201
|
Chan YL, Saad S, Simar D, Oliver B, McGrath K, Reyk DV, Bertrand PP, Gorrie C, Pollock C, Chen H. Short term exendin-4 treatment reduces markers of metabolic disorders in female offspring of obese rat dams. Int J Dev Neurosci 2015; 46:67-75. [PMID: 26287659 DOI: 10.1016/j.ijdevneu.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Maternal obesity imposes significant health risks in the offspring including diabetes and dyslipidemia. We previously showed that the hypoglycaemic agent exendin-4 (Ex-4) administered from weaning can reverse the maternal impact of 'transmitted disorders' in such offspring. However daily injection for six-weeks was required and the beneficial effect may lapse upon drug withdrawal. This study aimed to investigate whether short term Ex-4 treatment during suckling period in a rodent model can reverse transmitted metabolic disorders due to maternal obesity. METHODS Maternal obesity was induced in female Sprague Dawley rats by high-fat diet feeding for 6 weeks, throughout gestation and lactation. Female offspring were treated with Ex-4 (5μg/kg/day) between postnatal day (P) 4 and 14. Female offspring were harvested at weaning (P20). Lipid and glucose metabolic markers were measured in the liver and fat. Appetite regulators were measured in the plasma and hypothalamus. RESULTS Maternal obesity significantly increased body weight, fat mass, and liver weight in the offspring. There was an associated inhibition of peroxisomal proliferator activated receptor gamma coactivator 1α (PGC1α), increased fatty acid synthase (FASN) expression in the liver, and reduced adipocyte triglyceride lipase (ATGL) expression. It also increased the plasma gut hormone ghrelin and reduced glucagon-like peptide-1. Ex-4 treatment partially reversed the maternal impact on adiposity and impaired lipid metabolism in the offspring, with increased liver PGC1α and inhibition of FASN mRNA expression. Ex-4 treatment also increased the expression of a novel fat depletion gene a2-zinc-glycoprotein 1 in the fat tissue. CONCLUSION Short term Ex-4 treatment during the suckling period significantly improved the metabolic profile in the offspring from the obese mothers at weaning. Long-term studies are needed to follow such offspring to adulthood to examine the sustained effects of Ex-4 in preventing the development of metabolic disease.
Collapse
Affiliation(s)
- Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Paul P Bertrand
- School of Medical Sciences, RMIT University, VIC, 3001, Australia
| | - Cathy Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Carol Pollock
- Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
202
|
Al Massadi O, López M, Fernø J, Diéguez C, Nogueiras R. What is the real relevance of endogenous ghrelin? Peptides 2015; 70:1-6. [PMID: 26003396 DOI: 10.1016/j.peptides.2015.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
Abstract
Ghrelin is a pleiotropic and ubiquitous gastric hormone implicated in body physiology. Ghrelin exhibits potent orexigenic actions and increases body weight and adiposity. Ghrelin is also involved in other metabolic functions among which we can highlight the GH releasing activity and the regulation of glucose homeostasis. Ghrelin needs the enzyme GOAT to be acylated, a step essential for binding to the GHSR1a receptor to exert its functions. Genetic animal models emerge as important tools to delineate the physiological relevance of ghrelin on energy balance. Despite the numerous reports using different genetically engineered mouse models targeting the ghrelin system, its endogenous relevance in metabolism seems to be less important than its pharmaceutical options.
Collapse
Affiliation(s)
- Omar Al Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain.
| | - Miguel López
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen N-5020, Norway
| | - Carlos Diéguez
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Avda. Barcelona s/n, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela (A Coruña) 15706, Spain.
| |
Collapse
|
203
|
Yigit T, Coskun AK, Harlak A, Sinan H, Unlu A, Tapan S, Lapsekili E, Kozak O. Body mass index and ghrelin levels after laparoscopic Nissen fundoplication. Langenbecks Arch Surg 2015; 400:585-588. [PMID: 26084687 DOI: 10.1007/s00423-015-1315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE The study aims to evaluate the changes between body mass index (BMI) and ghrelin levels after laparoscopic Nissen fundoplication (LNF). METHODS Twenty-four consecutive patients with gastroesophageal reflux disease who were scheduled for LNF consented to participate in the study. The participants' age, sex, preoperative (phase 0), postoperative 1st week (phase 1) and postoperative 4th week (phase 2) dysphagia scores, plasma ghrelin levels, and BMI were recorded. RESULTS Compared to the preoperative level (phase 0), ghrelin was decreased in both phase 1 and phase 2. A strong correlation in the changes in the ghrelin values and BMI between phase 0 and phase 2 was detected. There was a strong, statistically significant difference in the changes in the BMI values between phase 1 and phase 2. CONCLUSIONS Total plication of the fundus impairs its ghrelin-secreting functions for up to 4 weeks and is accompanied by weight loss.
Collapse
Affiliation(s)
- Taner Yigit
- Department of Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Gagnon J, Zhu L, Anini Y, Wang Q. Neutralizing circulating ghrelin by expressing a growth hormone secretagogue receptor-based protein protects against high-fat diet-induced obesity in mice. Gene Ther 2015; 22:750-7. [PMID: 25965396 DOI: 10.1038/gt.2015.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
Ghrelin is a stomach-derived peptide hormone that stimulates appetite and promotes adiposity through binding to the growth hormone secretagogue receptor (GHS-R1a). Administration of ghrelin in rodents increases weight gain due to stimulating food intake and reducing fat utilization. Therefore, reducing circulating ghrelin levels holds the potential to reduce weight gain. We developed a GHS-R1a-fusion constructs of a decoy protein containing the ligand-binding domains of the ghrelin receptor. Intramuscular injection of the GHSR/Fc plasmid decreased circulating levels of acylated-ghrelin. When challenged with the high fat diet, treated mice displayed reduced weight gain compared with controls, which was associated with reduced fat accumulation in the peritoneum but not lean mass. Quantitative PCR with reverse transcription showed increased PPARγ and hormone sensitive lipase transcripts levels in adipose tissue of treated animals, illustrating a preference for increased fat utilization. Intra-peritoneal glucose tolerance and insulin tolerance tests showed improved glucose clearance and insulin sensitivity in GHSR/Fc treated animals. We suggest that in vivo expression of the GHSR-based fusion protein prevents diet-induced weight gain, altering adipose gene expression and improving glucose tolerance. These findings, while confirming the role of ghrelin in peripheral energy metabolism, suggest that a strategy involving neutralization of the circulation ghrelin by intramuscular injection of the GHSR1/Fc fusion construct may find clinical application in the treatment of obesity.
Collapse
Affiliation(s)
- J Gagnon
- Department of Obstetrics and Gynecology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - L Zhu
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Y Anini
- Department of Obstetrics and Gynecology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Q Wang
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
205
|
Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus. J Neurosci 2015; 35:4571-81. [PMID: 25788674 DOI: 10.1523/jneurosci.2129-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.
Collapse
|
206
|
Kamiide Y, Inomata N, Furuya M, Yada T. Ghrelin ameliorates catabolic conditions and respiratory dysfunction in a chronic obstructive pulmonary disease model of chronic cigarette smoke-exposed rats. Eur J Pharmacol 2015; 755:88-94. [PMID: 25771457 DOI: 10.1016/j.ejphar.2015.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
Abstract
Cigarette smoking, which is a well-known major risk factor for chronic obstructive pulmonary disease (COPD), causes both pulmonary and extrapulmonary abnormalities. Ghrelin is a gastric peptide that regulates energy homeostasis. In the present study, we investigated the effects of ghrelin on the catabolic changes, respiratory function and emphysema in an animal model of COPD induced by chronic exposure to cigarette smoke. Rats were exposed to cigarette smoke, and they were administered human ghrelin (0.1 or 1 mg/kg, subcutaneous, twice daily) for 12 weeks. Compared with air-exposed rats, body weight gain, food intake, food efficiency, tidal volume, peak expiratory flow rate, and forced expiratory volume at 100 ms were significantly lower, while functional residual capacity, lung capacity, and neutrophils in bronchoalveolar lavage fluid were significantly higher in cigarette smoke-exposed rats. These indicated that the systemic abnormalities associated with COPD developed after the exposure to cigarette smoke. Ghrelin significantly and dose-dependently increased the body weight gain and food efficiency in cigarette smoke-exposed rats. In ghrelin-treated rats, skeletal muscle strength, which tended to be lowered by cigarette smoke exposure, was improved. Ghrelin ameliorated respiratory function and emphysema in a dose-dependent manner, but did not inhibit the increase in neutrophils in the bronchoalveolar lavage fluid. The respiratory functional parameters and lung capacity were significantly correlated with body weight gain. These results suggest that ghrelin inhibited the development of the catabolic changes, respiratory dysfunction, and emphysema that were induced by cigarette smoke exposure in rats, at least in part, through the amelioration of nutritional status.
Collapse
Affiliation(s)
- Yoshiyuki Kamiide
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1, Shimotsuke, Tochigi 329-0498, Japan.
| | - Norio Inomata
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Mayumi Furuya
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
207
|
de Barros F, Setúbal S, Martinho JM, Monteiro ABS. Early Endocrine and Metabolic Changes After Bariatric Surgery in Grade III Morbidly Obese Patients: A Randomized Clinical Trial Comparing Sleeve Gastrectomy and Gastric Bypass. Metab Syndr Relat Disord 2015; 13:264-71. [PMID: 25919069 DOI: 10.1089/met.2014.0152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We compared the early endocrine and metabolic changes associated with sleeve gastrectomy (SG) and gastric bypass (GB) in grade III obese patients. METHODS Fifty morbidly obese patients were randomized into two groups on the basis of their position in the queue-group A comprised SG and group B was GB. Comparison between the two groups was based on clinical and laboratory variables such as fasting blood glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), lipids, albumin, and ferritin. Patients were assessed after 7, 14, 30, 60, and 90 days and additional laboratory tests were done on the 90(th) day. RESULTS The following mean values were recorded for groups A and B, respectively: Age (years), 36.4 and 31.1; weight (kg), 123.2 and 128.3; and body mass index (BMI; kg/m(2)), 45.6 and 47.3. In the first postoperative week, group B showed a greater weight loss (P=0.047) that was not observed after 14, 30, 60, and 90 days (P>0.05). Group A had an average excess weight loss of 31.09 kg compared to 32.69 kg in group B (P=0.222). Glycemic control was better in group B (P=0.023), whereas the control of systemic arterial pressure was better in group A (P=0.026). There were no significant differences in early lipid control and micronutrient deficiencies between the two groups. CONCLUSIONS SG and GB were equally effective in promoting weight loss after 90 days. However, whereas SG was associated with better early remission rates for hypertension, GB was more effective in fasting blood glucose control but not in HOMA-IR and HbA1c levels. There was no difference in the protein or vitamin deficiencies of the two groups.
Collapse
Affiliation(s)
- Fernando de Barros
- 1 FIOCRUZ, Rio de Janeiro, RJ, Brazil, and Postgraduate Program in Medical Sciences, Fluminense Federal University (UFF) , Niterói, RJ, Brazil
| | - Sérgio Setúbal
- 2 Postgraduate Program in Medical Sciences, Fluminense Federal University (UFF) , Niterói, RJ, Brazil
| | - José Manoel Martinho
- 3 Department of General and Specialized Surgery, Fluminense Federal University (UFF) , Niterói, RJ, Brazil
| | | |
Collapse
|
208
|
Peripheral signals mediate the beneficial effects of gastric surgery in obesity. Gastroenterol Res Pract 2015; 2015:560938. [PMID: 25960740 PMCID: PMC4413036 DOI: 10.1155/2015/560938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/21/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is nowadays a public health problem both in the industrialized world and developing countries. The different treatments to fight against obesity are not very successful with the exception of gastric surgery. The mechanism behind the achievement of this procedure remains unclear although the modifications in the pattern of gastrointestinal hormones production appear to be responsible for the beneficial effect. The gastrointestinal tract has emerged in the last time as an endocrine organ in charge of response to the different stimulus related to nutritional status by the modulation of more than 30 signals acting at central level to modulate food intake and body weight. The production of some of these gastric derived signals has been proved to be altered in obesity (ghrelin, CCK, and GLP-1). In fact, bariatric surgery modifies the production of both gastrointestinal and adipose tissue peripheral signals beyond the gut microbiota composition. Through this paper the main peripheral signals altered in obesity will be reviewed together with their modifications after bariatric surgery.
Collapse
|
209
|
Kamiide Y, Furuya M, Inomata N, Yada T. Chronic exposure to cigarette smoke causes extrapulmonary abnormalities in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:864-70. [PMID: 25770835 DOI: 10.1016/j.etap.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Pathophysiological features of chronic obstructive pulmonary disease (COPD) include systemic abnormalities, such as weight loss and skeletal muscle wasting. Although cigarette smoke (CS) is a major risk factor in COPD, the systemic effects of CS exposure remain to be elucidated. In this study, rats were exposed to CS or smoke-free air for 12 weeks. CS-exposed rats developed emphysema and had significantly lower body weight and food intake than control rats. The plasma ghrelin levels significantly increased with an upregulation of gastric ghrelin mRNA expression induced by CS exposure. Further, we observed low plasma insulin-like growth factor-1 levels and high tumor necrosis factor-α levels. A significant reduction of skeletal muscle strength and an increase in the mRNA expression of catabolic factors was observed in CS-exposed rats. These results indicated that chronic CS exposure induced not only pulmonary emphysema but also systemic abnormalities related to muscle catabolism associated with inflammatory responses.
Collapse
Affiliation(s)
- Yoshiyuki Kamiide
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1, Shimotsuke, Tochigi 329-0498, Japan.
| | - Mayumi Furuya
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Norio Inomata
- Faculty of Pharmacology I, Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
210
|
Quitete FT, Nobre JL, Peixoto-Silva N, de Moura EG, Lisboa PC, de Oliveira E. Anti-obesogenic effects of calcium prevent changes in the GLP-1 profile in adult rats primed by early weaning. Mol Nutr Food Res 2015; 59:773-83. [PMID: 25580583 DOI: 10.1002/mnfr.201400666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
Abstract
SCOPE Gut peptides regulate appetite and adipogenesis. Early weaning (EW) leads to later development of obesity that can be prevented by calcium supplementation. We evaluated gut peptides that may have a role in the establishment of this dysfunction. METHODS AND RESULTS At birth, lactating Wistar rats were separated in: EW, lactating rats involved with a bandage interrupting the lactation during the last 4 days of standard lactation, and C (control) dams whose pups had free access to milk during throughout lactation. At 120 days old, half of EW group received calcium supplementation (EWCa); EW and C received standard diet. At 21 days old, EW presented higher glucagon-like peptide 1 (GLP-1) in plasma and glucagon-like peptide 1 receptor (GLP1-R) in adipose tissue and hypothalamus, but lower GLP-1 and GLP1-R in the gut. At 180 days old, GLP-1 response to food intake was blunted in EW and restored by calcium. GLP-1 in the gut was lower in EW and its receptor was lower in adipose tissue, and GLP1-R was higher in the gut of calcium EW group. CONCLUSION Thus, EW had short- and long-term effects upon GLP-1 profile, which may have contributed to obesity development, hyperphagia, and insulin resistance due to its adipogenic and appetite control roles. Calcium supplementation was able to prevent most of the changes in GLP-1 caused by EW.
Collapse
Affiliation(s)
- Fernanda Torres Quitete
- Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
211
|
Bailey DP, Smith LR, Chrismas BC, Taylor L, Stensel DJ, Deighton K, Douglas JA, Kerr CJ. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions. Appetite 2015; 89:237-45. [PMID: 25700630 DOI: 10.1016/j.appet.2015.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: (1) MIE-normoxia, (2) MIE-hypoxia, (3) HIIE-normoxia, and (4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake (V˙O2max) and during HIIE performed 6 × 3 min running at 90% V˙O2max interspersed with 6 × 3 min active recovery at 50% V˙O2max with a 7 min warm-up and cool-down at 70% V˙O2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants' daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p <0.05). Plasma acylated ghrelin concentrations were lower in hypoxia than normoxia post-exercise and for the full 2.6 h trial period (p <0.05). PYY concentrations were higher in HIIE than MIE under hypoxic conditions during exercise (p = 0.042). No differences in GLP-1 were observed between conditions (p > 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality.
Collapse
Affiliation(s)
- Daniel P Bailey
- Institute for Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK.
| | - Lindsey R Smith
- Institute for Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK
| | - Bryna C Chrismas
- Institute for Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK
| | - Lee Taylor
- Institute for Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK
| | - David J Stensel
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, UK
| | - Kevin Deighton
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, UK
| | - Jessica A Douglas
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, UK
| | - Catherine J Kerr
- Department of Sport and Health Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 OBP, UK
| |
Collapse
|
212
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
213
|
Angelino E, Reano S, Ferrara M, Agosti E, Graziani A, Filigheddu N. Antifibrotic activity of acylated and unacylated ghrelin. Int J Endocrinol 2015; 2015:385682. [PMID: 25960743 PMCID: PMC4415458 DOI: 10.1155/2015/385682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- *Nicoletta Filigheddu:
| |
Collapse
|
214
|
Iwakura H, Kangawa K, Nakao K. The regulation of circulating ghrelin - with recent updates from cell-based assays. Endocr J 2015; 62:107-22. [PMID: 25273611 DOI: 10.1507/endocrj.ej14-0419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin is a stomach-derived orexigenic hormone with a wide range of physiological functions. Elucidation of the regulation of the circulating ghrelin level would lead to a better understanding of appetite control in body energy homeostasis. Earlier studies revealed that circulating ghrelin levels are under the control of both acute and chronic energy status: at the acute scale, ghrelin levels are increased by fasting and decreased by feeding, whereas at the chronic scale, they are high in obese subjects and low in lean subjects. Subsequent studies revealed that nutrients, hormones, or neural activities can influence circulating ghrelin levels in vivo. Recently developed in vitro assay systems for ghrelin secretion can assess whether and how individual factors affect ghrelin secretion from cells. In this review, on the basis of numerous human, animal, and cell-based studies, we summarize current knowledge on the regulation of circulating ghrelin levels and enumerate the factors that influence ghrelin levels.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
215
|
Shiimura Y, Ohgusu H, Sato T, Kojima M. Regulation of the Human Ghrelin Promoter Activity by Transcription Factors, NF-κB and Nkx2.2. Int J Endocrinol 2015; 2015:580908. [PMID: 25699080 PMCID: PMC4324914 DOI: 10.1155/2015/580908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/24/2014] [Indexed: 11/24/2022] Open
Abstract
To examine the gene expression of ghrelin, a growth hormone releasing and appetite stimulating hormone from stomach, we constructed human ghrelin promoter-reporter vectors and analyzed the promoter activity. The ghrelin promoter activity was high when cultured cells that express ghrelin mRNA endogenously like TT or ECC10 cells were used, indicating that these cells contain factors necessary for full expression of the human ghrelin gene. The human ghrelin promoter contains both positive and negative regulatory regions. A transient decrease of the promoter activity was found when the reporter vector with the -1600 fragment of the human ghrelin promoter was transfected into cultured cells. We then examined the effect of several transcription factors on the ghrelin promoter activity and found that NF-κB suppressed and that Nkx2.2, a homeodomain-containing transcription factor that is important for ghrelin cell development in pancreas, activates the promoter activity. These transcription factors may be possible targets for the control of ghrelin gene expression.
Collapse
Affiliation(s)
- Yuki Shiimura
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Hideko Ohgusu
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 839-0864, Japan
- *Masayasu Kojima:
| |
Collapse
|
216
|
Yakabi K, Harada Y, Takayama K, Ro S, Ochiai M, Iizuka S, Hattori T, Wang L, Taché Y. Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats. Psychoneuroendocrinology 2014; 50:300-10. [PMID: 25265283 PMCID: PMC5942202 DOI: 10.1016/j.psyneuen.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
The autonomic nervous system (ANS) conveys neuronal input from the brain to the stomach. We investigated mechanisms through which urocortin 1 (UCN1) injected intracerebroventricularly (ICV, 300 pmol/rat) inhibits circulating ghrelin in rats. This was achieved by assessing (1) the induction of c-fos gene expression as a marker of neuronal activation in specific hypothalamic and caudal brainstem regulating ANS; (2) the influence of vagotomy and pharmacological blockade of central and peripheral α- and β-adrenergic receptor (AR) on ICV UCN1-induced reduction of plasma ghrelin levels (determined by ELISA); and (3) the relevance of this pathway in the feeding response to a fast in rats. UCN1 increased c-fos mRNA expression in key brain sites influencing sympathetic activity namely the hypothalamic paraventricular and ventromedial nuclei, locus coeruleus, nucleus of the solitary tract, and rostral ventrolateral medulla, by 16-, 29-, 6-, 37-, and 13-fold, respectively. In contrast, the dorsal motor nucleus of the vagus had little c-fos mRNA expression and ICV UCN1 induced a similar reduction in acylated ghrelin in the sham-operated (31%) and vagotomized (41%) rats. An intraperitoneal (IP) injection of either a non-selective α- or selective α2-AR antagonist reduced, while a selective α2-AR agonist enhanced ICV UCN1-induced suppression of plasma acylated ghrelin levels. In addition, IP injection of a non-selective β- or selective β1-AR agonist blocked, and selective β1-AR antagonist augmented, the ghrelin response to ICV UCN1. The IP injections of a selective α1- or non-selective β or β2-AR antagonists, or any of the pretreatments given ICV had no effect. ICV UCN1 reduced the 2-h food intake in response to a fast by 80%, and this effect was partially prevented by a selective α2-AR antagonist. These data suggest that ICV UCN1 reduces plasma ghrelin mainly through the brain sympathetic component of the ANS and peripheral AR specifically α2-AR activation and inactivation of β1-AR. The α2-AR pathway contributes to the associated reduction in food intake.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Yumi Harada
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan.
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Department of Laboratory Sciences, Gunma University School of Health Sciences, Gunma 3718511, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Central Research Laboratories, Teikyo University Chiba Medical Center, Chiba 2990111, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Lixin Wang
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| | - Yvette Taché
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| |
Collapse
|
217
|
Plasma Ghrelin Concentrations Are Negatively Correlated With Urine Albumin-to-Creatinine Ratio in Newly Diagnosed Type 2 Diabetes. Am J Med Sci 2014; 348:382-6. [DOI: 10.1097/maj.0000000000000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
218
|
Spetter MS, Mars M, Viergever MA, de Graaf C, Smeets PA. Taste matters – effects of bypassing oral stimulation on hormone and appetite responses. Physiol Behav 2014; 137:9-17. [DOI: 10.1016/j.physbeh.2014.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 10/09/2013] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
|
219
|
Yada T, Damdindorj B, Rita RS, Kurashina T, Ando A, Taguchi M, Koizumi M, Sone H, Nakata M, Kakei M, Dezaki K. Ghrelin signalling in β-cells regulates insulin secretion and blood glucose. Diabetes Obes Metab 2014; 16 Suppl 1:111-7. [PMID: 25200304 DOI: 10.1111/dom.12344] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin secretion from pancreatic islet β-cells is stimulated by glucose. Glucose-induced insulin release is potentiated or suppressed by hormones and neural substances. Ghrelin, an acylated 28-amino acid peptide, was isolated from the stomach in 1999 as the endogenous ligand for the growth hormone (GH) secretagogue-receptor (GHS-R). Circulating ghrelin is produced predominantly in the stomach and to a lesser extent in the intestine, pancreas and brain. Ghrelin, initially identified as a potent stimulator of GH release and feeding, has been shown to suppress glucose-induced insulin release. This insulinostatic action is mediated by Gα(i2) subtype of GTP-binding proteins and delayed outward K⁺ (Kv) channels. Interestingly, ghrelin is produced in pancreatic islets. The ghrelin originating from islets restricts insulin release and thereby upwardly regulates the systemic glucose level. Furthermore, blockade or elimination of ghrelin enhances insulin release, which can ameliorate glucose intolerance in high-fat diet fed mice and ob/ob mice. This review focuses on the insulinostatic action of ghrelin, its signal transduction mechanisms in islet β-cells, ghrelin's status as an islet hormone, physiological roles of ghrelin in regulating systemic insulin levels and glycaemia, and therapeutic potential of the ghrelin-GHS-R system as the target to treat type 2 diabetes.
Collapse
Affiliation(s)
- T Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:72-83. [PMID: 25173805 DOI: 10.1016/j.nbd.2014.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/28/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics: 1) neuronal loss in motor, sensory or cognitive systems, leading to cognitive and motor decline; and 2) a strong correlation between metabolic changes and neurodegeneration. In order to treat them, a better understanding of their complexity is required: it is necessary to interpret the neuronal damage in light of the metabolic changes, and to find the disrupted link between the peripheral organs governing energy metabolism and the CNS. This review is an attempt to present ghrelin as part of molecular regulatory interface between energy metabolism, neuroendocrine and neurodegenerative processes. Ghrelin takes part in lipid and glucose metabolism, in higher brain functions such as sleep-wake state, learning and memory consolidation; it influences mitochondrial respiration and shows neuroprotective effect. All these make ghrelin an attractive target for development of biomarkers or therapeutics for prevention or treatment of disorders, in which cell protection and recruitment of new neurons or synapses are needed.
Collapse
|
221
|
Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:923564. [PMID: 25247193 PMCID: PMC4160649 DOI: 10.1155/2014/923564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022]
Abstract
As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.
Collapse
|
222
|
Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway. Proc Natl Acad Sci U S A 2014; 111:13163-8. [PMID: 25157160 DOI: 10.1073/pnas.1411571111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although ghrelin has been demonstrated to stimulate energy intake and storage through a central mechanism, its effect on hepatic lipid metabolism remains largely uncharacterized. Ghrelin receptor antagonism or gene deletion significantly decreased obesity-associated hepatic steatosis by suppression of de novo lipogenesis, whereas exogenous ghrelin stimulated lipogenesis, leading to hepatic lipid accumulation in mice. The effects of ghrelin were mediated by direct activation of its receptor on hepatocytes. Cultured hepatocytes responded to ghrelin with increased lipid content and expression of lipogenesis-related genes. Ghrelin increased phosphorylation of S6, the downstream target of mammalian target of rapamycin (mTOR) signaling in cultured hepatocytes, whereas ghrelin receptor antagonism reduced hepatic phosphorylation of S6 in db/db mice. Inhibition of mTOR signaling by rapamycin markedly attenuated ghrelin-induced up-regulation of lipogenesis in hepatocytes, whereas activation of hepatic mTOR signaling by deletion of TSC1 increased hepatic lipogenesis. By interacting with peroxisome proliferator-activated receptor-γ (PPARγ), mTOR mediates the ghrelin-induced up-regulation of lipogenesis in hepatocytes. The stimulatory effect of ghrelin on hepatic lipogenesis was significantly attenuated by PPARγ antagonism in cultured hepatocytes and in PPARγ gene-deficient mice. Our study indicates that ghrelin activates its receptor on hepatocytes to promote lipogenesis via a mechanism involving the mTOR-PPARγ signaling pathway.
Collapse
|
223
|
Li W, Baraboi ED, Cluny NL, Roy MC, Samson P, Biertho L, Sharkey KA, Richard D. Malabsorption plays a major role in the effects of the biliopancreatic diversion with duodenal switch on energy metabolism in rats. Surg Obes Relat Dis 2014; 11:356-66. [PMID: 25553888 DOI: 10.1016/j.soard.2014.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/03/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND The mechanisms underlying the metabolic benefits of the biliopancreatic diversion with duodenal switch (BPD/DS) have not been clarified. The objective of this study was to investigate the metabolic roles of sleeve gastrectomy (SG) and duodenal switch (DS) as main surgical components of BPD/DS. METHODS BPD/DS, SG, and DS surgeries were performed on chow-fed nonobese Wistar rats. Weight and energy intake were recorded during 8 postsurgical weeks. Glucagon-like peptide 1 (GLP-1), peptide tyrosine-tyrosine (PYY), glucose-dependent insulinotropic peptide, and ghrelin were measured pre- and postprandially at weeks 3 and 8, after surgery. Body composition, muscle, liver, and adipose tissue weights were measured. Gut morphometry and the presence and distribution of GLP-1 and PYY (L-cells) in the gut were determined using histochemical techniques. RESULTS Compared with sham, BPD/DS and DS led to significant reductions in weight gain, percentage of fat, and adipose tissue weight. These effects were accompanied by a reduction in digestible energy intake associated with fecal energy loss due to DS. BPD/DS and DS produced intestinal hypertrophy, as well as higher plasma GLP-1 and PYY in both fasted and refed states. It is noteworthy that none of those alterations were observed after SG, which nonetheless led to transient postoperative reduction in gross energy intake and weight. Similar to BPD/DS, SG alone produced a reduced meal size and an enhanced postprandial depression of plasma ghrelin. CONCLUSION BPD/DS results in metabolic benefits, which appear largely caused by food malabsorption due to DS. The elevation of anorectic GLP-1 and PYY are additional consequences of DS, which, together with malabsorption, could promote the metabolic benefits of BPD/DS.
Collapse
Affiliation(s)
- Wei Li
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Elena-Dana Baraboi
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Nina L Cluny
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claude Roy
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Pierre Samson
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Laurent Biertho
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Denis Richard
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
224
|
Uchida A, Zechner JF, Mani BK, Park WM, Aguirre V, Zigman JM. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol Metab 2014; 3:717-30. [PMID: 25353000 PMCID: PMC4209356 DOI: 10.1016/j.molmet.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023] Open
Abstract
The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO) and following weight loss resulting from Roux-en-Y gastric bypass (RYGB). We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion - glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss.
Collapse
Affiliation(s)
- Aki Uchida
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juliet F Zechner
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Won-Mee Park
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent Aguirre
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
225
|
Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss. Obes Surg 2014; 24:85-94. [PMID: 23918282 DOI: 10.1007/s11695-013-1053-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced delayed gastric emptying. METHODS Patients were randomised to a 13-week period of sham or balloon treatment, followed by a 13-week period of balloon treatment in everyone. Blood samples for ghrelin measurement were taken in the fasting state and every 15 min for 1 h after a breakfast meal at the start, after 13 weeks and after 26 weeks. Patients filled out scales to assess satiety and kept a food diary. RESULTS Forty obese patients (BMI 43.1 kg/m(2)) participated. At the start, fasting ghrelin values were low with a blunted ghrelin response to a test meal. The presence of a balloon had no influence on fasting or meal-suppressed ghrelin concentrations. Despite a weight loss of 10 % after 13 weeks and 15 % after 26 weeks, fasting ghrelin concentrations did not change; neither did the ghrelin response to a meal. No relation was found between ghrelin and insulin, satiety, intermeal interval, the number of meals or subsequent energy intake. Ghrelin concentrations were more suppressed with greater weight loss or with balloons located in the fundus. CONCLUSIONS Ghrelin concentrations did not change by balloon treatment after 13 and 26 weeks and, unexpectedly, did not rise despite substantial weight loss and negative energy balance. This suppression might be of benefit in the maintenance of weight loss but could not be ascribed to the balloon treatment.
Collapse
|
226
|
Mao Y, Tokudome T, Kishimoto I. Ghrelin as a treatment for cardiovascular diseases. Hypertension 2014; 64:450-4. [PMID: 24958496 DOI: 10.1161/hypertensionaha.114.03726] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuanjie Mao
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takeshi Tokudome
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ichiro Kishimoto
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
227
|
Paslakis G, Westphal S, Hamann B, Gilles M, Lederbogen F, Deuschle M. Unstimulated and glucose-stimulated ghrelin in depressed patients and controls. J Psychopharmacol 2014; 28:582-6. [PMID: 24671339 DOI: 10.1177/0269881114527655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The neuropeptide ghrelin stimulates hunger and weight gain. Ghrelin actions have been associated with depression in a number of preclinical and clinical studies, although some studies comparing basal peripheral ghrelin levels between depressed patients and controls found no differences between the groups. METHODS Twenty patients with a melancholic depressive episode and 15 controls received a 75 g glucose load and ghrelin levels were measured at 0, 30, 60 and 90 min after the beginning of the test. The patients were then either treated with mirtazapine (n=10) or venlafaxine (n=10) and underwent the same procedure (glucose load and ghrelin assessment) after four weeks of treatment. RESULTS Basal ghrelin concentrations did not differ between patients and controls, although the ghrelin responses following the glucose load were lower in patients and differed significantly to the controls' responses. After treatment, the patients' ghrelin responses to the glucose load increased by trend and approximated those in the control group. CONCLUSION Ghrelin is involved in appetite-regulating pathways during depression. For the first time we show that a functional test procedure using a standardised glucose load is more suitable than the assessment of basal peripheral ghrelin levels to detect differences between diagnostic groups.
Collapse
Affiliation(s)
- Georgios Paslakis
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Magdeburg University Hospital, Magdeburg, Germany
| | - Bettina Hamann
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany
| | - Florian Lederbogen
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
228
|
Ariyasu H, Iwakura H, Yukawa N, Murayama T, Yokode M, Tada H, Yoshimura K, Teramukai S, Ito T, Shimizu A, Yonezawa A, Kangawa K, Mimori T, Akamizu T. Clinical effects of ghrelin on gastrointestinal involvement in patients with systemic sclerosis. Endocr J 2014; 61:735-42. [PMID: 24739333 DOI: 10.1507/endocrj.ej14-0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The majority of patients with systemic sclerosis (SSc) have gastrointestinal (GI) tract involvement, but therapies using prokinetic agents are usually unsatisfactory. Ghrelin stimulates gastric motility in healthy human volunteers. In this study, we investigated whether ghrelin could improve gastric emptying in patients with gastrointestinal symptoms due to SSc. The study was performed in a randomized, double-blind, placebo-controlled crossover fashion on two occasions. Ten SSc patients with GI tract involvement received an infusion of either ghrelin (5.0 μg/kg) or saline, and gastric emptying rate was evaluated by ¹³C-acetic acid breath test. Gastric emptying was significantly accelerated by ghrelin infusion in patients with SSc (ghrelin vs. saline: 43.3 ± 11.4 min vs. 53.4 ± 5.4 min, P=0.03). No serious adverse effects were observed. Our results suggest that ghrelin might represent a new therapeutic approach for GI tract involvement in patients with SSc.
Collapse
Affiliation(s)
- Hiroyuki Ariyasu
- Ghrelin Research Project, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Miura H, Hojo N, Takahashi R, Kikuchi M, Kojima M, Kangawa K, Hasegawa Y, Sakaguchi M. The influence of feeding pattern on changes in plasma ghrelin in the Holstein cow. J Vet Med Sci 2014; 76:1137-9. [PMID: 24813669 PMCID: PMC4155195 DOI: 10.1292/jvms.14-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We measured the plasma ghrelin
and cortisol concentrations in non-lactating cows under fixed-time feeding conditions
followed by an acute or gradual fasting treatment. During the 4 days before fasting,
animals in Group 1 were fed a fixed amount of rations at 0800 and 1600 hr, and those in
Group 2 were fed a gradually reduced amount. Thereafter, the plasma ghrelin concentrations
of each animal were measured for 40 hr. The plasma ghrelin concentrations, which were low
at the onset of fasting, increased before and after 0800 during fasting in Group 1, but
not in Group 2. There were no significant differences in the plasma cortisol concentration
within or between the groups. It was demonstrated that acute fasting induces elevation of
the plasma ghrelin concentration, but that gradual fasting does not. This result suggests
that fixed-time and fixed-quantity feeding caused a daily ghrelin rhythm in the cow and
that this rhythm influenced changes in plasma ghrelin.
Collapse
Affiliation(s)
- Hiroshi Miura
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada-shi, Aomori 034-8628, Japan
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Stoyanova II, le Feber J. Ghrelin accelerates synapse formation and activity development in cultured cortical networks. BMC Neurosci 2014; 15:49. [PMID: 24742241 PMCID: PMC3998954 DOI: 10.1186/1471-2202-15-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin's ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin--growth hormone secretagogue receptor-1a (GHSR-1a) during development. RESULTS We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76±4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1-2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. CONCLUSIONS Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, BSS, ZH 226, University of Twente, P,O, Box 217, Enschede 7500 AE, The Netherlands.
| | | |
Collapse
|
231
|
Prodam F, Filigheddu N. Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp (Warsz) 2014; 62:369-84. [PMID: 24728531 DOI: 10.1007/s00005-014-0287-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/21/2014] [Indexed: 12/27/2022]
Abstract
Ghrelin gene products--the peptides ghrelin, unacylated ghrelin, and obestatin--have several actions on the immune system, opening new perspectives within neuroendocrinology, metabolism and inflammation. The aim of this review is to summarize the available evidence regarding the less known role of these peptides in the machinery of inflammation and autoimmunity, outlining some of their most promising therapeutic applications.
Collapse
Affiliation(s)
- Flavia Prodam
- Departmant of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | | |
Collapse
|
232
|
Saeed S, Bech PR, Hafeez T, Alam R, Falchi M, Ghatei MA, Bloom SR, Arslan M, Froguel P. Changes in levels of peripheral hormones controlling appetite are inconsistent with hyperphagia in leptin-deficient subjects. Endocrine 2014; 45:401-8. [PMID: 23824601 DOI: 10.1007/s12020-013-0009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/22/2013] [Indexed: 01/05/2023]
Abstract
Congenital leptin deficiency, a rare genetic disorder due to a homozygous mutation in the leptin gene (LEP), is accompanied by extreme obesity and hyperphagia. A number of gastrointestinal hormones have been shown to critically regulate food intake but their physiological role in hyperphagic response in congenital leptin deficiency has not been elucidated. This study is the first to evaluate the fasting and postprandial profiles of gut-derived hormones in homozygous and heterozygous carriers of LEP mutation. The study subjects from two consanguineous families consisted of five homozygous and eight heterozygous carriers of LEP mutation, c.398delG. Ten wild-type normal-weight subjects served as controls. Fasting and 1-h postprandial plasma ghrelin, glucagon-like peptide (GLP) 1, peptide YY (PYY), leptin and insulin levels were measured by immunoassays. Fasting plasma ghrelin levels in homozygotes remained remarkably unchanged following food consumption (P = 0.33) in contrast to a significant decline in heterozygous (P < 0.03) and normal (P < 0.02) subjects. A significant postprandial increase in PYY was observed in heterozygous (P < 0.02) and control subjects (P < 0.01), but not in the homozygous group (P = 0.22). A postprandial rise in GLP-1 levels was significant (P < 0.02) in all groups. Interestingly, fasting leptin levels in heterozygotes were not significantly different from controls and did not change significantly following meal. Our results demonstrate that gut hormones play little or no physiological role in driving the hyperphagic response of leptin-deficient subjects. In contrast, fasting and postprandial levels of gut hormones in heterozygous mutation carriers were comparable to those of normal-weight controls.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Genomics of Common Disease, Hammersmith Hospital, Imperial College London, Burlington-Danes Building, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Han G, Ko SJ, Park JW, Kim J, Yeo I, Lee H, Kim SY, Lee H. Acupuncture for functional dyspepsia: study protocol for a two-center, randomized controlled trial. Trials 2014; 15:89. [PMID: 24655542 PMCID: PMC3994398 DOI: 10.1186/1745-6215-15-89] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/04/2014] [Indexed: 12/13/2022] Open
Abstract
Background Functional dyspepsia (FD) is a common health problem currently without any optimal treatments. Acupuncture has been traditionally sought as a treatment for FD. The aim of this study is to investigate whether acupuncture treatment helps improve symptoms of FD. Methods/design A two-center, randomized, waitlist-controlled trial will be carried out to evaluate whether acupuncture treatment improves FD symptoms. Seventy six participants aged 18 to 75 years with FD as diagnosed by Rome III criteria will be recruited from August 2013 to January 2014 at two Korean Medicine hospitals. They will be randomly allocated either into eight sessions of partially individualized acupuncture treatment over 4 weeks or a waitlist group. The acupuncture group will then be followed-up for 3 weeks with six telephone visits and a final visit will be paid at 8 weeks. The waitlist group will receive the identical acupuncture treatment after a 4-week waiting period. The primary outcome is the proportion of responders with adequate symptom relief and the secondary outcomes include Nepean dyspepsia index, EQ-5D, FD-related quality of life, Beck’s depression inventory, state-trait anxiety inventory questionnaire, and level of ghrelin hormone. The protocol was approved by the participating centers’ Institutional Review Boards. Discussion Results of this trial will help clarify not only whether the acupuncture treatment is beneficial for symptom improvement in FD patients but also to elucidate the related mechanisms of how acupuncture might work. Trial registration ClinicalTrials.gov Identifier: NCT01921504.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Kyung Hee dae-ro 26, Dongdaemun-gu, Seoul 130-701, South Korea.
| |
Collapse
|
234
|
O'Brien CS, Wang G, McGinty J, Agénor KK, Dutia R, Colarusso A, Park K, Koshy N, Laferrère B. Effects of gastrogastric fistula repair on weight loss and gut hormone levels. Obes Surg 2014; 23:1294-301. [PMID: 23549962 DOI: 10.1007/s11695-013-0917-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Weight regain after gastric bypass (GBP) can be associated with a gastrogastric fistula (GGF), in which a channel forms between the gastric pouch and gastric remnant, allowing nutrients to pass through the "old route" rather than bypassing the duodenum. To further understand the mechanisms by which GGF may lead to weight regain, we investigated gut hormone levels in GBP patients with a GGF, before and after repair. MATERIALS AND METHODS Seven post-GBP subjects diagnosed with GGF were studied before and 4 months after GGF repair. Another cohort of 22 GBP control subjects without GGF complication were studied before and 1 year post-GBP. All subjects underwent a 50-g oral glucose tolerance test and blood was collected from 0-120 min for glucose, insulin, ghrelin, PYY3-36, GIP, and GLP-1 levels. RESULTS Four months after GGF repair subjects lost 6.0 ± 3.9 kg and had significantly increased postprandial PYY3-36 levels. After GGF repair, fasting and postprandial ghrelin levels decreased and were strongly correlated with weight loss. The insulin response to glucose also tended to be increased after GGF repair, however no concomitant increase in GLP-1 was observed. Compared to the post-GBP group, GLP-1 and PYY3-36 levels were significantly lower before GGF repair; however, after GGF repair, PYY3-36 levels were no longer lower than the post-GBP group. CONCLUSIONS These data utilize the GGF model to highlight the possible role of duodenal shunting as a mechanism of sustained weight loss after GBP, and lend support to the potential link between blunted satiety peptide release and weight regain.
Collapse
Affiliation(s)
- Ciaran S O'Brien
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's Roosevelt Hospital Center, 1111 Amsterdam Avenue, New York, NY 10025, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abstract
Night eating syndrome (NES) has recently been getting more attention as a recognized eating disorder. NES is characterized by a delay in the circadian pattern of food intake, associated with morning anorexia, evening hyperphagia, awakenings from sleep with ingestion of food, depressed mood, and obesity. Although the behavioral characteristics of NES were first described in 1955, the neuroendocrine characteristics have only been described recently. Researchers have examined several hormones that appear to differ in night eaters compared to controls, including melatonin, leptin, and cortisol. Researchers have more recently examined the hypothalamic-pituitary-adrenal axis in more detail, with emphasis on corticotrophin releasing hormone. Further studies have examined ghrelin, growth hormone, prolactin, and IGF-1, with differences observed in the circadian pattern of these hormones in those with NES compared to controls. Despite increasing interest in the neuroendocrine profile of night eating behavior, the biological basis of NES is still not well understood.
Collapse
Affiliation(s)
| | - Allan Geliebter
- NY Obesity Nutrition Center, St. Luke's Hospital, Columbia University, New York, NY, 10025, USA.
| | - Jon Florholmen
- Department of Gastroenterology, University Hospital of the North, Tromsø, Norway.
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, NIH/NIDDK, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| |
Collapse
|
236
|
Trexler ET, Smith-Ryan AE, Norton LE. Metabolic adaptation to weight loss: implications for the athlete. J Int Soc Sports Nutr 2014; 11:7. [PMID: 24571926 PMCID: PMC3943438 DOI: 10.1186/1550-2783-11-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 01/11/2023] Open
Abstract
Optimized body composition provides a competitive advantage in a variety of sports. Weight reduction is common among athletes aiming to improve their strength-to-mass ratio, locomotive efficiency, or aesthetic appearance. Energy restriction is accompanied by changes in circulating hormones, mitochondrial efficiency, and energy expenditure that serve to minimize the energy deficit, attenuate weight loss, and promote weight regain. The current article reviews the metabolic adaptations observed with weight reduction and provides recommendations for successful weight reduction and long term reduced-weight maintenance in athletes.
Collapse
Affiliation(s)
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, 209 Fetzer Hall, CB# 8700, Chapel Hill, NC 27599-8700, USA.
| | | |
Collapse
|
237
|
Protection of MES23.5 dopaminergic cells by obestatin is mediated by proliferative rather than anti-apoptotic action. Neurosci Bull 2014; 30:118-24. [PMID: 24478041 DOI: 10.1007/s12264-013-1405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
Obestatin is an endogenous peptide sharing a precursor with ghrelin. This study aims to investigate whether and how obestatin protects MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity. MES23.5 cells were pretreated with obestatin (10(-13)-10(-6) mol/L) for 20 min prior to incubation with 200 μmol/L MPP(+) for 12 or 24 h, or treated with obestatin alone (10(-13) to 10(-6) mol/L) for 0, 6, 12, and 24 h. The methyl thiazolyl tetrazolium (MTT) assay was used to measure cell viability. Flow cytometry was used to measure the caspase-3 activity and the mitochondrial transmembrane potential. Proliferating cell nuclear antigen (PCNA) protein levels were determined by Western blotting. Obestatin (10(-13) to 10(-7) mol/L) pretreatment blocked or even reversed the MPP(+)-induced reduction of viability in MES23.5 cells, but had no effect on MPP(+)-induced mitochondrial transmembrane potential collapse and caspase-3 activation. When applied alone, obestatin increased viability. Elevated PCNA levels occurred with 10(-7), 10(-9), 10(-11) and 10(-13) mol/L obestatin treatment for 12 h. The results suggest that the protective effects of obestatin against MPP(+) in MES23.5 cells are due to its proliferation-promoting rather than anti-apoptotic effects.
Collapse
|
238
|
Abstract
In the developed world, the hazards associated with obesity have largely outstripped the risk of starvation. Obesity remains a difficult public health issue to address, due in large part to the many disciplines involved. A full understanding requires knowledge in the fields of genetics, endocrinology, psychology, sociology, economics, and public policy - among others. In this short review, which serves as an introduction to the Frontiers in Endocrinology research topic, we address one cross-disciplinary relationship: the interaction between the hunger/satiation neural circuitry, an individual's perceived locus of control, and the risk for obesity. Mammals have evolved a complex system for modulating energy intake. Overlaid on this, in humans, there exists a wide variation in "perceived locus of control" - that is, the extent to which an individual believes to be in charge of the events that affect them. Whether one has primarily an internal or external locus of control itself affects, and is affected by, external and physiological factors and has been correlated with the risk for obesity. Thus, the path from hunger and satiation to an individual's actual behavior may often be moderated by psychological factors, included among which is locus of control.
Collapse
Affiliation(s)
- Florence Neymotin
- Nova Southeastern University, Fort Lauderdale, FL, USA
- *Correspondence: Florence Neymotin, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA e-mail:
| | | |
Collapse
|
239
|
Malnutrition Markers and Serum Ghrelin Levels in Hemodialysis Patients. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:765895. [PMID: 27433541 PMCID: PMC4897115 DOI: 10.1155/2014/765895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
Abstract
Objective. The aim of study was to investigate the changes levels of serum ghrelin in HD patients and its relationship to some malnutrition markers compared with healthy controls. Methods. Forty-five patients on hemodialysis and forty healthy controls were studied. Biochemical parameters and serum ghrelin levels were measured. Both daily dietary intakes and body mass index (BMI) assessments were performed for evaluation of nutritional status. Results. Ghrelin concentrations were significantly reduced in patients undergoing hemodialysis when compared to healthy controls (5 ± 0.68 (1.1–18.5) pg/mL versus 7.8 ± 0.84 (2.4–18.3) pg/mL; P = 0.004). BMI and serum albumin in HD patients were markedly reduced compared to controls. The patients with an insufficient intake of energy and protein demonstrated slightly lower levels of serum ghrelin. A negative correlation between serum ghrelin concentration with age (r = −0.34, P = 0.02), BUN (r = −0.26, P < 0.01), and serum creatinine (r = −0.27, P < 0.01) was observed in HD patients. Conclusions. The findings suggest that decreased ghrelin levels in HD patients might be associated with anorexia. Further studies are needed to determine changes in serum ghrelin levels during dialysis and to clarify whether the decrease in ghrelin levels contributes to the malnutrition that is common in these patients.
Collapse
|
240
|
Haddad H, Mroueh M, Faour WH, Daher C. Growth hormone treatment modulates active ghrelin levels in rats. Endocr Res 2014; 39:39-43. [PMID: 23772680 DOI: 10.3109/07435800.2013.799484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Impairments in neuroendocrine regulation of food intake and postprandial satiety are leading causes to obesity. Ghrelin peptide is a GI hormone known to increase food intake partly through induction of growth hormone. The regulation of ghrelin production is still unknown. OBJECTIVE The aim of the current study is to investigate the influence of growth hormone (Genotropin) treatment on active ghrelin levels in plasma, stomach, pancreas and kidney in rats. MATERIAL/METHODS Male Sprague-Dawley rats, randomly allocated into control and three treatment groups, received daily subcutaneous injections of Genotropin at 2, 20 and 100 µg/rat/day for 5 consecutive days. Active ghrelin levels were quantified per tissue mass or tissue protein. RESULTS In control groups, the highest active ghrelin concentration in pmol/g tissue was found in the stomach (15.5 ± 0.21) followed by the pancreas (1.96 ± 0.066) and the kidney (1.36 ± 0.037). Genotropin treatment caused a dose dependent decrease in active ghrelin concentration in stomach, kidney and pancreas with a concomitant increase in plasma, and reaching significance at 20 and 100 µg/rat/day doses. However, the treatment caused variable effect on total protein concentrations, with a decrease in pancreas and an increase in stomach and kidney supernatants. Consequently, under such treatment, determination of active ghrelin concentration per tissue mass rather than per tissue protein is favored. CONCLUSIONS The present study suggests a direct correlation between Genotropin treatment and active ghrelin secretion into the rat plasma via modulating its stores in stomach, kidney and pancreas.
Collapse
Affiliation(s)
- Haytham Haddad
- School of Arts and Sciences, Natural Sciences Department and
| | | | | | | |
Collapse
|
241
|
Ruchala M, Gurgul E, Stangierski A, Wrotkowska E, Moczko J. Individual plasma ghrelin changes in the same patients in hyperthyroid, hypothyroid and euthyroid state. Peptides 2014; 51:31-4. [PMID: 24184592 DOI: 10.1016/j.peptides.2013.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/17/2022]
Abstract
Ghrelin is a multifunctional peptide of widespread expression. Since it has been shown to influence energy homeostatis, its potential role in thyroid dysfunction may have clinical significance. In this study, plasma ghrelin changes have been analyzed in the same patients in three different thyroid states for the first time. The study group consisted of 16 patients who had been diagnosed with hyperthyroidism, were treated with radioiodine, developed hypothyroidism after treatment, and finally became euthyroid on l-thyroxine substitution. In the initial state of hyperthyroidism plasma ghrelin levels correlated negatively with fT3 and fT4. In hypothyroidism ghrelin concentration increased significantly (p<0.05). Although the mean value of plasma ghrelin tended to decrease in the euthyroid state, the individual difference between hypothyroidism and euthyroidism was not significant. Plasma ghrelin in euthyroidism was still significantly higher than in hyperthyroidism (p<0.05), and correlated positively with ghrelin levels in hyperthyroidism and hypothyroidism. In our opinion, plasma ghrelin fluctuations may reflect metabolic changes in patients with thyroid dysfunction. Moreover, it cannot be excluded that in thyroid disorders ghrelin acts as a compensatory factor, helping to balance metabolic disturbances.
Collapse
Affiliation(s)
- Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Edyta Gurgul
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland.
| | - Adam Stangierski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Jerzy Moczko
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 79 Dabrowskiego St., 60-529 Poznan, Poland
| |
Collapse
|
242
|
Ariyasu H, Yamada G, Iwakura H, Matsumura S, Inoue K, Kangawa K, Nakao K, Akamizu T. Reduction in circulating ghrelin concentration after maturation does not affect food intake. Endocr J 2014; 61:1041-52. [PMID: 25029956 DOI: 10.1507/endocrj.ej14-0255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin has a potent orexigenic effect and induces adiposity when administered exogenously. Since plasma ghrelin levels rise before meals, ghrelin was thought to play a crucial role in the regulation of appetite. In contrast, mice deficient in the production of ghrelin or the corresponding receptor, GHS-R, do not eat less, throwing the role of ghrelin in the regulation of energy homeostasis into question. Since these mice lack ghrelin or GHS-R from the time of conception, the possibility that compensatory mechanisms may have arisen during development cannot be ruled out. In this study, we used a transgenic mouse model that expresses human diphtheria toxin (DT) receptor cDNA under the control of the ghrelin promoter (GPDTR-Tg mice). As previously reported, an injection of DT into this mouse model ablates ghrelin-secreting cells in the stomach but not in the hypothalamus, resulting in a reduction in circulating ghrelin levels. We used this model system to evaluate the physiological roles of circulating ghrelin in the regulation of food intake. Meal patterns, diurnal and nocturnal meal sizes, and cumulative food intake of DT-treated GPDTR-Tg mice were not affected, although circulating ghrelin levels markedly decreased even after fasting. These mice also displayed normal responses to starvation; however, the use of fat increased and slower weight gain when maintained on a high fat diet was observed. Together, these data suggest that circulating ghrelin does not play a crucial role in feeding behavior, but rather is involved in maintaining body weight.
Collapse
Affiliation(s)
- Hiroyuki Ariyasu
- Department of Endocrinology and Metabolism, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Na HN, Kim H, Nam JH. Prophylactic and therapeutic vaccines for obesity. Clin Exp Vaccine Res 2013; 3:37-41. [PMID: 24427761 PMCID: PMC3890448 DOI: 10.7774/cevr.2014.3.1.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/07/2013] [Accepted: 10/25/2013] [Indexed: 01/14/2023] Open
Abstract
Chronic diseases such as obesity and diabetes are major causes of death and disability throughout the world. Many causes are known to trigger these chronic diseases, and infectious agents such as viruses are also pathological factors. In particular, it is considered that adenovirus 36 infections may be associated with obesity. If this is the case, a vaccine against adenovirus 36 may be a form of prophylaxis to combat obesity. Other types of therapeutic vaccines to combat obesity are also being developed. Recently, hormones such as glucagon-like peptide-1, ghrelin, and peptide YY have been studied as treatments to prevent obesity. This review describes the ongoing development of therapeutic vaccines to treat obesity, and the possibility of using inactivated adenovirus 36 as a vaccine and an anti-obesity agent.
Collapse
Affiliation(s)
- Ha-Na Na
- Department of Infection and Obesity, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Hun Kim
- SK Chemicals, Seongnam, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
244
|
Gunji S, Ueda S, Yoshida M, Kanai M, Terajima H, Takabayashi A. Effects of rikkunshito, a kampo medicine, on quality of life after proximal gastrectomy. J Surg Res 2013; 185:575-80. [DOI: 10.1016/j.jss.2013.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/18/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
|
245
|
Yang J, Feng X, Zhong S, Wang Y, Liu J. Gastric Bypass Surgery May Improve Beta Cell Apoptosis with Ghrelin Overexpression in Patients with BMI ≥ 32.5 kg/m2. Obes Surg 2013; 24:561-71. [DOI: 10.1007/s11695-013-1135-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
246
|
Keen-Rhinehart E, Ondek K, Schneider JE. Neuroendocrine regulation of appetitive ingestive behavior. Front Neurosci 2013; 7:213. [PMID: 24298235 PMCID: PMC3828638 DOI: 10.3389/fnins.2013.00213] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/25/2013] [Indexed: 01/08/2023] Open
Abstract
Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive behavior.
Collapse
|
247
|
Squecco R, Garella R, Francini F, Baccari MC. Influence of obestatin on the gastric longitudinal smooth muscle from mice: mechanical and electrophysiological studies. Am J Physiol Gastrointest Liver Physiol 2013; 305:G628-37. [PMID: 23989009 DOI: 10.1152/ajpgi.00059.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obestatin is a hormone released from the stomach deriving from the same peptide precursor as ghrelin. It is known to act as an anorectic hormone decreasing food intake, but contrasting results have been reported about the effects of obestatin on gastrointestinal motility. The aim of the present study was to investigate whether this peptide may act on the gastric longitudinal smooth muscle by using a combined mechanical and electrophysiological approach. When fundal strips from mice were mounted in organ baths for isometric recording of the mechanical activity, obestatin caused a tetrodotoxin-insensitive decrease of the basal tension and a reduction in amplitude of the neurally induced cholinergic contractile responses, even in the presence of the nitric oxide synthesis inhibitor N(G)-nitro-l-arginine. Obestatin reduced the amplitude of the response to the ganglionic stimulating agent dimethylphenyl piperazinium iodide but did not influence that to methacholine. In nonadrenergic, noncholinergic conditions, obestatin still decreased the basal tension of the preparations without influencing the neurally induced relaxant responses. For comparison, in circular fundal strips, obestatin had no effects. Notably, in the longitudinal antral ones, obestatin only caused a decrease of the basal tension. Electrophysiological experiments, performed by a single microelectrode inserted in a gastric longitudinal smooth muscle cell, showed that obestatin had similar effects in fundal and antral preparations: it decreased the resting specific membrane conductance, inhibited Ca(2+) currents, and positively shifted their voltage threshold of activation. In conclusion, the present results indicate that obestatin influences gastric smooth muscle exerting site-specific effects.
Collapse
Affiliation(s)
- Roberta Squecco
- Dipartimento di Medicina Sperimentale e Clinica, Sezione di Scienze Fisiologiche, Università degli Studi, Firenze, Viale Morgagni 63, 50134, Italy.
| | | | | | | |
Collapse
|
248
|
Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes (Lond) 2013; 38:364-70. [PMID: 24166065 DOI: 10.1038/ijo.2013.196] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/10/2013] [Accepted: 09/21/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) produces more durable glycemic control than sleeve gastrectomy (SG) or intensive medical therapy (IMT). However, the contribution of acylated ghrelin (AG), a gluco-regulatory/appetite hormone, to improve glucose metabolism and body composition in patients with type 2 diabetes (T2D) following RYGB is unknown. DESIGN STAMPEDE (Surgical Treatment and Medication Potentially Eradicate Diabetes Efficiently) was a prospective, randomized controlled trial. SUBJECTS Fifty-three (body mass index: 36±3 kg m(-2), age: 49±9 years) poorly controlled patients with T2D (HbA1c (glycated hemoglobin): 9.7±2%) were randomized to IMT, IMT+RYGB or IMT+SG and underwent a mixed-meal tolerance test at baseline, 12, and 24 months for evaluation of AG suppression (postprandial minus fasting) and beta-cell function (oral disposition index; glucose-stimulated insulin secretion × Matsuda index). Total/android body fat (dual-energy X-ray absorptiometry) was also assessed. RESULTS RYGB and SG reduced body fat comparably (15-23 kg) at 12 and 24 months, whereas IMT had no effect. Beta-cell function increased 5.8-fold in RYGB and was greater than IMT at 24 months (P<0.001). However, there was no difference in insulin secretion between SG vs IMT at 24 months (P=0.32). Fasting AG was reduced fourfold following SG (P<0.01) and did not change with RYGB or IMT at 24 months. AG suppression improved more following RYGB than SG or IMT at 24 months (P=0.01 vs SG, P=0.07 vs IMT). At 24 months, AG suppression was associated with increased postprandial glucagon-like peptide-1 (r=-0.32, P<0.02) and decreased android fat (r=0.38; P<0.006). CONCLUSIONS Enhanced AG suppression persists for up to 2 years after RYGB, and this effect is associated with decreased android obesity and improved insulin secretion. Together, these findings suggest that AG suppression is partly responsible for the improved glucose control after RYGB surgery.
Collapse
|
249
|
Wellman PJ, Clifford PS, Rodriguez JA. Ghrelin and ghrelin receptor modulation of psychostimulant action. Front Neurosci 2013; 7:171. [PMID: 24093007 PMCID: PMC3782693 DOI: 10.3389/fnins.2013.00171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/02/2013] [Indexed: 12/03/2022] Open
Abstract
Ghrelin (GHR) is an orexigenic gut peptide that modulates multiple homeostatic functions including gastric emptying, anxiety, stress, memory, feeding, and reinforcement. GHR is known to bind and activate growth-hormone secretagogue receptors (termed GHR-Rs). Of interest to our laboratory has been the assessment of the impact of GHR modulation of the locomotor activation and reward/reinforcement properties of psychostimulants such as cocaine and nicotine. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, as does food restriction (FR) which elevates plasma ghrelin levels. Ghrelin enhancement of psychostimulant function may occur owing to a direct action on mesolimbic dopamine function or may reflect an indirect action of ghrelin on glucocorticoid pathways. Genomic or pharmacological ablation of GHR-Rs attenuates the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and blunts the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. Inactivation of ghrelin circuit function in rats by injection of a ghrelin receptor antagonist (e.g., JMV 2959) diminishes the development of nicotine-induced locomotor sensitization. These results suggest a key permissive role for GHR-R activity for the induction of locomotor sensitization to nicotine. Our finding that GHR-R null rats exhibit diminished patterns of responding for intracranial self-stimulation complements an emerging literature implicating central GHR circuits in drug reward/reinforcement. Finally, antagonism of GHR-Rs may represent a smoking cessation modality that not only blocks nicotine-induced reward but that also may limit weight gain after smoking cessation.
Collapse
Affiliation(s)
- Paul J Wellman
- Behavioral Neuroscience Program, Department of Psychology, Texas A&M University College Station, TX, USA
| | | | | |
Collapse
|
250
|
Azevedo-Pinto S, Pereira-Silva P, Rocha-Sousa A. Ghrelin in ocular pathophysiology: from the anterior to the posterior segment. Peptides 2013; 47:12-9. [PMID: 23816797 DOI: 10.1016/j.peptides.2013.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
Abstract
Ghrelin is a 28 amino acid acylated peptide produced in several organs that binds the growth hormone secretagogues receptor type 1a (GHSR-1a). It acts over a wide range of systems, e.g. the endocrine, cardiovascular, musculoskeletal and immune systems and the eye. The aim of this work is to review the physiologic and pathologic implications of the ghrelin-GHSR-1a in the eye. A systematic revision of studies published between 2000 and 2013 in English, Spanish or Portuguese in MEDLINE, EMBASE and Scopus was performed. Search words used included: ghrelin, GHSR-1a, ocular production, iris muscular kinetics, ciliary body, glaucoma, retinopathy and uvea. The production of ghrelin by the ocular tissue has been detected both in the anterior and posterior segments, as well as the presence of GHSR-1a. This peptide promotes the relaxation of the iris sphincter and dilator muscles, being this effect independent from GHSR-1a and dependent on prostaglandins release in the first case and dependent on GHSR-1a in the second. Regarding ocular pathology, ghrelin levels in the aqueous humor appear to be decreased in individuals with glaucoma. Moreover, ghrelin has been shown to decrease the intraocular pressure in animal models of ocular hypertension through GHSR-1a. In the posterior segment, the ghrelin-GHSR-1a system interferes with the development of oxygen-induced retinopathy, being protective in the vaso-obliterative phase and deleterious in the vaso-proliferative stage of the disease. Thus, the ghrelin-GHSR-1a system presents as a possible local regulatory mechanism in the eye, with pathophysiological implications, constituting a target for future clinical and therapeutic research and interventions.
Collapse
Affiliation(s)
- Sara Azevedo-Pinto
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|