201
|
Toh J, Eisenberg R, Bakirhan K, Verma A, Rubinstein A. Myelodysplastic Syndrome and Acute Lymphocytic Leukemia in Common Variable Immunodeficiency (CVID). J Clin Immunol 2016; 36:366-9. [PMID: 26993985 DOI: 10.1007/s10875-016-0269-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/09/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer Toh
- Division of Allergy and Immunology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Rachel Eisenberg
- Division of Allergy and Immunology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamila Bakirhan
- Department of Oncology, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arye Rubinstein
- Division of Allergy and Immunology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
202
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|
203
|
Acute Myeloid Leukemia: A Concise Review. J Clin Med 2016; 5:jcm5030033. [PMID: 26959069 PMCID: PMC4810104 DOI: 10.3390/jcm5030033] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies.
Collapse
|
204
|
van Spronsen MF, Ossenkoppele GJ, Westers TM, van de Loosdrecht AA. Prognostic relevance of morphological classification models for myelodysplastic syndromes in an era of the revised International Prognostic Scoring System. Eur J Cancer 2016; 56:10-20. [DOI: 10.1016/j.ejca.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
|
205
|
Abou Zahr A, Bernabe Ramirez C, Wozney J, Prebet T, Zeidan AM. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities. Expert Rev Hematol 2016; 9:377-88. [DOI: 10.1586/17474086.2016.1135047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
206
|
Kanagal-Shamanna R, Singh RR, Routbort MJ, Patel KP, Medeiros LJ, Luthra R. Principles of analytical validation of next-generation sequencing based mutational analysis for hematologic neoplasms in a CLIA-certified laboratory. Expert Rev Mol Diagn 2016; 16:461-72. [PMID: 26765348 DOI: 10.1586/14737159.2016.1142374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Targeted therapy based on mutational profiles is the current standard of practice for the management of patients with hematologic malignancies. Next-generation sequencing (NGS)- based analysis has been adopted by clinical laboratories for high-throughput mutational profiling of myeloid and lymphoid neoplasms. The technology is fairly novel and complex, hence both validation and test implementation in a CLIA-certified laboratory differ substantially from traditional sequencing platforms. Recently, organizations such as the American College of Medical Genetics, Centers for Disease Control and Prevention and College of American Pathologists have published principles and guidelines for NGS test development to ensure standardization of testing across institutions. Summarized here are the recommendations from these organizations as they pertain to targeted NGS-based testing of hematologic malignancies ('liquid tumors'), with particular emphasis on myeloid neoplasms.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| | - Rajesh R Singh
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| | - Mark J Routbort
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| | - Keyur P Patel
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| | - L Jeffrey Medeiros
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| | - Rajyalakshmi Luthra
- a Department of Hematopathology , The University of Texas at M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
207
|
Milunović V, Mandac Rogulj I, Planinc-Peraica A, Bulycheva E, Kolonić Ostojić S. The role of microRNA in myelodysplastic syndromes: beyond DNA methylation and histone modification. Eur J Haematol 2016; 96:553-63. [PMID: 26773284 DOI: 10.1111/ejh.12735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous group of hematologic disorders of mostly elderly and based on distinct clinical phenotypes. Current paradigm of their pathogenesis relies on somatic gene mutations combined with the predisposing defective osteohematopoietic niche, but due to the breakout in epigenetic research scientific focus has steered toward two most common epigenetic modifications: methylation mechanisms and histone modification. At the same time, relatively few studies have been undertaken regarding the third epigenetic pathway - microRNAs - in MDS. The main aim of this review is to provide the basics of microRNA biology and function in oncogenesis, showing the complexity of mechanisms behind this single-stranded 22 nucleotides long RNA molecule, with further focus on its implication in MDS pathology and clinical context. By extensive literature search, we have shown enough evidence for their deregulation in MDS. However, few studies have addressed the issue on pathogenic events in MDS and its association with specific microRNAs. Preliminary research in clinical setting has shown the possible utility of microRNAs in terms of prognosis and therapy, although we are only beginning to understand various implications of microRNAs in MDS and further extensive research is warranted to answer multiple questions arising from interconnection of this epigenetic mechanism in MDS.
Collapse
Affiliation(s)
- Vibor Milunović
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, DC, USA
| | - Inga Mandac Rogulj
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia
| | - Ana Planinc-Peraica
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ekaterina Bulycheva
- Medizinische Klinic und Poliklinik I, Universitatsklinikum Carl-Gustav-Carus, Technische Universitat, Dresden, Germany
| | - Slobodanka Kolonić Ostojić
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
208
|
Abstract
The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.
Collapse
Affiliation(s)
- Tongbin Wu
- a Department of Medicine ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
209
|
Guerenne L, Beurlet S, Said M, Gorombei P, Le Pogam C, Guidez F, de la Grange P, Omidvar N, Vanneaux V, Mills K, Mufti GJ, Sarda-Mantel L, Noguera ME, Pla M, Fenaux P, Padua RA, Chomienne C, Krief P. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways. J Hematol Oncol 2016; 9:5. [PMID: 26817437 PMCID: PMC4728810 DOI: 10.1186/s13045-016-0235-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. Methods We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Results Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. Conclusions These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Guerenne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Stéphanie Beurlet
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Mohamed Said
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Petra Gorombei
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Carole Le Pogam
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Fabien Guidez
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Pierre de la Grange
- GenoSplice technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris, France.
| | - Nader Omidvar
- Haematology Department, Cardiff University School of Medicine, Cardiff, UK.
| | - Valérie Vanneaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Unité de Thérapie Cellulaire, Hôpital Saint Louis, Paris, France.
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Laure Sarda-Mantel
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie Hôpital Saint Louis, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France.
| | - Maria Elena Noguera
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Marika Pla
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Université Paris-Diderot, Sorbonne Paris Cité, Département d'Expérimentation Animale, Institut Universitaire d'Hématologie, Paris, France.
| | - Pierre Fenaux
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Rose Ann Padua
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Christine Chomienne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Patricia Krief
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| |
Collapse
|
210
|
Guezguez B, Almakadi M, Benoit YD, Shapovalova Z, Rahmig S, Fiebig-Comyn A, Casado FL, Tanasijevic B, Bresolin S, Masetti R, Doble BW, Bhatia M. GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. Cancer Cell 2016; 29:61-74. [PMID: 26766591 DOI: 10.1016/j.ccell.2015.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 04/23/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Initial pathway alternations required for pathogenesis of human acute myeloid leukemia (AML) are poorly understood. Here we reveal that removal of glycogen synthase kinase-3α (GSK-3α) and GSK-3β dependency leads to aggressive AML. Although GSK-3α deletion alone has no effect, GSK-3β deletion in hematopoietic stem cells (HSCs) resulted in a pre-neoplastic state consistent with human myelodysplastic syndromes (MDSs). Transcriptome and functional studies reveal that each GSK-3β and GSK-3α uniquely contributes to AML by affecting Wnt/Akt/mTOR signaling and metabolism, respectively. The molecular signature of HSCs deleted for GSK-3β provided a prognostic tool for disease progression and survival of MDS patients. Our study reveals that GSK-3α- and GSK-3β-regulated pathways can be responsible for stepwise transition to MDS and subsequent AML, thereby providing potential therapeutic targets of disease evolution.
Collapse
Affiliation(s)
- Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Mohammed Almakadi
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Oncology, Juravinski Cancer Center, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Yannick D Benoit
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Zoya Shapovalova
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Susann Rahmig
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Aline Fiebig-Comyn
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Fanny L Casado
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Borko Tanasijevic
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Bologna, Italy
| | - Bradley W Doble
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Stem Cell and Cancer Research Institute (SCC-RI), Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, MDCL 5029, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
211
|
Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127:29-41. [PMID: 26660431 PMCID: PMC4705608 DOI: 10.1182/blood-2015-07-604496] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023] Open
Abstract
Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient's AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response.
Collapse
Affiliation(s)
- David Grimwade
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Adam Ivey
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
212
|
Lee EJ, Podoltsev N, Gore SD, Zeidan AM. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions. Blood Rev 2016; 30:1-10. [DOI: 10.1016/j.blre.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
|
213
|
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by the accumulation of complex genomic alterations that define the disease pathophysiology and overall outcome. Recent advances in sequencing technologies have described the molecular landscape of AML and identified several somatic alterations that impact overall survival. Despite all these advancement, several challenges remain in translating this information into effective therapy. Herein we will review the molecular landscape of AML and discuss the impact of the most common somatic mutations on disease biology and outcome.
Collapse
Affiliation(s)
- Karam Al-Issa
- Leukemia Program, Department of Hematology and Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland 44195, OH, USA
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland 44195, OH, USA
| |
Collapse
|
214
|
Srivastava A, Ritesh KC, Tsan YC, Liao R, Su F, Cao X, Hannibal MC, Keegan CE, Chinnaiyan AM, Martin DM, Bielas SL. De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge-Ropers syndrome. Hum Mol Genet 2015; 25:597-608. [PMID: 26647312 DOI: 10.1093/hmg/ddv499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
De novo truncating mutations in Additional sex combs-like 3 (ASXL3) have been identified in individuals with Bainbridge-Ropers syndrome (BRS), characterized by failure to thrive, global developmental delay, feeding problems, hypotonia, dysmorphic features, profound speech delays and intellectual disability. We identified three novel de novo heterozygous truncating variants distributed across ASXL3, outside the original cluster of ASXL3 mutations previously described for BRS. Primary skin fibroblasts established from a BRS patient were used to investigate the functional impact of pathogenic variants. ASXL3 mRNA transcripts from the mutated allele are prone to nonsense-mediated decay, and expression of ASXL3 is reduced. We found that ASXL3 interacts with BAP1, a hydrolase that removes mono-ubiquitin from histone H2A lysine 119 (H2AK119Ub1) as a component of the Polycomb repressive deubiquitination (PR-DUB) complex. A significant increase in H2AK119Ub1 was observed in ASXL3 patient fibroblasts, highlighting an important functional role for ASXL3 in PR-DUB mediated deubiquitination. Transcriptomes of ASXL3 patient and control fibroblasts were compared to investigate the impact of chromatin changes on transcriptional regulation. Out of 564 significantly differentially expressed genes (DEGs) in ASXL3 patient fibroblasts, 52% were upregulated and 48% downregulated. DEGs were enriched in molecular processes impacting transcriptional regulation, development and proliferation, consistent with the features of BRS. This is the first single gene disorder linked to defects in deubiquitination of H2AK119Ub1 and suggests an important role for dynamic regulation of H2A mono-ubiquitination in transcriptional regulation and the pathophysiology of BRS.
Collapse
Affiliation(s)
| | | | | | | | - Fengyun Su
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Xuhong Cao
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Mark C Hannibal
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Donna M Martin
- Department of Human Genetics, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
215
|
The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology 2015; 2015:299-307. [DOI: 10.1182/asheducation-2015.1.299] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractThe WHO classification provides the best diagnostic approach to myelodysplastic syndromes (MDS). However, biologic and analytic limitations have emerged in the criteria currently adopted to establish the diagnosis and to classify MDS. The provisional category of idiopathic cytopenia of undetermined significance (ICUS) has been proposed to describe patients in whom MDS is possible but not proven. To formulate a diagnosis of ICUS, a thorough diagnostic work-up is required and repeated tests should be performed to reach a conclusive diagnosis. Recent studies provided consistent evidence of age-related hematopoietic clones (clonal hematopoiesis of indeterminate potential; CHIP), driven by mutations of genes that are recurrently mutated in myeloid neoplasms and associated with increase in the risk of hematologic cancer. A subset of mutated genes, mainly involved in epigenetic regulation, are likely initiating lesions driving the expansion of a premalignant clone. However, in a fraction of subjects the detected clone may be a small malignant clone expanding under the drive of the detected and additional undetected mutations. In addition, several experimental evidences suggest the potential relevance of an abnormal bone marrow environment in the selection and evolution of hematopoietic clones in MDS. The spreading of massively parallel sequencing techniques is offering translational opportunities in the clinical approach to myeloid neoplasms. Although several issues remain to be clarified, targeted gene sequencing may be of potential value in the dissection between clonal myelodysplasia, nonclonal cytopenia, and clonal hematopoiesis arising upon aging or in the context of acquired marrow failure.
Collapse
|
216
|
Sohail M, Xie J. Diverse regulation of 3' splice site usage. Cell Mol Life Sci 2015; 72:4771-93. [PMID: 26370726 PMCID: PMC11113787 DOI: 10.1007/s00018-015-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
217
|
Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia 2015; 30:666-73. [PMID: 26514544 DOI: 10.1038/leu.2015.304] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P<0.0001). MDS patients with a TP53 VAF > 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF <20% (hazard ratio (HR), 3.52; P=0.01) with validation in an independent cohort (HR, 4.94, P=0.01). TP53 VAF further stratified distinct prognostic groups independent of clinical prognostic scoring systems (P=0.0005). In multivariate analysis, only a TP53 VAF >40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS.
Collapse
|
218
|
Zeidan AM, Sekeres MA, Garcia-Manero G, Steensma DP, Zell K, Barnard J, Ali NA, Zimmerman C, Roboz G, DeZern A, Nazha A, Jabbour E, Kantarjian H, Gore SD, Maciejewski JP, List A, Komrokji R. Comparison of risk stratification tools in predicting outcomes of patients with higher-risk myelodysplastic syndromes treated with azanucleosides. Leukemia 2015; 30:649-57. [PMID: 26464171 DOI: 10.1038/leu.2015.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 01/06/2023]
Abstract
Established prognostic tools in patients with myelodysplastic syndromes (MDS) were largely derived from untreated patient cohorts. Although azanucleosides are standard therapies for higher-risk (HR)-MDS, the relative prognostic performance of existing prognostic tools among patients with HR-MDS receiving azanucleoside therapy is unknown. In the MDS Clinical Research Consortium database, we compared the prognostic utility of the International Prognostic Scoring System (IPSS), revised IPSS (IPSS-R), MD Anderson Prognostic Scoring System (MDAPSS), World Health Organization-based Prognostic Scoring System (WPSS) and the French Prognostic Scoring System (FPSS) among 632 patients who presented with HR-MDS and were treated with azanucleosides as the first-line therapy. Median follow-up from diagnosis was 15.7 months. No prognostic tool predicted the probability of achieving an objective response. Nonetheless, all five tools were associated with overall survival (OS, P=0.025 for the IPSS, P=0.011 for WPSS and P<0.001 for the other three tools). The corrected Akaike Information Criteria, which were used to compare OS with the different prognostic scoring systems as covariates (lower is better) were 4138 (MDAPSS), 4156 (FPSS), 4196 (IPSS-R), 4186 (WPSS) and 4196 (IPSS). Patients in the highest-risk groups of the prognostic tools had a median OS from diagnosis of 11-16 months and should be considered for up-front transplantation or experimental approaches.
Collapse
Affiliation(s)
- A M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA
| | - M A Sekeres
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - G Garcia-Manero
- Department of leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - D P Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - K Zell
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - J Barnard
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - N A Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - C Zimmerman
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - G Roboz
- Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - A DeZern
- Department of Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - A Nazha
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - E Jabbour
- Department of leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - H Kantarjian
- Department of leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - S D Gore
- Department of Internal Medicine, Section of Hematology, Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA
| | - J P Maciejewski
- Leukemia Program, Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - A List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - R Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
219
|
Zeidan AM, Gore SD, Padron E, Komrokji RS. Current state of prognostication and risk stratification in myelodysplastic syndromes. Curr Opin Hematol 2015; 22:146-54. [PMID: 25575032 DOI: 10.1097/moh.0000000000000110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes (MDS) are characterized by significant biologic and clinical heterogeneity. Because of the wide outcome variability, accurate prognostication is vital to high-quality risk-adaptive care of MDS patients. In this review, we discuss the current state of prognostic schemes for MDS and overview efforts aimed at utilizing molecular aberrations for prognostication in clinical practice. RECENT FINDINGS Several prognostic instruments have been developed and validated with increasing accuracy and complexity. Oncologists should be aware of the inherent limitations of these prognostic tools as they counsel patients and make clinical decisions. As more therapies are becoming available for MDS, the focus of model development is shifting from prognostic to treatment-specific predictive instruments. In addition to providing additional prognostic data beyond traditional clinical and pathologic parameters, the improved understanding of the genetic landscape and pathophysiologic consequences in MDS may allow the construction of treatment-specific predictive instruments. SUMMARY How to best use the results of molecular mutation testing to inform clinical decision making in MDS is still a work in progress. Important steps in this direction include standardization in performance and interpretation of assays and better understanding of the independent prognostic importance of the recurrent mutations, especially the less frequent ones.
Collapse
Affiliation(s)
- Amer M Zeidan
- aSection of Hematology, Department of Internal Medicine, Yale University, New Haven, Connecticut bDepartment of Malignant Hematology, H Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | | | |
Collapse
|
220
|
Abou Zahr A, Saad Aldin E, Barbarotta L, Podoltsev N, Zeidan AM. The clinical use of DNA methyltransferase inhibitors in myelodysplastic syndromes. Expert Rev Anticancer Ther 2015; 15:1019-36. [DOI: 10.1586/14737140.2015.1061936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
221
|
Minetto P, Guolo F, Clavio M, De Astis E, Colombo N, Grasso R, Fugazza G, Sessarego M, Lemoli RM, Gobbi M, Miglino M. Combined assessment of WT1 and BAALC gene expression at diagnosis may improve leukemia-free survival prediction in patients with myelodysplastic syndromes. Leuk Res 2015; 39:866-73. [DOI: 10.1016/j.leukres.2015.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/08/2015] [Accepted: 04/19/2015] [Indexed: 11/24/2022]
|
222
|
Malcovati L, Rumi E, Cazzola M. Somatic mutations of calreticulin in myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms. Haematologica 2015; 99:1650-2. [PMID: 25420280 DOI: 10.3324/haematol.2014.113944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Elisa Rumi
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
223
|
Nazha A, Sekeres MA, Gore SD, Zeidan AM. Molecular Testing in Myelodysplastic Syndromes for the Practicing Oncologist: Will the Progress Fulfill the Promise? Oncologist 2015. [PMID: 26194858 DOI: 10.1634/theoncologist.2015-0067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic neoplasms that are driven by somatically acquired genetic mutations and epigenetic alterations. Accurate risk stratification is essential for delivery of risk-adaptive therapeutic interventions. The current prognostic tools sum the impact of clinical, pathologic, and laboratory parameters. Newer technologies with next-generation targeted deep sequencing and whole-genome and -exome sequencing have identified several recurrent mutations that play a vital role in the pathophysiology of MDS and the impact of these genetic changes on disease phenotype. Equally important, well-annotated databases of MDS patients with paired clinicopathologic and genetic data have enabled better understanding of the independent prognostic impact of several molecular mutations on important clinical endpoints such as overall survival and probability of leukemic progression. Cumulative evidence suggests that genomic data can also be used clinically to aid with the diagnosis, prognosis, prediction of response to specific therapies, and the development of novel and rationally targeted therapies. However, the optimal use of this mutational profiling remains a work in progress and currently there is no standard set of genes or techniques that are recommended for routine use in the clinic. In this review, we discuss the genomic revolution and its impact on our understanding of MDS biology and risk stratification. We also discuss the current role and the challenges of the application of genetic mutational data into daily clinical practice and how future research could help improve the prognostication precision and specific therapy selection for patients with MDS. IMPLICATIONS FOR PRACTICE Heterogeneity in clinical outcomes of MDS is partly related to interpatient variability of recurrent somatic mutations that drive disease phenotype and progression. Although clinical risk stratification tools have functioned well in prognostication for patients with MDS, their ability to predict clinical benefits of specific MDS therapies is limited. Molecular testing shows promise in aiding diagnosis, risk stratification, and therapy-specific benefit prediction for MDS patients. Nonetheless, logistical issues related to assay performance standardization, validation, interpretation, and development of guidelines for how to use the results to inform clinical decisions are yet to be resolved.
Collapse
Affiliation(s)
- Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
224
|
Della Porta MG, Tuechler H, Malcovati L, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, Kantarjian H, Kuendgen A, Levis A, Cermak J, Fonatsch C, Le Beau MM, Slovak ML, Krieger O, Luebbert M, Maciejewski J, Magalhaes SMM, Miyazaki Y, Pfeilstöcker M, Sekeres MA, Sperr WR, Stauder R, Tauro S, Valent P, Vallespi T, van de Loosdrecht AA, Germing U, Haase D, Greenberg PL, Cazzola M. Validation of WHO classification-based Prognostic Scoring System (WPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International Working Group for Prognosis in Myelodysplasia (IWG-PM). Leukemia 2015; 29:1502-13. [PMID: 25721895 DOI: 10.1038/leu.2015.55] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 02/03/2023]
Abstract
A risk-adapted treatment strategy is mandatory for myelodysplastic syndromes (MDS). We refined the World Health Organization (WHO)-classification-based Prognostic Scoring System (WPSS) by determining the impact of the newer clinical and cytogenetic features, and we compared its prognostic power to that of the revised International Prognostic Scoring System (IPSS-R). A population of 5326 untreated MDS was considered. We analyzed single WPSS parameters and confirmed that the WHO classification and severe anemia provide important prognostic information in MDS. A strong correlation was found between the WPSS including the new cytogenetic risk stratification and WPSS adopting original criteria. We then compared WPSS with the IPSS-R prognostic system. A highly significant correlation was found between the WPSS and IPSS-R risk classifications. Discrepancies did occur among lower-risk patients in whom the number of dysplastic hematopoietic lineages as assessed by morphology did not reflect the severity of peripheral blood cytopenias and/or increased marrow blast count. Moreover, severe anemia has higher prognostic weight in the WPSS versus IPSS-R model. Overall, both systems well represent the prognostic risk of MDS patients defined by WHO morphologic criteria. This study provides relevant in formation for the implementation of risk-adapted strategies in MDS.
Collapse
Affiliation(s)
- M G Della Porta
- 1] Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy [2] Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - H Tuechler
- Hanusch Hospital, Boltzmann Institute for Leukemia Research, Vienna, Austria
| | - L Malcovati
- 1] Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy [2] Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - J Schanz
- Georg August Universität, Göttingen, Germany
| | - G Sanz
- Hospital Universitario La Fe, Valencia, Spain
| | - G Garcia-Manero
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - F Solé
- Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - J M Bennett
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - D Bowen
- St James's University Hospital, Leeds, UK
| | - P Fenaux
- Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP)/University Paris XIII, Bobigny, France
| | - F Dreyfus
- Hôpital Cochin, AP-HP University of Paris V, Paris, France
| | - H Kantarjian
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - A Kuendgen
- Heinrich-Heine University Hospital, Düsseldorf, Germany
| | - A Levis
- Fondazione Italiana Sindromi Mielodisplastiche c/o SS Antonio e Biagio Hospital, Alessandria, Italy
| | - J Cermak
- Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - C Fonatsch
- Medical University of Vienna, Vienna, Austria
| | - M M Le Beau
- University of Chicago Comprehensive Cancer Research Center, Chicago, IL, USA
| | - M L Slovak
- Quest Diagnostics Nichols Institute, Chantilly, VA, USA
| | - O Krieger
- Elisabethinen Hospital, Linz, Austria
| | - M Luebbert
- University of Freiburg Medical Center, Freiburg, Germany
| | | | | | - Y Miyazaki
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Pfeilstöcker
- Hanusch Hospital and L. Boltzmann Cluster Oncology, Vienna, Austria
| | | | - W R Sperr
- Medical University of Vienna, Vienna, Austria
| | - R Stauder
- Hanusch Hospital and L. Boltzmann Cluster Oncology, Vienna, Austria
| | - S Tauro
- University of Dundee, Dundee, Scotland, UK
| | - P Valent
- Medical University of Vienna, Vienna, Austria
| | - T Vallespi
- Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - U Germing
- Heinrich-Heine University Hospital, Düsseldorf, Germany
| | - D Haase
- Georg August Universität, Göttingen, Germany
| | - P L Greenberg
- Division of Hematology, Stanford University Cancer Center, Stanford, CA, USA
| | - M Cazzola
- 1] Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy [2] Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
225
|
Porwit A. Is There a Role for Flow Cytometry in the Evaluation of Patients With Myelodysplastic Syndromes? Curr Hematol Malig Rep 2015; 10:309-17. [DOI: 10.1007/s11899-015-0272-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
226
|
Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts and RARS with thrombocytosis. Am J Hematol 2015; 90:549-59. [PMID: 25899435 DOI: 10.1002/ajh.24038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Abstract
DISEASE OVERVIEW Ring sideroblasts (RS) are erythroid precursors with abnormal perinuclear mitochondrial iron accumulation. Two myeloid neoplasms defined by the presence of RS, include refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis (RARS-T). DIAGNOSIS RARS is a lower risk myelodysplastic syndrome (MDS) with dysplasia limited to the erythroid lineage, <5% bone marrow (BM) blasts and ≥15% BM RS. RARS-T is a provisional entity in the MDS/MPN (myeloproliferative neoplasm) overlap syndromes, with diagnostic features of RARS, along with a platelet count ≥450 × 10(9)/L and large atypical megakaryocytes similar to those observed in BCR-ABL1 negative MPN. Mutations and Karyotype: Mutations in the SF3B1 gene are seen in ≥80% of patients with RARS and RARS-T, and strongly correlate with the presence of BM RS; RARS-T patients have additional mutations such as, JAK2V617F (∼60%), MPL (<5%), and CALR (<5%). Cytogenetic abnormalities are uncommon in both RARS and RARS-T. RISK STRATIFICATION Most patients with RARS are stratified into lower risk groups by the International Prognostic Scoring System (IPSS) for MDS and the revised IPSS. Disease outcome in RARS-T is better than that of RARS, but worse than that of essential thrombocytosis. Both RARS and RARS-T have a low risk of leukemic transformation. TREATMENT Anemia and iron overload are complications in both diseases and are managed similar to lower risk MDS. Aspirin therapy is reasonable in RARS-T, especially in the presence of JAK2V617F, but the value of platelet-lowering drugs is uncertain. Case reports of RARS-T therapy with lenalidomide warrant additional studies.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
227
|
Della Porta MG. Prognostic models in myelodysplastic syndromes. Lancet Haematol 2015; 2:e229-e230. [PMID: 26688232 DOI: 10.1016/s2352-3026(15)00110-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Matteo Giovanni Della Porta
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy; Department of Internal Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
228
|
Pellagatti A, Roy S, Di Genua C, Burns A, McGraw K, Valletta S, Larrayoz MJ, Fernandez-Mercado M, Mason J, Killick S, Mecucci C, Calasanz MJ, List A, Schuh A, Boultwood J. Targeted resequencing analysis of 31 genes commonly mutated in myeloid disorders in serial samples from myelodysplastic syndrome patients showing disease progression. Leukemia 2015; 30:247-50. [PMID: 25991409 PMCID: PMC4705423 DOI: 10.1038/leu.2015.129] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- A Pellagatti
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - S Roy
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - C Di Genua
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Burns
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - K McGraw
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - S Valletta
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M J Larrayoz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - J Mason
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - S Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - C Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - M J Calasanz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - A List
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - A Schuh
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
229
|
SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 2015; 126:233-41. [PMID: 25957392 DOI: 10.1182/blood-2015-03-633537] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/05/2015] [Indexed: 12/24/2022] Open
Abstract
Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome (MDS) characterized by isolated erythroid dysplasia and 15% or more bone marrow ring sideroblasts. Ring sideroblasts are found also in other MDS subtypes, such as refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS). A high prevalence of somatic mutations of SF3B1 was reported in these conditions. To identify mutation patterns that affect disease phenotype and clinical outcome, we performed a comprehensive mutation analysis in 293 patients with myeloid neoplasm and 1% or more ring sideroblasts. SF3B1 mutations were detected in 129 of 159 cases (81%) of RARS or RCMD-RS. Among other patients with ring sideroblasts, lower prevalence of SF3B1 mutations and higher prevalence of mutations in other splicing factor genes were observed (P < .001). In multivariable analyses, patients with SF3B1 mutations showed significantly better overall survival (hazard ratio [HR], .37; P = .003) and lower cumulative incidence of disease progression (HR = 0.31; P = .018) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutation was retained in MDS without excess blasts, as well as in sideroblastic categories (RARS and RCMD-RS). Among SF3B1-mutated patients, coexisting mutations in DNA methylation genes were associated with multilineage dysplasia (P = .015) but had no effect on clinical outcome. TP53 mutations were frequently detected in patients without SF3B1 mutation, and were associated with poor outcome. Thus, SF3B1 mutation identifies a distinct MDS subtype that is unlikely to develop detrimental subclonal mutations and is characterized by indolent clinical course and favorable outcome.
Collapse
|
230
|
Importance of classical morphology in the diagnosis of myelodysplastic syndrome. Mediterr J Hematol Infect Dis 2015; 7:e2015035. [PMID: 25960863 PMCID: PMC4418392 DOI: 10.4084/mjhid.2015.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 01/16/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders characterized by dysplastic, ineffective, clonal and neoplastic hematopoiesis. MDS represent a complex hematological problem: differences in disease presentation, progression and outcome have necessitated the use of classification systems to improve diagnosis, prognostication, and treatment selection. However, since a single biological or genetic reliable diagnostic marker has not yet been discovered for MDS, quantitative and qualitative dysplastic morphological alterations of bone marrow precursors and peripheral blood cells are still fundamental for diagnostic classification. In this paper, World Health Organization (WHO) classification refinements and current minimal diagnostic criteria proposed by expert panels are highlighted, and related problematic issues are discussed. The recommendations should facilitate diagnostic and prognostic evaluations in MDS and selection of patients for new effective targeted therapies. Although, in the future, morphology should be supplemented with new molecular techniques, the morphological approach, at least for the moment, is still the cornerstone for the diagnosis and classification of these disorders.
Collapse
|
231
|
Rare cytogenetic abnormalities in myelodysplastic syndromes. Mediterr J Hematol Infect Dis 2015; 7:e2015034. [PMID: 25960862 PMCID: PMC4418404 DOI: 10.4084/mjhid.2015.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/20/2015] [Indexed: 02/03/2023] Open
Abstract
The karyotype represents one of the main cornerstones for the International Prognostic Scoring System (IPSS) and the revised IPSS-R (IPSS-R) that are most widely used for prognostication in patients with myelodysplastic syndromes (MDS). The most frequent cytogenetic abnormalities in MDS, i.e. del(5q), -7/del(7q), +8, complex karyotypes, or -Y have been extensively explored for their prognostic impact. The IPSS-R also considers some less frequent abnormalities such as del(11q), isochromosome 17, +19, or 3q abnormalities. However, more than 600 different cytogenetic categories had been identified in a previous MDS study. This review aims to focus interest on selected rare cytogenetic abnormalities in patients with MDS. Examples are numerical gains of the chromosomes 11 (indicating rapid progression), of chromosome 14 or 14q (prognostically intermediate to favorable), -X (in females, with an intermediate prognosis), or numerical abnormalities of chromosome 21. Structural abnormalities are also considered, e.g. del(13q) that is associated with bone marrow failure syndromes and favorable response to immunosuppressive therapy. These and other rare cytogenetic abnormalities should be integrated into existing prognostication systems such as the IPSS-R. However, due to the very low number of cases, this is clearly dependent on international collaboration. Hopefully, this article will help to inaugurate this process.
Collapse
|
232
|
Abstract
Myelodysplastic syndromes are a collection of clonal hematopoietic disorders with a wide range of clinical manifestations and eventual outcomes. Accurate prediction of a patient's prognosis is useful to define the risk posed by the disease and which treatment options are most appropriate. Several models have been created to help predict the prognosis for patients with myelodysplastic syndromes. The International Prognostic Scoring System (IPSS) has been the standard tool used to risk stratify MDS patients since its publication in 1997. Other models have since been created to improve upon the IPSS, including the recent Revised International Prognostic Scoring System. Most models include the presence or severity of peripheral blood cytopenias, the proportion of bone marrow blasts, and specific karyotype abnormalities. Other factors including age, performance status, co-morbidities, transfusion dependence, and molecular biomarkers can further refine the prediction of prognosis in some models. Novel, disease specific biomarkers with prognostic value in myelodysplastic syndromes including cell surface markers, gene expression profiles, and high resolution copy number analyses have been proposed but not yet adopted clinically. Somatic abnormalities in recurrently mutated genes are the most informative prognostic biomarkers not currently considered by clinical risk models. Mutations in specific genes have independent prognostic significance and, unlike cytogenetic abnormalities, are present in the majority of myelodysplastic syndrome cases. However, mutational information can be complex and there are challenges to its clinical implementation. Despite these limitations, DNA sequencing can refine the prediction of prognosis for myelodysplastic syndrome patients and has become increasingly available in the clinic where it will help improve the care of patients with myelodysplastic syndromes.
Collapse
Affiliation(s)
- Rafael Bejar
- Moores Cancer Center, Division of Hematology and Oncology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
233
|
Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 2015; 125:3618-26. [PMID: 25852055 DOI: 10.1182/blood-2015-01-620781] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/ myeloproliferative neoplasm whose diagnosis is currently based on the elevation of peripheral blood monocytes to >1 × 10(9)/L, measured for ≥3 months. Diagnosis can be ambiguous; for example, with prefibrotic myelofibrosis or reactive monocytosis. We set up a multiparameter flow cytometry assay to distinguish CD14(+)/CD16(-) classical from CD14(+)/CD16(+) intermediate and CD14(low)/CD16(+) nonclassical monocyte subsets in peripheral blood mononucleated cells and in total blood samples. Compared with healthy donors and patients with reactive monocytosis or another hematologic malignancy, CMML patients demonstrate a characteristic increase in the fraction of CD14(+)/CD16(-) cells (cutoff value, 94.0%). The associated specificity and sensitivity values were 95.1% and 90.6% in the learning cohort (175 samples) and 94.1% and 91.9% in the validation cohort (307 samples), respectively. The accumulation of classical monocytes, which demonstrate a distinct gene expression pattern, is independent of the mutational background. Importantly, this increase disappears in patients who respond to hypomethylating agents. We conclude that an increase in the fraction of classical monocytes to >94.0% of total monocytes is a highly sensitive and specific diagnostic marker that rapidly and accurately distinguishes CMML from confounding diagnoses.
Collapse
|
234
|
Katoh M. Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: a convergence of proteomics and epigenetics for translational medicine. Expert Rev Proteomics 2015; 12:317-28. [PMID: 25835095 DOI: 10.1586/14789450.2015.1033409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ASXL1, ASXL2 and ASXL3 are epigenetic scaffolds for BAP1, EZH2, NCOA1, nuclear receptors and WTIP. Here, functional proteomics of the ASXL family members are reviewed with emphasis on mutation spectra, the ASXM2 domain and the plant homeodomain (PHD) finger. Copy number gains of ASXL1 occur in chromosome 20q11.2 duplication syndrome and cervical cancer. Truncation mutations of ASXLs occur in autism, Bohring-Opitz and related syndromes, hematological malignancies and solid tumors, such as prostate cancer, breast cancer and high-grade glioma, which are gain- or loss-of-function mutations. The ASXM2 domain is a binding module for androgen receptor and estrogen receptor α, while the PHD finger is a ligand of WTIP LIM domains and a putative chromatin-binding module. Phylogenetic analyses of 139 human PHD fingers revealed that ASXL PHD fingers cluster with those of BPTF, DIDO, ING1, KDM5A (JARID1A), KMT2E (MLL5), PHF2, PHF8 and PHF23. The cell context-dependent epigenetic code of ASXLs should be deciphered to develop therapeutics for human diseases.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center - Japan, 5-1-1 Tsukiji Chuo Ward, Tokyo 104-0045, Japan
| |
Collapse
|
235
|
Klapper W, Kreipe H. [Diagnostic molecular pathology of lymphatic and myeloid neoplasms]. DER PATHOLOGE 2015; 36:164-70. [PMID: 25809654 DOI: 10.1007/s00292-015-0007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Molecular pathology has been an integral part of the diagnostics of tumors of the hematopoietic system substantially longer than for solid neoplasms. In contrast to solid tumors, the primary objective of molecular pathology in hematopoietic neoplasms is not the prediction of drug efficacy but the diagnosis itself by excluding reactive proliferation and by using molecular features for tumor classification. In the case of malignant lymphomas, the most commonly applied molecular tests are those for gene rearrangements for immunoglobulin heavy chains and T-cell receptors. However, this article puts the focus on new and diagnostically relevant assays in hematopathology. Among these are mutations of MYD88 codon 265 in lymphoplasmacytic lymphomas, B-raf V600E in hairy cell leukemia and Stat3 exon 21 in indolent T-cell lymphomas. In myeloproliferative neoplasms, MPL W515, calreticulin exon 9 and the BCR-ABL and JAK2 V617F junctions are the most frequently analyzed differentiation series. In myelodysplastic and myeloproliferative neoplasms, SRSF2, SETBP1 and CSF3R mutations provide important differential diagnostic information. Genes mutated in myelodysplastic syndromes (MDS) are particularly diverse but their analysis significantly improves the differential diagnostics between reactive conditions and MDS. The most frequent changes in MDS include mutations of TET2 and various genes encoding splicing factors.
Collapse
Affiliation(s)
- W Klapper
- Institut für Pathologie, Sektion Hämatopathologie und Lymphknotenregister, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Deutschland,
| | | |
Collapse
|
236
|
Gauthier J, Damaj G, Yakoub-Agha I. [The role of pre-transplant debulking treatment in patients undergoing allogeneic stem cell transplantation for high-risk myelodysplastic syndrome]. Bull Cancer 2015; 102:340-8. [PMID: 25799164 DOI: 10.1016/j.bulcan.2015.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 12/23/2022]
Abstract
Treatment of myelodysplastic syndromes (MDS) remains unsatisfactory. Variable success in the correction of blood cytopenias, reduction of the proportion of marrow myeloblasts, and normalization of cytogenetics has been achieved with a variety of treatment strategies, including the use of immunosuppressive drugs, differentiating agents, conventional chemotherapy, and hypomethylating agents (HMAs) However, in general, responses have not been complete and have been of limited duration; prolongation of survival, if achieved, on average has been in the range of months. Currently, allogeneic hematopoietic stem-cell transplantation (allo-SCT) remains the only approach with curative potential for patients with higher risk/advanced MDS. Yet, despite the beneficial effects of allo-SCT, post-transplant relapse is a major cause of failure. Debulking prior to transplant treatment in patients with MDS is a matter of debate. The achievement of complete remission (CR) before allo-SCT improves post-transplantation outcome, although it is not clear whether this reflects the selection of patients with more responsive disease or is related to a reduction in disease burden. Higher CR rates in patients with MDS are obtained with induction chemotherapy (ICT) than with hypomethylating agents (HMAs), although HMAs may be active in patients with complex karyotypes in whom ICT almost invariably fails. Furthermore, HMAs have a good toxicity profile compared with ICT and may therefore be considered especially in older patients and in patients with comorbidities. However, all interventions aimed at reducing disease burden before allo-SCT expose patients to the risk of complications, which may prevent them from undergoing transplantation. Therefore, up-front allo-SCT is an option, particularly for patients with life-threatening cytopenias. In the absence of prospective randomized trials, the main therapeutic approaches are discussed in this review.
Collapse
Affiliation(s)
- Jordan Gauthier
- CHRU de Lille, pôle spécialités médicales et gérontologie, service des maladies du sang, secteur allogreffe de cellules souches hématopoïétiques, 59037 Lille, France; Université de Lille, UFR médecine, 59000 Lille, France
| | - Gandhi Damaj
- CHU de Caen, service d'hématologie clinique, 14033 Caen, France
| | - Ibrahim Yakoub-Agha
- CHRU de Lille, pôle spécialités médicales et gérontologie, service des maladies du sang, secteur allogreffe de cellules souches hématopoïétiques, 59037 Lille, France; Université de Lille, UFR médecine, 59000 Lille, France; Lyric U995, 59000 Lille, France.
| |
Collapse
|
237
|
McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, Crawley C, Craig J, Scott MA, Hodkinson C, Baxter J, Rad R, Forsyth DR, Quail MA, Zeggini E, Ouwehand W, Varela I, Vassiliou GS. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015; 10:1239-45. [PMID: 25732814 PMCID: PMC4542313 DOI: 10.1016/j.celrep.2015.02.005] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/19/2015] [Accepted: 01/29/2015] [Indexed: 12/18/2022] Open
Abstract
Clonal hemopoiesis driven by leukemia-associated gene mutations can occur without evidence of a blood disorder. To investigate this phenomenon, we interrogated 15 mutation hot spots in blood DNA from 4,219 individuals using ultra-deep sequencing. Using only the hot spots studied, we identified clonal hemopoiesis in 0.8% of individuals under 60, rising to 19.5% of those ≥90 years, thus predicting that clonal hemopoiesis is much more prevalent than previously realized. DNMT3A-R882 mutations were most common and, although their prevalence increased with age, were found in individuals as young as 25 years. By contrast, mutations affecting spliceosome genes SF3B1 and SRSF2, closely associated with the myelodysplastic syndromes, were identified only in those aged >70 years, with several individuals harboring more than one such mutation. This indicates that spliceosome gene mutations drive clonal expansion under selection pressures particular to the aging hemopoietic system and explains the high incidence of clonal disorders associated with these mutations in advanced old age.
Collapse
Affiliation(s)
- Thomas McKerrell
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Naomi Park
- Sequencing Research Group, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Thaidy Moreno
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
| | - Carolyn S Grove
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Hannes Ponstingl
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Jonathan Stephens
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | | | - Charles Crawley
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Jenny Craig
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Mike A Scott
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Clare Hodkinson
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Blood and Stem Cell Biobank, Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Joanna Baxter
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Blood and Stem Cell Biobank, Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan R Forsyth
- Department of Medicine for the Elderly, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Michael A Quail
- Sequencing Research Group, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Willem Ouwehand
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK; Human Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
238
|
Harada H, Harada Y. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci 2015; 106:329-36. [PMID: 25611784 PMCID: PMC4409874 DOI: 10.1111/cas.12614] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are defined as stem cell disorders caused by various gene abnormalities. Recent analysis using next-generation sequencing has provided great advances in identifying relationships between gene mutations and clinical phenotypes of MDS. Gene mutations affecting RNA splicing machinery, DNA methylation, histone modifications, transcription factors, signal transduction proteins and components of the cohesion complex participate in the pathogenesis and progression of MDS. Mutations in RNA splicing and DNA methylation occur early and are considered “founding mutations”, whereas others that occur later are regarded as “subclonal mutations”. RUNX1 mutations are more likely to subclonal; however, they apparently play a pivotal role in familial MDS. These genetic findings may lead to future therapies for MDS.
Collapse
Affiliation(s)
- Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
239
|
Lee EJ, Zeidan AM. Genome sequencing in myelodysplastic syndromes: can molecular mutations predict benefit from hypomethylating agent therapy? Expert Rev Hematol 2015; 8:155-8. [PMID: 25697572 DOI: 10.1586/17474086.2015.1016905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evaluation of: Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 2014 Oct 23;124(17):2705-12. Patients with myelodysplastic syndromes (MDS) have clinically variable courses even within the same prognostic subgroups. Although hypomethylating agents (HMAs) have been shown to improve outcomes in patients with high-risk MDS, many patients do not derive benefit. There is an urgent clinical need to identify patients with low probability of benefiting from HMAs but no reliable clinical predictors or biomarkers have been discovered to date. Although some recurrent molecular mutations in MDS carry independent prognostic value, their ability to predict benefit from HMAs is not clear. Here, we discuss an important article in which sequencing from samples of 213 patients identified recurrent mutations associated with response to HMAs. Although an important step in the right direction, the clinical implications of these findings are far from optimal and identification of biomarkers that can reliably predict benefit from HMAs and other therapies in patients with MDS remains a top clinical and a research priority.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Section of Hematology, Department of Internal Medicine, Yale University, 333 Cedar Street, PO Box 208028, New Haven, CT, USA
| | | |
Collapse
|
240
|
Bardet V, Wagner-Ballon O, Guy J, Morvan C, Debord C, Trimoreau F, Benayoun E, Chapuis N, Freynet N, Rossi C, Mathis S, Gourin MP, Toma A, Béné MC, Feuillard J, Guérin E. Multicentric study underlining the interest of adding CD5, CD7 and CD56 expression assessment to the flow cytometric Ogata score in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Haematologica 2015; 100:472-8. [PMID: 25637056 DOI: 10.3324/haematol.2014.112755] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although numerous recent publications have demonstrated interest in multiparameter flow cytometry in the investigation of myelodysplastic disorders, it is perceived by many laboratory hematologists as difficult and expensive, requiring a high level of expertise. We report a multicentric open real-life study aimed at evaluating the added value of the technically simple flow cytometry score described by the Ogata group for the diagnosis of myelodysplastic syndromes. A total of 652 patients were recruited prospectively in four different centers: 346 myelodysplastic syndromes, 53 myelodysplastic/myeloproliferative neoplasms, and 253 controls. The Ogata score was assessed using CD45 and CD34 staining, with the addition of CD10 and CD19. Moreover, labeling of CD5, CD7 and CD56 for the evaluation of myeloid progenitors and monocytes was tested on a subset of 294 patients. On the whole series, the specificity of Ogata score reached 89%. Respective sensitivities were 54% for low-risk myelodysplastic syndromes, 68% and 84% for type 1 and type 2 refractory anemia with excess of blasts, and 72% for myelodysplastic/myeloproliferative neoplasms. CD5 expression was poorly informative. When adding CD56 or CD7 labeling to the Ogata score, sensitivity rose to 66% for low-risk myelodysplastic syndromes, to 89% for myelodysplastic/myeloproliferative neoplasms and to 97% for refractory anemia with excess of blasts. This large multicenter study confirms the feasibility of Ogata scoring in routine flow cytometry diagnosis but highlights its poor sensitivity in low-risk myelodysplastic syndromes. The addition of CD7 and CD56 in flow cytometry panels improves the sensitivity but more sophisticated panels would be more informative.
Collapse
Affiliation(s)
- Valérie Bardet
- Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Faculté de Médecine Paris Descartes, INSERM U1016, UMR 8104, Paris
| | - Orianne Wagner-Ballon
- Département d'Hématologie et d'Immunologie Biologiques, Hôpitaux Universitaires Henri Mondor, APHP, Faculté de Médecine UPEC, Créteil
| | - Julien Guy
- Service d'Hématologie Biologique, CHU de Dijon
| | - Céline Morvan
- Service d'Hématologie Biologique, Hôpital Dupuytren, CHU de Limoges, Faculté de Médecine et UMR CNRS 7276, Limoges
| | - Camille Debord
- Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Faculté de Médecine Paris Descartes, INSERM U1016, UMR 8104, Paris
| | - Franck Trimoreau
- Service d'Hématologie Biologique, Hôpital Dupuytren, CHU de Limoges, Faculté de Médecine et UMR CNRS 7276, Limoges
| | - Emmanuel Benayoun
- Département d'Hématologie et d'Immunologie Biologiques, Hôpitaux Universitaires Henri Mondor, APHP, Faculté de Médecine UPEC, Créteil
| | - Nicolas Chapuis
- Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Faculté de Médecine Paris Descartes, INSERM U1016, UMR 8104, Paris
| | - Nicolas Freynet
- Département d'Hématologie et d'Immunologie Biologiques, Hôpitaux Universitaires Henri Mondor, APHP, Faculté de Médecine UPEC, Créteil
| | | | - Stéphanie Mathis
- Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Faculté de Médecine Paris Descartes, INSERM U1016, UMR 8104, Paris
| | | | - Andréa Toma
- Service d'Hématologie Clinique, Hôpitaux Universitaires Henri Mondor, APHP, Créteil
| | - Marie C Béné
- Service d'Hématologie Biologique, CHU de Nantes, France
| | - Jean Feuillard
- Service d'Hématologie Biologique, Hôpital Dupuytren, CHU de Limoges, Faculté de Médecine et UMR CNRS 7276, Limoges
| | - Estelle Guérin
- Service d'Hématologie Biologique, Hôpital Dupuytren, CHU de Limoges, Faculté de Médecine et UMR CNRS 7276, Limoges
| | | | | |
Collapse
|
241
|
Cieply B, Carstens RP. Functional roles of alternative splicing factors in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:311-26. [PMID: 25630614 PMCID: PMC4671264 DOI: 10.1002/wrna.1276] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. WIREs RNA 2015, 6:311–326. doi: 10.1002/wrna.1276 For further resources related to this article, please visit the http://wires.wiley.com/remdoi.cgi?doi=10.1002/wrna.1276WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Benjamin Cieply
- Departments of Medicine (Renal) and Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
242
|
Wang P, Ma D, Wang J, Fang Q, Gao R, Wu W, Lu T, Cao L. Silencing HO-1 sensitizes SKM-1 cells to apoptosis induced by low concentration 5-azacytidine through enhancing p16 demethylation. Int J Oncol 2015; 46:1317-27. [PMID: 25585641 DOI: 10.3892/ijo.2015.2835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Heme oxygenase-1 was reported previously as a resistance target on acute myelocytic leukemia (AML). We found that HO-1 was resistant to 5-azacytidine (AZA) treatment of myelodysplastic syndrome (MDS), and explored further the relative mechanisms. Patient bone marrow mononuclear cells (n=48) diagnosed as different levels of MDS were collected. Cell growth was evaluated by MTT assay; cell cycle and apoptosis were detected by flow cytometry; mRNA expression was assessed by real-time PCR, protein expression was analyzed through western blotting. Methylation was assessed by MSP. The survival time, and weight of mice were recorded. HO-1 overexpression was observed in SKM-1 cells after AZA treatment comparing to other cell lines. The HO-1 expression in MDS patients with high-risk was higher than in low-risk patients. After HO-1 was silenced by lentivirus-mediated siRNA, the proliferation of SKM-1 cells was effectively inhibited by low concentration AZA, and the cell cycle was arrested in the G0/G1 phase. Upregulation of p16 and changing of p16-relative cell cycle protein was observed after silencing HO-1 in AZA treated SKM-1 cells. In addition, DNMT1 was downregulated following the decrease of HO-1 expression. In vivo, silencing HO-1 inhibited SKM-1 cell growth induced by AZA in a NOD/SCID mouse model. Silencing HO-1 sensitized SKM-1 cells toward AZA, which may be attributed to the influence of HO-1 on AZA-induced p16 demethylation. HO-1 may be one of the targets that enhance the therapeutic effects of AZA on MDS malignant transformation inspiring new treatment methods for high-risk and very high-risk MDS patients in clinical practice.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guiyang Medical University, Guiyang 550014, P.R. China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Weibing Wu
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| | - Tangsheng Lu
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, P.R. China
| | - Lu Cao
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
243
|
Abstract
Peripheral blood cytopenia in children can be due to a variety of acquired or inherited diseases. Genetic disorders affecting a single hematopoietic lineage are frequently characterized by typical bone marrow findings, such as lack of progenitors or maturation arrest in congenital neutropenia or a lack of megakaryocytes in congenital amegakaryocytic thrombocytopenia, whereas antibody-mediated diseases such as autoimmune neutropenia are associated with a rather unremarkable bone marrow morphology. By contrast, pancytopenia is frequently associated with a hypocellular bone marrow, and the differential diagnosis includes acquired aplastic anemia, myelodysplastic syndrome, inherited bone marrow failure syndromes such as Fanconi anemia and dyskeratosis congenita, and a variety of immunological disorders including hemophagocytic lymphohistiocytosis. Thorough bone marrow analysis is of special importance for the diagnostic work-up of most patients. Cellularity, cellular composition, and dysplastic signs are the cornerstones of the differential diagnosis. Pancytopenia in the presence of a normo- or hypercellular marrow with dysplastic changes may indicate myelodysplastic syndrome. More challenging for the hematologist is the evaluation of the hypocellular bone marrow. Although aplastic anemia and hypocellular refractory cytopenia of childhood (RCC) can reliably be differentiated on a morphological level, the overlapping pathophysiology remains a significant challenge for the choice of the therapeutic strategy. Furthermore, inherited bone marrow failure syndromes are usually associated with the morphological picture of RCC, and the recognition of these entities is essential as they often present a multisystem disease requiring different diagnostic and therapeutic approaches. This paper gives an overview over the different disease entities presenting with (pan)cytopenia, their pathophysiology, characteristic bone marrow findings, and therapeutic approaches.
Collapse
Affiliation(s)
- Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center of Freiburg , Freiburg , Germany ; Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg , Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center of Freiburg , Freiburg , Germany
| |
Collapse
|
244
|
DeZern AE. Nine years without a new FDA-approved therapy for MDS: how can we break through the impasse? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:308-316. [PMID: 26637738 DOI: 10.1182/asheducation-2015.1.308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The myelodysplastic syndromes (MDSs) are a heterogeneous collection of clonal hematopoietic malignancies that compromise a large subgroup of the myeloid neoplasms and collectively are the most common acquired adult bone marrow failure syndromes. Currently, only 3 agents are approved for the treatment of MDS by the US Food and Drug Administration (FDA): azacitidine, decitabine, and lenalidomide. The latter drug, approved in 2006, is the most recent agent approved by the FDA for MDS and there has been mediocre success with novel agents for the past 9 years. The heterogeneity of MDS as a disease group is likely to be a strong contributor to this slow progress but recent developments in molecular characterization of MDS are improving diagnostic accuracy, providing insights into pathogenesis and refining our prognostic ability in the field. With the advent of these developments, appropriately chosen therapeutics or even targeted agents may be able to improve patient outcomes in the future.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| |
Collapse
|
245
|
Zhang L, Padron E, Lancet J. The molecular basis and clinical significance of genetic mutations identified in myelodysplastic syndromes. Leuk Res 2015; 39:6-17. [DOI: 10.1016/j.leukres.2014.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/25/2014] [Indexed: 01/07/2023]
|
246
|
Affiliation(s)
- Janis L Abkowitz
- From the Department of Medicine, Division of Hematology, University of Washington, Seattle
| |
Collapse
|
247
|
Xu F, He Q, Li X, Chang CK, Wu LY, Zhang Z, Liu L, Shi WH, Zhu Y, Zhao YS, Gu SC, Fei CM, Guo J, Wu D, Zhou L. Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome. Sci Rep 2014; 4:7310. [PMID: 25472472 PMCID: PMC4255183 DOI: 10.1038/srep07310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Rigosertib has demonstrated therapeutic activity for patients with high-risk myelodysplastic syndrome (MDS) in clinical trials. However, the role of rigosertib in MDS has not been thoroughly characterized. In this study, we found out that rigosertib induced apoptosis, blocked the cell cycle at the G2/M phase and subsequently inhibited the proliferation of CD34+ cells from MDS, while it minimally affected the normal CD34+ cells. Further studies showed that rigosertib acted via the activation of the P53 signaling pathway. Bioinformatics analysis based on gene expression profile and flow cytometry analysis revealed the abnormal activation of the Akt-PI3K, Jak-STAT and Wnt pathways in high-grade MDS, while the p38 MAPK, SAPK/JNK and P53 pathways were abnormally activated in low-grade MDS. Rigosertib could markedly inhibit the activation of the Akt-PI3K and Wnt pathways, whereas it activated the SAPK/JNK and P53 pathways in high-grade MDS. A receptor tyrosine kinase phosphorylation array demonstrated that rigosertib could increase the activation of RET and PDGFR-β while reducing the activation of Tie2 and VEGFR2 in MDS cells. Taken together, these data indicate that rigosertib is a selective and promising anti-tumor agent that could ameliorate multiple dysregulated signaling transduction pathways in high-grade MDS.
Collapse
Affiliation(s)
- Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Li Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Wen-Hui Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Yang Zhu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Shu-Cheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Liyu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| |
Collapse
|
248
|
Jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview. Adv Biol Regul 2014; 58:28-37. [PMID: 25499150 DOI: 10.1016/j.jbior.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/24/2022]
Abstract
Myelodysplastic syndromes (MDS) are a highly heterogenous group of hematopoietic tumors, mainly due to variable clinical features and diverse set of cytogenetic, molecular genetic and epigenetic lesions. The major clinical features of MDS are ineffective hematopoiesis, peripheral cytopenias, and an increased risk of transformation to acute myeloid leukemias, which in turn is most likely determined by specific genetic abnormalities and other presenting hematologic features. The risk of developing MDS is relatively higher in some genetic syndromes such as Fanconi anemia and receipt of chemotherapy and radiation treatment. In recent years a significant progress has occurred and a vast literatures has become available including the spectrum of cytogenetic abnormalities, gene mutations relating to RNA splicing machinery, epigenetic regulation of gene expression and signaling pathways associated with MDS pathogenesis, which have provided opportunities to understand the molecular mechanisms as well as employ targeted therapeutic approaches to treat MDS. The cytogenetic abnormalities detected in MDS varies from a single abnormality to complex karyotype not easily amenable to conventional cytogenetic analysis. In such cases, array based high resolution genomic analysis detected abnormalities, which are diagnostic as well as prognostic. The most common driver gene mutations detected in patients with MDS include RNA splicing (SF3B1,SRSF2,U2F1,ZRSR2), DNA methylation (TET2,DNMT3A,IDH1/IDH2), chromatin modification (ASXL1,EZH2), transcription regulation (RUNX1,BCOR) and DNA repair control p53. A small subset of MDS arise due to deregulation of RAS pathway, mainly due to NRAS/KRAS/NF1 mutations. Identification of these mutations and pathways have provided opportunities for oncologists to target these patients with specific therapies. Several drugs which either target the spliceosome, oncogenic RAS signaling, or hypomethylating agents have been employed to successfully treat MDS patients.
Collapse
Affiliation(s)
- Suresh C Jhanwar
- Departments of Pathology and Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
249
|
Abstract
Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.
Collapse
|
250
|
Babushok DV, Bessler M. Genetic predisposition syndromes: when should they be considered in the work-up of MDS? Best Pract Res Clin Haematol 2014; 28:55-68. [PMID: 25659730 DOI: 10.1016/j.beha.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/04/2014] [Indexed: 01/04/2023]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by cytopenias, ineffective hematopoiesis, myelodysplasia, and an increased risk of acute myeloid leukemia (AML). While sporadic MDS is primarily a disease of the elderly, MDS in children and young and middle-aged adults is frequently associated with underlying genetic predisposition syndromes. In addition to the classic hereditary bone marrow failure syndromes (BMFS) such as Fanconi Anemia and Dyskeratosis Congenita, in recent years there has been an increased awareness of non-syndromic familial MDS/AML predisposition syndromes such as those caused by mutations in GATA2, RUNX1, CEBPA, and SRP72 genes. Here, we will discuss the importance of recognizing an underlying genetic predisposition syndrome a patient with MDS, will review clinical scenarios when genetic predisposition should be considered, and will provide a practical overview of the common BMFS and familial MDS/AML syndromes which may be encountered in adult patients with MDS.
Collapse
Affiliation(s)
- Daria V Babushok
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Monica Bessler
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|