201
|
Ke ZP, Xu YJ, Wang ZS, Sun J. RNA sequencing profiling reveals key mRNAs and long noncoding RNAs in atrial fibrillation. J Cell Biochem 2020; 121:3752-3763. [PMID: 31680326 DOI: 10.1002/jcb.29504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of RNA species that could participate in some critical pathways and disease pathogenesis. However, the underlying molecular mechanism of lncRNAs in atrial fibrillation (AF) is still not fully understood. In the present study, we analyzed RNA-seq data of paired left and right atrial appendages from five patients with AF and other five patients without AF. Based on the gene expression profiles of 20 samples, we found that a majority of genes were aberrantly expressed in both left and right atrial appendages of patients with AF. Similarly, the dysregulated pathways in the left and right atrial appendages of patients with AF also bore a close resemblance. Moreover, we predicted regulatory lncRNAs that regulated the expression of adjacent protein-coding genes (PCGs) or interacted with proteins. We identified that NPPA and its antisense RNA NPPA-AS1 may participate in the pathogenesis of AF by regulating the muscle contraction. We also identified that RP11 - 99E15.2 and RP3 - 523K23.2 could interact with proteins ITGB3 and HSF2, respectively. RP11 - 99E15.2 and RP3 - 523K23.2 may participate in the pathogenesis of AF via regulating the extracellular matrix binding and the transcription of HSF2 target genes, respectively. The close association of the lncRNA-interacting proteins with AF further demonstrated that these two lncRNAs were also associated with AF. In conclusion, we have identified key regulatory lncRNAs implicated in AF, which not only improves our understanding of the lncRNA-related molecular mechanism underlying AF but also provides computationally predicted regulatory lncRNAs for AF researchers.
Collapse
Affiliation(s)
- Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhang-Sheng Wang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
202
|
Zhao K, Wang M, Kang H, Wu A. A prognostic five long-noncoding RNA signature for patients with rectal cancer. J Cell Biochem 2020; 121:3854-3860. [PMID: 31709598 DOI: 10.1002/jcb.29549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/24/2019] [Indexed: 01/24/2023]
Abstract
This study aimed to identify prognostic long noncoding RNAs (lncRNAs) signature for predicting the prognosis of patients with rectal cancer. LncRNA-sequencing data and clinicopathological data of patients with rectal cancer were retrieved from The Cancer Genome Atlas database. Univariate and multivariate Cox proportional hazards regression analysis, the least absolute shrinkage, and selection operator analysis and the Kaplan-Meier curve method were employed to identify prognostic lncRNAs and construct multi-lncRNA signature. Finally, five lncRNAs (AC079789.1, AC106900.2, AL121987.1, AP004609.1, and LINC02163) were identified to construct a five-lncRNA signature. According to the five-lncRNA signature, patients with rectal cancer were divided into a high-risk group and low-risk group. Patients with rectal cancer had significantly poorer overall survival in the high-risk group than in the low-risk group. We used a time-dependent receiver operating characteristic curve to assess the power of the five-lncRNA signature by calculating the area under the curve (AUC). The AUCs for predicting 3-year survival and 5-year survival were 0.742 and 0.935, respectively, which indicated a good performance of the five-lncRNA signature. The five-lncRNA signature was independently associated with the prognosis of patients with rectal cancer through using univariate and multivariate Cox regression analysis. The biological function of the five lncRNAs was enriched in some cancer-related biological processes and pathways by performing functional enrichment analysis of their correlated protein-coding genes. In conclusion, we developed a five-lncRNA signature as a potential indicator for rectal cancer.
Collapse
Affiliation(s)
- Kankan Zhao
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Houlong Kang
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
203
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
204
|
Zhang S, You L, Xu Q, Ou J, Wu D, Yuan X, Liu Z, Hong Q, Tong M, Yang L, Chi X. Distinct long non-coding RNA and mRNA expression profiles in the hippocampus of an attention deficit hyperactivity disorder model in spontaneously hypertensive rats and control wistar Kyoto rats. Brain Res Bull 2020; 161:177-196. [DOI: 10.1016/j.brainresbull.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
205
|
Zhang M, Wang G, Zhu Y, Wu D. Characterization of BRCA1/2-Directed ceRNA Network Identifies a Novel Three-lncRNA Signature to Predict Prognosis and Chemo-Response in Ovarian Cancer Patients With Wild-Type BRCA1/2. Front Cell Dev Biol 2020; 8:680. [PMID: 32850807 PMCID: PMC7403448 DOI: 10.3389/fcell.2020.00680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to interact with BRCA1/2 to regulate homologous recombination (HR) by diverse mechanisms in ovarian cancers (OvCa). However, genome-wide screening of BRCA1/2-related lncRNAs and their clinical significance is still unexplored. In this study, we constructed a global BRCA1/2-directed lncRNA-associated ceRNA network by integrating paired lncRNA expression profiles, miRNA expression profiles, and BRCA1/2 expression profiles in BRCA1/2 wild-type patients and identified 111 BRCA1/2-related lncRNAs. Using the stepwise regression and Cox regression analysis, we developed a BRCA1/2-directed lncRNA signature (BRCALncSig), composing of three lncRNAs (LINC01619, DLX6-AS1, and AC004943.2) from the list of 111 BRCA1/2-related lncRNAs, which was an independent prognostic factor and was able to classify the patients into high- and low-risk groups with significantly different survival in the training dataset (HR = 2.73, 95 CI 1.65–4.51, p < 0.001). The prognostic performance of the BRCALncSig was further validated in the testing dataset (HR = 1.9, 95 CI 1.21–2.99, p = 0.005) and entire TCGA dataset (HR = 2.17, 95 CI 1.56–3.01, p < 0.001). Furthermore, the BRCALncSig is associated with chemo-response and was also capable of discriminating nonequivalent outcomes for patients achieving complete response (CR) (log-rank p = 0.003). Functional analyses suggested that mRNAs co-expressed with the BRCALncSig were enriched in cancer-related or cell proliferation-related biological processes and pathways. In summary, our study highlighted the clinical implication of BRCA1/2-directed lncRNAs in the prognosis and treatment response of BRCA1/2 wild-type patients.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyou Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
206
|
Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BA, Engelmann D, Brenmoehl J, Söhnchen C, Murr N, Alpers M, Singh KP, Wolkenhauer O, Heckl D, Spitschak A, Pützer BM. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Am J Cancer Res 2020; 10:9620-9643. [PMID: 32863950 PMCID: PMC7449907 DOI: 10.7150/thno.44176] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral components of E2F1-regulated gene regulatory networks (GRNs), but their implication in advanced or treatment-refractory malignancy is unknown. Methods: We combined high-throughput transcriptomic approaches with bioinformatics and structure modeling to search for lncRNAs that participate in E2F1-activated prometastatic GRNs and their phenotypic targets in the highly-relevant case of E2F1-driven aggressive bladder cancer (BC). RNA immunoprecipitation was performed to verify RNA-protein interactions. Functional analyses including qRT-PCR, immunoblotting, luciferase assays and measurement of extracellular fluxes were conducted to validate expression and target gene regulation. Results: We identified E2F1-responsive lncRNA-SLC16A1-AS1 and its associated neighboring protein-coding gene, SLC16A1/MCT1, which both promote cancer invasiveness. Mechanistically, upon E2F1-mediated co-transactivation of the gene pair, SLC16A1-AS1 associates with E2F1 in a structure-dependent manner and forms an RNA-protein complex that enhances SLC16A1/MCT1 expression through binding to a composite SLC16A1-AS1:E2F1-responsive promoter element. Moreover, SLC16A1-AS1 increases aerobic glycolysis and mitochondrial respiration and fuels ATP production by fatty acid β-oxidation. These metabolic changes are accompanied by alterations in the expression of the SLC16A1-AS1:E2F1-responsive gene PPARA, a key mediator of fatty acid β-oxidation. Conclusions: Our results unveil a new gene regulatory program by which E2F1-induced lncRNA-SLC16A1-AS1 forms a complex with its transcription factor that promotes cancer metabolic reprogramming towards the acquisition of a hybrid oxidative phosphorylation/glycolysis cell phenotype favoring BC invasiveness.
Collapse
|
207
|
LncRNA DLG2-AS1 as a Novel Biomarker in Lung Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12082080. [PMID: 32731343 PMCID: PMC7463504 DOI: 10.3390/cancers12082080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous class of non-coding RNAs whose biological roles are still poorly understood. LncRNAs serve as gene expression regulators, frequently interacting with epigenetic factors to shape the outcomes of crucial biological processes, and playing roles in different pathologies including cancer. Over the last years, growing scientific evidence supports the key role of some lncRNAs in tumor development and proposes them as valuable biomarkers for the clinic. In this study, we aimed to characterize lncRNAs whose expression is altered in tumor samples from patients with lung adenocarcinoma (LUAD) compared to adjacent normal tissue samples. On an RT-qPCR survey of 90 cancer-related lncRNAs, we found one lncRNA, DLG2-AS1, which was consistently downregulated in 70 LUAD patients. To gain insight into its biological function, DLG2-AS1 was cloned and successfully re-expressed in LUAD cancer cell lines. We determined that DLG2-AS1 is not a cis-regulatory element of its overlapping gene DLG2, as their transcription levels were not correlated, nor did DLG2-AS1 restoration modify the expression of DLG2 protein. Furthermore, after generating a receiver operating curve (ROC) and calculating the area under curve (AUC), we found that DLG2-AS1 expression showed high sensitivity and specificity (AUC = 0.726) for the classification of LUAD and normal samples, determining its value as a potential lung cancer biomarker.
Collapse
|
208
|
Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell Reprogramming With CRISPR/Cas9 Based Transcriptional Regulation Systems. Front Bioeng Biotechnol 2020; 8:882. [PMID: 32850737 PMCID: PMC7399070 DOI: 10.3389/fbioe.2020.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The speed of reprogramming technologies evolution is rising dramatically in modern science. Both the scientific community and health workers depend on such developments due to the lack of safe autogenic cells and tissues for regenerative medicine, genome editing tools and reliable screening techniques. To perform experiments efficiently and to propel the fundamental science it is important to keep up with novel modifications and techniques that are being discovered almost weekly. One of them is CRISPR/Cas9 based genome and transcriptome editing. The aim of this article is to summarize currently existing CRISPR/Cas9 applications for cell reprogramming, mainly, to compare them with other non-CRISPR approaches and to highlight future perspectives and opportunities.
Collapse
Affiliation(s)
- Ksenia M Shakirova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktoriia Y Ovchinnikova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
209
|
Circulating Tumour DNAs and Non-Coding RNAs as Liquid Biopsies for the Management of Colorectal Cancer Patients. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNAs and non-coding RNAs present in body fluids have been under investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years. These so-called liquid biopsies offer the opportunity to obtain information about the molecular make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in capturing the complexity of tumour heterogeneity within the primary cancer and among different metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to monitor cancer relapse of response to therapy with greater sensitivity compared with the currently available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens. This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic, prognostic, and predictive biomarkers in the context of colorectal cancer.
Collapse
|
210
|
Ge BH, Li GC. Long non-coding RNA SNHG17 promotes proliferation, migration and invasion of glioma cells by regulating the miR-23b-3p/ZHX1 axis. J Gene Med 2020; 22:e3247. [PMID: 32602607 DOI: 10.1002/jgm.3247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) is a carcinogenic lncRNA in diverse cancers. The expression pattern and mechanisms of SNHG17 in glioma still await verification. METHODS Paired glioma samples were enrolled. SNHG17, miR-23b-3p, and zinc-fingers and homeoboxes 1 (ZHX1) mRNA expression were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). SNHG17 short hairpin RNA (shRNA) and miR-23b-3p mimics were transfected into LN229 and U251 cell lines to repress SNHG17 and up-regulate miR-23b-3p expression, respectively. Proliferation, migration and invasion of LN229 and U251 cells were probed by a cell counting kit-8 assay and a Transwell assay. Bioinformatics prediction, dual-luciferase reporter assay, RNA immunoprecipitation assay, qRT-PCR and western blotting were applied to determine the regulatory relationships among SNHG17, miR-23b-3p and ZHX1. RESULTS SNHG17 expression was markedly raised in glioma tissues, which was positively correlated with ZHX1 expression and negatively associated with the expression of miR-23b-3p. After transfection of SNHG17 shRNAs into glioma cells, the proliferation, migration and invasion of cancer cells was markedly restrained. miR-23b-3p mimics the function of SHNG17 knockdown. Furthermore, miR-23b-3p was shown to be negatively modulated by SNHG17, and ZHX1 was identified as a target of miR-23b-3p. CONCLUSIONS SNHG17 is a "competing endogenous RNA" with respect to modulating ZHX1 expression by adsorbing miR-23b-3p and thereby promoting glioma progression.
Collapse
Affiliation(s)
- Bei-Hai Ge
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Guo-Cheng Li
- Department of Neurosurgery, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
211
|
LncRNA SNHG15 regulates EGFR-TKI acquired resistance in lung adenocarcinoma through sponging miR-451 to upregulate MDR-1. Cell Death Dis 2020; 11:525. [PMID: 32655137 PMCID: PMC7354989 DOI: 10.1038/s41419-020-2683-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main component of non-small-cell lung cancer (NSCLC) and causes a great health concern globally. The top priority of LUAD treatment is to deal with gefitinib resistance. Long non-coding RNAs are certified to modify gefitinib resistance in the course of tumor aggravation. The study focuses on addressing the function of small nucleolar RNA host gene 15 (SNHG15) on modifying gefitinib resistance in LUAD. Previously, NOTCH pathway is implicated in LUAD chemo-resistance. SNHG15 level was boosted following the depletion of NOTCH-1 in A549/GR and H1975/GR cells. Functional studies indicated that SNHG15 and multidrug resistance protein 1 (MDR-1) were overexpressed and possess tumor-promoting functions in gefitinib-resistant LUAD cells while miR-451 was downregulated and possess tumor-suppressive behaviors in gefitinib-resistant LUAD cells. Mechanically, the SNHG15 was cytoplasmically distributed in GR LUAD cells. In addition, SNHG15 released MDR-1 from the suppression of miR-451, leading to MDR-1 promotion. In addition, the elevation of SNHG15 could be attributed to ZEB1. Rescue assays highlighted that downstream molecules MDR-1 and miR-451 could reverse the effects of SNHG15 downregulation on gefitinib-resistant LUAD cells. SNHG15 could alter chemo-resistance of LUAD cells to Gefitinib via regulating miR-451/MDR-1, which could be inspiring findings for the advancement of chemo-therapies for LUAD.
Collapse
|
212
|
Sun Y, Hao P, Lv X, Tian J, Wang Y, Zhang X, Xu X, Han Z, Wu T. A long non-coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of SAUR32 and contributes to the Fe-deficiency response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:53-67. [PMID: 31991023 DOI: 10.1111/tpj.14706] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential plant nutrient and its deficiency typically limits plant growth. Long non-coding (lnc) RNAs are involved in adaptive responses to nutrient stress; however, it is not known whether they function in the regulation of the canonical Fe-deficiency response. The expression of Malus domestica (apple) lncRNA MSTRG.85814 is induced by Fe deficiency, as identified by high-throughput strand-specific RNA-seq analysis of an apple homograft system. MSTRG.85814 has a complex structure, with 13 predicted RNA sequence variants, four of which are upregulated in the roots of plants experiencing Fe deficiency. We found that one MSTRG.85814 splice variant (MSTRG.85814.11) positively modulated its cis target mRNA derived from the small auxin upregulated gene SAUR32. This in turn promoted the expression of SAUR32 and caused an increase in the expression of a plasma membrane proton ATPase, AHA10. Using a pH imaging technique, a significant decrease in the apoplastic pH was observed to occur in the root tips of MSTRG.85814.11 or SAUR32-overexpressing apple plants. Thus MSTRG.85814.11 was shown to positively promote SAUR32 expression, which then activated proton extrusion involved in the Fe-deficiency response. These results reveal a mechanism by which lncRNA promotes environmental Fe-deficiency stress adaption.
Collapse
Affiliation(s)
- Yaqiang Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Pengbo Hao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinmin Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
213
|
Li M, Cao A, Wang R, Li Z, Li S, Wang J. Genome-wide identification and integrated analysis of lncRNAs in rice backcross introgression lines (BC 2F 12). BMC PLANT BIOLOGY 2020; 20:300. [PMID: 32600330 PMCID: PMC7325253 DOI: 10.1186/s12870-020-02508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distant hybridization is an important way to create interspecific genetic variation and breed new varieties in rice. A lot of backcross introgression lines (BILs) had been constructed for the scientific issues in rice. However, studies on the critical regulatory factor lncRNA in cultivated rice, wild rice and their BIL progenies were poorly reported. RESULTS Here, high-throughput RNA sequencing technology was used to explore the functional characteristics and differences of lncRNAs in O. sativa, O. longistaminata and their three BC2F12 progenies. A total of 1254 lncRNAs were screened out, and the number of differentially expressed lncRNAs between progenies and O. sativa were significantly less than that between progenies and O. longistaminata. Some lncRNAs regulated more than one mRNA, and 89.5% of lncRNAs regulated the expression of target genes through cis-acting. A total of 78 lncRNAs and 271 mRNAs were targeted by 280 miRNAs, and 22 lncRNAs were predicted to be the precursor of 20 microRNAs. Some miRNAs were found to target their own potential precursor lncRNAs. Over 50% of lncRNAs showed parental expression level dominance (ELD) in all three progenies, and most lncRNAs showed ELD-O. sativa rather than ELD-O. longistaminata. Further analysis showed that lncRNAs might regulate the expression of plant hormone-related genes and the adaptability of O. sativa, O. longistaminata and their progenies. CONCLUSIONS Taken together, the above results provided valuable clues for elucidating the functional features and expression differences of lncRNAs between O. sativa, O. longistaminata and their BIL progenies, and expanded our understanding about the biological functions of lncRNAs in rice.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
214
|
Chu Y, Liu Z, Liu J, Yu L, Zhang D, Pei F. Characterization of lncRNA-Perturbed TLR-Signaling Network Identifies Novel lncRNA Prognostic Biomarkers in Colorectal Cancer. Front Cell Dev Biol 2020; 8:503. [PMID: 32626715 PMCID: PMC7314994 DOI: 10.3389/fcell.2020.00503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has suggested that long non-coding RNAs (lncRNAs) are critical regulators in the Toll-like receptors (TLR)-signaling network to modulate colorectal cancer (CRC) development and progression. However, the mechanism and clinical significance for lncRNAs regulating TLR signaling pathways in CRC remained largely unknown. In this study, we performed an integrative network analysis of transcriptomics by focusing on a lncRNA-perturbed TLR-signaling network, identifying 280 lncRNAs and 122 mRNAs. We found a profound phenomenon that abnormal expression of some lncRNAs can perturb the TLR-signaling network to contribute to CRC development and progression. Furthermore, we identified a novel TLR-related prognostic gene signature (TLRLncSig) composed of three lncRNAs (MCHR2, AC011472.4, and AC063944.1), and one mRNA (CDKN2B). Utilizing TLRLncSig could classify CRC patients of training set into two groups with significantly different overall survival. The prognostic value of the TLRLncSig was further validated in the other two independent CRC datasets with different platforms. Results of multivariate and stratification analysis indicated that the TLRLncSig is an independent prognostic factor, and our study underscores the clinical significance of TLR-related lncRNAs in CRC development and progression.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Yu
- Department of Colorectal Tumor Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatary Diseases, Texas A&M University, Houston, TX, United States
| | - Fenghua Pei
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
215
|
Chen X, Wang J, Nie Y, Chu M. The long noncoding RNA NR_045363 involves cardiomyocyte apoptosis and cardiac repair via p53 signal pathway. Cell Biol Int 2020; 44:1957-1965. [PMID: 32374467 DOI: 10.1002/cbin.11374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Xianda Chen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing China
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhou China
| | - Jue Wang
- Department of Cardiac SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing China
| | - Maoping Chu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational MedicineWenzhou Medical UniversityWenzhou China
| |
Collapse
|
216
|
Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35:681-693. [PMID: 32185592 DOI: 10.1007/s11011-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs that have more than 200 nucleotides. LncRNAs play an important role in the regulation of protein-coding genes at the transcriptional and post-transcriptional levels. They are found in most organs, with a high prevalence in the central nervous system. Accumulating data suggests that lncRNAs are involved in various neurodegenerative disorders, including the onset and progression of Alzheimer's disease (AD). Recent insights suggest lncRNAs, such as BACE1-AS, 51A, 17A, NDM29 and AS-UCHL1, are dysregulated in AD tissues. Furthermore, there are ongoing efforts to explore the clinical usability of lncRNAs as biomarkers in the disease. In this review, we explore the mechanisms by which aberrant expressions of the most studied lncRNAs contribute to the neuropathologies associated with AD, including amyloid β plaques and neurofibrillary tangles. Understanding the molecular mechanisms of lncRNAs in patients with AD will reveal novel diagnosis strategies and more effective therapeutic targets.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
217
|
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol 2020; 15:261-278. [PMID: 32451752 PMCID: PMC7283209 DOI: 10.1007/s11523-020-00717-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs represent a significant proportion of the human genome. After having been considered as 'junk' for a long time, non-coding RNAs are now well established as playing important roles in maintaining cellular homeostasis and functions. Some non-coding RNAs show cell- and tissue-specific expression patterns and are specifically deregulated under pathological conditions (e.g. cancer). Therefore, non-coding RNAs have been extensively studied as potential biomarkers in the context of different diseases with a focus on microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for several years. Since their discovery, miRNAs have attracted more attention than lncRNAs in research studies; however, both families of non-coding RNAs have been established to play an important role in gene expression control, either as transcriptional or post-transcriptional regulators. Both miRNAs and lncRNAs can regulate key genes involved in the development of cancer, thus influencing tumour growth, invasion, and metastasis by increasing the activation of oncogenic pathways and limiting the expression of tumour suppressors. Furthermore, miRNAs and lncRNAs are also emerging as important mediators in drug-sensitivity and drug-resistance mechanisms. In the light of these premises, a number of pre-clinical and early clinical studies are exploring the potential of non-coding RNAs as new therapeutics. The aim of this review is to summarise the latest knowledge of the use of miRNAs and lncRNAs as therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Salati
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Milko B Mirchev
- Clinic of Gastroenterology, Medical University, Varna, Bulgaria
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
218
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
219
|
Qu Y, Tan HY, Chan YT, Jiang H, Wang N, Wang D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther Adv Med Oncol 2020; 12:1758835920927850. [PMID: 32536982 PMCID: PMC7268113 DOI: 10.1177/1758835920927850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the fundamental methods of cancer treatment. However, drug resistance remains the main cause of clinical treatment failure. We comprehensively review the newly identified roles of long noncoding RNAs (lncRNAs) in oncobiology that are associated with drug resistance. The expression of lncRNAs is tissue-specific and often dysregulated in human cancers. Accumulating evidence suggests that lncRNAs are involved in chemoresistance of cancer cells. The main lncRNA-driven mechanisms of chemoresistance include regulation of drug efflux, DNA damage repair, cell cycle, apoptosis, epithelial-mesenchymal transition (EMT), induction of signaling pathways, and angiogenesis. LncRNA-driven mechanisms of resistance to various antineoplastic agents have been studied extensively. There are unique mechanisms of resistance against different types of drugs, and each mechanism may have more than one contributing factor. We summarize the emerging strategies that can be used to overcome the technical challenges in studying and addressing lncRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Hongbo Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
220
|
Wen X, Liu S, Sheng J, Cui M. Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ 2020; 8:e9234. [PMID: 32523813 PMCID: PMC7263300 DOI: 10.7717/peerj.9234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shui Liu
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jiyao Sheng
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
221
|
Zheng Y, Zheng Y, Jia L, Zhang Y, Lin Y. Integrated analysis of lncRNA-mRNA networks associated with an SLA titanium surface reveals the potential role of HIF1A-AS1 in bone remodeling. RSC Adv 2020; 10:20972-20990. [PMID: 35517763 PMCID: PMC9054372 DOI: 10.1039/d0ra01242d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microstructured titanium surface implants, such as typical sandblasted and acid-etched (SLA) titanium implants, are widely used to promote bone apposition in prosthetic treatment by dental implants following tooth loss. Although there are multiple factors associated with the superior osseointegration of an SLA titanium surface, the molecular mechanisms of long noncoding RNAs (lncRNAs) are still unclear. In this study, we characterized smooth (SMO) and SLA surfaces, and compared the osteoinduction of these surfaces using human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and implants in a rat model in vivo. Then, we used microarrays and bioinformatics analysis to investigate the differential expression profiles of mRNAs and lncRNAs on SMO and SLA titanium surfaces. An lncRNA–mRNA network was constructed, which showed an interaction between lncRNA HIF1A antisense RNA 1 (HIF1A-AS1) and vascular endothelial growth factor. We further found that knockdown of HIF1A-AS1 significantly decreased osteogenic differentiation of hBMSCs. This study screened SLA-induced lncRNAs using a systemic strategy and showed that lncRNA HIF1A-AS1 plays a role in promotion of new bone formation in the peri-implant area, providing a novel insight for future surface modifications of implants. Long non-coding RNA HIF1A-AS1 plays a role in SLA titanium surface-induced osteogenic differentiation of hBMSCs by regulating p38 MAPK.![]()
Collapse
Affiliation(s)
- Yan Zheng
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology Beijing 100081 China.,Central Laboratory, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Ye Lin
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| |
Collapse
|
222
|
Zou C, Wang Y, Wang B, Liu D, Liu L, Gai Z, Li C. Long non-coding RNAs in the alkaline stress response in sugar beet (Beta vulgaris L.). BMC PLANT BIOLOGY 2020; 20:227. [PMID: 32434543 PMCID: PMC7241001 DOI: 10.1186/s12870-020-02437-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/10/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play crucial roles in regulating numerous biological processes in which complicated mechanisms are involved. Nonetheless, little is known about the number, features, sequences, and possible effects of lncRNAs on plant responses to alkaline stress. RESULTS Leaf samples collected based on the control Beta vulgaris L., as well as those under short-term and long-term alkaline treatments, were subjected to high-throughput RNA sequencing, through which a total of 8535 lncRNAs with reliable expression were detected. Of these lncRNAs, 102 and 49 lncRNA expression profiles were altered after short- and long-term alkaline stress, respectively. Moreover, 7 lncRNAs were recognized as precursors to 17 previously identified miRNAs. Four lncRNAs responsive to alkaline stress were estimated as targets for 8 miRNAs. Moreover, computational analysis predicted 4318 potential target genes as lncRNAs responsive to alkaline stress. Analysis of functional annotations showed that the abovementioned possible target genes were involved in various bioprocesses, such as kinase activity, structural constituents of ribosomes, the ribonucleoprotein complex and protein metabolic processes. Association analysis provided convincing proof of the interplay of specific candidate target genes with lncRNAs. CONCLUSION LncRNAs likely exert vital roles during the regulation of the alkaline stress response and adaptation in plants through interaction with protein-coding genes. The findings of this study contribute to comprehensively examining lncRNAs in Beta vulgaris L. and shed more light on the possible roles and modulating interplays of lncRNAs responsive to alkaline stress, thereby laying a certain basis for functional analyses of these types of Beta vulgaris L. lncRNAs in the future.
Collapse
Affiliation(s)
- Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154000 People’s Republic of China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
223
|
Pan H, Zhao F, Yang Y, Chang N. Overexpression of long non-coding RNA SNHG16 against cerebral ischemia-reperfusion injury through miR-106b-5p/LIMK1 axis. Life Sci 2020; 254:117778. [PMID: 32407850 DOI: 10.1016/j.lfs.2020.117778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/19/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Long non-coding RNA (LncRNA) involved in types of physiological insults and diseases via regulating the responses of complex molecular, including cerebral ischemia-reperfusion (I/R) injury. LncRNA SNHG16 played a potential role in ketamine-induced neurotoxicity. In this study, we utilized an in vitro cell model of I/R to examine the specific function and mechanism of LncRNA SNHG16 in oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. After in vitro treatment of OGD/R, the lower the SH-SY5Y cell survival, the higher cell the apoptosis and increased caspase-3 activity was observed. Also, OGD/R induced endoplasmic reticulum stress (ERS) through increasing GRP78 and CHOP expressions and down-regulated LncRNA SNHG16 in SH-SY5Y cells. Conversely, LncRNA SNHG16 overexpression promoted OGD/R induced SH-SY5Y cell survival, suppressed its apoptosis, and caspase-3 activity. GRP78 and CHOP expressions were significantly suppressed in LncRNA SNHG16 overexpressing cells. MiR-106b-5p expression was increased and LIMK1 expression was down-regulated in OGD/R induced SH-SY5Y cells, and these effects were reversed by LncRNA SNHG16 overexpression, respectively. Moreover, LIMK1 is a direct target of MiR-106b-5p, and knockdown of LIMK1 reversed the effects of LncRNA SNHG16 on OGD/R-induced SH-SY5Y cells biology. Altogether, these results confirmed an important neuroprotection role of LncRNA SNHG16 in OGD/R induced SH-SY5Y cells injury, and miR-106b-5p/LIMK1 signal axis was involved in the action of LncRNA SNHG16.
Collapse
Affiliation(s)
- Haojun Pan
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Fangfang Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Yanmin Yang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Na Chang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China..
| |
Collapse
|
224
|
Long Noncoding RNA Serve as a Potential Predictive Biomarker for Breast Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9045786. [PMID: 32462032 PMCID: PMC7238389 DOI: 10.1155/2020/9045786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
Purpose The detection of long noncoding RNA (lncRNA) is a novel method for breast cancer diagnosis. The purpose of this meta-analysis was to evaluate the clinical significance of lncRNAs in identification of human breast cancer. Methods Electronic databases, including PubMed (176), EMBASE (167), Cochrane Library (4), Web of Science (273), CNKI (41), VIP (18), and wanfang (21), were searched for relevant original articles. Diagnostic capacity of lncRNAs was assessed by pooled sensitivity and specificity, area under the summary receiver operating characteristic curve (AUC), diagnostic odds ratio (DOR), and subgroup and meta-regression analysis. Stata and Meta-Disc software were used to conduct the meta-analysis. Results 33 articles including 4500 cases were identified in our meta-analysis. lncRNAs sustained a high diagnostic efficacy; the pooled sensitivity, specificity, AUC, and DOR of lncRNAs in differentiating BC from controls were 0.74 (95% CI: 0.69-0.78), 0.78 (95% CI: 0.72-0.83), 0.82 (95% CI: 0.79-0.85), and 10.01 (95% CI: 7.13-14.06), respectively. The subgroup analysis showed that the diagnostic efficacy of lncRNAs in Asian populations was higher than that in Caucasians; lncRNAs in BC were lower than those in TNBC and were higher in plasma and serum specimens than in tissues. In addition, heterogeneity was clearly apparent but was not caused by the threshold effect. Conclusion This meta-analysis suggested that lncRNAs might be promising biomarkers for identifying breast cancer, and its clinical application warrants further investigation.
Collapse
|
225
|
Ma X, Zhang X, Traore SM, Xin Z, Ning L, Li K, Zhao K, Li Z, He G, Yin D. Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2020; 20:192. [PMID: 32375650 PMCID: PMC7203998 DOI: 10.1186/s12870-020-02405-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/27/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have several known functions involving various biological regulatory processes in plant. However, the possible roles of lncRNAs during peanut seed development have not been fully explored. RESULTS In this study, two peanut recombinant inbred lines (RIL8) that differ in seed size were used to investigate comprehensive lncRNA profiles derived from the seed development at 15 and 35 days after flowering (DAF). We identified a total of 9388 known and 4037 novel lncRNAs, from which 1437 were differentially expressed lncRNAs. Interestingly, the expression patterns of a number of lncRNAs can be very different between two closely related inbred lines and these lncRNAs were expressed predominantly in only one RIL at 35 DAF. Some differentially expressed lncRNAs were found related to putative cis-acting target genes and predicted to be involved in transcription, transport, cell division, and plant hormone biosynthesis. The expression patterns of several representative lncRNAs and 12 protein-coding genes were validated by qPCR. Same expression pattern was observed between most lncRNAs and their target genes. 11 lncRNAs, XR_001593099.1, MSTRG.18462.1, MSTRG.34915.1, MSTRG.41848.1, MSTRG.22884.1, MSTRG.12404.1, MSTRG.26719.1, MSTRG.35761.1, MSTRG.20033.1, MSTRG.13500.1, and MSTRG.9304.1 and their cis-acting target genes may play key roles in peanut seed development. CONCLUSIONS These results provided new information on lncRNA-mediated regulatory roles in peanut seed development, contributing to the comprehensive understanding of the molecular mechanisms involved in peanut seed development.
Collapse
Affiliation(s)
- Xingli Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sy Mamadou Traore
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, 36088, AL, USA
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Longlong Ning
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ke Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kunkun Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongfeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guohao He
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, 36088, AL, USA
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
226
|
Tianhua Y, Dianqiu L, Xuanhe Z, Zhe Z, Dongmei G. Long non-coding RNA Sox2 overlapping transcript (SOX2OT) promotes multiple myeloma progression via microRNA-143-3p/c-MET axis. J Cell Mol Med 2020; 24:5185-5194. [PMID: 32198978 PMCID: PMC7205799 DOI: 10.1111/jcmm.15171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/03/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNA Sox2 overlapping transcript (SOX2OT) was reported to be involved in progression of multiple cancers. However, the role and mechanism of SOX2OT in multiple myeloma (MM) has yet to be unravelled. In the present study, elevated SOX2OT levels are reported in MM cell lines and patient samples as compared to normal plasma cells (nPCs) and healthy donors, respectively. Knock-down of SOX2OT led to a significant inhibition of cell proliferation, arrested cells at G0/G1 phase and induced cell apoptosis in MM samples in vitro, as well as slowed the growth of tumours in vivo. Additionally, our data indicated that SOX2OT functioned as a competing endogenous RNA (ceRNA) in MM cells that regulated miR-144-3p expression. Repression of miR-144-3p reversed the inhibition of MM development due to SOX2OT knock-down. Our data also revealed that SOX2OT regulated the expression of the cellular-mesenchymal to epithelial transition factor (c-MET, a known target of miR-143-3p) by functioning as a sponge of miR-144-3p in MM samples. These data support that SOX2OT promotes MM progression through regulating the miR-144-3p/c-MET axis, suggesting that SOX2OT might be as a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yu Tianhua
- Departments of Blood TransfusionChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li Dianqiu
- Ultrasonography DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | | | - Zhang Zhe
- Department of Radiation OncologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Gao Dongmei
- Department of OtorhinolaryngologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
227
|
Reyes ME, Riquelme I, Salvo T, Zanella L, Letelier P, Brebi P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Mar Drugs 2020; 18:md18050232. [PMID: 32354032 PMCID: PMC7281670 DOI: 10.3390/md18050232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidans are sulphated polysaccharides that can be obtained from brown seaweed and marine invertebrates. They have anti-cancer properties, through their targeting of several signaling pathways and molecular mechanisms within malignant cells. This review describes the chemical structure diversity of fucoidans and their similarity with other molecules such as glycosaminoglycan, which enable them to participation in diverse biological processes. Furthermore, this review summarizes their influence on the development of metastasis and drug resistance, which are the main obstacles to cure cancer. Finally, this article discusses how fucoidans have been used in clinical trials to evaluate their potential synergy with other anti-cancer therapies.
Collapse
Affiliation(s)
- María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Tomás Salvo
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
- Correspondence: ; Tel.: +56-9-92659362
| |
Collapse
|
228
|
Xu S, Gong Y, Yin Y, Xing H, Zhang N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother 2020; 127:110141. [PMID: 32334375 DOI: 10.1016/j.biopha.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a bone tumor prevalent in children and young adults. LncRNAs are a family of non-protein-coding transcripts longer than 200 nucleotides. The tumor-related pathological functions of lncRNAs include proliferation, migration, and chemotherapy resistance, all of which have been widely acknowledged in research on osteosarcoma. In addition, compelling evidence suggests that lncRNAs could serve as diagnostic indicators, prognostic biomarkers, and targets for disease treatment. In this review, we systematically summarize how lncRNAs regulate tumorigenesis, invasion and therapeutic resistance. By deepening our knowledge of the relationship between lncRNAs and osteosarcoma, we hope to translate research findings into clinical applications as soon as possible.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Yin
- Department of Gastroenterology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
229
|
Demirci S, Gudmundsdottir B, Li Q, Haro-Mora JJ, Nassehi T, Drysdale C, Yapundich M, Gamer J, Seifuddin F, Tisdale JF, Uchida N. βT87Q-Globin Gene Therapy Reduces Sickle Hemoglobin Production, Allowing for Ex Vivo Anti-sickling Activity in Human Erythroid Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:912-921. [PMID: 32405513 PMCID: PMC7210457 DOI: 10.1016/j.omtm.2020.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
Lentiviral addition of βT87Q-globin, a modified β-globin with an anti-sickling mutation, is currently being used in gene therapy trials for sickle cell disease (SCD) and β-thalassemia patients. βT87Q-globin interferes with sickle hemoglobin (HbS) polymerization. Here, we generated the SCD mutation in an immortalized human erythroid cell line (HUDEP-2) to investigate the anti-sickling activity of βT87Q-globin. Sickle HUDEP-2 (sHUDEP-2) cells produced robust HbS after differentiation and sickled under deoxygenated conditions, comparable with SCD CD34+ progeny. Lentiviral transduction provided 9.5–26.8 pg/cell βT87Q-globin (R2 = 0.83) in a vector copy number (VCN)-dependent manner, resulting in a significant reduction of sickling ratios (R2 = 0.92). Interestingly, βT87Q-globin transduction markedly reduced endogenous βS-globin (R2 = 0.84) to an undetectable level (0.4–16.8 pg/cell) in sHUDEP-2 cells, as well as endogenous β-globin in human CD34+ cell-derived erythroid cells. RNA sequencing (RNA-seq) analysis with βT87Q-transduced sHUDEP-2 and human CD34+-derived cells revealed activation of inflammation- and proliferation-related programs, suggesting minimal changes in background gene expression except for βT87Q-globin expression and endogenous β/βS-globin suppression. In summary, using sHUDEP-2 and CD34+-derived cells, we demonstrated that lentiviral addition of βT87Q-globin strongly reduced endogenous β-/βS-globin expression, resulting in an anti-sickling effect. Our findings should be helpful to understand the anti-sickling effects of therapeutic genes in SCD gene therapy.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bjorg Gudmundsdottir
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Quan Li
- Laboratory of Chemical Physics, NIDDK, NIH, Bethesda, MD, USA
| | - Juan J Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claire Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, NHLBI, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
230
|
Xu J, Zhang Y, You Q, Fu H, Zhao X, Lu K, Yan R, Yang D. LncRNA PTCSC3 Alleviates the Postoperative Distant Recurrence of Gastric Cancer by Suppression of lncRNA HOXA11-AS. Cancer Manag Res 2020; 12:2623-2629. [PMID: 32368140 PMCID: PMC7174558 DOI: 10.2147/cmar.s229269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction It is worldwide accepted that lncRNA PTCSC3 is a tumor suppressor in glioma and thyroid cancer, whereas its role in the recurrence of gastric cancer is unknown. Patients and Methods We recruited 80 GC patients (46 males and 34 females, 44 to 68 years, 56.3±6.7 years) in our study. Two human GC cell lines AGS and SNU-1 were transfected with PTCSC3 and HOXA11-AS expression vectors. Then, qPCR was used to detect the level of relative mRNA. Both invasion and migration assays were performed to detect the effect of the lncRNA on gastric cancer cell motility. Results In the present study, we showed that PTCSC3 was downregulated in plasma of gastric cancer patients than in plasma of healthy controls. Follow-up study indicated that PTCSC3 was further downregulated in patients with distant-recurrence but not in patients with local recurrence only or non-recurrence. LncRNA HOXA11-AS was upregulated in plasma of gastric cancer cells than in plasma of healthy controls and was inversely correlated with PTCSC3 in plasma of gastric cancer patients. PTCSC3 overexpression mediated the downregulation of HOXA11-AS in gastric cancer cells, while HOXA11-AS overexpression failed to significantly affect PTCSC3. PTCSC3 overexpression led to inhibited, while HOXA11-AS overexpression led to promoted migration and invasion of gastric cancer cells. In addition, HOXA11-AS overexpression reduced the effects of PTCSC3 overexpression. Discussion Therefore, lncRNA PTCSC3 alleviates in the postoperative distant recurrence of gastric cancer possible by suppression of HOXA11-AS.
Collapse
Affiliation(s)
- Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | - Xiaokai Zhao
- Shanghai Yunying Medical Technology Co.Ltd, Shanghai 201600, People's Republic of China
| | - Kai Lu
- Shanghai Yunying Medical Technology Co.Ltd, Shanghai 201600, People's Republic of China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| |
Collapse
|
231
|
Yu L, Li H, Li Z, Jia J, Wu Z, Wang M, Li F, Feng Z, Xia H, Gao G. Long Non-Coding RNA HAND2-AS1 Inhibits Growth and Migration of Gastric Cancer Cells Through Regulating the miR-590-3p/KCNT2 Axis. Onco Targets Ther 2020; 13:3187-3196. [PMID: 32368078 PMCID: PMC7170626 DOI: 10.2147/ott.s233256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) are regarded as crucial regulators for cancer initiation and progression. Heart and Neural Crest Derivatives Expressed 2 antisense RNA 1 (HAND2-AS1) was recently proposed to function as tumor suppressor in several human cancers. However, its role in gastric cancer (GC) remains unclear. Methods HAND2-AS1 expression in GC tissues and normal tissues was analyzed at GEPIA (a web server for gene expression profiling analysis). Moreover, RT-qPCR method was utilized to explore HAND2-AS1 expression in GC cells and normal cell. In vitro experiments were carried out using cell counting kit-8 assay, colony formation assay, and flow cytometry assay, respectively. Bioinformatic analysis and luciferase activity reporter assay were performed to identify the downstream targets of HAND2-AS1. Results We found HAND2-AS1 has decreased expression in both GC tissues and cells. Overexpression of HAND2-AS1 was able to inhibit GC cell proliferation, colony formation, but promote apoptosis. On the contrary, knockdown of HAND2-AS1 could cause the opposite effects on GC cells. Furthermore, HAND2-AS1 was shown to function as a competitive RNA that binds with microRNA-590-3p (miR-590-3p) to affect the expression of potassium sodium-activated channel subfamily T member 2 (KCNT2). Discussion Our results indicated the tumor suppressive role of HAND2-AS1 in GC. Also, the newly identified HAND2-AS1/miR-590-3p/KCNT2 axis will help us to understand the role of HAND2-AS1 in cancer.
Collapse
Affiliation(s)
- Lan Yu
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Hui Li
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Zhiying Li
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Zhouying Wu
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Min Wang
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Feng Li
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Huilin Xia
- Medical Engineering Department, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| | - Guanxin Gao
- Medical Engineering Department, Inner Mongolia People's Hospital, Hohhot 010017, People's Republic of China
| |
Collapse
|
232
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
233
|
Li S, Cui Z, Zhao Y, Ma S, Sun Y, Li H, Gao M, Li N, Wang Y, Tong L, Song M, Yin Z. Candidate lncRNA-microRNA-mRNA networks in predicting non-small cell lung cancer and related prognosis analysis. J Cancer Res Clin Oncol 2020; 146:883-896. [PMID: 32124023 DOI: 10.1007/s00432-020-03161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE The role of non-coding RNA, once thought to be dark matter, is increasingly prominent in cancer. Our article explores the effect of non-coding RNA in lung adenocarcinoma and lung squamous cell carcinoma by mining TCGA public database. METHODS Download the data by applying the official TCGA software. The data were analyzed by R data analysis packages, 'edgeR', 'gplots' and 'survival'. We better illustrate the potential networks of lung cancer genes by constructing ceRNAs, using Cytoscape software. RESULTS We obtained genes which were differentially expressed in lung adenocarcinoma and lung squamous cell carcinoma analysis. Within these differentially expressed genes, we also conducted a survival analysis to find differentially expressed genes associated with prognosis in both lung adenocarcinoma and lung squamous cell carcinoma. Based on genes differentially expressed of both lung adenocarcinoma and lung squamous cell carcinoma, we constructed a ceRNA network to illustrate the mechanism of lung adenocarcinoma and lung squamous cell carcinoma. Our study analyzed genes which were differentially expressed in lung adenocarcinoma and lung squamous cell carcinoma using the TCGA database. CONCLUSION Based on this, the prognosis in both lung squamous cell carcinoma and lung adenocarcinoma was analyzed. We have also constructed a ceRNA network to provide a basis for the study of ceRNA in lung adenocarcinoma and lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Sixuan Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhigang Cui
- China Medical University, Shenyang, 110122, China
| | - Yuxin Zhao
- China Medical University, Shenyang, 110122, China
| | - Shuwen Ma
- China Medical University, Shenyang, 110122, China
| | - Yinghui Sun
- China Medical University, Shenyang, 110122, China
| | - Hang Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Min Gao
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Na Li
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ying Wang
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Lianwei Tong
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Mingyang Song
- China Medical University, Shenyang, 110122, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhihua Yin
- China Medical University, Shenyang, 110122, China.
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
234
|
Yang Z, Lin X, Zhang P, Liu Y, Liu Z, Qian B, Liu X, Shao G. RETRACTED: Long non-coding RNA LINC00525 promotes the non-small cell lung cancer progression by targeting miR-338-3p/IRS2 axis. Biomed Pharmacother 2020; 124:109858. [PMID: 31991382 DOI: 10.1016/j.biopha.2020.109858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023] Open
Abstract
This article has been retracted at the request of the Editor-in-Chief. The corresponding author notified the journal that in vivo and transwell invasion experimental results reported in this study were not reproducible. As the results were unreliable the authors requested its retraction. The journal was also alerted to several suspected image similarities within Figures 3B and 6D, that appear to be present in other publications, as detailed here: https://pubpeer.com/publications/9F5D26FDF83E716B615F407B35ED8B#. The journal requested the authors provide explanations and source data relating to these affected figures. Authors were not able to satisfy this request. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Zihao Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Benxin Qian
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Xing Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China
| | - Guoguang Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, #71 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, China.
| |
Collapse
|
235
|
Wang Y, Zhao Y, Zhang X, Zhang A, Ma J. RETRACTED: Long noncoding RNA LBX2-AS1 drives the progression of hepatocellular carcinoma by sponging microRNA-384 and thereby positively regulating IRS1 expression. Pathol Res Pract 2020; 216:152903. [PMID: 32143907 DOI: 10.1016/j.prp.2020.152903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The authors reported that the in vivo study was performed without the approval from an ethics committee. This is despite previously reporting that the in vivo experiments involved animals were approved by the Animal Care and Use Ethics Committee at their hospital. All authors have agreed to retract the article and apologise to the readership of the journal for any inconvenience caused. Further concern was raised about several figures of the article”: “A pair of flow-cytometry plots share most of their points in common, and appear to have been derived from the same data set.” The Editors of Pathology Research and Practice consider these concerns as well justified.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia, 750004, China; Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Shanxi, 710061, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Shanxi, 710061, China.
| | - Xu Zhang
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Aiyun Zhang
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Juan Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| |
Collapse
|
236
|
Herrera-Merchan A, Cuadros M, Rodriguez MI, Rodriguez S, Torres R, Estecio M, Coira IF, Loidi C, Saiz M, Carmona-Saez P, Medina PP. The value of lncRNA FENDRR and FOXF1 as a prognostic factor for survival of lung adenocarcinoma. Oncotarget 2020; 11:1172-1185. [PMID: 32284793 PMCID: PMC7138163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
It is increasingly evident that non-coding RNAs play a significant role in tumour development. However, we still have a limited knowledge of the clinical significance of long non-coding RNAs (lncRNAs) in lung cancer. The FENDRR is a long coding RNA (also named FOXF1-AS1) located in the vicinity of the protein-coding gene FOXF1 at 16q24.1 chromosomal region. The present study aimed to define the clinic pathological significance of the long-non-coding RNA FENDRR in lung adenocarcinomas. FENDRR expression measured by quantitative PCR was found significantly downregulated (p<0.001) in lung adenocarcinoma samples in comparison with their normal adjacent tissues (n=70). RNA in situ hybridization (RNA-FISH) corroborated independently the down-regulation of FENDRR. Interestingly, the expression of FENDRR correlated positively (p<0.001) with the expression of its protein-coding neighbor gene FOXF1. Additionally, FOXF1 expression was also found downregulated in adenocarcinomas compared to normal samples (p<0.001) and its expression was significantly correlated with overall survival alone (p=0.003) or in combination with FENDRR expression (p=0.01). In conclusion, our data support that FENDRR and FOXF1 expression is decreased in lung adenocarcinoma and should be considered as new potential diagnostic/prognosis biomarkers.
Collapse
Affiliation(s)
- Antonio Herrera-Merchan
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Marta Cuadros
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Maria Isabel Rodriguez
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Sandra Rodriguez
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Raul Torres
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Isabel F. Coira
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Claudia Loidi
- Pathological Anatomy, University Hospital Cruces, University of Pais Vasco, Spain
| | - Monica Saiz
- Pathological Anatomy, University Hospital Cruces, University of Pais Vasco, Spain
| | - Pedro Carmona-Saez
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
| | - Pedro P. Medina
- Centre for Genomics and Oncological Research, PTS Granada, Centro Pfizer - Universidad de Granada - Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| |
Collapse
|
237
|
Zhang M, Cheng L, Zhang Y. Characterization of Dysregulated lncRNA-Associated ceRNA Network Reveals Novel lncRNAs With ceRNA Activity as Epigenetic Diagnostic Biomarkers for Osteoporosis Risk. Front Cell Dev Biol 2020; 8:184. [PMID: 32296700 PMCID: PMC7136400 DOI: 10.3389/fcell.2020.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023] Open
Abstract
The altered expression of long non-coding RNAs (lncRNAs) has been implicated in the development and human diseases. However, functional roles and regulatory mechanisms of lncRNA as competing endogenous RNAs (ceRNAs) in osteoporosis and their potential clinical implication for osteoporosis risk are largely unexplored. In this study, we performed integrated analysis for paired expression profiles and regulatory relationships of dysregulated lncRNAs, mRNAs, and miRNAs based on “ceRNA hypothesis,” and constructed an osteoporosis-related dysregulated miRNA-mediated lncRNA–mRNA ceRNA network (DysCeNet) composed of 105 nodes (including eight miRNAs, 24 mRNAs, and 73 lncRNAs) and 515 edges. Functional analysis suggested that the DysCeNet was involved in known osteoporosis or bone metabolism-related biological processes and pathways. Then, we performed random forest-based feature selection for 73 lncRNAs with ceRNA activity and identified 25 of 73 lncRNAs as potential diagnostic biomarkers. A random forest-based classifier composed of 25 lncRNA biomarkers (RF-25lncRNA) was developed for predicting osteoporosis risk. Performance evaluation with the leave-one-out cross-validation (LOOCV) procedure showed that the RF-25lncRNA achieved a good performance in distinguishing high- and low-bone mineral density (BMD) subjects in different osteoporosis datasets. Our study for the first time revealed a global view of lncRNA-associated ceRNA regulation in osteoporosis and provided novel lncRNAs with ceRNA activity as candidate epigenetic diagnostic biomarkers for early detection of osteoporosis risk.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
238
|
Zheng X, Dong S, Sun L, Xu J, Liu J, Hao R. LncRNA LINC00152 Promotes Laryngeal Cancer Progression by Sponging MiR-613. Open Med (Wars) 2020; 15:240-248. [PMID: 32266320 PMCID: PMC7126196 DOI: 10.1515/med-2020-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) LINC00152 (CYTOR) has been reported to be upregulated and to serve as a diagnostic biomarker in multiple types of cancers, including laryngeal squamous cell cancer (LSCC). However, the functional role and molecular mechanisms of LINC00152 in LSCC progression need to be further investigated. Methods LINC00152 levels in LSCC and adjacent normal tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Gene knockdown of LINC00152 was achieved in LSCC cells by use of small interfering RNA (siRNA). Cell proliferation, apoptosis, migration and invasion were examined by a series of methods. The micoRNA (miRNA) interaction with LINC00152 was screened by starBase v2.0 and confirmed by luciferase reporter activity. Results LINC00152 levels in LSCC tissues were significantly higher than those in adjacent normal tissue, and patients with lymph node metastasis or an advanced clinical stage displayed higher LINC00152 expression. Moreover, siRNA-mediated LINC00152 knockdown significantly inhibited the proliferation, migration and invasion of LSCC cells and induced apoptosis in those cells. Mechanistically, LINC00152 functioned as a competing endogenous RNA (ceRNA) sponging miR-613. The inhibitory effect of LINC00152 knockdown on malignant behavior was abrogated by inhibiting miR-613. Conclusion LINC00152 exerts an oncogenic effect on the tumorigenesis of LSCC by sponging miR-613 and may serve as a potential target for treating LSCC.
Collapse
Affiliation(s)
- Xuesong Zheng
- Department of Otolaryngology Head and Neck surgery, the Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Su Dong
- Departments of Anesthesia, the First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Lele Sun
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jialu Xu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Rui Hao
- Department of Infection, The Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| |
Collapse
|
239
|
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis 2020; 11:176. [PMID: 32152275 PMCID: PMC7062743 DOI: 10.1038/s41419-020-2366-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) remains the primary cause of cancer-related death. Metabolic change is the major characteristic of cancer. The present study attempted to investigate the regulatory mechanisms of HCC energy metabolism from the perspective of noncoding RNA regulation of HIF1A and LDHA. The expression of miR-100-5p expression was significantly suppressed in HCC tissue samples and HCC cell lines under 1% O2-induced hypoxia. miR-100-5p overexpression significantly suppressed hypoxia-induced increases in lactate concentration and glucose uptake. Exposure to 1% O2 induced HIF1A protein and reduced miR-100-5p expression, while HIF1A silencing dramatically rescued miR-100-5p expression upon 1% O2 exposure. In addition, 1% O2-induced increases in lactate concentration and glucose uptake were also suppressed by HIF1A silencing. Next, by analyzing available data in TCGA, we found that lncRNA RAET1K was correlated with HIF1A and miR-100-5p.LncRNA RAET1K could downregulate the expression of miR-100-5p by acting as a sponge, while HIF1A bound the lncRNA RAET1K promoter region to activate its transcription. LncRNA RAET1K silencing significantly suppressed HCC cell proliferation and invasion and also suppressed hypoxia-induced increases in lactate concentration and glucose uptake, while miR-100-5p inhibition reversed the effects of lncRNA RAET1K silencing on hypoxia-induced glycolysis in HCC cells. Finally, the expression of HIF1A, lncRNA RAET1K, and LDHA was upregulated in HCC tissue specimens; the expression of miR-100-5p was negatively related to HIF1A, lncRNA RAET1K, and LDHA; and HIF1A, lncRNA RAET1K, and LDHA were positively correlated with each other. In conclusion, the HIF1A/lncRNA RAET1K/miR-100-5p axis modulates hypoxia-induced glycolysis in HCC cells and might affect HCC progression.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zeyu Zhang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiajin Yang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
240
|
Zhao M, Wang T, Sun T, Yu X, Tian R, Zhang WH. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC PLANT BIOLOGY 2020; 20:99. [PMID: 32138663 PMCID: PMC7059299 DOI: 10.1186/s12870-020-2301-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression. However, whether and how lncRNAs are involved in cold acclimation-dependent freezing tolerance in plants remains largely unknown. Medicago truncatula is a prominent model for studies of legume genomics, and distinguished by its cold-acclimation characteristics. To determine the roles of lncRNAs in plant cold stress response, we conducted genome-wide high-throughput sequencing in the legume model plant M. truncatula. RESULTS RNA-seq data were generated from twelve samples for the four treatments, i.e., non-cold treated leaves and roots, cold-treated leaves and roots of M. truncatula Jemalong A17 seedlings. A total of 1204 million raw reads were generated. Of them, 1150 million filtered reads after quality control (QC) were subjected to downstream analysis. A large number of 24,368 unique lncRNAs were identified from the twelve samples. Among these lncRNAs, 983 and 1288 were responsive to cold treatment in the leaves and roots, respectively. We further found that the intronic-lncRNAs were most sensitive to the cold treatment. The cold-responsive lncRNAs were unevenly distributed across the eight chromosomes in M. truncatula seedlings with obvious preferences for locations. Further analyses revealed that the cold-responsive lncRNAs differed between leaves and roots. The putative target genes of the lncRNAs were predicted to mainly involve the processes of protein translation, transport, metabolism and nucleic acid transcription. Furthermore, the networks of a tandem array of CBF/DREB1 genes that were reported to be located in a major freezing tolerance QTL region on chromosome 6 and their related lncRNAs were dissected based on their gene expression and chromosome location. CONCLUSIONS We identified a comprehensive set of lncRNAs that were responsive to cold treatment in M. truncatula seedlings, and discovered tissue-specific cold-responsive lncRNAs in leaves and roots. We further dissected potential regulatory networks of CBF Intergenic RNA (MtCIR1) and MtCBFs that play critical roles in response and adaptation of M. truncatula to cold stress.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianyang Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoxi Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Inner Mongolia Research Center for Prataculture, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
241
|
Peng S, Yin X, Zhang Y, Mi W, Li T, Yu Y, Jiang J, Liu Q, Fu Y. Competing endogenous RNA network analysis reveals potential long non-coding RNAs as predictive biomarkers of gastric cancer. Oncol Lett 2020; 19:2185-2196. [PMID: 32194716 PMCID: PMC7039062 DOI: 10.3892/ol.2020.11351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently occurring life-threatening malignancies worldwide. Due to its high mortality rate, the discovery of putative biomarkers that may be sensitive and specific to GC is of seminal importance. Long non-coding RNAs (lncRNAs) are non-translatable RNAs whose transcript length exceeds 200 base pairs. The dysregulation of lncRNA expression plays a key role in tumorigenesis and development. In the present study, the expression profiles of lncRNAs, microRNAs and mRNAs of 361 GC tissues (and 32 normal gastric tissues) were downloaded from The Cancer Genome Atlas database. Furthermore, differentially expressed RNAs were analyzed by the DEseq package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses confirmed some significant dysregulated signaling pathways and target RNAs. As a result, an lncRNA-associated competing endogenous RNA (ceRNA) network was constructed. Kaplan-Meier analysis of the differentially expressed RNAs associated with GC pathogenesis confirmed that the lncRNAs PVT1, HAND2-AS1 and ZNF667-AS1 were potentially associated with the prognosis of GC (P<0.05). The present study suggests the mechanism of ceRNA networks in GC, and further demonstrates that aberrant lncRNA expression may be used as an effective diagnostic tool (or target) for the prognosis of GC.
Collapse
Affiliation(s)
- Sanfei Peng
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiangyang Yin
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yizheng Zhang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wunan Mi
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tong Li
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Yu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianwu Jiang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qi Liu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Fu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
242
|
A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118680. [PMID: 32081726 DOI: 10.1016/j.bbamcr.2020.118680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.
Collapse
|
243
|
Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 2020; 148:55-68. [PMID: 32078720 DOI: 10.1007/s10709-020-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.
Collapse
|
244
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
245
|
Shi X, Li Y, Sun Y, Zhao X, Sun X, Gong T, Liang Z, Ma Y, Zhang X. Genome-wide analysis of lncRNAs, miRNAs, and mRNAs forming a prognostic scoring system in esophageal squamous cell carcinoma. PeerJ 2020; 8:e8368. [PMID: 32095316 PMCID: PMC7017795 DOI: 10.7717/peerj.8368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal carcinoma. Protein coding genes and non-coding RNAs can be powerful prognostic factors in multiple cancers, including ESCC. However, there is currently no model that integrates multiple types of RNA expression signatures to predict clinical outcomes. Methods The sequencing data (RNA-sequencing and miRNA-sequencing) and clinical data of ESCC patients were obtained from The Cancer Genome Atlas (TCGA) database, and Differential gene expression analysis, Cox regression analysis and Spearman correlation analysis were used to construct prognosis-related lncRNA-mRNA co-expression network and scoring system with multiple types of RNA. The potential molecular mechanisms of prognostic mRNAs were explored by functional enrichment analysis. Results A total of 62 prognostic lncRNAs, eight prognostic miRNAs and 66 prognostic mRNAs were identified in ESCC (P-value < 0.05) and a prognosis-related lncRNA-mRNA co-expression network was created. Five prognosis-related hub RNAs (CDCA2, MTBP, CENPE, PBK, AL033384.1) were identified. Biological process analysis revealed that mRNAs in prognosis-related co-expression RNA network were mainly enriched in cell cycle, mitotic cell cycle and nuclear division. Additionally, we constructed a prognostic scoring system for ESCC using ten signature RNAs (MLIP, TNFSF10, SIK2, LINC01068, LINC00601, TTTY14, AC084262.1, LINC01415, miR-5699-3p, miR-552-5p). Using this system, patients in the low-risk group had better long-term survival than those in the high-risk group (log-rank, P-value < 0.0001). The area under the ROC curve (AUCs) revealed that the accuracy of the prediction model was higher than the accuracy of single type of RNA prediction model. Conclusion In brief, we constructed a prognostic scoring system based on multiple types of RNA for ESCC that showed high predicting prognosis performance, and deeply understood the regulatory mechanism of prognosis-related lncRNA-mRNA co-expression network.
Collapse
Affiliation(s)
- Xiaobo Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - You Li
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhinan Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
246
|
Zhang L, Yu M, Xu H, Wei X, Liu Y, Huang C, Chen H, Guo Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int J Biol Macromol 2020; 150:492-500. [PMID: 32035150 DOI: 10.1016/j.ijbiomac.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has potential applications in agriculture and biomedicine, but the efficiency of cloning is still low. In this study, the transcriptional profiles in cloned and fertilized embryos were measured and compared by RNA sequencing. The 2-cell embryos were detected to identify the earliest transcriptional differences between embryos derived through IVF and SCNT. As a result, 364 genes showed decreased expression in cloned 2-cell embryos and were enriched in "intracellular protein transport" and "ubiquitin mediated proteolysis". In blastocysts, 593 genes showed decreased expression in cloned blastocysts and were enriched in "RNA binding", "nucleotide binding", "embryo development", and "adherens junction". We identified 14 development related genes that were not activated in the cloned embryos. Then, 68 and 245 long non-coding RNAs were recognized abnormally expressed in cloned 2-cell embryos and cloned blastocysts, respectively. Furthermore, we found that incomplete RNA-editing occurred in cloned embryos and might be caused by decreased ADAR expression. In conclusion, our study revealed the abnormal transcripts and deficient RNA-editing sites in cloned embryos and provided new data for further mechanistic studies of somatic nuclear reprogramming.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Huanhuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
247
|
Qian W, Cai X, Qian Q, Wang D, Zhang L. Angelica Sinensis Polysaccharide Suppresses Epithelial-Mesenchymal Transition and Pulmonary Fibrosis via a DANCR/AUF-1/FOXO3 Regulatory Axis. Aging Dis 2020; 11:17-30. [PMID: 32010478 PMCID: PMC6961774 DOI: 10.14336/ad.2019.0512] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of lung fibroblasts and extracellular matrix deposition. Angelica sinensis polysaccharide (ASP), the major bioactive component that can extracted from roots of angelica, plays functional roles in immunomodulation, anti-tumor activity, and hematopoiesis. Emerging evidence has suggested that long noncoding RNAs (lncRNAs) play important roles in pathophysiological processes in various diseases. However, the roles of lncRNAs and ASP in IPF remain poorly understood. In the present study, we investigated the effects of ASP in IPF, as well as their functional interactions with lncRNA DANCR (differentiation antagonizing non-protein coding RNA). IPF models were established by treating Sprague-Dawley rats with BLM and treating alveolar type Ⅱ epithelial (RLE-6TN) cells with TGF-β1. Our results showed that ASP treatment suppressed pulmonary fibrosis in rats and fibrogenesis in RLE-6TN cells. The lncRNA DANCR is downregulated after ASP treatment in both rat lung tissues and RLE-6TN cells, and DANCR overexpression dramatically reversed the suppressive effects of ASP in IPF. Mechanistically, DANCR directly binds with AUF1 (AU-binding factor 1), thereby upregulating FOXO3 mRNA and protein levels. Moreover, overexpression of AUF1 or FOXO3 reversed the functional effects induced by ASP treatment. In conclusion, our findings showed that DANCR mediates ASP-induced suppression of IPF via upregulation of FOXO3 protein levels in an AUF1-dependent manner. Therefore, DANCR could serve as a promising therapeutic target in IPF treatment with ASP.
Collapse
Affiliation(s)
- Weibin Qian
- 1Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Xinrui Cai
- 2Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qiuhai Qian
- 3Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Dongli Wang
- 4Department of Personnel Section, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Lei Zhang
- 5Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| |
Collapse
|
248
|
Wang Y, Yu G, Wang J, Fu G, Guo M, Domeniconi C. Weighted matrix factorization on multi-relational data for LncRNA-disease association prediction. Methods 2020; 173:32-43. [PMID: 31226302 DOI: 10.1016/j.ymeth.2019.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
|
249
|
Su Q, Liu Y, Lv XW, Dai RX, Yang XH, Kong BH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol 2020; 318:H332-H344. [PMID: 31858814 DOI: 10.1152/ajpheart.00444.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). In this study, we explored the functional significance and molecular mechanisms of TUG1/miR-132-3p axis in ischemia-challenged cardiomyocytes. In primary cardiomyocytes challenged with H2O2, expressions of miR-132-3p, TUG1, and other target proteins were measured by RT quantitative PCR or Western blot analysis; cell viability by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay; apoptosis by annexin V and propidium iodide staining; the abundance of acetylated H3K9 or histone deacetylase 3 (HDAC3) within the promoter of target genes by chromatin immunoprecipitation; the direct interaction between miR-132-3p and HDAC3 or TUG1 by luciferase reporter assay. The biological significance of miR-132-3p, TUG1, and HDAC3 was assessed using miR-132-3p mimic, siRNA-targeting TUG1 and HDAC3 inhibitor RGF966, respectively, in H2O2-challenged cells in vitro or ischemia-reperfusion (I/R)-induced AMI in vivo. miR-132-3p was downregulated, whereas TUG1 upregulated in H2O2-challenged cardiomyocytes. Overexpressing miR-132-3p or knocking down TUG1 significantly improved viability, inhibited apoptosis, and reduced ROS production in H2O2-stressed cardiomyocytes in vitro and alleviated I/R-induced AMI in vivo. Mechanistically, TUG1 sponged miR-132-3p and upregulated HDAC3, which reduced the acetylation of H3K9 and epigenetically inhibited expressions of antioxidative genes, including Bcl-xL, Prdx2, and Hsp70. The TUG1/miR-132-3p/HDAC3 axis critically regulates ROS production and the pathogenic development of AMI. Targeting TUG1, upregulating miR-132-3p, or inhibiting HDAC3 may benefit AMI treatment.NEW & NOTEWORTHY Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). However, the underlying mechanisms remain elusive. In the present study, we reported for the first time that H2O2 or ischemia-reperfusion-induced TUG1, by sponging microRNA 132-3p, activated histone deacetylase 3, which in turn targeted multiple protective genes, stimulated intracellular ROS accumulation, and aggravated the injury of AMI. Our findings might provide some insight to seek new targets for AMI treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Yang Liu
- Department of Cardiology, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiang-Wei Lv
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Ri-Xin Dai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Xi-Heng Yang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Bing-Hui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
250
|
Yang M, Qin Q, Zhu J, Guo Y, Yin T, Wu H, Wang C. Long noncoding RNA ITGB2-AS1 promotes growth and metastasis through miR-4319/RAF1 axis in pancreatic ductal adenocarcinoma. J Cell Physiol 2020. [PMID: 31957875 DOI: 10.1002/jcp.29471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has been considered as potentially critical regulators in pancreatic ductal adenocarcinoma (PDAC). In this study, we prospectively investigate the effect and mechanism of lncRNA integrin subunit beta 2-anti-sense RNA 1 (ITGB2-AS1) on regulation of PDAC progression. The expression of ITGB2-AS1 and its target were analyzed by quantitative real-time polymerase chain reaction and in situ hybridization. 3-(4,5-Dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, wound healing, and transwell assays were used to investigate the influence of ITGB2-AS1 on cell proliferation, cell cycle, migration, and invasion, respectively. The interaction between ITGB2-AS1 and its target was determined via luciferase activity assay and RNA immunoprecipitation. The subcutaneous xenotransplanted tumor model was established and employed to detect the tumorigenic function of ITGB2-AS1, which was evaluated by western blot analysis, immunohistochemistry, and hematoxylin and eosin staining. The results showed that ITGB2-AS1 was elevated in both PDAC tumor tissues and cell lines, predicting a poor prognosis in PDAC patients. Knocking down of ITGB2-AS1 suppressed PDAC cell proliferation, invasion, and migration but induced cell apoptosis in vitro. Moreover, ITGB2-AS1 could target and inhibit the expression of miR-4319 and miR-4319-targeted and -suppressed serine/threonine kinase RAF1. ITGB2-AS1 promoted PDAC progression via inhibition of miR-4319. Interference of ITGB2-AS1 could suppress in vivo tumorigenic ability of PDAC via downregulation of RAF1. In conclusion, ITGB2-AS1 promoted PDAC progression via sponging miR-4319 to upregulate RAF1, suggesting the potential therapeutic target ability of ITGB2-AS1 in PDAC.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Qin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junling Zhu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|