitha K Pallegar
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
219
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
220
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
221
|
Zhou Z, Cong L, Cong X. Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Front Oncol 2021; 11:762184. [PMID: 35036354 PMCID: PMC8755639 DOI: 10.3389/fonc.2021.762184] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are in vitro self-assembling, organ-like, three-dimensional cellular structures that stably retain key characteristics of the respective organs. Organoids can be generated from healthy or pathological tissues derived from patients. Cancer organoid culture platforms have several advantages, including conservation of the cellular composition that captures the heterogeneity and pharmacotypic signatures of the parental tumor. This platform has provided new opportunities to fill the gap between cancer research and clinical outcomes. Clinical trials have been performed using patient-derived organoids (PDO) as a tool for personalized medical decisions to predict patients' responses to therapeutic regimens and potentially improve treatment outcomes. Living organoid biobanks encompassing several cancer types have been established, providing a representative collection of well-characterized models that will facilitate drug development. In this review, we highlight recent developments in the generation of organoid cultures and PDO biobanks, in preclinical drug discovery, and methods to design a functional organoid-on-a-chip combined with microfluidic. In addition, we discuss the advantages as well as limitations of human organoids in patient-specific therapy and highlight possible future directions.
Collapse
Affiliation(s)
- Zilong Zhou
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
222
|
Harb A, Fakhreddine M, Zaraket H, Saleh FA. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics (Basel) 2021; 7:3. [PMID: 35076456 PMCID: PMC8788432 DOI: 10.3390/biomimetics7010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are among the most common illnesses and a leading cause of morbidity and mortality worldwide. Due to the severe effects on health, the need of new tools to study the pathogenesis of respiratory viruses as well as to test for new antiviral drugs and vaccines is urgent. In vitro culture model systems, such as three-dimensional (3D) cultures, are emerging as a desirable approach to understand the virus host interactions and to identify novel therapeutic agents. In the first part of the article, we address the various scaffold-free and scaffold-based 3D culture models such as hydrogels, bioreactors, spheroids and 3D bioprinting as well as present their properties and advantages over conventional 2D methods. Then, we review the 3D models that have been used to study the most common respiratory viruses including influenza, parainfluenza, respiratory syncytial virus (RSV) and coronaviruses. Herein, we also explain how 3D models have been applied to understand the novel SARS-CoV-2 infectivity and to develop potential therapies.
Collapse
Affiliation(s)
- Aya Harb
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (A.H.); (H.Z.)
| | | | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (A.H.); (H.Z.)
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Fatima A. Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut 11-5020, Lebanon
| |
Collapse
|
223
|
|
224
|
Law AMK, Rodriguez de la Fuente L, Grundy TJ, Fang G, Valdes-Mora F, Gallego-Ortega D. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Front Oncol 2021; 11:782766. [PMID: 34917509 PMCID: PMC8669727 DOI: 10.3389/fonc.2021.782766] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Laura Rodriguez de la Fuente
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia
| | - Thomas J Grundy
- Life Sciences, Inventia Life Science Pty Ltd, Alexandria, NSW, Australia
| | - Guocheng Fang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Lab, Children's Cancer Institute, Randwick, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Randwick, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
225
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
226
|
Wang G, An Y, Zhang X, Ding P, Bi H, Zhao Z. Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure. Gels 2021; 7:gels7040247. [PMID: 34940307 PMCID: PMC8701895 DOI: 10.3390/gels7040247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional cell-laden tissue engineering has become an extensive research direction. This study aimed to evaluate whether chondrocyte spheroids (chondro-spheroids) prepared using the hanging-drop method could develop better cell proliferation and morphology maintenance characteristics, and be optimized as a micro unit for cartilage tissue engineering. Chondro-spheroids were loaded into a cross-linkable hybrid hydrogel of gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) in vivo and in vitro. Cell proliferation, aggregation, cell morphology maintenance as well as cartilage-related gene expression and matrix secretion in vitro and in vivo were evaluated. The results indicated that compared with chondrocyte-laden hydrogel, chondro-spheroid-laden hydrogel enhanced proliferation, had better phenotype maintenance, and a more natural morphological structure, which made it appropriate for use as a micro unit in cartilage tissue engineering.
Collapse
|
227
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
228
|
Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioeng 2021; 5:041505. [PMID: 34703969 PMCID: PMC8520487 DOI: 10.1063/5.0061896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
The liver plays important roles in drug metabolism and homeostasis. The metabolism and biotransformation can not only affect the efficacy of drugs but also result in hepatotoxicity and drug-induced liver injury. Understanding the complex physiology of the liver and the pathogenetic mechanisms of liver diseases is essential for drug development. Conventional in vitro models have limitations in the ability to predict drug effects, due to the lack of physiological relevance. Recently, the liver-on-a-chip platform has been developed to reproduce the microarchitecture and in vivo environment of the liver. These efforts have improved the physiological relevance of the liver tissue used in the platform and have demonstrated its applicability to drug screening and disease models. In this review, we summarize the recent development of liver-on-a-chip models that closely mimic the in vivo liver environments and liver diseases.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Chemical Engineering, Hongik University, Seoul 04066, South Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul 04066, South Korea
| |
Collapse
|
229
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
230
|
Morello G, Quarta A, Gaballo A, Moroni L, Gigli G, Polini A, Gervaso F. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydr Polym 2021; 274:118633. [PMID: 34702456 DOI: 10.1016/j.carbpol.2021.118633] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.
Collapse
Affiliation(s)
- Giulia Morello
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | | - Lorenzo Moroni
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229ER, the Netherlands
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR, Lecce 73100, Italy; Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Lecce 73100, Italy
| | | | | |
Collapse
|
231
|
Földes A, Reider H, Varga A, Nagy KS, Perczel-Kovach K, Kis-Petik K, DenBesten P, Ballagi A, Varga G. Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers. Polymers (Basel) 2021; 13:3951. [PMID: 34833250 PMCID: PMC8622966 DOI: 10.3390/polym13223951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system. Human DPSCs were cultured on these microcarriers in 96-well plates, and further expanded in shake flasks for upscaling experiments. Cell viability was measured using the alamarBlue assay, while cell morphology was observed by conventional and two-photon microscopies. Glucose consumption of cells was detected by the glucose oxidase/Clark-electrode method. DPSCs adhered to and grew well on both microcarrier surfaces and were also found in the pores of the Cytopore 2. Cells grown in tissue culture plates (static, non-shaking conditions) yielded 7 × 105 cells/well. In shake flasks, static preincubation promoted cell adhesion to the microcarriers. Under dynamic culture conditions (shaking) 3 × 107 cells were obtained in shake flasks. The DPSCs exhausted their glucose supply from the medium by day seven even with partial batch-feeding. In conclusion, both non-porous and porous microcarriers are suitable for upscaling ectomesenchymal DPSCs under dynamic culture conditions.
Collapse
Affiliation(s)
- Anna Földes
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
| | - Hajnalka Reider
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Anita Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
| | - Krisztina S. Nagy
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Katalin Perczel-Kovach
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Department of Community Dentistry, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Kis-Petik
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Pamela DenBesten
- Department of Orofacial Science, University of California, San Francisco, CA 94143, USA;
| | - András Ballagi
- Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary;
- Gedeon Richter Plc, H-1089 Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (A.F.); (H.R.); (A.V.); (K.S.N.); (K.P.-K.)
- Centre for Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
232
|
Jaroch K, Taczyńska P, Czechowska M, Bogusiewicz J, Łuczykowski K, Burlikowska K, Bojko B. One extraction tool for in vitro-in vivo extrapolation? SPME-based metabolomics of in vitro 2D, 3D, and in vivo mouse melanoma models. J Pharm Anal 2021; 11:667-674. [PMID: 34765281 PMCID: PMC8572711 DOI: 10.1016/j.jpha.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
Solid phase microextraction (SPME) in combination with high-resolution mass spectrometry was employed for the determination of metabolomic profile of mouse melanoma growth within in vitro 2D, in vitro 3D, and in vivo models. Such multi-model approach had never been investigated before. Due to the low-invasiveness of SPME, it was possible to perform time-course analysis, which allowed building time profile of biochemical reactions in the studied material. Such approach does not require the multiplication of samples as subsequent analyses are performed from the very same cell culture or from the same individual. SPME already reduces the number of animals required for experiment; therefore, it is with good concordance with the 3Rs rule (replacement, reduction, and refinement). Among tested models, the largest number of compounds was found within the in vitro 2D cell culture model, while in vivo and in vitro 3D models had the lowest number of detected compounds. These results may be connected with a higher metabolic rate, as well as lower integrity of the in vitro 2D model compared to the in vitro 3D model resulting in a lower number of compounds released into medium in the latter model. In terms of in vitro-in vivo extrapolation, the in vitro 2D model performed more similar to in vivo model compared to in vitro 3D model; however, it might have been due to the fact that only compounds secreted to medium were investigated. Thus, in further experiments to obtain full metabolome information, the intraspheroidal assessment or spheroid dissociation would be necessary.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Paulina Taczyńska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Marta Czechowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Katarzyna Burlikowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| |
Collapse
|
233
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
234
|
3D Cell Culture Technology – A New Insight Into in Vitro Research – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Most in vitro cell-based research is based on two-dimensional (2D) systems where growth and development take place on a flat surface, which does not reflect the natural environment of the cells. The imperfection and limitations of culture in 2D systems eventually led to the creation of three-dimensional (3D) culture models that more closely reproduce the actual conditions of physiological cell growth. Since the inception of 3D culture technology, many culture models have been developed, such as technologies of multicellular spheroids, organoids, and organs on chips in the technology of scaffolding, hydrogels, bio-printing and liquid media. In this review we will focus on the advantages and disadvantages of the 2D vs. 3D cell cultures technologies. We will also try to sum up available 3D culture systems and materials for building 3D scaffolds.
Collapse
|
235
|
Goudar VS, Koduri MP, Ta YNN, Chen Y, Chu LA, Lu LS, Tseng FG. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48478-48491. [PMID: 34633791 DOI: 10.1021/acsami.1c18249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) spheroid culture provides opportunities to model tumor growth closer to its natural context. The collagen network in the extracellular matrix supports autonomic tumor cell proliferation, but its presence and role in tumor spheroids remain unclear. In this research, we developed an in vitro 3D co-culture model in a microwell 3D (μ-well 3D) cell-culture array platform to mimic the tumor microenvironment (TME). The modular setup is used to characterize the paracrine signaling molecules and the role of the intraspheroidal collagen network in cancer drug resistance. The μ-well 3D platform is made up of poly(dimethylsiloxane) that contains 630 round wells for individual spheroid growth. Inside each well, the growth surface measured 500 μm in diameter and was functionalized with the amphiphilic copolymer. HCT-8 colon cancer cells and/or NIH3T3 fibroblasts were seeded in each well and incubated for up to 9 days for TME studies. It was observed that NIH3T3 cells promoted the kinetics of tumor organoid formation. The two types of cells self-organized into core-shell chimeric tumor spheroids (CTSs) with fibroblasts confined to the shell and cancer cells localized to the core. Confocal microscopy analysis indicated that a type-I collagen network developed inside the CTS along with increased TGF-β1 and α-SMA proteins. The results were correlated with a significantly increased stiffness in 3D co-cultured CTS up to 52 kPa as compared to two-dimensional (2D) co-culture. CTS was more resistant to 5-FU (IC50 = 14.0 ± 3.9 μM) and Regorafenib (IC50 = 49.8 ± 9.9 μM) compared to cells grown under the 2D condition 5-FU (IC50 = 12.2 ± 3.7 μM) and Regorafenib (IC50 = 5.9 ± 1.9 μM). Targeted collagen homeostasis with Sclerotiorin led to damaged collagen structure and disrupted the type-I collagen network within CTS. Such a treatment significantly sensitized collagen-supported CTS to 5-FU (IC50 = 4.4 ± 1.3 μM) and to Regorafenib (IC50 = 0.5 ± 0.2 μM). In summary, the efficient formation of colon cancer CTSs in a μ-well 3D culture platform allows exploration of the desmoplastic TME. The novel role of intratumor collagen quality as a drug sensitization target warrants further investigation.
Collapse
Affiliation(s)
- Venkanagouda S Goudar
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Manohar Prasad Koduri
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Mechanical, Materials, and Aerospace, School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L693GH, U.K
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Li-An Chu
- Department of Biomedical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Long-Sheng Lu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Fan-Gang Tseng
- Department of Engineering and System Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
236
|
Radajewska A, Przybyszewski O, Emhemmed F, Muller CD, Barg E, Moreira H. Three dimensional in vitro culture systems in anticancer drug discovery targeted on cancer stem cells. Am J Cancer Res 2021; 11:4931-4946. [PMID: 34765301 PMCID: PMC8569359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023] Open
Abstract
Worldwide, tumors are one of the most common causes of death. Every year 3.7 million new cases occur in Europe and more than 1.9 million patients die (WHO data). Most of the fields of research are focused on developing new therapeutic strategies that will be effective in eliminating the tumor, preventing its remission, and avoiding or reducing the side effects of therapy. In the past, generally classical 2D cell cultures or immunodeficient animal models had been used to cultivate and test drugs on human cancer cell lines. Nowadays, there are increasing interests in three-dimensional (3D) cell cultures, a method with significant differences from flat cultured cells, both considering gene expressions and cell-cell interactions. Various evidence suggests that high tumorigenic properties might be dependent on the occurrence of a small cell population, pointed out to be responsible for metastasis and recurrence. This population is called cancer stem cells (CSCs), hinted to have a lot of similarities with normal stem cells. CSCs are the main reason for chemotherapy failure as well as multi-drug resistance (MDR). CSCs can also interact through the cytokine network, with other cells like the macrophages of the inflammatory system. The big advantage of a 3D culture is the possibility to isolate and investigate the CSCs population surrounded by its environment. This article aims to sum up known 3D cell cultures, especially in the field of CSCs research due to the importance of the tumor's environment on stem cell's markers expression and their development.
Collapse
Affiliation(s)
- Anna Radajewska
- Department of Basic Medical Sciences, Wroclaw Medical UniversityWroclaw, Poland
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Wroclaw Medical UniversityWroclaw, Poland
| | - Oskar Przybyszewski
- Department of Basic Medical Sciences, Wroclaw Medical UniversityWroclaw, Poland
| | - Fathi Emhemmed
- IPHC, UMR 7178, University of StrasbourgIllkirch, France
| | | | - Ewa Barg
- Department of Basic Medical Sciences, Wroclaw Medical UniversityWroclaw, Poland
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical UniversityWroclaw, Poland
- IPHC, UMR 7178, University of StrasbourgIllkirch, France
| |
Collapse
|
237
|
Pun S, Haney LC, Barrile R. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. MICROMACHINES 2021; 12:1250. [PMID: 34683301 PMCID: PMC8540847 DOI: 10.3390/mi12101250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
For centuries, animal experiments have contributed much to our understanding of mechanisms of human disease, but their value in predicting the effectiveness of drug treatments in the clinic has remained controversial. Animal models, including genetically modified ones and experimentally induced pathologies, often do not accurately reflect disease in humans, and therefore do not predict with sufficient certainty what will happen in humans. Organ-on-chip (OOC) technology and bioengineered tissues have emerged as promising alternatives to traditional animal testing for a wide range of applications in biological defence, drug discovery and development, and precision medicine, offering a potential alternative. Recent technological breakthroughs in stem cell and organoid biology, OOC technology, and 3D bioprinting have all contributed to a tremendous progress in our ability to design, assemble and manufacture living organ biomimetic systems that more accurately reflect the structural and functional characteristics of human tissue in vitro, and enable improved predictions of human responses to drugs and environmental stimuli. Here, we provide a historical perspective on the evolution of the field of bioengineering, focusing on the most salient milestones that enabled control of internal and external cell microenvironment. We introduce the concepts of OOCs and Microphysiological systems (MPSs), review various chip designs and microfabrication methods used to construct OOCs, focusing on blood-brain barrier as an example, and discuss existing challenges and limitations. Finally, we provide an overview on emerging strategies for 3D bioprinting of MPSs and comment on the potential role of these devices in precision medicine.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Li Cai Haney
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45221, USA
| |
Collapse
|
238
|
Lehti-Polojärvi M, Räsänen MJ, Viiri LE, Vuorenpää H, Miettinen S, Seppänen A, Hyttinen J. Retrieval of the conductivity spectrum of tissues in vitrowith novel multimodal tomography. Phys Med Biol 2021; 66. [PMID: 34587596 DOI: 10.1088/1361-6560/ac2b7f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Imaging of tissue engineered three-dimensional (3D) specimens is challenging due to their thickness. We propose a novel multimodal imaging technique to obtain multi-physical 3D images and the electrical conductivity spectrum of tissue engineered specimensin vitro. APPROACH We combine simultaneous recording of rotational multifrequency electrical impedance tomography (R-mfEIT) with optical projection tomography (OPT). Structural details of the specimen provided by OPT are used here as geometrical priors for R-mfEIT. MAIN RESULTS This data fusion enables accurate retrieval of the conductivity spectrum of the specimen. We demonstrate experimentally the feasibility of the proposed technique using a potato phantom, adipose and liver tissues, and stem cells in biomaterial spheroids. The results indicate that the proposed technique can distinguish between viable and dead tissues and detect the presence of stem cells. SIGNIFICANCE This technique is expected to become a valuable tool for monitoring tissue engineered specimens' growth and viabilityin vitro.
Collapse
Affiliation(s)
- M Lehti-Polojärvi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M J Räsänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - L E Viiri
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - H Vuorenpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - S Miettinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A Seppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - J Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
239
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
240
|
Thanapirom K, Caon E, Papatheodoridi M, Frenguelli L, Al-Akkad W, Zhenzhen Z, Vilia MG, Pinzani M, Mazza G, Rombouts K. Optimization and Validation of a Novel Three-Dimensional Co-Culture System in Decellularized Human Liver Scaffold for the Study of Liver Fibrosis and Cancer. Cancers (Basel) 2021; 13:cancers13194936. [PMID: 34638417 PMCID: PMC8508071 DOI: 10.3390/cancers13194936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aims to overcome the current methodological limitations in discovering new therapeutic targets. Therefore, we optimized and validated a co-culture system using decellularized human liver three-dimensional (3D) scaffolds obtained from healthy and cirrhotic human livers for anti-fibrotic and anti-cancer dual drug screening. Both platforms mimic the naturally healthy and physio-pathological microenvironment and are able to recapitulate the key cellular and molecular events leading to liver fibrogenesis and cancer. This study demonstrates the differences between single versus co-cultures and the usage of human-derived liver 3D ECM scaffolds from healthy and cirrhotic livers. As lead compounds, we used Sorafenib and Regorafenib, first- and second-line drugs, and identified two different drug-induced mechanisms depending on the 3D ECM microenvironment. The 3D ECM scaffolds may represent innovative platforms for disease modeling, biomarker discovery, and drug testing in fibrosis and primary cancer. Abstract The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib reversed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvironment and could be employed for anti-fibrotic and anti-HCC drug screening.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Elisabetta Caon
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Margarita Papatheodoridi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Luca Frenguelli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Walid Al-Akkad
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Zhang Zhenzhen
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Maria Giovanna Vilia
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Sheila Sherlock Liver Centre, Royal Free Hospital, London NW3 2QG, UK
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Correspondence:
| |
Collapse
|
241
|
Argentiere S, Siciliano PA, Blasi L. How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers (Basel) 2021; 13:3216. [PMID: 34641032 PMCID: PMC8512905 DOI: 10.3390/polym13193216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Organ-on-chip (OOC) devices represent the new frontier in biomedical research to produce micro-organoids and tissues for drug testing and regenerative medicine. The development of such miniaturized models requires the 3D culture of multiple cell types in a highly controlled microenvironment, opening new challenges in reproducing the extracellular matrix (ECM) experienced by cells in vivo. In this regard, cell-laden microgels (CLMs) represent a promising tool for 3D cell culturing and on-chip generation of micro-organs. The engineering of hydrogel matrix with properly balanced biochemical and biophysical cues enables the formation of tunable 3D cellular microenvironments and long-term in vitro cultures. This focused review provides an overview of the most recent applications of CLMs in microfluidic devices for organoids formation, highlighting microgels' roles in OOC development as well as insights into future research.
Collapse
Affiliation(s)
| | | | - Laura Blasi
- Institute for Microelectronics and Microsystems IMM-CNR, Via Monteroni, University Campus, 73100 Lecce, Italy; (S.A.); (P.A.S.)
| |
Collapse
|
242
|
Paradiso F, Serpelloni S, Francis LW, Taraballi F. Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. Int J Mol Sci 2021; 22:10098. [PMID: 34576261 PMCID: PMC8472581 DOI: 10.3390/ijms221810098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
From the development of self-aggregating, scaffold-free multicellular spheroids to the inclusion of scaffold systems, 3D models have progressively increased in complexity to better mimic native tissues. The inclusion of a third dimension in cancer models allows researchers to zoom out from a significant but limited cancer cell research approach to a wider investigation of the tumor microenvironment. This model can include multiple cell types and many elements from the extracellular matrix (ECM), which provides mechanical support for the tissue, mediates cell-microenvironment interactions, and plays a key role in cancer cell invasion. Both biochemical and biophysical signals from the extracellular space strongly influence cell fate, the epigenetic landscape, and gene expression. Specifically, a detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, is lacking. In this review, we focus on the latest achievements in the study of ECM biomechanics and mechanosensing in cancer on 3D scaffold-based and scaffold-free models, focusing on each platform's level of complexity, up-to-date mechanical tests performed, limitations, and potential for further improvements.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - Lewis W. Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK;
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA; (F.P.); (S.S.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
243
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
244
|
A Nuclear-Directed Ribonuclease Variant Targets Cancer Stem Cells and Inhibits Migration and Invasion of Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13174350. [PMID: 34503160 PMCID: PMC8430808 DOI: 10.3390/cancers13174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary During the past decades the achievements made in treating cancers have significantly improved the survival of patients. However, cancer is still one of the leading causes of mortality. It is suggested that treatment failure is mediated by a subpopulation of tumor cells named cancer stem cells that can survive after treatment and promote cancer relapse. Targeting these cells is important to improve cancer therapy. The aim of our study is to determine the effect of a human ribonuclease variant on breast cancer cells grown in 3D and on cancer stem cells. Moreover, we study its effect on the ability of breast cancer cells to migrate and produce metastasis, responsible for about 90% of cancer deaths. We show that this ribonuclease arrests tumor cells grown in 3D without affecting normal breast cells, and this significantly inhibits cancer stem cell development. Additionally, it reduces the migratory and invasive capacities of tumor cells. Abstract Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.
Collapse
|
245
|
Three-Dimensional Culture of Rhipicephalus ( Boophilus) microplus BmVIII-SCC Cells on Multiple Synthetic Scaffold Systems and in Rotating Bioreactors. INSECTS 2021; 12:insects12080747. [PMID: 34442313 PMCID: PMC8396921 DOI: 10.3390/insects12080747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
Tick cell culture facilitates research on the biology of ticks and their role as vectors of pathogens that affect humans, domestic animals, and wildlife. Because two-dimensional cell culture doesn't promote the development of multicellular tissue-like composites, we hypothesized that culturing tick cells in a three-dimensional (3-D) configuration would form spheroids or tissue-like organoids. In this study, the cell line BmVIII-SCC obtained from the cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini, 1888), was cultured in different synthetic scaffold systems. Growth of the tick cells on macrogelatinous beads in rotating continuous culture system bioreactors enabled cellular attachment, organization, and development into spheroid-like aggregates, with evidence of tight cellular junctions between adjacent cells and secretion of an extracellular matrix. At least three cell morphologies were identified within the aggregates: fibroblast-like cells, small endothelial-like cells, and larger cells exhibiting multiple cytoplasmic endosomes and granular vesicles. These observations suggest that BmVIII-SCC cells adapted to 3-D culture retain pluripotency. Additional studies involving genomic analyses are needed to determine if BmVIII-SCC cells in 3-D culture mimic tick organs. Applications of 3-D culture to cattle fever tick research are discussed.
Collapse
|
246
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
247
|
Landry NM, Rattan SG, Dixon IMC. Soft Substrate Culture to Mechanically Control Cardiac Myofibroblast Activation. Methods Mol Biol 2021; 2299:171-179. [PMID: 34028743 DOI: 10.1007/978-1-0716-1382-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two-dimensional cell culture is the primary method employed for proof-of-concept studies in most molecular biology labs. While immortalized cell lines are convenient and easy to maintain for extended periods in vitro, their inability to accurately represent genuine cell physiology-or pathophysiology-presents a challenge for drug discovery, as most results are not viable for the transition to clinical trial. The use of primary cells is a more biologically relevant approach to this issue; however, simulating in vitro what is observed in vivo is exigent at best. Primary cardiac fibroblasts are particularly difficult to maintain in a quiescent state, due to their innate phenotypic plasticity, and sensitivity to mechanical and biochemical stimulus. As conventional cell culture methods do not consider these factors, here we describe a method that limits environmental input (i.e., mechanical, nutritional, hormonal) to extend the physiological cardiac fibroblast phenotype in vitro.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sunil G Rattan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
248
|
Osório LA, Silva E, Mackay RE. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering (Basel) 2021; 8:113. [PMID: 34436116 PMCID: PMC8389238 DOI: 10.3390/bioengineering8080113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Drug and chemical development along with safety tests rely on the use of numerous clinical models. This is a lengthy process where animal testing is used as a standard for pre-clinical trials. However, these models often fail to represent human physiopathology. This may lead to poor correlation with results from later human clinical trials. Organ-on-a-Chip (OOAC) systems are engineered microfluidic systems, which recapitulate the physiochemical environment of a specific organ by emulating the perfusion and shear stress cellular tissue undergoes in vivo and could replace current animal models. The success of culturing cells and cell-derived tissues within these systems is dependent on the scaffold chosen; hence, scaffolds are critical for the success of OOACs in research. A literature review was conducted looking at current OOAC systems to assess the advantages and disadvantages of different materials and manufacturing techniques used for scaffold production; and the alternatives that could be tailored from the macro tissue engineering research field.
Collapse
Affiliation(s)
- Luana A. Osório
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Elisabete Silva
- Department of Life Science, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Ruth E. Mackay
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| |
Collapse
|
249
|
3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021; 65:519-531. [PMID: 34342360 DOI: 10.1042/ebc20200105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in 3D printing (3DP) and tissue engineering approaches enable the potential application of these technologies to vaccine research. Reconstituting the native tissue or cellular microenvironment will be vital for successful evaluation of pathogenicity of viral infection and screening of potential vaccines. Therefore, establishing a reliable in vitro model to study the vaccine efficiency or delivery of viral disease is important. Here, this review summarizes two major ways that tissue engineering and 3DP strategies could contribute to vaccine research: (1) 3D human tissue models to study the response to virus can be served as a testbed for new potential therapeutics. Using 3D tissue platform attempts to explore alternative options to pre-clinical animal research for evaluating vaccine candidates. (2) 3DP technologies can be applied to improve the vaccination strategies which could replace existing vaccine delivery. Controlled antigen release using carriers that are generated with biodegradable biomaterials can further enhance the efficient development of immunity as well as combination of multiple-dose vaccines into a single injection. This mini review discusses the up-to-date report of current 3D tissue/organ models for potential vaccine potency and known bioengineered vaccine delivery systems.
Collapse
|
250
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|