201
|
Wössner N, Alhalabi Z, González J, Swyter S, Gan J, Schmidtkunz K, Zhang L, Vaquero A, Ovaa H, Einsle O, Sippl W, Jung M. Sirtuin 1 Inhibiting Thiocyanates (S1th)-A New Class of Isotype Selective Inhibitors of NAD + Dependent Lysine Deacetylases. Front Oncol 2020; 10:657. [PMID: 32426286 PMCID: PMC7203344 DOI: 10.3389/fonc.2020.00657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a NAD+ dependent lysine deacetylase associated with the pathogenesis of various diseases including cancer. In many cancer types Sirt1 expression is increased and higher levels have been associated with metastasis and poor prognosis. However, it was also shown, that Sirt1 can have tumor suppressing properties and in some instances even a dual role for the same cancer type has been reported. Increased Sirt1 activity has been linked to extension of the life span of cells, respectively, organisms by promoting DNA repair processes and downregulation of tumor suppressor proteins. This may have the downside of enhancing tumor growth and metastasis. In mice embryonic fibroblasts depletion of Sirt1 was shown to decrease levels of the DNA damage sensor histone H2AX. Impairment of DNA repair mechanisms by Sirt1 can promote tumorigenesis but also lower chemoresistance toward DNA targeting therapies. Despite many biological studies, there is currently just one small molecule Sirt1 inhibitor in clinical trials. Selisistat (EX-527) reached phase III clinical trials for treatment of Huntington's Disease. New small molecule Sirt1 modulators are crucial for further investigation of the contradicting roles of Sirt1 in cancer. We tested a small library of commercially available compounds that were proposed by virtual screening and docking studies against Sirt1, 2 and 3. A thienopyrimidone featuring a phenyl thiocyanate moiety was found to selectively inhibit Sirt1 with an IC50 of 13 μM. Structural analogs lacking the thiocyanate function did not show inhibition of Sirt1 revealing this group as key for the selectivity and affinity toward Sirt1. Further analogs with higher solubility were identified through iterative docking studies and in vitro testing. The most active compounds (down to 5 μM IC50) were further studied in cells. The ratio of phosphorylated γH2AX to unmodified H2AX is lower when Sirt1 is depleted or inhibited. Our new Sirtuin 1 inhibiting thiocyanates (S1th) lead to similarly lowered γH2AX/H2AX ratios in mouse embryonic fibroblasts as Sirt1 knockout and treatment with the reference inhibitor EX-527. In addition to that we were able to show antiproliferative activity, inhibition of migration and colony forming as well as hyperacetylation of Sirt1 targets p53 and H3 by the S1th in cervical cancer cells (HeLa). These results reveal thiocyanates as a promising new class of selective Sirt1 inhibitors.
Collapse
Affiliation(s)
- Nathalie Wössner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Zayan Alhalabi
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Jessica González
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Sören Swyter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Schmidtkunz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Oliver Einsle
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Manfred Jung
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
202
|
Hwang ES, Song SB. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 2020; 10:E687. [PMID: 32365524 PMCID: PMC7277745 DOI: 10.3390/biom10050687] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide (NAM) at doses far above those recommended for vitamins is suggested to be effective against a wide spectrum of diseases and conditions, including neurological dysfunctions, depression and other psychological disorders, and inflammatory diseases. Recent increases in public awareness on possible pro-longevity effects of nicotinamide adenine dinucleotide (NAD+) precursors have caused further growth of NAM consumption not only for clinical treatments, but also as a dietary supplement, raising concerns on the safety of its long-term use. However, possible adverse effects and their mechanisms are poorly understood. High-level NAM administration can exert negative effects through multiple routes. For example, NAM by itself inhibits poly(ADP-ribose) polymerases (PARPs), which protect genome integrity. Elevation of the NAD+ pool alters cellular energy metabolism. Meanwhile, high-level NAM alters cellular methyl metabolism and affects methylation of DNA and proteins, leading to changes in cellular transcriptome and proteome. Also, methyl metabolites of NAM, namely methylnicotinamide, are predicted to play roles in certain diseases and conditions. In this review, a collective literature search was performed to provide a comprehensive list of possible adverse effects of NAM and to provide understanding of their underlying mechanisms and assessment of the raised safety concerns. Our review assures safety in current usage level of NAM, but also finds potential risks for epigenetic alterations associated with chronic use of NAM at high doses. It also suggests directions of the future studies to ensure safer application of NAM.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul 02504, Korea
| | | |
Collapse
|
203
|
Su S, Ndiaye M, Singh CK, Ahmad N. Mitochondrial Sirtuins in Skin and Skin Cancers. Photochem Photobiol 2020; 96:973-980. [PMID: 32124989 DOI: 10.1111/php.13254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
Mammalian sirtuins (SIRTs 1-7) are a family of NAD+-dependent deacetylases with distinct subcellular localization and biological functions that regulate various important cellular processes. Among these, SIRTs -3, -4 and -5 are located in the mitochondria and have been implicated in caloric restriction, oxidative stress, aging and various human diseases. Emerging evidence has found dysregulation of mitochondrial sirtuins in multiple dermatological conditions, including responses to ultraviolet radiation (UVR), suggesting their importance in maintaining skin health. In this review, we discuss the roles and implications of mitochondrial sirtuins in cutaneous cellular processes, and their emerging potential as a target for the management of skin diseases, including skin cancer. Among mitochondrial sirtuins, SIRT3 is the most studied and linked to multiple skin conditions and diseases (keratinocyte differentiation, wound healing, chronological aging, UVR and ozone response, systemic sclerosis, melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)). SIRT4 has been connected to keratinocyte differentiation, chronological aging, UVR response, alopecia, BCC and SCC. Further, SIRT5 has been associated with keratinocyte differentiation, melanoma, BCC and SCC. Overall, while there is compelling evidence for the involvement of mitochondrial sirtuins in skin, additional detailed studies are needed to understand their exact roles in skin and skin cancers.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Mary Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|
204
|
Sirtuins' Deregulation in Bladder Cancer: SIRT7 Is Implicated in Tumor Progression through Epithelial to Mesenchymal Transition Promotion. Cancers (Basel) 2020; 12:cancers12051066. [PMID: 32344886 PMCID: PMC7281198 DOI: 10.3390/cancers12051066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Sirtuins are emerging players in cancer biology and other age-related disorders, and their putative role in bladder cancer (BlCa) remains elusive. Further understanding of disease biology may allow for generation of more effective pathway-based biomarkers and targeted therapies. Herein, we aimed to illuminate the role of sirtuins’ family in BlCa and evaluate their potential as disease biomarkers and therapeutic targets. SIRT1-7 transcripts and protein levels were evaluated in a series of primary BlCa and normal bladder mucosa tissues. SIRT7 knockdown was performed through lentiviral transduction in MGHU3, 5637 and J82 cells and its functional role was assessed. SIRT1, 2, 4 and 5 expression levels were significantly lower in BlCa, whereas SIRT6 and 7 were overexpressed, and these results were corroborated by TCGA cohort analysis. SIRT7 transcript levels were significantly decreased in muscle-invasive vs. papillary BlCa. In vitro studies showed that SIRT7 downregulation promoted cells migration and invasion. Accordingly, increased EMT markers expression and decreased E-Cadherin (CDH1) was observed in those BlCa cells. Moreover, increased EZH2 expression and H3K27me3 deposition in E-Cadherin promoter was found in sh-SIRT7 cells. We demonstrated that sirtuins are globally deregulated in BlCa, and specifically SIRT7 downregulation is implicated in EMT, fostering BlCa invasiveness through EZH2-CDH1 axis.
Collapse
|
205
|
Mautone N, Zwergel C, Mai A, Rotili D. Sirtuin modulators: where are we now? A review of patents from 2015 to 2019. Expert Opin Ther Pat 2020; 30:389-407. [PMID: 32228181 DOI: 10.1080/13543776.2020.1749264] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, sirtuins (SIRTs) gained an increasing consideration because of their multiple key roles in several biological settings such as the regulation of transcription, energetic metabolism, cell cycle progression, and cytodifferentiation, apoptosis, neuro- and cardio-protection, inflammation, cancer onset and progression. Since there is mounting evidence in favor of potential therapeutic applications of SIRT modulators in various age-related disorders, the search about them is quite active. Areas covered: This review includes the patents regarding SIRT modulators released from 2015 to 2019 and provides an overview of the most relevant SIRT modulators.Expert opinion: Despite the knowledge about this family of broad-spectrum protein lysine deacylases has recently massively increased, there are still open questions, first of all, the exact nature of their involvement in various age-related conditions. The search for isoform-specific SIRT activators and inhibitors is still at its infancy, a limited number of patents describing them has been released, and not many clinical trials are ongoing. However, it is extremely likely that the successes obtained in the structural elucidation and structure-based design approaches that very recently have led to potent and specific SIRT modulators will pave the way for the development of further compounds selective for every single isoform.
Collapse
Affiliation(s)
- Nicola Mautone
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy.,Dipartimento di Medicina di Precisione, "Luigi Vanvitelli", Università della Campania, Naples, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
206
|
Zbroch E, Bazyluk A, Malyszko J, Koc-Zorawska E, Rydzewska-Rosolowska A, Kakareko K, Hryszko T. The Serum Concentration of Anti-Aging Proteins, Sirtuin1 and αKlotho in Patients with End-Stage Kidney Disease on Maintenance Hemodialysis. Clin Interv Aging 2020; 15:387-393. [PMID: 32214805 PMCID: PMC7084123 DOI: 10.2147/cia.s236980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Sirtuin1 (SIRT1) acts as an anti-aging protein due to anti-apoptotic, anti-oxidative and anti-inflammatory effect and is implicated in several diseases including diabetes or cardiovascular problems. SIRT1 renal overexpression indicates oxidative stress. Similarly, αKlotho was primarily exposed as anti-aging factor. It is primary produced in kidney. It’s deficiency is associated with progression of chronic kidney disease and heart disorders. Purpose The aim of the study was to assess the serum concentration of sirtuin1 and αKlotho in hemodialysis (HD) patients compared to healthy volunteers in regard to age, blood pressure control, residual kidney function (RKF), diabetes, cardiovascular disease, dialysis vintage and type of dialyzer. Patients and Methods The serum level of SIRT1 and αKlotho was evaluated using ELISA tests in 103 HD patients, median age 67 years and in 21 volunteers. Blood pressure, RRF, echocardiography and dialysis parameters were assessed. HD group was divided according to the presence/absence of RKF. Results The serum SIRT1 level was higher (28.4 vs 2.71ng/mL, p<0.0001) and αKlotho was lower (433.9 vs 756.6pg/mL, p<0.0001) in HD then in control group. αKlotho was lower in those without RKF (387.2 vs 486.2pg/mL, p=0.028). SIRT1 positively correlated with hemodialysis vintage. αKlotho negatively correlated with left ventricular posterior wall thickness. There was no significant relationship between SIRT1 and αKlotho level and age, blood pressure control, type of dialyzer, Kt/V and diabetes. Multivariate analysis revealed association of SIRT1 with ejection fraction (B −0.72; p=0.32). Conclusion Elevated SIRT1 and lower αKlotho concentration are associated with impaired kidney function. The decrease in levels of αKlotho may also indicate heart hypertrophy in hemodialysis patients. The role of anti-aging proteins, particularly SIRT1 as biomarkers/predictors of oxidative stress, inflammation and cardiovascular diseases need further examination.
Collapse
Affiliation(s)
- Edyta Zbroch
- 2-nd Department of Nephrology and Hypertension with Dialysis Centre, Medical University, Bialystok, Poland
| | - Angelika Bazyluk
- 2-nd Department of Nephrology and Hypertension with Dialysis Centre, Medical University, Bialystok, Poland
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Koc-Zorawska
- 2-nd Department of Nephrology and Hypertension with Dialysis Centre, Medical University, Bialystok, Poland
| | | | - Katarzyna Kakareko
- 2-nd Department of Nephrology and Hypertension with Dialysis Centre, Medical University, Bialystok, Poland
| | - Tomasz Hryszko
- 2-nd Department of Nephrology and Hypertension with Dialysis Centre, Medical University, Bialystok, Poland
| |
Collapse
|
207
|
Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as Potential Targets for Delaying Ovarian Aging. Curr Drug Targets 2020; 20:16-28. [PMID: 30156157 DOI: 10.2174/1389450119666180828144843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging. But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress. These novel insights on ovarian aging are summarized in this review. Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment. Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging. Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein. This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China
| | - Hoi-Hung Cheung
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China.,Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wai-Yee Chan
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
208
|
HDAC6-an Emerging Target Against Chronic Myeloid Leukemia? Cancers (Basel) 2020; 12:cancers12020318. [PMID: 32013157 PMCID: PMC7072136 DOI: 10.3390/cancers12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Imatinib became the standard treatment for chronic myeloid leukemia (CML) about 20 years ago, which was a major breakthrough in stabilizing the pathology and improving the quality of life of patients. However, the emergence of resistance to imatinib and other tyrosine kinase inhibitors leads researchers to characterize new therapeutic targets. Several studies have highlighted the role of histone deacetylase 6 (HDAC6) in various pathologies, including cancer. This protein effectively intervenes in cellular activities by its primarily cytoplasmic localization. In this review, we will discuss the molecular characteristics of the HDAC6 protein, as well as its overexpression in CML leukemic stem cells, which make it a promising therapeutic target for the treatment of CML.
Collapse
|
209
|
Scisciola L, Sarno F, Carafa V, Cosconati S, Di Maro S, Ciuffreda L, De Angelis A, Stiuso P, Feoli A, Sbardella G, Altucci L, Nebbioso A. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence. Epigenetics 2020; 15:664-683. [PMID: 31942817 PMCID: PMC7574383 DOI: 10.1080/15592294.2019.1704349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SIRT1, a NAD+-dependent deacetylase, is the most well-studied member of class III histone deacetylases. Due to its wide range of activities and substrate targets, this enzyme has emerged as a major regulator of different physiological processes. However, SIRT1-mediated alterations are also implicated in the pathogenesis of several conditions, including metabolic and neurodegenerative disorders, and cancer. Current evidence highlights the potential role of SIRT1 as an attractive therapeutic target for disease prevention and treatment strategies, thus propelling the development of new pharmacological agents. By high-throughput screening of a large library of compounds, we identified SCIC2 as an effective SIRT1 activator. This small molecule showed enzymatic activity of 135.8% at 10 μM, an AC50 value of 50 ± 1.8 µM, and bound SIRT1 with a KD of 26.4 ± 0.6 μM. In order to potentiate its SIRT1-activating ability, SCIC2 was subjected to modelling studies, leading to the identification of a more potent derivative, SCIC2.1. SCIC2.1 displayed higher SIRT1 activity (175%; AC50 = 36.83 ± 2.23 µM), stronger binding to SIRT1, and greater cell permeability than SCIC2. At cellular level, both molecules did not alter the cell cycle progression of cancer cells and normal cells, and were able to strengthen SIRT1-mediated effects in stress response. Finally, SCIC2 and SCIC2.1 attenuated induction of senescence by reducing senescence-associated β-galactosidase activity. Our findings warrant further investigation of these two novel SIRT1 activators in in vivo and human studies.
Collapse
Affiliation(s)
- Lucia Scisciola
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Sandro Cosconati
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli" , Caserta, italy
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli" , Caserta, italy
| | - Loreta Ciuffreda
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Antonella De Angelis
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Paola Stiuso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Alessandra Feoli
- Dipartmento di Farmacia, Università degli Studi di Salerno , Fisciano, Italy
| | - Gianluca Sbardella
- Dipartmento di Farmacia, Università degli Studi di Salerno , Fisciano, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli , Napoli, Italy
| |
Collapse
|
210
|
Seifert T, Malo M, Kokkola T, Stéen EJL, Meinander K, Wallén EAA, Jarho EM, Luthman K. A scaffold replacement approach towards new sirtuin 2 inhibitors. Bioorg Med Chem 2020; 28:115231. [PMID: 31848116 DOI: 10.1016/j.bmc.2019.115231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Sirtuins (SIRT1-SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.
Collapse
Affiliation(s)
- Tina Seifert
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden.
| | - Marcus Malo
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Tarja Kokkola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - E Johanna L Stéen
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Kristian Meinander
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI- 00014 Helsinki, Finland
| | - Erik A A Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI- 00014 Helsinki, Finland
| | - Elina M Jarho
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristina Luthman
- Department of Chemistry and Molecular Biology, Medicinal Chemistry, University of Gothenburg, SE-412 96 Göteborg, Sweden
| |
Collapse
|
211
|
Islam S, Uehara O, Matsuoka H, Kuramitsu Y, Adhikari BR, Hiraki D, Toraya S, Jayawardena A, Saito I, Muthumala M, Nagayasu H, Abiko Y, Chiba I. DNA hypermethylation of sirtuin 1 (SIRT1) caused by betel quid chewing-a possible predictive biomarker for malignant transformation. Clin Epigenetics 2020; 12:12. [PMID: 31931863 PMCID: PMC6958620 DOI: 10.1186/s13148-019-0806-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA hypermethylation of tumor suppressor genes is observed in precancerous lesions and oral cancer of individuals with the habits of betel quid (BQ) chewing. SIRT1 has been identified as playing a role in the maintenance of epithelial integrity, and its alteration is often related to carcinogenesis. However, the methylation and transcription status of SIRT1 in patients with BQ chewing-related oral cancer has not been investigated. We examined the methylation status of SIRT1 in paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC) obtained from BQ chewing and non-chewing patients and in tissue samples from healthy control subjects. In addition, we examined whether the hypermethylation of SIRT1 followed by its transcriptional downregulation in the human gingival epithelial cells could be caused by arecoline, a major component of BQ. Furthermore, we investigated the methylation status of SIRT1 in smear samples of macroscopically healthy buccal mucosa from subjects with a habit of BQ chewing. RESULTS SIRT1 was significantly hypermethylated in tissue samples of OSCC from BQ chewers and non-chewers than in oral mucosa from healthy control subjects. Results also showed that the hypermethylation level of SIRT1 was significantly higher in OSCC of patients with BQ chewing habits than in those of non-chewing habits (p < 0.05). Our in vitro model showed that hypermethylation is followed by downregulation of the transcriptional level of SIRT1 (p < 0.05). The methylation levels of SIRT1 in the smear samples obtained from BQ chewing individuals were significantly higher than those in the samples obtained from individuals that did not chew BQ. The duration of BQ chewing habits was correlated positively to the frequency of SIRT1 hypermethylation (p < 0.05). CONCLUSIONS Our results suggest that DNA hypermethylation of SIRT1 is involved in the occurrence of oral cancer in BQ chewing patients and that hypermethylation in the oral mucosa of BQ chewers could be a predictive marker for the occurrence of malignant transformation. This is the first report that showed DNA hypermethylation in clinically healthy oral epithelium of BQ chewers. Our study shows evidence that DNA hypermethylation may be an early event of oral carcinogenesis prior to observable clinical changes.
Collapse
Affiliation(s)
- Shajedul Islam
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.,Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.,Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yasuhiro Kuramitsu
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Daichi Hiraki
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Seiko Toraya
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Asiri Jayawardena
- Department of General Education, School of Dental Medicine, Tsurumi University, Kanagawa, 230-8501, Japan
| | - Ichiro Saito
- Department of Pathology, School of Dental Medicine, Tsurumi University, Kanagawa, 230-8501, Japan
| | - Malsantha Muthumala
- Department of Oral and Maxillofacial Surgery, Army Hospital, Colombo, Sri Lanka
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| |
Collapse
|
212
|
Anaizi N. Nicotinamide adenine dinucleotide, the sirtuins, and the secret of a long health span. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2020. [DOI: 10.4103/ijmbs.ijmbs_6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
213
|
Cargill K, Sims-Lucas S. Metabolic requirements of the nephron. Pediatr Nephrol 2020; 35:1-8. [PMID: 30554363 DOI: 10.1007/s00467-018-4157-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
The mammalian kidney is a complex organ that has several metabolically active cell types to aid in waste filtration, salt-water balance, and electrolyte homeostasis in the body. These functions are done primarily through the nephron, which relies on strict regulation of various metabolic pathways. Any deviations in the metabolic profile of nephrons or their precursor cells called nephron progenitors can lead to renal pathologies and abnormal development. Metabolism encompasses the mechanisms by which cells generate intermediate molecules and energy in the form of adenosine triphosphate (ATP). ATP is required by all cells and is mainly generated through glycolysis, fatty acid oxidation, and oxidative phosphorylation. During kidney development, self-renewing or proliferating cells rely on glycolysis to a greater extent than the other metabolic pathways to supply energy, replenish reducing equivalents, and generate nucleotides. However, terminally differentiated cell types rely more heavily on fatty acid oxidation and oxidative phosphorylation performed in the mitochondria to fulfill energy requirements. Further, the mature nephron is comprised of distinct segments and each segment utilizes metabolic pathways to varying degrees depending on the specific function. This review will focus on major metabolic processes performed by the nephron during health and disease.
Collapse
Affiliation(s)
- Kasey Cargill
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA. .,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
214
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
215
|
Carafa V, Poziello A, Della Torre L, Giovannelli P, Di Donato M, Safadeh E, Yu Z, Baldi A, Castoria G, Tomaselli D, Mai A, Rotili D, Nebbioso A, Altucci L. Enzymatic and Biological Characterization of Novel Sirtuin Modulators against Cancer. Int J Mol Sci 2019; 20:ijms20225654. [PMID: 31726691 PMCID: PMC6888689 DOI: 10.3390/ijms20225654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
Sirtuins, a family of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylases, are promising targets for anticancer treatment. Recently, we characterized a novel pan-sirtuin (SIRT) inhibitor, MC2494, displaying antiproliferative effects and able to induce death pathways in several human cancer cell lines and decrease tumor growth in vivo. Based on the chemical scaffold of MC2494, and by applying a structure–activity relationship approach, we developed a small library of derivative compounds and extensively analyzed their enzymatic action at cellular level as well as their ability to induce cell death. We also investigated the effect of MC2494 on regulation of cell cycle progression in different cancer cell lines. Our investigations indicated that chemical substitutions applied to MC2494 scaffold did not confer higher efficacy in terms of biological activity and SIRT1 inhibition, but carbethoxy-containing derivatives showed higher SIRT2 specificity. The carbethoxy derivative of MC2494 and its 2-methyl analog displayed the strongest enzymatic activity. Applied chemical modifications improved the enzymatic selectivity of these SIRT inhibitors. Additionally, the observed activity of MC2494 via cell cycle and apoptotic regulation and inhibition of cell migration supports the potential role of SIRTs as targets in tumorigenesis and makes SIRT-targeting molecules good candidates for novel pharmacological approaches in personalized medicine.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Angelita Poziello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Elham Safadeh
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Zhijun Yu
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Alfonso Baldi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
| | - Daniela Tomaselli
- Dipartimento di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Roma, Italy;
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Roma, Italy;
- Correspondence: (A.M.); (D.R.); (A.N.); (L.A.); Tel.: +39-0649-913-392 (A.M.); +39-0649-913-891 (D.R.); +39-0815-665-682 (A.N.); +39-0815-667-569 (L.A.); Fax: +39-064-9693-268 (A.M. & D.R.); +39-081-450-169 (A.N. & L.A.)
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Roma, Italy;
- Correspondence: (A.M.); (D.R.); (A.N.); (L.A.); Tel.: +39-0649-913-392 (A.M.); +39-0649-913-891 (D.R.); +39-0815-665-682 (A.N.); +39-0815-667-569 (L.A.); Fax: +39-064-9693-268 (A.M. & D.R.); +39-081-450-169 (A.N. & L.A.)
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
- Correspondence: (A.M.); (D.R.); (A.N.); (L.A.); Tel.: +39-0649-913-392 (A.M.); +39-0649-913-891 (D.R.); +39-0815-665-682 (A.N.); +39-0815-667-569 (L.A.); Fax: +39-064-9693-268 (A.M. & D.R.); +39-081-450-169 (A.N. & L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.C.); (A.P.); (L.D.T.); (P.G.); (M.D.D.); (E.S.); (Z.Y.); (G.C.)
- Correspondence: (A.M.); (D.R.); (A.N.); (L.A.); Tel.: +39-0649-913-392 (A.M.); +39-0649-913-891 (D.R.); +39-0815-665-682 (A.N.); +39-0815-667-569 (L.A.); Fax: +39-064-9693-268 (A.M. & D.R.); +39-081-450-169 (A.N. & L.A.)
| |
Collapse
|
216
|
Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y, Wang HS. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway. Food Funct 2019; 10:2752-2765. [PMID: 31041965 DOI: 10.1039/c9fo00001a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributed greatly to myocardial ischemia-reperfusion (MI/R)-induced cardiomyocyte apoptosis. Naringenin is a flavonoid exhibiting potential protective effects on myocardial mitochondria under stress conditions. However, the detailed down-stream signaling pathway involved remains uncovered. This study was designed to elucidate naringenin's mitochondrial protective actions during MI/R with a focus on AMPK-SIRT3 signaling. Sprague-Dawley rats were administered with naringenin (50 mg kg-1 d-1) and subjected to MI/R surgery in the presence or absence of compound C (0.25 mg kg-1, Com.C, an AMPK inhibitor) co-treatment. An in vitro study was performed on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were administered with naringenin (80 μmol L-1) with or without SIRT3 siRNA/AMPK1α siRNA transfection. Naringenin improved post-reperfusion left ventricular systolic pressure and the instantaneous first derivative of left ventricular pressure, and reduced the infarction size and myocardial apoptosis index by suppressing mitochondrial oxidative stress damage (as evidenced by decreased mitochondrial cytochrome c release and oxidative markers) and enhancing mitochondrial biogenesis [as evidenced by increased NRF1, TFAM and oxidative phosphorylation subunit complexes (II, III and IV)]. These protective actions were abolished by Com.C (in vivo) or SIRT3 siRNA (in vitro) administration. Further investigation revealed that Com.C (in vivo) or AMPK1α siRNA (in vitro) markedly suppressed PGC-1α and SIRT3 levels while SIRT3 siRNA (in vitro) inhibited SIRT3 expression without significantly changing AMPK phosphorylation and PGC-1α levels. Taken together, we found that naringenin directly inhibits mitochondrial oxidative stress damage and preserves mitochondrial biogenesis, thus attenuating MI/R injury. Importantly, AMPK-SIRT3 signaling played a key role in this process.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, , Liaoning 110016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Hassell KN. Histone Deacetylases and their Inhibitors in Cancer Epigenetics. Diseases 2019; 7:diseases7040057. [PMID: 31683808 PMCID: PMC6955926 DOI: 10.3390/diseases7040057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDAC) and histone deacetylase inhibitors (HDACi) have greatly impacted the war on cancer. Their role in epigenetics has significantly altered the development of anticancer drugs used to treat the most rare, persistent forms of cancer. During transcription, HDAC and HDACi are used to regulate the genetic mutations found in cancerous cells by removing and/or preventing the removal of the acetyl group on specific histones. This activity determines the relaxed or condensed conformation of the nucleosome, changing the accessibility zones for transcription factors. These modifications lead to other biological processes for the cell, including cell cycle progression, proliferation, and differentiation. Each HDAC and HDACi class or group has a distinctive mechanism of action that can be utilized to halt the progression of cancerous cell growth. While the use of HDAC- and HDACi-derived compounds are relatively new in treatment of cancers, they have a proven efficacy when the appropriately utilized. This following manuscript highlights the mechanisms of action utilized by HDAC and HDACi in various cancer, their role in epigenetics, current drug manufacturers, and the impact predicative modeling systems have on cancer therapeutic drug discovery.
Collapse
Affiliation(s)
- Kelly N Hassell
- Department of Biology, College of St. Elizabeth, Morristown, NJ 07960, USA.
| |
Collapse
|
218
|
Manjula R, Gokhale N, Unni S, Deshmukh P, Reddyrajula R, Srinivas Bharath M, Dalimba U, Padmanabhan B. Design, synthesis, in-vitro evaluation and molecular docking studies of novel indole derivatives as inhibitors of SIRT1 and SIRT2. Bioorg Chem 2019; 92:103281. [DOI: 10.1016/j.bioorg.2019.103281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
|
219
|
Muvva C, Murugan NA, Kumar Choutipalli VS, Subramanian V. Unraveling the Unbinding Pathways of Products Formed in Catalytic Reactions Involved in SIRT1-3: A Random Acceleration Molecular Dynamics Simulation Study. J Chem Inf Model 2019; 59:4100-4115. [PMID: 31553614 DOI: 10.1021/acs.jcim.9b00513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, which undergo robust deacetylase activity, resulting in the production of nicotinamide. It is well known that nicotinamide, which is one of the products, can also act as an inhibitor for further deacetylation process by forming NAD+ again. Hence, the removal of nicotinamide from sirtuins is a demanding process, and the mechanistic understanding of the process remains elusive. In this investigation, we have made an attempt to unravel the unbinding pathways of nicotinamide from SIRT1, SIRT2, and SIRT3 (SIRT1-3) using Random Acceleration Molecular Dynamics (RAMD) Simulations, and we have successfully identified various unbinding channels. The selectivity of the egression channel is determined by using a thorough analysis of the frequency of egression trajectories. Similarly, various inhibitors have been docked with the active sites of SIRT1-3, and their egression pathways have been investigated to understand whether they follow the same egression pathway as that of nicotinamide. The residues that are responsible for the unbinding pathways have been determined from the analysis of RAMD trajectories. From these results, it is clear that phenylalanine and histidine residues play major roles in the egression of inhibitors. Additionally, the key residues Leu, Pro, Met, Phe, Tyr, and Ile are found to control the release by acting as gateway residues. The role of these residues from different egression channels has been studied by carrying out mutations with alanine residue. This is the first report on sirtuins, which demonstrates the novel unbinding pathways for nicotinamide/inhibitors. This work provides new insights for developing more promising SIRT1-3 inhibitors.
Collapse
Affiliation(s)
- Charuvaka Muvva
- Inorganic and Physical Chemistry Laboratory , CSIR-Central Leather Research Institute , Adyar , Chennai 600020 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , S-106 91 Stockholm , Sweden
| | - Venkata Surya Kumar Choutipalli
- Inorganic and Physical Chemistry Laboratory , CSIR-Central Leather Research Institute , Adyar , Chennai 600020 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Venkatesan Subramanian
- Inorganic and Physical Chemistry Laboratory , CSIR-Central Leather Research Institute , Adyar , Chennai 600020 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
220
|
Song SB, Park JS, Chung GJ, Lee IH, Hwang ES. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics 2019; 15:137. [PMID: 31587111 DOI: 10.1007/s11306-019-1604-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotinamide (NAM) is a form of vitamin B3 that, when administered at near-gram doses, has been shown or suggested to be therapeutically effective against many diseases and conditions. The target conditions are incredibly diverse ranging from skin disorders such as bullous pemphigoid to schizophrenia and depression and even AIDS. Similar diversity is expected for the underlying mechanisms. In a large portion of the conditions, NAM conversion to nicotinamide adenine dinucleotide (NAD+) may be a major factor in its efficacy. The augmentation of cellular NAD+ level not only modulates mitochondrial production of ATP and superoxide, but also activates many enzymes. Activated sirtuin proteins, a family of NAD+-dependent deacetylases, play important roles in many of NAM's effects such as an increase in mitochondrial quality and cell viability countering neuronal damages and metabolic diseases. Meanwhile, certain observed effects are mediated by NAM itself. However, our understanding on the mechanisms of NAM's effects is limited to those involving certain key proteins and may even be inaccurate in some proposed cases. AIM OF REVIEW This review details the conditions that NAM has been shown to or is expected to effectively treat in humans and animals and evaluates the proposed underlying molecular mechanisms, with the intention of promoting wider, safe therapeutic application of NAM. KEY SCIENTIFIC CONCEPTS OF REVIEW NAM, by itself or through altering metabolic balance of NAD+ and tryptophan, modulates mitochondrial function and activities of many molecules and thereby positively affects cell viability and metabolic functions. And, NAM administration appears to be quite safe with limited possibility of side effects which are related to NAM's metabolites.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Jin Sung Park
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Gu June Chung
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seoul, Republic of Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea.
| |
Collapse
|
221
|
Radwan MO, Ciftci HI, Ali TFS, Ellakwa DE, Koga R, Tateishi H, Nakata A, Ito A, Yoshida M, Okamoto Y, Fujita M, Otsuka M. Antiproliferative S-Trityl-l-Cysteine -Derived Compounds as SIRT2 Inhibitors: Repurposing and Solubility Enhancement. Molecules 2019; 24:E3295. [PMID: 31510043 PMCID: PMC6766826 DOI: 10.3390/molecules24183295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
S-trityl-l-cysteine (STLC) is a well-recognized lead compound known for its anticancer activity owing to its potent inhibitory effect on human mitotic kinesin Eg5. STLC contains two free terminal amino and carboxyl groups that play pivotal roles in binding to the Eg5 pocket. On the other hand, such a zwitterion structure complicates the clinical development of STLC because of the solubility issues. Masking either of these radicals reduces or abolishes STLC activity against Eg5. We recently identified and characterized a new class of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of sirtuin protein (SIRT2) inhibitors that can be utilized as cytotoxic agents based on an S-trityl-l-histidine scaffold. Herein, we propose new STLC-derived compounds that possess pronounced SIRT2 inhibition effects. These derivatives contain modified amino and carboxyl groups, which conferred STLC with SIRT2 bioactivity, representing an explicit repurposing approach. Compounds STC4 and STC11 exhibited half maximal inhibitory concentration values of 10.8 ± 1.9 and 9.5 ± 1.2 μM, respectively, against SIRT2. Additionally, introduction of the derivatizations in this study addressed the solubility limitations of free STLC, presumably due to interruption of the zwitterion structure. Therefore, we could obtain drug-like STLC derivatives that work by a new mechanism of action. The new derivatives were designed, synthesized, and their structure was confirmed using different spectroscopic approaches. In vitro and cellular bioassays with various cancer cell lines and in silico molecular docking and solubility calculations of the synthesized compounds demonstrated that they warrant attention for further refinement of their bioactivity.
Collapse
Affiliation(s)
- Mohamed O Radwan
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-Ku, Kumamoto 8620976, Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Halil I Ciftci
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-Ku, Kumamoto 8620976, Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Taha F S Ali
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Doha E Ellakwa
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
- Department of Biochemistry Science, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Cairo 11651, Egypt
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Akiko Nakata
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 1138657, Japan
| | - Yoshinari Okamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan.
| | - Masami Otsuka
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-Ku, Kumamoto 8620976, Japan.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan.
| |
Collapse
|
222
|
Bazyluk A, Malyszko J, Hryszko T, Zbroch E. State of the art - sirtuin 1 in kidney pathology - clinical relevance. Adv Med Sci 2019; 64:356-364. [PMID: 31125865 DOI: 10.1016/j.advms.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/17/2018] [Accepted: 04/19/2019] [Indexed: 01/19/2023]
Abstract
Sirtuins represent a group of nicotinamide adenine dinucleotide dependent histone deacetylases, which regulates various biological pathways by promoting chromatin silencing and transcriptional repression. Therefore, they are linked to cellular energy metabolism, mitochondrial biogenesis, stress response, apoptosis, inflammation and fibrosis. Since sirtuin 1 became a promising candidate for targeted therapies of numerous conditions, researchers have been investigating its activator. As for now, natural agents and antidiabetic drug - metformin, have been found to activate sirtuin 1. Sirtuin 1 is able to improve kidney outcomes by direct impact on kidney cells, regulation of non-specific processes generally involved in pathogenesis of age-dependent and metabolic disorders and improvement of the comorbid diseases. This review discusses the state of the art knowledge on the role of sirtuin 1 on kidney pathology.
Collapse
|
223
|
Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD + and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019; 200:27-41. [PMID: 30974124 PMCID: PMC7010080 DOI: 10.1016/j.pharmthera.2019.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.
Collapse
Affiliation(s)
- Yi Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Priyamvada Rai
- Department of Medicine/Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rong G Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
224
|
Kızıltunç E, Kösem A, Özkan C, Ilgın BU, Kundi H, Çetin M, Ornek E. Serum Sirtuin 1, 3 and 6 Levels in Acute Myocardial Infarction Patients. Arq Bras Cardiol 2019; 113:33-39. [PMID: 31291416 PMCID: PMC6684194 DOI: 10.5935/abc.20190114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sirtuins may act in many cellular processes like apoptosis, DNA repair and lipid/glucose metabolism. Experimental studies suggested some sirtuin types may have protective effects against endothelial dysfunction, atherosclerosis, cardiac hypertrophy and reperfusion injury. Data about sirtuins in acute myocardial infarction (AMI) patients are scarce. OBJECTIVES To investigate temporal changes of serum sirtuin 1,3 and 6 levels in AMI patients; to compare the serum sirtuin 1,3 and 6 levels between AMI patients and control subjects; and to investigate the association of serum sirtuin 1,3 and 6 levels with prognostic markers of AMI. METHODS Forty patients with AMI and 40 patients with normal coronary arteries were included. Left ventricular ejection fraction (LVEF), serum proBNP, CRP, sirtuin1, sirtuin 3 and sirtuin 6 levels were processed. Peak troponin T levels, GRACE score, first day / second day sirtuin levels were recorded of AMI patients. A p value < 0.05 was considered statistically significant. RESULTS Serum sirtuin 1,3 and 6 levels in AMI patients were similar to those in normal coronary patients. No temporal change in serum sirtuin 1,3 and 6 levels were found in AMI course. No correlation was evident between the sirtuin levels and the following parameters: proBNP, CRP, peak troponin and LVEF. Baseline sirtuin 1 and 6 levels were positively correlated with reperfusion duration. Baseline sirtuin 3 levels were negatively correlated with GRACE score. CONCLUSION Serum sirtuin 1,3 and 6 levels in AMI patients were similar to those in normal coronary patients. This study does not represent evidence of the possible protective effects of sirtuin1, 3 and 6 in AMI patients.
Collapse
Affiliation(s)
- Emrullah Kızıltunç
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Cardiology, Ankara - Turkey
| | - Arzu Kösem
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Medical Biochemistry, Ankara - Turkey
| | - Can Özkan
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Cardiology, Ankara - Turkey
| | - Burcu Uğurlu Ilgın
- TC Saglık Bakanlıgı Gazi Mustafa Kemal Devlet Hastanesi - Cardiology, Ankara - Turkey
| | - Harun Kundi
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Cardiology, Ankara - Turkey.,Beth Israel Deaconess Medical Center - Cardiology, Boston, Massachusetts - USA
| | - Mustafa Çetin
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Cardiology, Ankara - Turkey
| | - Ender Ornek
- TC Saglik Bakanligi Ankara Numune Egitim ve Arastirma Hastanesi - Cardiology, Ankara - Turkey
| |
Collapse
|
225
|
Ma S, Fan L, Cao F. Combating cellular senescence by sirtuins: Implications for atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1822-1830. [DOI: 10.1016/j.bbadis.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
|
226
|
Qin Y, Cao L, Hu L. Sirtuin 6 mitigated LPS-induced human umbilical vein endothelial cells inflammatory responses through modulating nuclear factor erythroid 2-related factor 2. J Cell Biochem 2019; 120:11305-11317. [PMID: 30784091 DOI: 10.1002/jcb.28407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) protects the lung from sepsis-induced injury through activating Nrf2-regulated multiple phase 2 detoxification genes, including NAD(P)H: quinine oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO1). Based on the positive effect of Sirtuin 6 on Nrf2, we aim to explore the potential role of SIRT6 in the mechanism of sepsis-induced acute lung injury (ALI). METHODS Mouse models of sepsis were constructed by instilling intratracheal of lipopolysaccharide (LPS; 4 ml/kg). After 48-hour treatment, lung tissues were collected to measure the degree of lung injury. The SIRT6, siSIRT6, and siNrf2 plasmids were cotransfected into various concentrations of LPS-treated human umbilical vein endothelial cells (HUVECs; 0, 1, 5, 10, and 50 μg/ml) using Lipofectamine 2000. Tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels were determined by enzyme-linked immunosorbent assay. Expression levels of SIRT6, Nrf2, NQO1, and HO1 was measured by quantitative polymerase chain reaction and Western blot analysis. Cell apoptosis was determined by flow cytometry. RESULTS Lung tissues in the model group already had basic characteristics of ALI. Compared with the control model, TNF-α and IL-6 levels were much higher (P < 0.01), the levels of SIRT6, Nrf2, and Nrf2-modulated detoxification factors were downregulated (P < 0.01). SIRT6 overexpression decreased the apoptosis below to 10% (P < 0.01), significantly increased the Nrf2 expression, effectively inhibited TNF-α and IL-6 releases, and enhanced NQO1 and HO1 levels (P < 0.01). siNrf2 abolished the protective effects of SIRT6 overexpression, including increasing apoptosis and inhibiting anti-inflammatory and antioxidative genes expressions (P < 0.01). CONCLUSIONS Our study suggested SIRT6 positively regulated Nrf2 expression and activated Nrf2-regulated anti-inflammatory and antioxidative enzymes, which could effectively mitigate LPS-induced HUVECs inflammatory responses. This might reflect the mechanism of ALI induced by sepsis.
Collapse
Affiliation(s)
- Yi Qin
- ICU, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou, China
| | - Lirong Cao
- Medical Department, Hubei College of Chinese Medicine, Jingzhou, China
| | - Lili Hu
- ICU, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
227
|
Mellini P, Itoh Y, Elboray EE, Tsumoto H, Li Y, Suzuki M, Takahashi Y, Tojo T, Kurohara T, Miyake Y, Miura Y, Kitao Y, Kotoku M, Iida T, Suzuki T. Identification of Diketopiperazine-Containing 2-Anilinobenzamides as Potent Sirtuin 2 (SIRT2)-Selective Inhibitors Targeting the "Selectivity Pocket", Substrate-Binding Site, and NAD +-Binding Site. J Med Chem 2019; 62:5844-5862. [PMID: 31144814 DOI: 10.1021/acs.jmedchem.9b00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The NAD+-dependent deacetylase SIRT2 represents an attractive target for drug development. Here, we designed and synthesized drug-like SIRT2-selective inhibitors based on an analysis of the putative binding modes of recently reported SIRT2-selective inhibitors and evaluated their SIRT2-inhibitory activity. This led us to develop a more drug-like diketopiperazine structure as a "hydrogen bond (H-bond) hunter" to target the substrate-binding site of SIRT2. Thioamide 53, a conjugate of diketopiperazine and 2-anilinobenzamide which is expected to occupy the "selectivity pocket" of SIRT2, exhibited potent SIRT2-selective inhibition. Inhibition of SIRT2 by 53 was mediated by the formation of a 53-ADP-ribose conjugate, suggesting that 53 is a mechanism-based inhibitor targeting the "selectivity pocket", substrate-binding site, and NAD+-binding site. Furthermore, 53 showed potent antiproliferative activity toward breast cancer cells and promoted neurite outgrowth of Neuro-2a cells. These findings should pave the way for the discovery of novel therapeutic agents for cancer and neurological disorders.
Collapse
Affiliation(s)
- Paolo Mellini
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Elghareeb E Elboray
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan.,Chemistry Department, Faculty of Science , South Valley University , Qena 83523 , Egypt
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho , Itabashi-ku, Tokyo 173-0015 , Japan
| | - Ying Li
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Miki Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yukari Takahashi
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Toshifumi Tojo
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Takashi Kurohara
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yuka Miyake
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho , Itabashi-ku, Tokyo 173-0015 , Japan
| | - Yuki Kitao
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Masayuki Kotoku
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Tetsuya Iida
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan.,CREST , Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
228
|
Yu H, Pan W, Huang H, Chen J, Sun B, Yang L, Zhu P. Screening Analysis of Sirtuins Family Expression on Anti-Inflammation of Resveratrol in Endothelial Cells. Med Sci Monit 2019; 25:4137-4148. [PMID: 31158122 PMCID: PMC6561145 DOI: 10.12659/msm.913240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Resveratrol has been shown to possess beneficial activities including antioxidant, anti-inflammatory, and cardioprotective effects through activating a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. The current study was undertaken to investigate the role of sirtuin family members (SIRT1–SIRT7) on the anti-inflammation activities of resveratrol in endothelial cells. Material/Methods Primary human umbilical vein endothelial cells (HUVECs) were pretreated with resveratrol before tumor necrosis factor (TNF)-α (10–20 μg/L) stimulation. Cell viability was measured using the Cell Counting Kit-8 method. Total RNA was extracted after different treatments and the NimbleGen Human 12×135K Gene Expression Array was applied to screen and analyze SIRTs expression. Quantitative real-time polymerase chain reaction and western blot were applied to verify the results of the gene expression microarrays. Reactive oxygen species (ROS) production was examined using flow cytometry analysis. Results Microarray analysis showed that the expressions of SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and SIRT7 showed the tendency to increase while SIRT4 showed the tendency to decrease. SIRT1, SIRT2, SIRT5, and SIRT7 gene expression could be upregulated by pretreatment with resveratrol compared with TNF-α alone while there were no obvious differences of SIRT3, SIRT4, and SIRT6 expressions observed in TNF-α alone treated cells and resveratrol-TNF-α co-treated cells. Interestingly, SIRT1, SIRT2, SIRT3, SIRT4, and SIRT5 siRNA could reverse the effect of resveratrol on ROS production; SIRT1 and SIRT5 siRNA could significantly increase CD40 expression inhibited by resveratrol in TNF-α treated cells. Conclusions Our results suggest that resveratrol inhibiting oxidative stress production is associated with SIRT1, SIRT2, SIRT3, SIRT4, and SIRT5 pathways; attenuating CD40 expression was only associated with SIRT1 and SIRT5 pathways in TNF-α-induced endothelial cells injury.
Collapse
Affiliation(s)
- Huizhen Yu
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland).,Department of Medicine, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China (mainland)
| | - Wei Pan
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland).,Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China (mainland)
| | - Huashan Huang
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland)
| | - Junming Chen
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland)
| | - Baohua Sun
- Department of Medicine, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China (mainland)
| | - Linxin Yang
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland)
| | - Pengli Zhu
- Key Laboratory of Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, Fujian Institute of Clinical Geriatrics, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
229
|
SIRT2 Contributes to the Resistance of Melanoma Cells to the Multikinase Inhibitor Dasatinib. Cancers (Basel) 2019; 11:cancers11050673. [PMID: 31091806 PMCID: PMC6562913 DOI: 10.3390/cancers11050673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Malignant melanoma is the most aggressive skin cancer and can only be cured if detected early. Unfortunately, later stages of the disease do not guarantee success due to the rapid rate of melanoma cell metastasis and their high resistance to applied therapies. The search for new molecular targets and targeted therapy may represent the future in the development of effective methods for combating this cancer. SIRT2 is a promising target; thus, we downregulated SIRT2 expression in melanoma cells in vertical growth and metastatic phases and demonstrated that sirtuin acts as regulator of the basic functions of melanoma cells. A detailed transcriptomic analysis showed that SIRT2 regulates the expression of multiple genes encoding the tyrosine kinase pathways that are molecular targets of dasatinib. Indeed, cells with low SIRT2 expression were more susceptible to dasatinib, as demonstrated by multiple techniques, e.g., neutral red uptake, 3/7 caspase activity, colony formation assay, and in vitro scratch assay. Furthermore, these cells showed an altered phosphorylation profile for proteins playing roles in the response to dasatinib. Thus, our research indicates new, previously unknown SIRT2 functions in the regulation of gene expression, which is of key clinical significance.
Collapse
|
230
|
Tetrahydrocurcumin Ameliorates Diabetic Cardiomyopathy by Attenuating High Glucose-Induced Oxidative Stress and Fibrosis via Activating the SIRT1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6746907. [PMID: 31210844 PMCID: PMC6532281 DOI: 10.1155/2019/6746907] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 01/10/2023]
Abstract
Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.
Collapse
|
231
|
Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y, Wang HS. Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism. Chem Biol Interact 2019; 306:152-162. [PMID: 31063767 DOI: 10.1016/j.cbi.2019.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
Abstract
Punicalagin has been found to exert cardiac protective effects against myocardial ischemia/reperfusion (MI/R) injury, although the detailed mechanisms remain largely unknown. This experiment was performed to explore the potential involvement of silent information regulator 1 (SIRT1)-NFE2-related factor 2 (NRF-2)-heme oxygenase-1 (HO-1) pathway in the cardiac protective actions of punicalagin. Sprague-Dawley (SD) rats were subjected to MI/R operation with or without punicalagin treatment (40 mg kg-1d-1). We showed that punicalagin-treated group exhibited enhanced cardiac function, reduced myocardial infarction and decreased cleaved caspase-3 level. Furthermore, myocardial oxidative/nitrosative stress was ameliorated by punicalagin as evidenced by suppressed superoxide generation, gp91phox and iNOS expressions, NO metabolites as well as myocardial nitrotyrosine level. Additionally, punicalagin decreased myocardial IL-6, TNF-α and the levels of ICAM-1, VCAM-1 and IKK-β expressions as well as IκB-α phosphorylation and NF-κB nuclear translocation. However, these effects were abolished by EX527 (5 mg kg-1d-1, a selective SIRT1 inhibitor). We further found that punicalagin dose-dependently enhanced SIRT1 nuclear distribution and NRF-2-HO-1 signaling. While EX527 treatment not only reduced SIRT1 activity, but also reversed the activation of NRF-2-HO-1 pathway. Collectively, these results revealed that punicalagin reduced cardiac oxidative/nitrosative stress and inflammatory response induced by MI/R operation through SIRT1-mediated activation of NRF-2-HO-1 signaling.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Xue Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Zhi Li
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Hong-Jiang Wu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Zhong-Lu Yang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
232
|
Donniacuo M, Urbanek K, Nebbioso A, Sodano L, Gallo L, Altucci L, Rinaldi B. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway. Life Sci 2019; 222:140-147. [DOI: 10.1016/j.lfs.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
|
233
|
Kwon J, Lee S, Kim YN, Lee IH. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp Mol Med 2019; 51:1-9. [PMID: 30902968 PMCID: PMC6430805 DOI: 10.1038/s12276-019-0232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Growing evidence indicates that metabolic signaling pathways are interconnected to DNA damage response (DDR). However, factors that link metabolism to DDR remain incompletely understood. SIRT1, an NAD+-dependent deacetylase that regulates metabolism and aging, has been shown to protect cells from DDR. Here, we demonstrate that SIRT1 protects cells from oxidative stress-dependent DDR by binding and deacetylating checkpoint kinase 2 (CHK2). We first showed that essential proteins in DDR were hyperacetylated in Sirt1-deficient cells and that among them, the level of acetylated CHK2 was highly increased. We found that Sirt1 formed molecular complexes with CHK2, BRCA1/BRCA2-associated helicase 1 (BACH1), tumor suppressor p53-binding protein 1 (53BP1), and H2AX, all of which are key factors in response to DNA damage. We then demonstrated that CHK2 was normally inhibited by SIRT1 via deacetylation but dissociated with SIRT1 under oxidative stress conditions. This led to acetylation and activation of CHK2, which increased cell death under oxidative stress conditions. Our data also indicated that SIRT1 deacetylated the K235 and K249 residues of CHK2, whose acetylation increased cell death in response to oxidative stress. Thus, SIRT1, a metabolic sensor, protects cells from oxidative stress-dependent DDR by the deacetylation of CHK2. Our findings suggest a crucial function of SIRT1 in inhibiting CHK2 as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jiyun Kwon
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Suhee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
234
|
Carafa V, Altucci L, Nebbioso A. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Front Pharmacol 2019; 10:38. [PMID: 30761005 PMCID: PMC6363704 DOI: 10.3389/fphar.2019.00038] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sirtuins (SIRTs), class III histone deacetylases, are differentially expressed in several human cancers, where they display both oncogenic and tumor-suppressive properties depending on cellular context and experimental conditions. SIRTs are involved in many important biological processes and play a critical role in cancer initiation, promotion, and progression. A growing body of evidence indicates the involvement of SIRTs in regulating three important tumor processes: epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Many SIRTs are responsible for cellular metabolic reprogramming and drug resistance by inactivating cell death pathways and promoting uncontrolled proliferation. In this review, we summarize current knowledge on the role of SIRTs in cancer and discuss their puzzling dual function as tumor suppressors and tumor promoters, important for the future development of novel tailored SIRT-based cancer therapies.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
235
|
Bartoli-Leonard F, Wilkinson FL, Schiro A, Inglott FS, Alexander MY, Weston R. Suppression of SIRT1 in Diabetic Conditions Induces Osteogenic Differentiation of Human Vascular Smooth Muscle Cells via RUNX2 Signalling. Sci Rep 2019; 9:878. [PMID: 30696833 PMCID: PMC6351547 DOI: 10.1038/s41598-018-37027-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022] Open
Abstract
Vascular calcification is associated with significant morbidity and mortality within diabetes, involving activation of osteogenic regulators and transcription factors. Recent evidence demonstrates the beneficial role of Sirtuin 1 (SIRT1), an NAD+ dependant deacetylase, in improved insulin sensitivity and glucose homeostasis, linking hyperglycaemia and SIRT1 downregulation. This study aimed to determine the role of SIRT1 in vascular smooth muscle cell (vSMC) calcification within the diabetic environment. An 80% reduction in SIRT1 levels was observed in patients with diabetes, both in serum and the arterial smooth muscle layer, whilst both RUNX2 and Osteocalcin levels were elevated. Human vSMCs exposed to hyperglycaemic conditions in vitro demonstrated enhanced calcification, which was positively associated with the induction of cellular senescence, verified by senescence-associated β-galactosidase activity and cell cycle markers p16 and p21. Activation of SIRT1 by SRT1720 reduced Alizarin red staining by a third, via inhibition of the RUNX2 pathway and prevention of senescence. Conversely, inhibition of SIRT1 via Sirtinol and siRNA increased RUNX2 by over 50%. These findings demonstrate the key role that SIRT1 plays in preventing calcification in a diabetic environment, through the inhibition of RUNX2 and senescence pathways, suggesting a downregulation of SIRT1 may be responsible for perpetuating vascular calcification in diabetes.
Collapse
Affiliation(s)
- F Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - F L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - A Schiro
- Vascular Unit, Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - F Serracino Inglott
- Vascular Unit, Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - R Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
236
|
Ekperikpe US, Owolabi OJ, Olapeju BI. Effects of Parkia biglobosa aqueous seed extract on some biochemical, haematological and histopathological parameters in streptozotocin induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:1-10. [PMID: 30218811 DOI: 10.1016/j.jep.2018.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkia biglobosa seeds are used to treat diabetes and complications hence this study. AIM This study investigated the effects of Parkia biglobosa aqueous seed extract on some biochemical, haematological and histopathological indices in streptozotocin-induced diabetic rats. MATERIALS AND METHODS Wistar rats of either sex (180-300 g) were fasted overnight and diabetes mellitus induced using streptozotocin 40 mg/kg IP. Diabetes mellitus (fasting blood glucose ≥ 200 mg/dl) was confirmed 48 h later. The rats were randomly grouped into six groups (n = 5): Group 1 (diabetic untreated control), group 2 (Parkia biglobosa 200 mg/kg), group 3 (Parkia biglobosa 400 mg/kg). group 4 (Parkia biglobosa 800 mg/kg), group 5 (glibenclamide 5 mg/kg as standard drug control) and group 6 (normoglycaemic control). They were treated daily. Acute toxicity study and phytochemical screening were also performed. Fourteen days later, they were sacrificed under chloroform anaesthesia. Vital organs (kidneys, liver and pancreas) and blood samples were obtained for histopathological, biochemical and haematological analysis. RESULTS Parkia biglobosa aqueous seed extract at the various doses caused significant (P < 0.05) elevations in red blood cell parameters in comparison to the diabetic control. The mean cell volume did not differ significantly from the diabetic control while 200 mg/kg and 400 mg/kg doses of the extract did not significantly modify the HCT levels. Treatment with Parkia biglobosa significantly (P < 0.05) lowered white blood cell and platelet counts in comparison to the diabetic control. Liver enzymes and total bilirubin levels were significantly (P < 0.05) reduced while total protein increased in the treated diabetic rats in comparison to controls. Treatment with Parkia biglobosa extract significantly (P < 0.05) increased bicarbonate and sodium ion levels while decreasing potassium ion levels. Chloride levels were not significantly different from the diabetic control. CONCLUSION These data suggest that Parkia biglobosa ameliorates biochemical, haematological and histopathological changes associated with diabetes mellitus.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Benin, Benin city, Nigeria.
| | - Omonkhelin J Owolabi
- Department of Pharmacology and Toxicology, University of Benin, Benin city, Nigeria
| | - Bolanle I Olapeju
- Department of Pharmacology and Toxicology, University of Benin, Benin city, Nigeria
| |
Collapse
|
237
|
Sun M, Du M, Zhang W, Xiong S, Gong X, Lei P, Zha J, Zhu H, Li H, Huang D, Gu X. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:121. [PMID: 30930849 PMCID: PMC6424908 DOI: 10.3389/fendo.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Silent information regulator 2 homolog 1 (SIRT1) is an evolutionarily conserved enzymes with nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase activity. SIRT1 is involved in a large variety of cellular processes, such as genomic stability, energy metabolism, senescence, gene transcription, and oxidative stress. SIRT1 has long been recognized as both a tumor promoter and tumor suppressor. Its prognostic role in cancers remains controversial. Methods: A meta-analysis of 13,138 subjects in 63 articles from PubMed, EMBASE, and Cochrane Library was performed to evaluate survival and clinicopathological significance of SIRT1 expression in various cancers. Results: The pooled results of meta-analysis showed that elevated expression of SIRT1 implies a poor overall survival (OS) of cancer patients [Hazard Ratio (HR) = 1.566, 95% CI: 1.293-1.895, P < 0.0001], disease free survival (DFS) (HR = 1.631, 95% CI: 1.250-2.130, P = 0.0003), event free survival (EFS) (HR = 2.534, 95% CI: 1.602-4.009, P = 0.0001), and progress-free survival (PFS) (HR = 3.325 95% CI: 2.762-4.003, P < 0.0001). Elevated SIRT1 level was associated with tumor stage [Relative Risk (RR) = 1.299, 95% CI: 1.114-1.514, P = 0.0008], lymph node metastasis (RR = 1.172, 95% CI: 1.010-1.360, P = 0.0363), and distant metastasis (RR = 1.562, 95% CI: 1.022-2.387, P = 0.0392). Meta-regression and subgroup analysis revealed that ethnic background has influence on the role of SIRT1 expression in predicting survival and clinicopathological characteristics of cancers. Overexpression of SIRT1 predicted a worse OS and higher TNM stage and lymphatic metastasis in Asian population especially in China. Conclusion: Our data suggested that elevated expression of SIRT1 predicted a poor OS, DFS, EFS, PFS, but not for recurrence-free survival (RFS) and cancer-specific survival (CCS). SIRT1 overexpression was associated with higher tumor stage, lymph node metastasis, and distant metastasis. SIRT1-mediated molecular events and biological processes could be an underlying mechanism for metastasis and SIRT1 is a therapeutic target for inhibiting metastasis, leading to good prognosis.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengyu Du
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenhua Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Sisi Xiong
- School of Nursing, Hubei University of Medicine, Shiyan, China
| | - Xingrui Gong
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jin Zha
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongrui Zhu
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Heng Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Huang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Dong Huang
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Xinsheng Gu
| |
Collapse
|
238
|
Islam S, Abiko Y, Uehara O, Chiba I. Sirtuin 1 and oral cancer. Oncol Lett 2018; 17:729-738. [PMID: 30655824 DOI: 10.3892/ol.2018.9722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
The sirtuins (SIRTs) are a family of highly conserved histone deacetylases (HDACs) consisting of seven members (SIRT1-SIRT7). Over the past few decades, SIRT1 has been the most extensively studied and garnered tremendous attention in the scientific community due to its emerging role in cancer biology. However, its biological role in the regulation of oral cancer is not yet fully understood. Owing to contradictory findings regarding the role of SIRT1 in oral cancer, debate about it continues. The present study discusses the biological roles and potential therapeutic implications of SIRT1 in precancerous oral lesions and oral cancer.
Collapse
Affiliation(s)
- Shajedul Islam
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan.,Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
239
|
SIRT3 a Major Player in Attenuation of Hepatic Ischemia-Reperfusion Injury by Reducing ROS via Its Downstream Mediators: SOD2, CYP-D, and HIF-1 α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2976957. [PMID: 30538800 PMCID: PMC6258096 DOI: 10.1155/2018/2976957] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) production in hepatic ischemia-reperfusion injury (IRI) is a complex process where multiple cellular and molecular pathways are involved. Few of those molecular pathways are under the direct influence of SIRT3 and its downstream mediators. SIRT3 plays a major role in the mechanism of IRI, and its activation has been shown to attenuate the deleterious effect of ROS during IRI via SOD2-, CYP-D-, and HIF-1α-mediated pathways. The objective of this review is to analyze the current knowledge on SIRT3 and its downstream mediators: SOD2, CYP-D, and HIF-1α, and their role in IRI. For the references of this review article, we have searched the bibliographic databases of PubMed, Web of Science databases, MEDLINE, and EMBASE with the headings "SIRT3," "SOD2," "CYP-D," "HIF-1α," and "liver IRI." Priority was given to recent experimental articles that provide information on ROS modulation by these proteins. All the recent advancement demonstrates that activation of SIRT3 can suppress ROS production during IRI through various pathways and few of those are via SOD2, CYP-D, and HIF-1α. This effect can improve the quality of the remnant liver following resection as well as a transplanted liver. More research is warranted to disclose its role in IRI attenuation via this pathway.
Collapse
|
240
|
Oxidative nucleophilic substitution selectively produces cambinol derivatives with antiproliferative activity on bladder cancer cell lines. Bioorg Med Chem Lett 2018; 29:78-82. [PMID: 30442421 DOI: 10.1016/j.bmcl.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 11/24/2022]
Abstract
Methyltrioxorhenium mediated oxidative addition/elimination nucleophilic substitution yielded alkylamino and arylamino cambinol derivatives characterized by anti-proliferative activity against wild-type and p53 mutated MGH-U1 and RT112 bladder cancer cell lines. Some of the novel compounds showed an activity higher than that of the lead compound. The reaction was highly regioselective, affording for the first time a panel of C-2 cambinol substitution products. Aliphatic primary and secondary amines, and primary aromatic amines, were used as nitrogen centered nucleophiles. Surprisingly, the antiproliferative activity of C-2 substituted cambinol derivatives was not correlated to the induction of p53 protein, as evaluated by the analysis of the cell viability on wild-type and p53 mutated cancer cell lines, and further confirmed by western blot analyses. These data suggest that they exert their antiproliferative activity by a mechanism completely different from cambinol.
Collapse
|
241
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
242
|
Artini PG, Obino ME, Vergine F, Sergiampietri C, Papini F, Cela V. Assisted reproductive technique in women of advanced fertility age. ACTA ACUST UNITED AC 2018; 70:738-749. [DOI: 10.23736/s0026-4784.18.04247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
243
|
Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer's disease: An up-to-date review. Neuropeptides 2018; 71:54-60. [PMID: 30007474 DOI: 10.1016/j.npep.2018.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Sirtuins are NAD+-dependent enzymes that regulate a large number of cellular pathways and are related to aging and age-associated diseases. In recent years, the role of sirtuins in Alzheimer's disease (AD) has become increasingly apparent. Growing evidence demonstrates that sirtuin 1 (SIRT1) regulates many processes that go amiss in AD, such as: APP processing, neuroinflammation, neurodegeneration, and mitochondrial dysfunction. Here we review how SIRT1 affects AD and cognition, the main mechanisms in which SIRT1 is related to AD pathology, and its importance for the prevention and possible diagnosis of AD.
Collapse
Affiliation(s)
- Liara Rizzi
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil.
| | - Matheus Roriz-Cruz
- Division of Geriatric Neurology, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS 90035-903, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-903, Brazil
| |
Collapse
|
244
|
Fumagalli M, Lombardi M, Gressens P, Verderio C. How to reprogram microglia toward beneficial functions. Glia 2018; 66:2531-2549. [PMID: 30195261 PMCID: PMC6585737 DOI: 10.1002/glia.23484] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Microglia, brain cells of nonneural origin, orchestrate the inflammatory response to diverse insults, including hypoxia/ischemia or maternal/fetal infection in the perinatal brain. Experimental studies have demonstrated the capacity of microglia to recognize pathogens or damaged cells activating a cytotoxic response that can exacerbate brain damage. However, microglia display an enormous plasticity in their responses to injury and may also promote resolution stages of inflammation and tissue regeneration. Despite the critical role of microglia in brain pathologies, the cellular mechanisms that govern the diverse phenotypes of microglia are just beginning to be defined. Here we review emerging strategies to drive microglia toward beneficial functions, selectively reporting the studies which provide insights into molecular mechanisms underlying the phenotypic switch. A variety of approaches have been proposed which rely on microglia treatment with pharmacological agents, cytokines, lipid messengers, or microRNAs, as well on nutritional approaches or therapies with immunomodulatory cells. Analysis of the molecular mechanisms relevant for microglia reprogramming toward pro‐regenerative functions points to a central role of energy metabolism in shaping microglial functions. Manipulation of metabolic pathways may thus provide new therapeutic opportunities to prevent the deleterious effects of inflammatory microglia and to control excessive inflammation in brain disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9 -20133, Milan, Italy
| | | | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France.,Centre for the Developing Brain, Department of Perinatal Health and Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Claudia Verderio
- IRCCS Humanitas, via Manzoni 56, 20089, Rozzano, Italy.,CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
245
|
Anticancer activities of a benzimidazole compound through sirtuin inhibition in colorectal cancer. Future Med Chem 2018; 10:2039-2057. [DOI: 10.4155/fmc-2018-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells. Materials & methods: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways. Results & conclusion: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.
Collapse
|
246
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
247
|
Opening the Selectivity Pocket in the Human Lysine Deacetylase Sirtuin2 – New Opportunities, New Questions. CHEM REC 2018; 18:1701-1707. [DOI: 10.1002/tcr.201800044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
|
248
|
Huang G, Zhu G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. Onco Targets Ther 2018; 11:3395-3400. [PMID: 29928130 PMCID: PMC6001835 DOI: 10.2147/ott.s157724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several members of the sirtuin (SIRT) family, a highly conserved family of NAD+-dependent enzymes, have been shown to play a critical role in both promoting and/or suppressing tumorigenesis. In this study, recent progress in the field concerning SIRT4 and cancer was reviewed, and the relationship between SIRT4 and tumors was investigated. Subsequently, we evaluated the role of SIRT4 with oncogenic or tumor-suppressive activity in cancer, which may provide insight in identifying the underlying mechanism of action of SIRT4 in cancer. Finally, we explored the potential of SIRT4 as a therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Guoyu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guanbao Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
249
|
Ramsay TG, Stoll MJ, Shannon AE, Blomberg LA. Metabolomic analysis of longissimus from underperforming piglets relative to piglets with normal preweaning growth. J Anim Sci Biotechnol 2018; 9:36. [PMID: 29713469 PMCID: PMC5918561 DOI: 10.1186/s40104-018-0251-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Background Recent increases in intra-litter variability in weaning weight have raised swine production costs. A contributor to this variability is the normal birth weight pig that grows at a slower rate than littermates of similar birth weight. The goal of this study was to interrogate biochemical profiles manifested in skeletal muscle originating from slow growing (SG) and faster growing littermates (control), with the aim of identifying differences in metabolic pathway utilization between skeletal muscle of the SG pig relative to its littermates. Samples of longissimus muscle from littermate pairs of pigs were collected at 21 d of age for metabolomic analysis (Metabolon, Inc., Durham, NC). Results Birth weights did not differ between littermate pairs of SG and Control pigs (P > 0.05). Weaning weights differed by 1.51 ± 0.19 kg (P < 0.001). Random forest (RF) analysis was effective at segregating the metabolome of muscle samples by growth rate, resulting in a predictive accuracy of 81% versus random segregation (50%). Decreases in sugars in the pentose phosphate pathway (PPP) in the longissimus of SG pigs were detected (P < 0.05). Decreases were also apparent in glycolytic intermediates (glycerol-3-phosphate and lactate) and key glycolysis-derived intermediates (glucose-6-phosphate and fructose-6-phosphate; P < 0.05). SG pigs had increased levels of phospholipids, lysolipids, diacylglycerols, and sphingolipids (P < 0.05). Pathway analysis identified a cluster of molecules associated with muscle and collagen/extracellular matrix breakdown that are increased in the SG pig (glutamate, 3-methylhistidine and hydroxylated proline moieties; P < 0.05). Nicotinate metabolism was altered in SG pigs, resulting in a 78% decrease in the nicotinamide adenine dinucleotide pool (P < 0.05). Conclusions These metabolomic data provide the first evidence for biochemical mechanisms that should be investigated to determine if they have a potential role in the slow growth in some normal birth weight piglets that contribute to increased intra-litter variability in weaning weights and provides essential information and potential targets for the development of nutritional intervention strategies. Electronic supplementary material The online version of this article (10.1186/s40104-018-0251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy G Ramsay
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Margo J Stoll
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Amy E Shannon
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Le Ann Blomberg
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| |
Collapse
|
250
|
Carafa V, Nebbioso A, Cuomo F, Rotili D, Cobellis G, Bontempo P, Baldi A, Spugnini EP, Citro G, Chambery A, Russo R, Ruvo M, Ciana P, Maravigna L, Shaik J, Radaelli E, De Antonellis P, Tarantino D, Pirolli A, Ragno R, Zollo M, Stunnenberg HG, Mai A, Altucci L. RIP1–HAT1–SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer. Clin Cancer Res 2018. [DOI: 10.1158/1078-0432.ccr-17-3081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|