201
|
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021; 37:108. [PMID: 34046779 PMCID: PMC8159659 DOI: 10.1007/s11274-021-03070-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Resistance to antimicrobial agents has been alarming in recent years and poses a huge public health threat globally according to the WHO. The increase in morbidity and mortality resulting from microbial infections has been attributed to the emergence of multidrug-resistant microbes. Associated with the increase in multidrug resistance is the lack of new and effective antimicrobials. This has led to global initiatives to identify novel and more effective antimicrobial agents in addition to discovering novel and effective drug delivery and targeting methods. The use of nanoparticles as novel biomaterials to fully achieve this feat is currently gaining global attention. Nanoparticles could become an indispensable viable therapeutic option for treating drug-resistant infections. Of all the nanoparticles, the metals and metal oxide nanoparticles appear to offer the most promise and have attracted tremendous interest from many researchers. Moreover, the use of nanomaterials in photothermal therapy has received considerable attention over the years. This review provides current insight on antimicrobial resistance as well as the mechanisms of nanoparticle antibacterial activity. It offers an in-depth review of all the recent findings in the use of nanomaterials as agents against multi-resistant pathogenic bacteria. Also, nanomaterials that can respond to light stimuli (photothermal therapy) to kill microbes and facilitate enhanced drug delivery and release are discussed. Moreover, the synergistic interactions of nanoparticles with antibiotics and other nanomaterials, microbial adaptation strategies to nanoparticles, current challenges, and future prospects were extensively discussed.
Collapse
Affiliation(s)
- Ifeanyi E Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Emeka I Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
202
|
Künstner A, Aherrahrou R, Hirose M, Bruse P, Ibrahim SM, Busch H, Erdmann J, Aherrahrou Z. Effect of Differences in the Microbiome of Cyp17a1-Deficient Mice on Atherosclerotic Background. Cells 2021; 10:1292. [PMID: 34070975 PMCID: PMC8224745 DOI: 10.3390/cells10061292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
CYP17A1 is a cytochrome P450 enzyme that has 17-alpha-hydroxylase and C17,20-lyase activities. Cyp17a11 deficiency is associated with high body mass and visceral fat deposition in atherosclerotic female ApoE knockout (KO, d/d or -/-) mice. In the present study, we aimed to investigate the effects of diet and Cyp17a1 genotype on the gut microbiome. Female Cyp17a1 (d/d) × ApoE (d/d) (DKO) and ApoE (d/d) (controls) were fed either standard chow or a Western-type diet (WTD), and we demonstrated the effects of genetics and diet on the body mass of the mice and composition of their gut microbiome. We found a significantly lower alpha diversity after accounting for the ecological network structure in DKO mice and WTD-fed mice compared with chow-fed ApoE(d/d). Furthermore, we found a strong significant positive association of the Firmicutes vs. Bacteroidota ratio with body mass and the circulating total cholesterol and triglyceride concentrations of the mice when feeding the WTD, independent of the Cyp17a1 genotype. Further pathway enrichment and network analyses revealed a substantial effect of Cyp17a1 genotype on associated cardiovascular and obesity-related pathways involving aspartate and L-arginine. Future studies are required to validate these findings and further investigate the role of aspartate/L-arginine pathways in the obesity and body fat distribution in our mouse model.
Collapse
Affiliation(s)
- Axel Künstner
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.K.); (H.B.)
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- Centre for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908-0717, USA
| | - Misa Hirose
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (S.M.I.)
| | - Petra Bruse
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Saleh Mohamed Ibrahim
- Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (S.M.I.)
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (A.K.); (H.B.)
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (R.A.); (P.B.); (J.E.)
- DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
203
|
Abstract
Nanomedicine has demonstrated substantial potential to improve the quality and efficacy of healthcare systems. Although the promise of nanomedicine to transform conventional medicine is evident, significant numbers of therapeutic nanomedicine products have failed in clinical trials. Most studies in nanomedicine have overlooked several important factors, including the significance of sex differences at various physiological levels. This report attempts to highlight the importance of sex in nanomedicine at cellular and molecular level. A more thorough consideration of sex physiology, among other critical variations (e.g., health status of individuals), would enable researchers to design and develop safer and more-efficient sex-specific diagnostic and therapeutic nanomedicine products.
Collapse
|
204
|
Romero-Luna HE, Peredo-Lovillo AG, Jiménez-Fernández M. Probiotic and Potentially Probiotic Bacteria with Hypocholesterolemic Properties. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Audry Gustavo Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Maribel Jiménez-Fernández
- Departamento de Estabilidad de Alimentos, Centro De Investigación Y Desarrollo En Alimentos. Universidad Veracruzana. Dr. Castelazo Ayala S/n Industrial Ánimas, Xalapa, Veracruz, México
| |
Collapse
|
205
|
Abstract
Purpose of review In this review, we synthesise recent research on the association between loneliness and cardiovascular disease (CVD). We present evidence for mechanisms underlying this association and propose directions for future research. Recent findings Loneliness is related to increased risk of early mortality and CVD comparable to other well-established risk factors such as obesity or smoking. Summary Loneliness has been linked to higher rates of incident CVD, poorer CVD patient outcomes, and early mortality from CVD. Loneliness likely affects risk for these outcomes via health-related behaviours (e.g. physical inactivity and smoking), biological mechanisms (e.g. inflammation, stress reactivity), and psychological factors (e.g. depression) to indirectly damage health.
Collapse
|
206
|
Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247-259. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: At birth, the gastrointestinal (GI) tract is colonized by a complex community of microorganisms, forming the basis of the gut microbiome. The gut microbiome plays a fundamental role in host health, disorders of which can lead to an array of GI diseases, both short and long term. Pediatric GI diseases are responsible for significant morbidity and mortality, but many remain poorly understood. Recent advancements in high-throughput technologies have enabled deeper profiling of GI morbidities. Technologies, such as metagenomics, transcriptomics, proteomics and metabolomics, have already been used to identify associations with specific pathologies, and highlight an exciting area of research. However, since these diseases are often complex and multifactorial by nature, reliance on a single experimental approach may not capture the true biological complexity. Therefore, multi-omics aims to integrate singular omic data to further enhance our understanding of disease.Areas covered: This review will discuss and provide an overview of the main omic technologies that are used to study complex GI pathologies in early life.Expert opinion: Multi-omic technologies can help to unravel the complexities of several diseases during early life, aiding in biomarker discovery and enabling the development of novel therapeutics and augment predictive models.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Claire L Granger
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
207
|
Gut Microbiota and Environment in Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084242. [PMID: 33923612 PMCID: PMC8073779 DOI: 10.3390/ijerph18084242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
In recent years, studies evaluated the associations between coronary artery disease (CAD) and fecal gut microbiota composition. This opens new perspectives on therapeutic strategies to prevent CAD representing the leading cause of mortality in Western societies. We have conducted a review of the literature regarding the characteristics of the gut microbiota of CAD patients, its underlying mechanisms and their associations with pollution and the Western diet. The latest evidence confirms that an abnormal microbiota predisposes to the development of CAD and differs in composition compared to the microbiota of healthy patients; the results are, however, heterogeneous. The most studied underlying mechanisms involve the production of trimethylamine-N-oxide (TMAO), the synthesis of short-chain fatty acids (SCFAs) and the immune system activation mediated by lipopolysaccharides (LPS). Despite a large amount of available data, there is no evidence about the role of a specific type of gut microbiota in the risk of developing acute coronary syndrome (ACS). Moreover, no relationship has been assessed between the gut microbiota and the characteristics of coronary plaques in humans. However, a close association has been found between both pollution and the Western diet and gut microbiota and CAD. Further studies are needed to clarify the associations between gut microbiota, CAD, and ACS to find efficient therapeutic strategies.
Collapse
|
208
|
Deng P, Valentino T, Flythe MD, Moseley HNB, Leachman JR, Morris AJ, Hennig B. Untargeted Stable Isotope Probing of the Gut Microbiota Metabolome Using 13C-Labeled Dietary Fibers. J Proteome Res 2021; 20:2904-2913. [PMID: 33830777 DOI: 10.1021/acs.jproteome.1c00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gut microbiome generates numerous metabolites that exert local effects and enter the circulation to affect the functions of many organs. Despite extensive sequencing-based characterization of the gut microbiome, there remains a lack of understanding of microbial metabolism. Here, we developed an untargeted stable isotope-resolved metabolomics (SIRM) approach for the holistic study of gut microbial metabolites. Viable microbial cells were extracted from fresh mice feces and incubated anaerobically with 13C-labeled dietary fibers including inulin or cellulose. High-resolution mass spectrometry was used to monitor 13C enrichment in metabolites associated with glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleotide synthesis, and pyruvate catabolism in both microbial cells and the culture medium. We observed the differential use of inulin and cellulose as substrates for biosynthesis of essential and non-essential amino acids, neurotransmitters, vitamin B5, and other coenzymes. Specifically, the use of inulin for these biosynthetic pathways was markedly more efficient than the use of cellulose, reflecting distinct metabolic pathways of dietary fibers in the gut microbiome, which could be related with host effects. This technology facilitates deeper and holistic insights into the metabolic function of the gut microbiome (Metabolomic Workbench Study ID: ST001651).
Collapse
Affiliation(s)
- Pan Deng
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Taylor Valentino
- Department of Physiology, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Michael D Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40536, Kentucky, United States.,United States Department of Agriculture, Agriculture Research Service, Forage Animal Production Research Unit, Lexington 40536, Kentucky, United States
| | - Hunter N B Moseley
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Institute for Biomedical Informatics, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Division of Cardiovascular Medicine, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Animal and Food Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| |
Collapse
|
209
|
Huang K, Liu C, Peng M, Su Q, Liu R, Guo Z, Chen S, Li Z, Chang G. Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E-Deficient Mice. J Am Heart Assoc 2021; 10:e019820. [PMID: 33787322 PMCID: PMC8174342 DOI: 10.1161/jaha.120.019820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Although glycoursodeoxycholic acid (GUDCA) has been associated with the improvement of metabolic disorders, its effect on atherosclerosis remains elusive. This study aimed to investigate the role of GUDCA in the development of atherosclerosis and its potential mechanisms. Methods and Results Human THP‐1 macrophages were used to investigate the effect of GUDCA on oxidized low‐density lipoprotein–induced foam cell formation in vitro. We found that GUDCA downregulated scavenger receptor A1 mRNA expression, reduced oxidized low‐density lipoprotein uptake, and inhibited macrophage foam cell formation. In an in vivo study, apolipoprotein E–deficient mice were fed a Western diet for 10 weeks to induce atherosclerosis, and then were gavaged once daily with or without GUDCA for 18 weeks. Parameters of systemic metabolism and atherosclerosis were detected. We found that GUDCA improved cholesterol homeostasis and protected against atherosclerosis progression as evidenced by reduced plaque area along with lipid deposition, ameliorated local chronic inflammation, and elevated plaque stability. In addition, 16S rDNA sequencing showed that GUDCA administration partially normalized the Western diet–associated gut microbiota dysbiosis. Interestingly, the changes of bacterial genera (Alloprevotella, Parabacteroides, Turicibacter, and Alistipes) modulated by GUDCA were correlated with the plaque area in mice aortas. Conclusions Our study for the first time indicates that GUDCA attenuates the development of atherosclerosis, probably attributable to the inhibition of foam cell formation, maintenance of cholesterol homeostasis, and modulation of gut microbiota.
Collapse
Affiliation(s)
- Kan Huang
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Chenshu Liu
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Meixiu Peng
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Qiao Su
- Animal Center First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Ruiming Liu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Zeling Guo
- Zhongshan School of Medicine Sun Yat-sen University Guangzhou China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center Sun Yat-Sen Memorial Hospital Guangzhou China
| | - Zilun Li
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Guangqi Chang
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| |
Collapse
|
210
|
The Kobe University Human Intestinal Microbiota Model for gut intervention studies. Appl Microbiol Biotechnol 2021; 105:2625-2632. [PMID: 33718974 DOI: 10.1007/s00253-021-11217-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The human gut harbors a complex microbial community that performs a range of metabolic, physiological, and immunological functions. The host and its inhabiting microorganisms are often referred to as a "superorganism." Dysbiosis of gut microflora has been associated with the pathogenesis of intestinal disorders including inflammatory bowel disease, colorectal cancer, and extra-intestinal disorders such as cardiovascular disease. Therefore, gut microbiome interventions are important for the prevention and treatment of diseases. However, ethical, economic, scientific, and time constraints limit the outcome of human intervention or animal studies targeting gut microbiota. We recently developed an in vitro batch fermentation model (the Kobe University Human Intestinal Microbiota Model, KUHIMM) that is capable of hosting a majority of gut microbial species in humans and also detects the metabolites produced by microorganisms in real time. In this mini review, we elucidated the characteristics of the KUHIMM and its applicability in analyzing the effect of diet, drugs, probiotics, and prebiotics on intestinal bacteria. In addition, we introduce as examples its application to disease models, such as ulcerative colitis, in which intestinal bacteria are intricately involved in the process of pathogenesis. We also discuss the potential of the KUHIMM in precision medicine. KEY POINTS: • In vitro gut fermentation model to simulate human colonic microbiota • Screening of potential prebiotics and probiotic candidates in healthy model • Construction of disease models of ulcerative colitis and coronary artery disease.
Collapse
|
211
|
Shivani S, Chattopadhyay A, Chuang EY. Targeting the gut microbiome for non-communicable diseases: present and future. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:361. [PMID: 33842582 PMCID: PMC8033337 DOI: 10.21037/atm-21-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Subhashree Shivani
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei.,Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| |
Collapse
|
212
|
Wong MK, Barbulescu P, Coburn B, Reguera-Nuñez E. Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes Infect 2021; 23:104804. [PMID: 33652120 DOI: 10.1016/j.micinf.2021.104804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
The link between the gut microbiome and responsiveness to immune checkpoint inhibitor (ICI) therapy is now well established. New therapeutic opportunities exploiting this relationship are being developed with the goal of augmenting ICI efficacy. In this review, we summarize the foundational research establishing these interactions and discuss the mechanisms and novel therapeutic options associated with this gut microbiome-ICI connection.
Collapse
Affiliation(s)
- Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Bryan Coburn
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, M5G 0A3, Canada.
| | - Elaine Reguera-Nuñez
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 0A3, Canada.
| |
Collapse
|
213
|
Nabrdalik K, Krzyżak K, Hajzler W, Drożdż K, Kwiendacz H, Gumprecht J, Lip GYH. Fat, Sugar or Gut Microbiota in Reducing Cardiometabolic Risk: Does Diet Type Really Matter? Nutrients 2021; 13:639. [PMID: 33669342 PMCID: PMC7920316 DOI: 10.3390/nu13020639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of cardiometabolic diseases, such as obesity, diabetes, and cardiovascular diseases, is constantly rising. Successful lifestyle changes may limit their incidence, which is why researchers focus on the role of nutrition in this context. The outcomes of studies carried out in past decades have influenced dietary guidelines, which primarily recommend reducing saturated fat as a therapeutic approach for cardiovascular disease prevention, while limiting the role of sugar due to its harmful effects. On the other hand, a low-carbohydrate diet (LCD) as a method of treatment remains controversial. A number of studies on the effect of LCDs on patients with type 2 diabetes mellitus proved that it is a safe and effective method of dietary management. As for the risk of cardiovascular diseases, the source of carbohydrates and fats corresponds with the mortality rate and protective effect of plant-derived components. Additionally, some recent studies have focused on the gut microbiota in relation to cardiometabolic diseases and diet as one of the leading factors affecting microbiota composition. Unfortunately, there is still no precise answer to the question of which a single nutrient plays the most important role in reducing cardiometabolic risk, and this review article presents the current state of the knowledge in this field.
Collapse
Affiliation(s)
- Katarzyna Nabrdalik
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.)
| | - Katarzyna Krzyżak
- Students’ Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (W.H.)
| | - Weronika Hajzler
- Students’ Scientific Association by the Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (W.H.)
| | - Karolina Drożdż
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.)
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.)
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.)
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
214
|
Ciernikova S, Mego M, Chovanec M. Exploring the Potential Role of the Gut Microbiome in Chemotherapy-Induced Neurocognitive Disorders and Cardiovascular Toxicity. Cancers (Basel) 2021; 13:782. [PMID: 33668518 PMCID: PMC7918783 DOI: 10.3390/cancers13040782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy, targeting not only malignant but also healthy cells, causes many undesirable side effects in cancer patients. Due to this fact, long-term cancer survivors often suffer from late effects, including cognitive impairment and cardiovascular toxicity. Chemotherapy damages the intestinal mucosa and heavily disrupts the gut ecosystem, leading to gastrointestinal toxicity. Animal models and clinical studies have revealed the associations between intestinal dysbiosis and depression, anxiety, pain, impaired cognitive functions, and cardiovascular diseases. Recently, a possible link between chemotherapy-induced gut microbiota disruption and late effects in cancer survivors has been proposed. In this review, we summarize the current understanding of preclinical and clinical findings regarding the emerging role of the microbiome and the microbiota-gut-brain axis in chemotherapy-related late effects affecting the central nervous system (CNS) and heart functions. Importantly, we provide an overview of clinical trials evaluating the relationship between the gut microbiome and cancer survivorship. Moreover, the beneficial effects of probiotics in experimental models and non-cancer patients with neurocognitive disorders and cardiovascular diseases as well as several studies on microbiota modulations via probiotics or fecal microbiota transplantation in cancer patients are discussed.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| |
Collapse
|
215
|
Camelo-Castillo A, Rivera-Caravaca JM, Orenes-Piñero E, Ramírez-Macías I, Roldán V, Lip GYH, Marín F. Gut Microbiota and the Quality of Oral Anticoagulation in Vitamin K Antagonists Users: A Review of Potential Implications. J Clin Med 2021; 10:715. [PMID: 33670220 PMCID: PMC7916955 DOI: 10.3390/jcm10040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
The efficacy and safety of vitamin K antagonists (VKAs) as oral anticoagulants (OACs) depend on the quality of anticoagulation control, as reflected by the mean time in therapeutic range (TTR). Several factors may be involved in poor TTR such as comorbidities, high inter-individual variability, interacting drugs, and non-adherence. Recent studies suggest that gut microbiota (GM) plays an important role in the pathogenesis of cardiovascular diseases, but the effect of the GM on anticoagulation control with VKAs is unknown. In the present review article, we propose different mechanisms by which the GM could have an impact on the quality of anticoagulation control in patients taking VKA therapy. We suggest that the potential effects of GM may be mediated first, by an indirect effect of metabolites produced by GM in the availability of VKAs drugs; second, by an effect of vitamin K-producing bacteria; and finally, by the structural modification of the molecules of VKAs. Future research will help confirm these hypotheses and may suggest profiles of bacterial signatures or microbial metabolites, to be used as biomarkers to predict the quality of anticoagulation. This could lead to the design of intervention strategies modulating gut microbiota, for example, by using probiotics.
Collapse
Affiliation(s)
- Anny Camelo-Castillo
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain;
| | - Inmaculada Ramírez-Macías
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| | - Vanessa Roldán
- Department of Hematology and Clinical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, 30008 Murcia, Spain;
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Aalborg University, 9000 Aalborg, Denmark
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| |
Collapse
|
216
|
Zhao X, Oduro PK, Tong W, Wang Y, Gao X, Wang Q. Therapeutic potential of natural products against atherosclerosis: Targeting on gut microbiota. Pharmacol Res 2020; 163:105362. [PMID: 33285231 DOI: 10.1016/j.phrs.2020.105362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Gut microbiota (GM) has emerged as an essential and integral factor for maintaining human health and affecting pathological outcomes. Metagenomics and metabolomics characterization have furthered gut metagenome's understanding and unveiled that deviation of specific GM community members and GM-dependent metabolites imbalance orchestrate metabolic or cardiovascular diseases (CVDs). Restoring GM ecosystem with nutraceutical supplements keenly prebiotics and probiotics relatively decreases CVDs incidence and overall mortality. In Atherosclerosis, commensal and pathogenic gut microbes correlate with atherogenesis events. GM-dependent metabolites-trimethylamine N-oxide and short-chain fatty acids regulate atherosclerosis-related metabolic processes in opposite patterns to affect atherosclerosis outcomes. Therefore, GM might be a potential therapeutic target for atherosclerosis. In atherogenic animal models, natural products with cardioprotective properties could modulate the GM ecosystem by revitalizing healthier GM phylotypes and abrogating proatherogenic metabolites, paving future research paths for clinical therapeutics.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanyu Tong
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Xiumei Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| |
Collapse
|
217
|
Soto Chervin C, Gajewski T. Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2020; 8:12-20. [PMID: 35757563 PMCID: PMC9216398 DOI: 10.1016/j.iotech.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The composition of the commensal microbiota has recently emerged as a key element influencing the efficacy of cancer treatments. It has become apparent that the interplay between the microbiome and immune system within the host influences the response to immunotherapy, particularly immune checkpoint inhibitor therapy. Identifying the key components of the gut microbiota that influence this response is paramount for designing therapeutic interventions to enhance the response to cancer therapy. This review will discuss strategies being considered to modulate the gut microbiota, including fecal microbiota transplantation, administration of defined bacterial isolates as well as bacterial consortia, supplementation with probiotics, and lifestyle modifications such as dietary changes. Understanding the influence of the complex variables of the human microbiota on the effectiveness of cancer therapy will help drive the clinical design of microbial-based interventions in the field of oncology.
Collapse
Affiliation(s)
- C. Soto Chervin
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| | - T.F. Gajewski
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| |
Collapse
|
218
|
Zhang T, Zhu G, Lu B, Qian Z, Peng Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med Res Rev 2020; 41:1835-1850. [PMID: 33289146 DOI: 10.1002/med.21767] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023]
Abstract
The interaction of nanoparticles (NPs) with proteins and the formation of protein corona in the biological fluids are of great interest and significance for drug delivery. In the past decade, the corona formation in the blood and its impacts on the in vitro and in vivo fate of NPs has been well investigated and reviewed. Recently, more and more attention is paid to the nano-protein interactions taking place in the gastrointestinal tract (GIT) between the orally administered NPs and the digestive enzymes. The enzyme corona formed in the GIT can significantly affect the properties, gastrointestinal transit, and oral absorption of NPs. Since oral delivery is the most preferred delivery route, comprehensively understanding the corona formation in the GIT and its impacts on oral delivery NPs are of great importance. Herein, we aim to summarize the recent updates on the nano-protein interactions between NPs and digestive enzymes, and launch an interesting discussion on the potentials of using the digestive enzyme corona for the colon targeted delivery.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
219
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
220
|
Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21228729. [PMID: 33227973 PMCID: PMC7699263 DOI: 10.3390/ijms21228729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the key for the initiation and progression of atherosclerosis. Accumulating evidence has revealed that an altered gut microbiome (dysbiosis) triggers both local and systemic inflammation to cause chronic inflammatory diseases, including atherosclerosis. There have been some microbiome-relevant pro-inflammatory mechanisms proposed to link the relationships between dysbiosis and atherosclerosis such as gut permeability disruption, trigger of innate immunity from lipopolysaccharide (LPS), and generation of proatherogenic metabolites, such as trimethylamine N-oxide (TMAO). Meanwhile, immune responses, such as inflammasome activation and cytokine production, could reshape both composition and function of the microbiota. In fact, the immune system delicately modulates the interplay between microbiota and atherogenesis. Recent clinical trials have suggested the potential of immunomodulation as a treatment strategy of atherosclerosis. Here in this review, we present current knowledge regarding to the roles of microbiota in contributing atherosclerotic pathogenesis and highlight translational perspectives by discussing the mutual interplay between microbiota and immune system on atherogenesis.
Collapse
|
221
|
He K, Yan W, Sun C, Liu J, Bai R, Wang T, Qian W. Alterations in the diversity and composition of gut microbiota in weaned piglets infected with Balantioides coli. Vet Parasitol 2020; 288:109298. [PMID: 33171414 DOI: 10.1016/j.vetpar.2020.109298] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Balantioides coli is a ciliated parasite that can cause diarrhea when inhabiting the colon and cecum of pigs and humans. However, information regarding the changes in structure and composition of the gut microbiome in piglets infected with B. coli remains scarce. In this study, 16S rDNA amplicon sequencing was conducted on fecal samples from both B. coli-positive piglets with diarrhea and B. coli-negative piglets without diarrhea. The results showed that Firmicutes and Bacteroidetes were the major phyla in the two groups, and the relative abundance of the phylum Firmicutes, including Ruminococcaceae and Clostridiaceae, was significantly lower in the B. coli-positive samples than in the B. coli-negative ones (p < 0.05). Compared with B. coli-negative samples, Alloprevotella and Faecalibacterium showed distinctly higher relative abundances (p < 0.05) in the B. coli-positive samples, and the abundances of some potential pathogenic bacteria, including Escherichia-Shigella and Campylobacter, were positively correlated with B. coli infection and diarrhea of weaned piglets. In addition, there were statistically significant differences in fecal microbiota diversity and abundances of predicted functional genes between B. coli-colonized and B. coli-negative samples (p < 0.05). Taken together, these findings suggest that there were significant differences in the bacterial community composition, diversity, and functions between the B. coli-positive and B. coli-negative piglets, and the colonization by B. coli may be associated with the dysbiosis of gut microbiota structure in weaned piglets.
Collapse
Affiliation(s)
- Kai He
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenchao Yan
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chenyang Sun
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Liu
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongzhen Bai
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Tianqi Wang
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Weifeng Qian
- Parasitology Laboratory, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
222
|
Shen L, Shen K, Bai J, Wang J, Singla RK, Shen B. Data-driven microbiota biomarker discovery for personalized drug therapy of cardiovascular disease. Pharmacol Res 2020; 161:105225. [PMID: 33007417 DOI: 10.1016/j.phrs.2020.105225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the most wide-spread disorder all over the world. The personalized and precision diagnosis, treatment and prevention of CVD is still a challenge. With the developing of metagenome sequencing technologies and the paradigm shifting to data-driven discovery in life science, the computer aided microbiota biomarker discovery for CVD is becoming reality. We here summarize the data resources, knowledgebases and computational models available for CVD microbiota biomarker discovery, and review the present status of the findings about the microbiota patterns associated with the therapeutic effects on CVD. The future challenges and opportunities of the translational informatics on the personalized drug usages in CVD diagnosis, prognosis and treatment are also discussed.
Collapse
Affiliation(s)
- Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ke Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinwei Bai
- Library of West-China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
223
|
Mba IE, Nweze EI. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 2020; 36:163. [PMID: 32990838 DOI: 10.1007/s11274-020-02940-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.
Collapse
|
224
|
Lu D, Huang Y, Kong Y, Tao T, Zhu X. Gut microecology: Why our microbes could be key to our health. Biomed Pharmacother 2020; 131:110784. [PMID: 33152942 DOI: 10.1016/j.biopha.2020.110784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The human body contains a large number of microorganisms, and the gut microecology environment contains the largest number and types of microorganisms. The structure and function of gut microbiota are closely related to the health of the human body. In a cascade of studies, the diversity of gut microbiota and its metabolite often found changed in patients or mice model. What kind of gut microbiota that associated with the occurrence or treatment of diseases were also found in many studies. Gut microbiota and its products can affect the function of the human body. Short-chain fatty acids, bile acid, indoles and so on were found can regulate the inflammation, immune response to affect the process of diseases. Immune cells like natural killer T cells, CD3 + T cells were also found had a link to gut microbiota which associated with diseases. Changes in gut microbiota are associated with changes in the body's major systems, such as the digestive system, the endocrine system, the cardiovascular system, the endocrine and metabolic system, the urinary system diseases, the respiratory system and so on. It is of great significance to study gut microecology for the prevention and treatment of various human diseases.
Collapse
Affiliation(s)
- Dihuan Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yongmei Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, 430033, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, China.
| |
Collapse
|
225
|
Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu WK, Orekhov AN. A Novel Insight at Atherogenesis: The Role of Microbiome. Front Cell Dev Biol 2020; 8:586189. [PMID: 33072766 PMCID: PMC7536348 DOI: 10.3389/fcell.2020.586189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022] Open
Abstract
There is an important task of current medicine to identify mechanisms and new markers of subclinical atherosclerosis in order to develop early targets for the diagnosis and treatment of this disease, since it causes such widespread diseases as myocardial infarction, stroke, sudden death, and other common reasons of disability and mortality in developed countries. In recent years, studies of the human microbiome in different fields of medicine have become increasingly popular; there is evidence from numerous studies of the significant contribution of microbiome in different steps of atherogenesis. This review attempted to determine the current status of the databases PubMed and Scopus (until May, 2020) to highlight current ideas on the potential role of microbiome and its metabolites in atherosclerosis development, its mechanisms of action in lipids metabolism, endothelial dysfunction, inflammatory pathways, and mitochondrial dysfunction. Results of clinical studies elucidating the relationship of microbiome with subclinical atherosclerosis and cardiovascular disease considered in this article demonstrate strong association of microbiome composition and its metabolites with atherosclerosis and cardiovascular disease. Data on microbiome impact in atherogenesis open a wide perspective to develop new diagnostic and therapeutic approaches, but further comprehensive studies are necessary.
Collapse
Affiliation(s)
- Tatiana V Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia
| | - Victoria A Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
226
|
Kondubhatla K, Kaushal A, Daoud A, Shabbir H, Mostafa JA. Pro-Atherogenic Inflammatory Mediators in Inflammatory Bowel Disease Patients Increase the Risk of Thrombosis, Coronary Artery Disease, and Myocardial Infarction: A Scientific Dilemma. Cureus 2020; 12:e10544. [PMID: 33062549 PMCID: PMC7549854 DOI: 10.7759/cureus.10544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis and Crohn’s disease, is characterized by widespread inflammation of the gastrointestinal tract with systemic manifestations. Inflammation is one of the driving forces for the pathogenesis of atherosclerosis and its dreaded complications like myocardial infarction (MI). Yet, the association between IBD and myocardial infarction has not been thoroughly established. Myocardial infarction in IBD patients was predominantly seen in young women during the active disease process. At the same time, elevated levels of C-reactive protein and other pro-inflammatory markers were observed in both IBD and atherosclerosis. Increasing evidence suggests inflammation inhibits fibrinolysis, expresses procoagulants, and suppresses anticoagulants promoting thrombosis formation. Moreover, the alteration of gut microbiota impacts the pathogenesis of inflammation and predisposes one to ischemic heart disease. Accordingly, all IBD patients should be screened and counseled on lifestyle modifications for the traditional risk factors of atherosclerosis. Future researchers should consider conducting more clinical trials on anti-inflammatory medication targeting atherosclerosis and therapeutics, while targeting the gut microbiota to reverse the inflammatory atherosclerotic process.
Collapse
Affiliation(s)
- Kaushik Kondubhatla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ayush Kaushal
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ali Daoud
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hassan Shabbir
- Hematology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
227
|
Wallace RK. The Microbiome in Health and Disease from the Perspective of Modern Medicine and Ayurveda. ACTA ACUST UNITED AC 2020; 56:medicina56090462. [PMID: 32932766 PMCID: PMC7559905 DOI: 10.3390/medicina56090462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
The role of the microbiome in health and disease helps to provide a scientific understanding of key concepts in Ayurveda. We now recognize that virtually every aspect of our physiology and health is influenced by the collection of microorganisms that live in various parts of our body, especially the gut microbiome. There are many external factors which influence the composition of the gut microbiome but one of the most important is diet and digestion. Ayurveda and other systems of traditional health have for thousands of years focused on diet and digestion. Recent research has helped us understand the connection between the microbiome and the many different prevention and therapeutic treatment approaches of Ayurveda.
Collapse
Affiliation(s)
- Robert Keith Wallace
- Department of Physiology and Health, Maharishi International University, Fairfield, IA 52556, USA
| |
Collapse
|
228
|
Simó C, García-Cañas V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food Funct 2020; 11:6745-6776. [PMID: 32686802 DOI: 10.1039/d0fo01237h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing body of clinical evidence that supports a strong association between elevated circulating trimethylamine N-oxide (TMAO) levels with increased risk of developing adverse cardiovascular outcomes such as atherosclerosis and thrombosis. TMAO is synthesized through a meta-organismal stepwise process that involves (i) the microbial production of TMA in the gut from dietary precursors and (ii) its subsequent oxidation to TMAO by flavin-containing monooxygenases in the liver. Choline, l-carnitine, betaine, and other TMA-containing compounds are the major dietary precursors of TMA. TMAO can also be absorbed directly from the gastrointestinal tract after the intake of TMAO-rich foods such as fish and shellfish. Thus, diet is an important factor as it provides the nutritional precursors to eventually produce TMAO. A number of studies have attempted to associate circulating TMAO levels with the consumption of diets rich in these foods. On the other hand, there is growing interest for the development of novel food ingredients that reduce either the TMAO-induced damage or the endogenous TMAO levels through the interference with microbiota and host metabolic processes involved in TMAO pathway. Such novel functional food ingredients would offer great opportunities to control circulating TMAO levels or its effects, and potentially contribute to decrease cardiovascular risk. In this review we summarize and discuss current data regarding the effects of TMA precursors-enriched foods or diets on circulating TMAO levels, and recent findings regarding the circulating TMAO-lowering effects of specific foods, food constituents and phytochemicals found in herbs, individually or in extracts, and their potential beneficial effect for cardiovascular health.
Collapse
Affiliation(s)
- C Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|