201
|
Lins BR, Anyaegbu CC, McGonigle T, Hellewell SC, Patel P, Reagan H, Rooke-Wiesner C, Warnock A, Archer M, Hemmi JM, Bartlett C, Fitzgerald M. Secondary Degeneration Impairs Myelin Ultrastructural Development in Adulthood following Adolescent Neurotrauma in the Rat Optic Nerve. Int J Mol Sci 2023; 24:ijms24043343. [PMID: 36834755 PMCID: PMC9966883 DOI: 10.3390/ijms24043343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Adolescence is a critical period of postnatal development characterized by social, emotional, and cognitive changes. These changes are increasingly understood to depend on white matter development. White matter is highly vulnerable to the effects of injury, including secondary degeneration in regions adjacent to the primary injury site which alters the myelin ultrastructure. However, the impact of such alterations on adolescent white matter maturation is yet to be investigated. To address this, female piebald-virol-glaxo rats underwent partial transection of the optic nerve during early adolescence (postnatal day (PND) 56) with tissue collection two weeks (PND 70) or three months later (PND 140). Axons and myelin in the transmission electron micrographs of tissue adjacent to the injury were classified and measured based on the appearance of the myelin laminae. Injury in adolescence impaired the myelin structure in adulthood, resulting in a lower percentage of axons with compact myelin and a higher percentage of axons with severe myelin decompaction. Myelin thickness did not increase as expected into adulthood after injury and the relationship between the axon diameter and myelin thickness in adulthood was altered. Notably, dysmyelination was not observed 2 weeks postinjury. In conclusion, injury in adolescence altered the developmental trajectory, resulting in impaired myelin maturation when assessed at the ultrastructural level in adulthood.
Collapse
Affiliation(s)
- Brittney R. Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Chidozie C. Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Correspondence:
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Sarah C. Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Parth Patel
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Harry Reagan
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Cara Rooke-Wiesner
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Michael Archer
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Jan M. Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Carole Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| |
Collapse
|
202
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
203
|
Wang Y, Zhou Y, Zhang X, Wang K, Chen X, Cheng H. Orienting network impairment of attention in patients with mild traumatic brain injury. Behav Brain Res 2023; 437:114133. [PMID: 36179805 DOI: 10.1016/j.bbr.2022.114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
Abstract
The incomplete understanding of mild traumatic brain injury (MTBI)-related cognitive impairment in the acute stage and the low cognitive needs of patients in the later stage might be the main reasons for the neglect of clinical symptoms in patients with MTBI. Patients often experience attention deficits; however, it is unclear whether these patients suffer from general deficits or selective impairment of the brain attention network. Therefore, we investigated deficits in the attention function of patients with mild brain traumatic injury. Patients (n = 50) and matched healthy controls (n = 49) completed a general neuropsychological background test and the Attention Network Test, which provided an independent assessment of the three attention networks (alerting, orienting, and executive control). We found that patients had significant deficits in the orienting network but none in the alerting and executive control networks. Furthermore, patients' cognitive task scores in attention, memory, and information processing tasks were significantly lower than the scores of the controls. Our results demonstrated that patients with MTBI had selective impairment in the orienting network and extensive cognitive impairments, including those related to general attention, memory, and information processing speed.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yuwei Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Zhang
- Department of Neurosurgery, Funan County People's Hospital, Fuyang, China
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingui Chen
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
204
|
Tabor J, La P, Kline G, Wang M, Bonfield S, Machan M, Wynne-Edwards K, Emery C, Debert C. Saliva Cortisol as a Biomarker of Injury in Youth Sport-Related Concussion. J Neurotrauma 2023; 40:296-308. [PMID: 35906800 DOI: 10.1089/neu.2022.0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Increasing rates of sport-related concussion (SRC) in youth impose a significant burden on public health systems and the lives of young athletes. Accurate prediction for those likely to develop persistent post-concussion symptomology (PPCS) using a fluid biomarker, reflecting both acute injury and recovery processes, would provide the opportunity for early intervention. Cortisol, a stress hormone released through the hypothalamic-pituitary-adrenal (HPA) axis following injury, may provide a missing physiological link to clinical recovery. This cohort study investigated the change in saliva cortisol following SRC and the association between cortisol and symptom burden in pediatric ice hockey players. Further, the association between cortisol levels and medical clearance to return to play was explored. In total, cortisol samples from 233 players were included; 165 athletes (23.6% female) provided pre-injury saliva and 68 athletes (19.1% female) provided post-SRC saliva samples for cortisol analysis. Quantile (median) regressions were used to compare cortisol between pre-injury and post-SRC groups, and the association between total symptoms (/22) and symptom severity scores (/132) reported on the Sport Concussion Assessment Tool (SCAT)3/SCAT5 and post-SRC cortisol (adjusting for age, sex, history of concussion, and time from injury to sample collection). Results demonstrated significantly lower saliva cortisol in post-SRC athletes compared with the pre-injury group (β = -0.62, 95% confidence interval [CI; -1.08, -0.16], p = 0.009). Post-SRC cortisol was not significantly associated with the SCAT3/SCAT5 symptom totals or symptom severity scores; however, females were found to report more symptoms (β = 6.95, 95% CI [0.35, 13.55], p = 0.040) and greater symptom severity (β = 23.87, 95% CI [9.58, 38.15], p = 0.002) compared with males. Exploratory time-to-event analysis revealed a point estimate suggesting a potential association between low cortisol levels and days to medical clearance to return to play. Although preliminary, these findings suggest that the HPA axis may be dysregulated post-SRC. Further, our exploratory analysis and case presentation of post-injury outliers highlight the need to further research cortisol as a prognostic biomarker to inform individualized sex-specific care after SRC.
Collapse
Affiliation(s)
- Jason Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Parker La
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gregory Kline
- Division of Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephan Bonfield
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Machan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Katherine Wynne-Edwards
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chantel Debert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
205
|
Wong JKY, Churchill NW, Graham SJ, Baker AJ, Schweizer TA. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms. Brain Inj 2023; 37:147-158. [PMID: 36594665 DOI: 10.1080/02699052.2022.2163290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To examine the roles of the default mode network (DMN) and executive control network (ECN) in prolonged recovery after mild traumatic brain injury (mTBI), and relationships with indices of white matter microstructural injury. METHODS Seventeen mTBI patients with persistent symptoms were imaged an average of 21.5 months post-injury, along with 23 healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to evaluate functional connectivity (FC) of the DMN and ECN. Diffusion tensor imaging (DTI) quantified fractional anisotropy, along with mean, axial and radial diffusivity of white matter tracts. RESULTS Compared to controls, patients with mTBI had increased functional connectivity of the DMN and ECN to brain regions implicated in salience and frontoparietal networks, and increased white matter diffusivity within the cerebrum and brainstem. Among the patients, FC was correlated with better neurocognitive test scores, while diffusivity was correlated with more severe self-reported symptoms. The FC and diffusivity values within abnormal brain regions were not significantly correlated. CONCLUSION For female mTBI patients with prolonged symptoms, hyper-connectivity may represent a compensatory response that helps to mitigate the effects of mTBI on cognition. These effects are unrelated to indices of microstructural injury, which are correlated with symptom severity, suggesting that rs-fMRI and DTI may capture distinct aspects of pathophysiology.
Collapse
Affiliation(s)
- Jimmy K Y Wong
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
| | - Nathan W Churchill
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Simon J Graham
- Sunnybrook Research Institute of Sunnybrook Health Sciences Centre, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Health Sciences Centre, Toronto, Canada.,Faculty of Medicine (medical Biophysics), University of Toronto Toronto, Canada
| | - Andrew J Baker
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Faculty of Medicine (Institute of Medical Science), University of Toronto, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada.,Department of Surgery and Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Tom A Schweizer
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, Canada.,The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada
| |
Collapse
|
206
|
Lennon MJ, Brooker H, Creese B, Thayanandan T, Rigney G, Aarsland D, Hampshire A, Ballard C, Corbett A, Raymont V. Lifetime Traumatic Brain Injury and Cognitive Domain Deficits in Late Life: The PROTECT-TBI Cohort Study. J Neurotrauma 2023. [PMID: 36716779 DOI: 10.1089/neu.2022.0360] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) causes cognitive impairment but it remains contested regarding which cognitive domains are most affected. Further, moderate-severe TBI is known to be deleterious, but studies of mild TBI (mTBI) show a greater mix of negative and positive findings. This study examines the longer-term cognitive effects of TBI severity and number of mTBIs in later life. We examined a subset (n = 15,764) of the PROTECT study, a cohort assessing risk factors for cognitive decline (ages between 50 and 90 years). Participants completed cognitive assessments annually for 4 years. Cognitive tests were grouped using a principal components analysis (PCA) into working memory, episodic memory, attention, processing speed, and executive function. Lifetime TBI severity and number were retrospectively recalled by participants using the Brain Injury Screening Questionnaire (BISQ). Linear mixed models (LMMs) examined the effect of severity of head injury (non-TBI head strike, mTBI, and moderate-severe TBI) and number of mTBI at baseline and over time. mTBI was considered as a continuous and categorical variable (groups: 0 mTBI, 1 mTBI, 2 mTBIs, 3 mTBIs, and 4+ mTBIs). Of the participants 5725 (36.3%) reported at least one mTBI and 510 (3.2%) at least one moderate-severe TBI, whereas 3711 (23.5%) had suffered at worst a non-TBI head strike and 5818 (32.9%) reported no head injuries. The participants had suffered their last reported head injury an average (standard deviation, SD) of 29.6 (20.0) years prior to the study. Regarding outcomes, there was no worsening in longitudinal cognitive trajectories over the study duration but at baseline there were significant cognitive deficits associated with TBI. At baseline, compared with those without head injury, individuals reporting at least one moderate-severe TBI had significantly poorer attention (B = -0.163, p < 0.001), executive scores (B = -0.151, p = 0.004), and processing speed (B = -0.075, p = 0.033). Those who had suffered at least a single mTBI also demonstrated significantly poorer attention scores at baseline compared with the no head injury group (B = -0.052, p = 0.001). Compared with those with no mTBI, those in the 3 mTBI group manifested poorer baseline executive function (B = -0.149, p = 0.025) and attention scores (B = -0.085, p = 0.015). At baseline, those who had suffered four or more mTBIs demonstrated poorer attention (B = -0.135, p < 0.001), processing speed (B = -0.072, p = 0.009), and working memory (B = -0.052, p = 0.036), compared with those reporting no mTBI. TBI is associated with fixed, dose, and severity-dependent cognitive deficits. The most sensitive cognitive domains are attention and executive function, with approximately double the effect compared with processing speed and working memory. Post-TBI cognitive rehabilitation should be targeted appropriately to domain-specific effects. Significant long-term cognitive deficits were associated with three or more lifetime mTBIs, a critical consideration when counseling individuals post-TBI about continuing high-risk activities.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Brooker
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Tony Thayanandan
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, IoPPN, Kings College London, London, United Kingdom.,Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
207
|
Goodwin GJ, John SE, Donohue B, Keene J, Kuwabara HC, Maietta JE, Kinsora TF, Ross S, Allen DN. Changes in ImPACT Cognitive Subtest Networks Following Sport-Related Concussion. Brain Sci 2023; 13:brainsci13020177. [PMID: 36831720 PMCID: PMC9953817 DOI: 10.3390/brainsci13020177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE High school athletes are administered ImPACT at the start of the academic year or sport season and again after suspected concussion. Concussion management involves the comparison of baseline and post-injury cognitive scores with declines in scores providing evidence for concussive injury. A network framework may provide additional information about post-concussive cognitive changes and expand characterization of sport-related concussion (SRC) recovery. DESIGN Retrospective cohort study. SETTING High school. PARTICIPANTS High school athletes (n = 1553) were administered ImPACT at baseline (T1), post-SRC (T2 = 72 h of injury), and prior to return to play (T3 = within two weeks post-injury). INDEPENDENT VARIABLES ImPACT cognitive subtest scores. MAIN OUTCOME MEASURES Cognitive networks were calculated and compared over three time points. Centrality indices were calculated to determine the relative importance of cognitive variables within networks. RESULTS Network connectivity increased from T1 to T2 and remained hyperconnected at T3. There was evidence of network reorganization between T1 and T3. Processing speed was central within each network, and visual memory and impulsivity became more central over time. CONCLUSIONS The results suggest potential evidence of cognitive network change over time. Centrality findings suggest research specific to visual memory and impulse control difficulties during the post-concussion recovery period is warranted. Network analysis may provide additional information about cognitive recovery following SRC and could potentially serve as an effective means of monitoring persisting cognitive symptoms after concussion.
Collapse
Affiliation(s)
- Grace J. Goodwin
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
- Correspondence:
| | - Samantha E. John
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Bradley Donohue
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| | - Jennifer Keene
- College of Liberal Arts, University of Nevada, Las Vegas, NV 89154, USA
| | - Hana C. Kuwabara
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| | - Julia E. Maietta
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Staci Ross
- Center for Applied Neuroscience, Las Vegas, NV 89101, USA
| | - Daniel N. Allen
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
208
|
So I, Meusel LAC, Sharma B, Monette GA, Colella B, Wheeler AL, Rabin JS, Mikulis DJ, Green REA. Longitudinal Patterns of Functional Connectivity in Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:665-682. [PMID: 36367163 DOI: 10.1089/neu.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal neuroimaging studies aid our understanding of recovery mechanisms in moderate-to-severe traumatic brain injury (TBI); however, there is a dearth of longitudinal functional connectivity research. Our aim was to characterize longitudinal functional connectivity patterns in two clinically important brain networks, the frontoparietal network (FPN) and the default mode network (DMN), in moderate-to-severe TBI. This inception cohort study of prospectively collected longitudinal data used resting-state functional magnetic resonance imaging (fMRI) to characterize functional connectivity patterns in the FPN and DMN. Forty adults with moderate-to-severe TBI (mean ± standard deviation [SD]; age = 39.53 ± 16.49 years, education = 13.92 ± 3.20 years, lowest Glasgow Coma Scale score = 6.63 ± 3.24, sex = 70% male) were scanned at approximately 0.5, 1-1.5, and 3+ years post-injury. Seventeen healthy, uninjured participants (mean ± SD; age = 38.91 ± 15.57 years, education = 15.11 ± 2.71 years, sex = 29% male) were scanned at baseline and approximately 11 months afterwards. Group independent component analyses and linear mixed-effects modeling with linear splines that contained a knot at 1.5 years post-injury were employed to investigate longitudinal network changes, and associations with covariates, including age, sex, and injury severity. In patients with TBI, functional connectivity in the right FPN increased from approximately 0.5 to 1.5 years post-injury (unstandardized estimate = 0.19, standard error [SE] = 0.07, p = 0.009), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.21, SE = 0.11, p = 0.009), and marginally declined afterwards (estimate = -0.10, SE = 0.06, p = 0.079). Functional connectivity in the DMN increased from approximately 0.5 to 1.5 years (estimate = 0.15, SE = 0.05, p = 0.006), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.19, SE = 0.08, p = 0.021), and was estimated to decline from 1.5 to 3+ years (estimate = -0.04, SE = 0.04, p = 0.303). Similarly, the left FPN increased in functional connectivity from approximately 0.5 to 1.5 years post-injury (estimate = 0.15, SE = 0.05, p = 0.002), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.18, SE = 0.07, p = 0.008), and was estimated to decline thereafter (estimate = -0.04, SE = 0.03, p = 0.254). At approximately 0.5 years post-injury, patients showed hypoconnectivity compared with healthy, uninjured participants at baseline. Covariates were not significantly associated in any of the models. Findings of early improvement but a tapering and possible decline in connectivity thereafter suggest that compensatory effects are time-limited. These later reductions in connectivity mirror growing evidence of behavioral and structural decline in chronic moderate-to-severe TBI. Targeting such declines represents a novel avenue of research and offers potential for improving clinical outcomes.
Collapse
Affiliation(s)
- Isis So
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Liesel-Ann C Meusel
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Georges A Monette
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Toronto Western Hospital-University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
209
|
Stevens DJ, Appleton S, Bickley K, Holtzhausen L, Adams R. Electroencephalographic Changes in Sleep During Acute and Subacute Phases After Sports-Related Concussion. Nat Sci Sleep 2023; 15:267-273. [PMID: 37155471 PMCID: PMC10122858 DOI: 10.2147/nss.s397900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Purpose Little is known about sleep after a concussion, a form of mild traumatic brain injury. Given the importance of sleep for both maintaining brain health and recovery from injury, we sought to examine sleep acutely and subacutely after concussion. Methods Athletes who experienced a sports-related concussion were invited to participate. Participants underwent overnight sleep studies within 7 days of the concussion (acute phase), and again eight-weeks after the concussion (subacute phase). Changes in sleep from both the acute and subacute phases were compared to population normative values. Additionally, changes in sleep from acute to subacute phase were analysed. Results When compared to normative data, the acute and subacute phases of concussion showed longer total sleep time (p < 0.005) and fewer arousals (p < 0.005). The acute phase showed longer rapid eye movement sleep latency (p = 0.014). The subacute phase showed greater total sleep spent in Stage N3% (p = 0.046), increased sleep efficiency (p < 0.001), shorter sleep onset latency (p = 0.013), and reduced wake after sleep onset (p = 0.013). Compared to the acute phase, the subacute phase experienced improved sleep efficiency (p = 0.003), reduced wake after sleep onset (p = 0.02), and reduced latencies for both stage N3 sleep (p = 0.014) and rapid eye movement sleep (p = 0.006). Conclusion This study indicated sleep during both the acute and subacute phases of SRC was characterised by longer and less disrupted sleep, along with improvements in sleep from the acute to subacute phases of SRC.
Collapse
Affiliation(s)
- David J Stevens
- Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Correspondence: David J Stevens, Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Level 2a, 5 Laffer Dve, Bedford Park, South Australia, 5041, Australia, Tel +61 7306 1816, Email
| | - Sarah Appleton
- Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Kelsey Bickley
- Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Louis Holtzhausen
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Section Sports Medicine, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
- Department of Exercise and Sport Science, University of the Free State, Bloemfontein, South Africa
| | - Robert Adams
- Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Respiratory and Sleep Services, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| |
Collapse
|
210
|
Cordingley DM, Cornish SM. Efficacy of aerobic exercise following concussion: a narrative review. Appl Physiol Nutr Metab 2023; 48:5-16. [PMID: 36423352 DOI: 10.1139/apnm-2022-0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Concussion is a type of mild traumatic brain injury which results in symptoms within the physical, cognitive, emotional, and sleep domains. Historically, guidelines established by expert opinion have recommended rest during the initial stages of recovery following a concussion until symptom resolution. However, recent recommendations have shifted to advise an initial period of 24-48 h of rest immediately following concussion with the gradual introduction of light-to-moderate intensity aerobic exercise thereafter. Given the relatively recent transition in recommendations, the aim of this review is to provide an overview of the current literature on the efficacy of aerobic exercise following concussion. The current literature is limited to studies assessing the impact of standardized aerobic exercise following concussion. Upon review, literature suggests participating in aerobic exercise below the point of symptom exacerbation is safe in both the acute and chronic post-concussion symptom stages of recovery and does not delay time to medical clearance. Future large-scale randomized controlled trials assessing the impact of aerobic exercise and differences between males and females would help support the current evidence suggesting aerobic exercise could improve time to recovery following concussion and identify any sex differences in response. As well, future studies with the purpose of identifying optimal aerobic exercise volume and intensity in the treatment of concussion could improve the specificity of the current guidelines.
Collapse
Affiliation(s)
- Dean M Cordingley
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4 Canada
- Applied Health Sciences, Winnipeg, MB R3T 2N2, Canada
| | - Stephen M Cornish
- Applied Health Sciences, Winnipeg, MB R3T 2N2, Canada
- Faculty of Kinesiology and Recreation Management, Winnipeg, MB R3T 2N2, Canada
- Centre for Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
211
|
Dhote VV, Samundre P, Upaganlawar AB, Ganeshpurkar A. Gene Therapy for Chronic Traumatic Brain Injury: Challenges in Resolving Long-term Consequences of Brain Damage. Curr Gene Ther 2023; 23:3-19. [PMID: 34814817 DOI: 10.2174/1566523221666211123101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Aman B Upaganlawar
- SNJB's Shree Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, 423101, India
| | - Aditya Ganeshpurkar
- Department of Pharmacy, Shri Ram Institute of Technology, Jabalpur, MP, India
| |
Collapse
|
212
|
Lower-Extremity Neuromuscular Function Following Concussion: A Preliminary Examination. J Sport Rehabil 2023; 32:31-39. [PMID: 35894887 DOI: 10.1123/jsr.2022-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 05/21/2022] [Indexed: 01/03/2023]
Abstract
CONTEXT Neuromuscular function is altered acutely following concussion and theoretically linked to the subsequent postconcussion musculoskeletal injury risk. Existing research has only examined voluntary muscle activation, limiting mechanistic understanding. Therefore, our study aimed to examine voluntary and involuntary muscle activation between college-aged, concussed individuals when symptom-free and healthy matched controls. DESIGN Prospective, cross-sectional cohort laboratory study. METHODS Concussed and healthy participants (n = 24; 58% male, age: 19.3 [1.1] y, mass: 70.3 [16.4] kg, height: 177.3 [12.7] cm) completed the superimposed burst (SB) neuromuscular assessment on their dominant limb within 72 hours after self-reporting asymptomatic (22.4 [20.2] d postinjury). Unnormalized and bodyweight-normalized quadriceps maximal voluntary isometric contraction torque (in newton meters), unnormalized and bodyweight-normalized electrically stimulated SB torque, pain (numeric 1-10) during SB, and the central activation ratio (in percentage) were assessed via the SB. Parametric and nonparametric analyses, 95% confidence intervals (95% CIs), and Hedges g (parametric) and Spearman ρ (nonparametric) effect sizes were used to examine group differences (α = .05). RESULTS The maximal voluntary isometric contraction torque (concussed: 635.60 N·m [300.93] vs control: 556.27 N·m [182.46]; 95% CI, -131.36 to 290.02; P = .443; d = 0.33), SB torque (concussed: 203.22 N·m [97.17], control: 262.85 N·m [159.07]; 95% CI, -171.22 to 51.97; P = .280; d = -0.47), and central activation ratio (concussed: 72.16% [17.16], control: 70.09% [12.63]; 95% CI, -10.68 to 14.83; P = .740; d = 0.14) did not differ between the concussed and control groups regardless of bodyweight normalization (P ≥ .344). Pain during the SB was significantly higher with a medium effect for participants with a concussion versus healthy controls (concussed: median = 7, control: median = 5; P = .046; ρ = -0.42). DISCUSSION These findings suggest concussed participants do not have statistically altered voluntary or involuntary quadricep neuromuscular function once asymptomatic compared with controls. Therefore, the elevated postconcussion musculoskeletal injury risk may not be attributed to lower-extremity muscle activation. Concussed participants displayed greater pain perception during the SB, which suggests somatosensory or perception changes requiring further examination.
Collapse
|
213
|
Comparison of Clinical Outcomes Between Athletes With Immediate and Delayed Onset of Symptoms Following Sport-Related Concussion. Clin J Sport Med 2023; 33:26-32. [PMID: 35981461 DOI: 10.1097/jsm.0000000000001059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/27/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare characteristics and clinical outcomes of adolescent athletes with immediate and delayed onset of symptoms following sport-related concussion (SRC). A secondary objective was to describe the symptoms that are delayed and the timing of symptom onset. DESIGN Prospective, repeated measures study. SETTING Concussion Specialty Clinic. PARTICIPANTS One hundred fifty-two participants (63.3% men) aged 11 to 24 (15.78 ± 3.47) evaluated within 7 days (3.47 ± 1.66) of sustaining an SRC. INDEPENDENT VARIABLE Group classification of immediate (IMMEDIATE) or delayed onset of symptoms (DELAYED; >60 seconds following mechanism of injury) through structured clinical interview. MAIN OUTCOME MEASURES Group comparisons on demographic and medical history factors, concussion and clinical profile symptom scores, computerized neurocognitive test scores, vestibular/oculomotor screening scores, and days to medical clearance. RESULTS 24.3% of athletes in the sample were DELAYED. The groups did not differ on demographics and medical history. The DELAYED group had increased likelihood of posttraumatic migraine (PTM) as a primary/secondary clinical profile ( P = 0.03). Groups did not differ on any other clinical profiles ( P > 0.05). Groups did not differ on recovery time ( P = 0.47), the IMMEDIATE group higher dizziness on vestibular/ocular motor screening ( P = 0.016) and increased likelihood of dizziness being the initial symptom experienced ( P < 0 .001). CONCLUSIONS The results indicated that delayed onset of symptoms in athletes were relatively common following SRC, supporting continued evaluation of athletes for several days following suspected injuries. Delayed onset of symptoms was associated with PTM, whereas immediate onset was associated with more pronounced vestibular dysfunction, suggesting that clinicians should consider the timing of symptom onset when assessing and treating athletes following SRC.
Collapse
|
214
|
Kent JB, Diduch BK, Statuta SM, Pugh K, MacKnight JM. The impact of riboflavin on the duration of sport-related concussion: A randomized placebo-controlled trial. JOURNAL OF CONCUSSION 2023. [DOI: 10.1177/20597002231153707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives The objective of this study was to investigate the time to recovery after an SRC comparing riboflavin 400mg daily to placebo in a group of elite level athletes from multiple sports. Methods The study was a double-blind randomized placebo-controlled trial with intention to treat conducted from 2016–2020 at two different academic institutions. The study enrolled varsity student-athletes (SA) at each institution. The investigators and participants were blinded to treatment allocation. The treatment group received 14 capsules of either riboflavin 400mg or placebo to take daily until completed. The team physician made the diagnosis of an SRC within 24 h of the injury. Results A total of sixty participants enrolled in the study. Fifty-two participants completed the study. Subjects in the riboflavin group had a statistically significant lower number of average days to recovery of 9.92 days (CI ± 2.8) compared to placebo of 22.2 days (CI ± 11.5) (P < 0.05). Subjects matched for age, gender, history of SRCs, attention deficit hyperactivity disorder and Periodic Health Questionnaire-9 scores. Conclusions This is one of the first studies that documents an effective treatment option for an SRC at the time of injury. Riboflavin is safe, inexpensive, and readily available making it an ideal treatment.
Collapse
Affiliation(s)
- Jeremy B. Kent
- Department of Family Medicine, Team Physician, UVa Sports Medicine, University of Virginia Health System, Charlottesville, USA
| | - B. Kent Diduch
- Murphy Deming College of Health Sciences, Mary Baldwin University, Staunton, Virginia, USA
| | - Siobhan M. Statuta
- Department of Family Medicine, Team Physician, UVa Sports Medicine, University of Virginia Health System, Charlottesville, USA
| | - Kelli Pugh
- Department of Athletics, University of Virginia, Charlottesville, Virginia, USA
| | - John M. MacKnight
- Internal Medicine & Orthopaedic Surgery, Team Physician and Medical Director, UVA Sports Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
215
|
Younger DS. Mild traumatic brain injury and sports-related concussion. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:475-494. [PMID: 37620086 DOI: 10.1016/b978-0-323-98817-9.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Mild traumatic brain injury (mTBI) and concussion are equivalent terms for the sequela of injury to the head that disrupts brain functioning. Various forces may be causative from seemingly innocuous bumps to the head resulting from sports-related injuries to more severe blows to the head. However, the postconcussive motor, cognitive, emotional, and psychosocial sequelae can be just as devastating and long lasting, leading to loss of independent function and safe performance of activities. Taken together, they pose a significant challenge to recovery, requiring a multifaceted dynamic rehabilitative strategy. The current systems of health care pose challenges to suboptimal management of sports-related concussion (SRC) that goes beyond the acute injury, and into the school setting, failing to be identified by school staff, and inconsistencies in communicating medical information regarding school modifications, follow-up health services, or concussion-related educational services. Children who sustain SRC at different ages face different challenges. Young children face increased vulnerability due to SRC that coincides with periods of brain motor maturation and development.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
216
|
Mancini JD, Angelo N, Abu-Sbaih R, Kooyman P, Yao S. Concussion-related visual memory and reaction time impairment in college athletes improved after osteopathic manipulative medicine: a randomized clinical trial. J Osteopath Med 2023; 123:31-38. [PMID: 36172719 DOI: 10.1515/jom-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022]
Abstract
CONTEXT Concussion is an acute, transient disruption in brain function due to head injury. Previous studies suggest osteopathic manipulative medicine (OMM) improved recovery from concussion. OBJECTIVES The hypothesis was that new-onset impairments (NOI) of neurological functions identified by Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) will improve more so after OMM than after concussion-education. METHODS College athletes presenting to the outpatient academic healthcare center (AHCC) with concussion due to head injury within the preceding 2 weeks were recruited for this IRB-approved, randomized, single-blinded trial. Consented men and women were randomized into groups receiving two OMM treatments or two concussion-education sessions to control for social effects. Preseason, Baseline, ImPACT was compared to Post-Injury scores to determine NOI. Baseline, Post-Injury, and Post-Interventions ImPACTs were compared by analysis of variance (ANOVA, α≤0.05). Post-Injury correlations and mean changes in King-Devick (KD) scores were analyzed. RESULTS Post-Injury NOI were found in 77.8% (14/18) men and 85.7% (6/7) women, including ImPACT subscore indices for verbal and visual memory, processing speed (PS), and reaction time (RT). Of those with NOI, mean visual memory recovered by 50.0% following one and by 104.9% (p=0.032) following two OMM treatments in men and by 82.8% (p=0.046) following one treatment in women. Following two interventions, the mean RT in men receiving OMM improved by 0.10 more than education (p=0.0496). The effect sizes of OMM were large (Cohen's d=1.33) on visual memory and small (Cohen's d=0.31) on RT. CONCLUSIONS The NOI in visual memory and RT following concussion significantly improved in the OMM group compared to the education group. Integrating OMM utilizing physical exam and this treatment was a safe individualized approach in athletes with acute uncomplicated concussions. Further research is warranted to improve the utilization of OMM for individuals with concussion.
Collapse
Affiliation(s)
- Jayme D Mancini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Nicole Angelo
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Reem Abu-Sbaih
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Patricia Kooyman
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sheldon Yao
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| |
Collapse
|
217
|
Ferderber ML, Rizk C, Zsoldos S, Meardon S, Lin CC. Concussion Recovery in Children and Adolescents: A Retrospective Study. Orthop J Sports Med 2022; 10:23259671221143486. [PMID: 36582929 PMCID: PMC9793036 DOI: 10.1177/23259671221143486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Concussion is a common injury among children and adolescents, with a growing body of literature supporting a variety of diagnostic and treatment modalities. Recovery is variable and depends on multiple factors that can be evaluated through a clinic visit: a thorough history, physical examination, and use of the Post-concussion Symptom Scale (PCSS). Purpose/Hypothesis The purpose of this study was to evaluate factors associated with overall recovery from concussion in children and adolescents in the clinical setting. It was hypothesized that the presence of 1 of a number of pre- or postinjury characteristics will be associated with poor concussion recovery. Study Design Case-control study; Level of evidence, 3. Methods We conducted a retrospective chart review of adolescents and children aged 6 to 17 years with a diagnosis of concussion who were evaluated at a single sports medicine center between January 2015 and December 2019. Cases were categorized into recovered (PCSS <7) and poorly recovered (PCSS ≥7) cohorts based on the last PCSS scores during clinical follow-ups for concussion management. Results Of the 162 charts reviewed, 110 cases met inclusion criteria. Significant statistical differences were found between the recovered and poorly recovered cohorts regarding mean days from injury to last clinic visit, previous migraine diagnosis, and emergency room (ER) visit before the first clinic visit (P < .01 for all). Binary logistic regression analysis revealed that the most predictive factors associated with poorer recovery were having an ER visit before the first clinic evaluation (P = .01) and previous migraine diagnosis (P = .04). Conclusion While many factors may contribute to overall recovery from concussion in pediatric populations, our study suggested that a history of migraine and an ER visit before clinic evaluation may be associated with poor recovery of concussive symptoms.
Collapse
Affiliation(s)
- Megan Lynn Ferderber
- Department of Family Medicine, Brody School of Medicine, East
Carolina University, Greenville, North Carolina, USA.,Megan Lynn Ferderber, MD, MPH, Department of Family Medicine,
Brody School of Medicine, East Carolina University, 101 Heart Dr, Greenville, NC
27834, USA ()
| | - Christina Rizk
- Department of Family Medicine, Brody School of Medicine, East
Carolina University, Greenville, North Carolina, USA
| | - Shellie Zsoldos
- Department of Physical Therapy, College of Allied Health Sciences,
East Carolina University, Greenville, North Carolina, USA
| | - Stacey Meardon
- Department of Physical Therapy, College of Allied Health Sciences,
East Carolina University, Greenville, North Carolina, USA
| | - Chia-Cheng Lin
- Department of Physical Therapy, College of Allied Health Sciences,
East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
218
|
Rhea CK, Yamada M, Kuznetsov NA, Jakiela JT, LoJacono CT, Ross SE, Haran FJ, Bailie JM, Wright WG. Neuromotor changes in participants with a concussion history can be detected with a custom smartphone app. PLoS One 2022; 17:e0278994. [PMID: 36520862 PMCID: PMC9754195 DOI: 10.1371/journal.pone.0278994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Neuromotor dysfunction after a concussion is common, but balance tests used to assess neuromotor dysfunction are typically subjective. Current objective balance tests are either cost- or space-prohibitive, or utilize a static balance protocol, which may mask neuromotor dysfunction due to the simplicity of the task. To address this gap, our team developed an Android-based smartphone app (portable and cost-effective) that uses the sensors in the device (objective) to record movement profiles during a stepping-in-place task (dynamic movement). The purpose of this study was to examine the extent to which our custom smartphone app and protocol could discriminate neuromotor behavior between concussed and non-concussed participants. Data were collected at two university laboratories and two military sites. Participants included civilians and Service Members (N = 216) with and without a clinically diagnosed concussion. Kinematic and variability metrics were derived from a thigh angle time series while the participants completed a series of stepping-in-place tasks in three conditions: eyes open, eyes closed, and head shake. We observed that the standard deviation of the mean maximum angular velocity of the thigh was higher in the participants with a concussion history in the eyes closed and head shake conditions of the stepping-in-place task. Consistent with the optimal movement variability hypothesis, we showed that increased movement variability occurs in participants with a concussion history, for which our smartphone app and protocol were sensitive enough to capture.
Collapse
Affiliation(s)
- Christopher K. Rhea
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| | - Masahiro Yamada
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, United States of America
| | - Nikita A. Kuznetsov
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jason T. Jakiela
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
| | - Chanel T. LoJacono
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Department of Kinesiology, Missouri Southern State University, Joplin, Missouri, United States of America
| | - Scott E. Ross
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - F. J. Haran
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jason M. Bailie
- Naval Hospital Camp Pendleton, Oceanside, California, United States of America
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - W. Geoffrey Wright
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
219
|
Tanel MR, Gupta C, Wilson KE, Murphy J, Wright FV, Reed N. The Concussion Challenge Assessment: Development and reliability of a novel gross motor assessment tool for paediatric concussion. Front Sports Act Living 2022; 4:1027339. [PMID: 36589783 PMCID: PMC9795185 DOI: 10.3389/fspor.2022.1027339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Aims The aim of this study was to develop a gross motor performance clinical assessment tool, the Concussion Challenge Assessment (CCA), for paediatric concussion populations. Methods An expert panel evaluated tasks from the Acquired Brain Injury Challenge Assessment to determine relevant tasks for a paediatric concussion population. These tasks were administered to a convenience sample of 854 healthy youth. An analysis of the response options for each task, considering task difficulty, was performed. The test-retest reliability of each task was considered to finalise the tool. Results The Acquired Brain Injury Challenge Assessment was reduced to six tasks (three coordination, two speed and agility, and one strength) to create the CCA. Population-specific 4-point response options were generated, which, upon examination of task difficulty, were revised as 5-point response sets to better capture performance differences. The test-retest reliability results led to acceptance of all six: three performance tasks and three exertion tasks. Conclusion This development of the CCA is an important step in creating a gross motor performance assessment tool that can assist in the determination of when youth are able to safely return to activity following a concussion.
Collapse
Affiliation(s)
- Michelle R. Tanel
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Christopher Gupta
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Katherine E. Wilson
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Murphy
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - F. Virginia Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nick Reed
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
220
|
Sub-acute Changes on MRI Measures of Cerebral Blood Flow and Venous Oxygen Saturation in Concussed Australian Rules Footballers. SPORTS MEDICINE - OPEN 2022; 8:45. [PMID: 35362855 PMCID: PMC8975948 DOI: 10.1186/s40798-022-00435-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/17/2022] [Indexed: 12/03/2022]
Abstract
Background Sports-related concussion (SRC) is common in collision sport athletes. There is growing evidence that repetitive SRC can have serious neurological consequences, particularly when the repetitive injuries occur when the brain has yet to fully recover from the initial injury. Hence, there is a need to identify biomarkers that are capable of determining SRC recovery so that they can guide clinical decisions pertaining to return-to-play. Cerebral venous oxygen saturation (SvO2) and cerebral blood flow (CBF) can be measured using magnetic resonance imaging (MRI) and may provide insights into changing energy demands and recovery following SRC. Results In this study we therefore investigated SvO2 and CBF in a cohort of concussed amateur Australian Football athletes (i.e., Australia’s most participated collision sport). Male and female Australian footballers (n = 13) underwent MRI after being cleared to return to play following a mandatory 13-day recovery period and were compared to a group of control Australian footballers (n = 16) with no recent history of SRC (i.e., > 3 months since last SRC). Despite the concussed Australian footballers being cleared to return to play at the time of MRI, we found evidence of significantly increased susceptibility in the global white matter (p = 0.020) and a trend (F5,21 = 2.404, p = 0.071) for reduced relative CBF (relCBF) compared to the control group. Further, there was evidence of an interaction between sex and injury in straight sinus susceptibility values (F1,25 = 3.858, p = 0.061) which were decreased in female SRC athletes (p = 0.053). Of note, there were significant negative correlations between straight sinus susceptibility and relCBF suggesting impaired metabolic function after SRC. Conclusions These findings support the use of quantitative susceptibility mapping (QSM) and relCBF as sensitive indicators of SRC, and raise further concerns related to SRC guidelines that allow for return-to-play in less than two weeks.
Collapse
|
221
|
Smirl JD, Peacock D, Burma JS, Wright AD, Bouliane KJ, Dierijck J, van Donkelaar P. Repetitive bout of controlled soccer heading does not alter heart rate variability metrics: A preliminary investigation. Front Neurol 2022; 13:980938. [PMID: 36504654 PMCID: PMC9732532 DOI: 10.3389/fneur.2022.980938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives There is elevated unease regarding how repetitive head impacts, such as those associated with soccer heading, contribute to alterations in brain function. This study examined the extent heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) metrics are altered immediately following an acute bout of soccer heading. Methods Seven male elite soccer players (24.1 ± 1.5 years) completed 40 successful soccer headers in 20-min. The headers were performed under controlled circumstances using a soccer ball launcher located 25 meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading condition). An accelerometer (xPatch) on the right mastoid process quantified linear/rotational head accelerations. Participants also completed sham (body contact) and control (non-contact) sessions. A three-lead ECG and finger photoplethysmography characterized short-term spontaneous HRV/cardiac BRS, before and after each condition. The SCAT3 indexed symptom scores pre-post exposures to all three conditions. Results During the heading condition, cumulative linear and rotational accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2, respectively. Heart rate trended toward an increase from pre- to post-heading (p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not significantly changed following all three conditions. Following the heading condition, SCAT3 symptom severity increased (p = 0.030) with a trend for symptom score augmentation (p = 0.078) compared to control and sham. Conclusion Whereas, symptoms as measured by the SCAT3 were induced following an acute bout of controlled soccer heading, these preliminary findings indicate they were not accompanied by alterations to autonomic function. Ultimately, this demonstrates further research is needed to understand the physiological underpinnings of alterations in brain function occurring immediately after a bout of soccer heading and how these may, over time, contribute to long-term neurological impairments.
Collapse
Affiliation(s)
- Jonathan David Smirl
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada,*Correspondence: Jonathan David Smirl
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Joel Stephen Burma
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander D. Wright
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,University of British Columbia, Vancouver, BC, Canada,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J. Bouliane
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Paul van Donkelaar
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
222
|
Sirant LW, Singh J, Martin S, Gaul CA, Stuart-Hill L, Candow DG, Mang C, Neary JP. Long-term effects of multiple concussions on prefrontal cortex oxygenation during neurovascular coupling activation in retired male contact sport athletes. Curr Res Physiol 2022; 5:421-428. [PMID: 36466150 PMCID: PMC9713254 DOI: 10.1016/j.crphys.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aimed to investigate the long-term effects of multiple concussions on prefrontal cortex oxygenation during a neurovascular coupling activating task using near infrared spectroscopy (NIRS). Methods Self-reported physically active males who previously participated in contact team sports at various levels of competition and who previously had experienced at least 3 concussions (n = 55; mTBI) or had no history of concussions (n = 29; CTRL) were recruited. Participants completed a 5 min "Where's Waldo" object identification protocol which consisted of participants closing their eyes for 20-s followed by 40-s (repeated 5 times over 5-min) of searching a computer screen for "Waldo" hidden in a field of distractors. NIRS (μM) was used to measure right and left prefrontal cortex cerebral oxygenation. Oxygenated (O2Hb), deoxygenated (HHb), total (tHb) haemoglobin, and haemoglobin difference (HbDiff) were analysed through the change in average maximal and minimal values (ΔMAX), Z-scores, and standard deviations. Results There were no significant differences in the relative change in cerebral oxygenation of the right prefrontal cortex between groups. In mTBI, left prefrontal cortex HHb ΔMAX (p = 0.031) and tHb ΔMAX (p = 0.044) were significantly lower than in the CTRL group. Within-group, right vs. left prefrontal cortex differences showed significantly lower values in left HbDiff Z-scores (p = 0.019) in only the mTBI group while the CTRL group showed significantly lower values in left HbDiff SD (p = 0.045). Conclusion This preliminary study suggests that there are changes in prefrontal cortex oxygenation in males who had a history of experiencing multiple concussions in their past during a neurovascular coupling activating task. These changes may represent potential long-term effects in the brain's ability to adapt cerebral oxygenation during increased neural activity.
Collapse
Affiliation(s)
- Luke W. Sirant
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Jyotpal Singh
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Steve Martin
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Catherine A. Gaul
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Lynneth Stuart-Hill
- University of Victoria, School of Exercise Science, Physical and Health Education, Victoria, BC, Canada
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Cameron Mang
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - J. Patrick Neary
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| |
Collapse
|
223
|
Boots R, Xue G, Tromp D, Rawashdeh O, Bellapart J, Townsend S, Rudd M, Winter C, Mitchell G, Garner N, Clement P, Karamujic N, Zappala C. Circadian Rhythmicity of Vital Signs at Intensive Care Unit Discharge and Outcome of Traumatic Brain Injury. Am J Crit Care 2022; 31:472-482. [PMID: 36316179 DOI: 10.4037/ajcc2022821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Physiological functions with circadian rhythmicity are often disrupted during illness. OBJECTIVE To assess the utility of circadian rhythmicity of vital signs in predicting outcome of traumatic brain injury (TBI). METHODS A retrospective single-center cohort study of adult intensive care unit (ICU) patients with largely isolated TBI to explore the relationship between the circadian rhythmicity of vital signs during the last 24 hours before ICU discharge and clinical markers of TBI severity and score on the Glasgow Outcome Scale 6 months after injury (GOS-6). RESULTS The 130 study participants had a median age of 39.0 years (IQR, 23.0-59.0 years), a median Glasgow Coma Scale score at the scene of 8.0 (IQR, 3.0-13.0), and a median Rotterdam score on computed tomography of the head of 3 (IQR, 3-3), with 105 patients (80.8%) surviving to hospital discharge. Rhythmicity was present for heart rate (30.8% of patients), systolic blood pressure (26.2%), diastolic blood pressure (20.0%), and body temperature (26.9%). Independent predictors of a dichotomized GOS-6 ≥4 were the Rotterdam score (odds ratio [OR], 0.38 [95% CI, 0.18-0.81]; P = .01), Glasgow Coma Scale score at the scene (OR, 1.22 [95% CI, 1.05-1.41]; P = .008), age (OR, 0.95 [95% CI, 0.92-0.98]; P = .003), oxygen saturation <90% in the first 24 hours (OR, 0.19 [95% CI, 0.05-0.73]; P = .02), serum sodium level <130 mmol/L (OR, 0.20 [95% CI, 0.05-0.70]; P = .01), and active intracranial pressure management (OR, 0.16 [95% CI, 0.04-0.62]; P = .008), but not rhythmicity of any vital sign. CONCLUSION Circadian rhythmicity of vital signs at ICU discharge is not predictive of GOS-6 in patients with TBI.
Collapse
Affiliation(s)
- Rob Boots
- Rob Boots is an associate professor, Thoracic Medicine, Royal Brisbane and Women's Hospital, a senior specialist, Intensive Care, Bundaberg Hospital, Faculty of Medicine, The University of Queensland, Herston, and a professsor, Faculty of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - George Xue
- George Xue is the medical registrar, Royal Brisbane and Women's Hospital
| | - Dirk Tromp
- Dirk Tromp is the senior radiology registrar, Royal Brisbane and Women's Hospital
| | - Oliver Rawashdeh
- Oliver Rawashdeh is director, Chronobiology and Sleep Research, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Judith Bellapart
- Judith Bellapart is a senior specialist, Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, and Burns, Trauma, and Critical Care, The University of Queensland
| | - Shane Townsend
- Shane Townsend is director, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Michael Rudd
- Michael Rudd is acting director, Trauma, Royal Brisbane and Women's Hospital
| | - Craig Winter
- Craig Winter is a staff specialist neurosurgeon, Royal Brisbane and Women's Hospital
| | - Gary Mitchell
- Gary Mitchell is a staff specialist, Emergency Medicine, Royal Brisbane and Women's Hospital
| | - Nicholas Garner
- Nicholas Garner is a PhD student, Chronobiology and Sleep Research Lab, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Pierre Clement
- Pierre Clement is a clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Nermin Karamujic
- Nermin Karamujic is a data manager and clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Christopher Zappala
- Christopher Zappala is a senior staff specialist, Thoracic Medicine, Royal Brisbane and Women's Hospital
| |
Collapse
|
224
|
A Survey of Combat Athletes' Rapid Weight Loss Practices and Evaluation of the Relationship With Concussion Symptom Recall. Clin J Sport Med 2022; 32:580-587. [PMID: 35325898 DOI: 10.1097/jsm.0000000000001032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is a high incidence of concussion and frequent utilization of rapid weight loss (RWL) methods among combat sport athletes, yet the apparent similarity in symptoms experienced as a result of a concussion or RWL has not been investigated. This study surveyed combat sports athletes to investigate the differences in symptom onset and recovery between combat sports and evaluated the relationships between concussion and RWL symptoms. DESIGN Cross-sectional study. SETTING Data were collected through an online survey. PARTICIPANTS One hundred thirty-two (115 male athletes and 17 female athletes) combat sport athletes. INTERVENTIONS Modified Sport Concussion Assessment Tool (SCAT) symptom checklist and weight-cutting questionnaire. MAIN OUTCOME MEASURES Survey items included combat sport discipline, weight loss, medical history, weight-cutting questionnaire, and concussion and weight-cutting symptom checklists. RESULTS Strong associations ( rs = 0.6-0.7, P < 0.05) were observed between concussion and RWL symptoms. The most frequently reported symptom resolution times were 24 to 48 hours for a weight cut (WC; 59%) and 3 to 5 days for a concussion (43%), with 60% to 70% of athletes reporting a deterioration and lengthening of concussion symptoms when undergoing a WC. Most of the athletes (65%) also reported at least one WC in their career to " not go according to plan ," resulting in a lack of energy (83%) and strength/power (70%). CONCLUSIONS Rapid weight loss and concussion symptoms are strongly associated, with most of the athletes reporting a deterioration of concussion symptoms during a WC. The results indicate that concussion symptoms should be monitored alongside hydration status to avoid any compound effects of prior RWL on the interpretation of concussion assessments and to avoid potential misdiagnoses among combat athletes.
Collapse
|
225
|
Hossain I, Blennow K, Posti JP, Zetterberg H. Tau as a fluid biomarker of concussion and neurodegeneration. CONCUSSION (LONDON, ENGLAND) 2022; 7:CNC98. [PMID: 36687115 PMCID: PMC9841393 DOI: 10.2217/cnc-2022-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Concussion is predominant among the vast number of traumatic brain injuries that occur worldwide. Difficulties in timely identification, whether concussion led to neuronal injury or not, diagnosis and the lack of prognostic tools for adequate management could lead this type of brain injury to progressive neurodegenerative diseases. Tau has been extensively studied in recent years, particularly in repetitive mild traumatic brain injuries and sports-related concussions. Tauopathies, the group of neurodegenerative diseases, have also been studied with advanced functional imaging. Nevertheless, neurodegenerative diseases, such as chronic traumatic encephalopathy, are still conclusively diagnosed at autopsy. Here, we discuss the diagnostic dilemma and the relationship between concussion and neurodegenerative diseases and review the literature on tau as a promising biomarker for concussion.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK,Author for correspondence: Tel.: +358 2 313 0282;
| | - Kaj Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Finland,Turku Brain Injury Center, Turku University Hospital, Finland,Department of Clinical Neurosciences, University of Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK,UK Dementia Research Institute at UCL, University College London, London, UK,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
226
|
Incremental Effects of Subsequent Concussions on Cognitive Symptoms in the Sport Concussion Assessment Tool. Clin J Sport Med 2022; 32:e568-e572. [PMID: 35447628 DOI: 10.1097/jsm.0000000000001042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Patients who are fully recovered from a concussion may still be more vulnerable in the face of subsequent concussions. This study examines symptoms associated with repeated concussions in young and otherwise healthy adults. DESIGN Cross sectional. SETTING Institutional study at a university setting. PARTICIPANTS University students with a history of concussion. INDEPENDENT VARIABLES Participants were grouped based on numbers of concussions. MAIN OUTCOME MEASURES The impact of incremental concussion on symptom clusters in Sport Concussion Assessment Tools 5 and Spearman ranking correlation coefficients between symptom clusters. RESULTS One hundred thirty-five participants reported having had 1 concussion, 63 reported 2 concussions, 50 reported 3 concussions, and 43 reported 4 to 6 concussions. Total severity scores over the range of concussion number (1, 2, 3, and greater than 3) did not show a clear incremental effect. However, average scores of cognitive symptoms rose with each subsequent concussion ( P ≤ 0.05). The largest incremental effect observed was that of second concussions on emotional symptom scores (t = 5.85, P < 0.01). Symptoms in the emotional and cognitive clusters were the most correlated regardless of the number of reported concussions; the correlations were lowest with symptoms associated with sensitivity to light or noise. CONCLUSIONS The incremental rise of cognitive symptom scores with each concussion affirms the importance of cognitive impairment in concussion assessment and implies a cumulative brain vulnerability that persists even after symptom resolution. The cognitive-emotional symptom clusters may reflect underlying concussion-induced impairments in the corticostriatothalamocortical (CSTC) networks, although sensitivity symptoms are potentially attributable to different neural correlates.
Collapse
|
227
|
Farragher CD, Ku Y, Powers JE. The Potential Role of Neurofilament Light in Mild Traumatic Brain Injury Diagnosis: A Systematic Review. Cureus 2022; 14:e31301. [PMID: 36514599 PMCID: PMC9733779 DOI: 10.7759/cureus.31301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an insult to the CNS often overlooked at the time of presentation due to variable symptomatology and undetectable nature on CT/MRI. Increased exposure to repetitive head injuries results in a high prevalence of mTBI among athletes and military personnel. While most patients fully recover with rest, some are at risk for long-lasting neurocognitive dysfunction, leading to a high morbidity and cost burden on the healthcare system. Currently, there are no unified symptom-based criteria or gold standard objective measurement for mTBI. Neurofilament light (Nf-L) is a highly sensitive biomarker for axonal injury with the potential to serve as an objective serum measurement for mTBI. This systematic review investigates the ability of Nf-L to accurately diagnose acute mTBI in athletes and military personnel. A comprehensive literature search of PubMed, Scopus, and Google Scholar from 2010 to 2021 using keywords neurofilament light chain, mTBI, concussion, athletes, and military identified 239 articles for eligibility screening. Ten articles met the inclusion criteria for qualitative analysis, with extracted data including Nf-L levels, recovery characteristics, and neuroimaging results. Of the 10 studies meeting inclusion criteria, one was military-related, five were sports-related, and four were mixed-focus. Six studies investigated the association between mTBI and Nf-L levels within 24 hours of injury. Four of these studies involved athletes, with three showing evidence of acute Nf-L elevations. No evidence of acute Nf-L elevations was reported among military personnel or emergency department patients. Nf-L elevations were recorded at various time points greater than 24 hours post-injury in athletes (two studies) and emergency department patients (one study). Positive associations were found between Nf-L levels and loss of consciousness/post-traumatic amnesia (one study), positive neuroimaging findings (three studies), and prolonged recovery times (three studies). We are unable to conclude whether Nf-L has the capacity for acute diagnosis of mTBI or the optimal time for serum measurement. Nf-L does, however, shows promise as a prognostic factor for mTBI complications, neuroimaging findings, and recovery. Additional studies are warranted, as the use of Nf-L in early diagnosis of mTBI in the future would improve clinical management while decreasing complications and healthcare costs.
Collapse
Affiliation(s)
- Cullen D Farragher
- Emergency Medicine, Campbell University School of Osteopathic Medicine, Lillington, USA
| | - Ying Ku
- Plastic and Reconstructive Surgery, Campbell University School of Osteopathic Medicine, Lillington, USA
| | - James E Powers
- Emergency Medicine/Clinical Integration, Campbell University School of Osteopathic Medicine, Lillington, USA
| |
Collapse
|
228
|
Toman E, Hodgson S, Riley M, Welbury R, Di Pietro V, Belli A. Concussion in the UK: a contemporary narrative review. Trauma Surg Acute Care Open 2022; 7:e000929. [PMID: 36274785 PMCID: PMC9582316 DOI: 10.1136/tsaco-2022-000929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Concussion has been receiving an increasing amount of media exposure following several high-profile professional sports controversies and multimillion-dollar lawsuits. The potential life-changing sequalae of concussion and the rare, but devasting, second impact syndrome have also gained much attention. Despite this, our knowledge of the pathological processes involved is limited and often extrapolated from research into more severe brain injuries. As there is no objective diagnostic test for concussion. Relying on history and examination only, the diagnosis of concussion has become the rate-limiting step in widening research into the disease. Clinical study protocols therefore frequently exclude the most vulnerable groups of patients such as those with existing cognitive impairment, concurrent intoxication, mental health issues or learning difficulties. This up-to-date narrative review aims to summarize our current concussion knowledge and provides an insight into promising avenues for future research.
Collapse
Affiliation(s)
- Emma Toman
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sam Hodgson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Max Riley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Richard Welbury
- School of Dentistry, University of Central Lancashire, Preston, UK
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK,Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
229
|
Finnegan E, Daly E, Pearce AJ, Ryan L. Nutritional interventions to support acute mTBI recovery. Front Nutr 2022; 9:977728. [PMID: 36313085 PMCID: PMC9614271 DOI: 10.3389/fnut.2022.977728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 01/09/2023] Open
Abstract
When mild traumatic brain injury (mTBI) occurs following an impact on the head or body, the brain is disrupted leading to a series of metabolic events that may alter the brain's ability to function and repair itself. These changes may place increased nutritional demands on the body. Little is known on whether nutritional interventions are safe for patients to implement post mTBI and whether they may improve recovery outcomes. To address this knowledge gap, we conducted a systematic review to determine what nutritional interventions have been prescribed to humans diagnosed with mTBI during its acute period (<14 days) to support, facilitate, and result in measured recovery outcomes. Methods Databases CINAHL, PubMed, SPORTDiscus, Web of Science, and the Cochrane Library were searched from inception until January 6, 2021; 4,848 studies were identified. After removing duplicates and applying the inclusion and exclusion criteria, this systematic review included 11 full papers. Results Patients that consumed enough food to meet calorie and macronutrient (protein) needs specific to their injury severity and sex within 96 h post mTBI had a reduced length of stay in hospital. In addition, patients receiving nutrients and non-nutrient support within 24-96 h post mTBI had positive recovery outcomes. These interventions included omega-3 fatty acids (DHA and EPA), vitamin D, mineral magnesium oxide, amino acid derivative N-acetyl cysteine, hyperosmolar sodium lactate, and nootropic cerebrolysin demonstrated positive recovery outcomes, such as symptom resolution, improved cognitive function, and replenished nutrient deficiencies (vitamin D) for patients post mTBI. Conclusion Our findings suggest that nutrition plays a positive role during acute mTBI recovery. Following mTBI, patient needs are unique, and this review presents the potential for certain nutritional therapies to support the brain in recovery, specifically omega-3 fatty acids. However, due to the heterogenicity nature of the studies available at present, it is not possible to make definitive recommendations. Systematic review registration The systematic review conducted following the PRISMA guidelines protocol was registered (CRD42021226819), on Prospero.
Collapse
Affiliation(s)
- Emma Finnegan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Ed Daly
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| |
Collapse
|
230
|
Al-Husseini A, Fazel Bakhsheshi M, Gard A, Tegner Y, Marklund N. Shorter recovery time in concussed elite ice hockey players by early head-and-neck cooling - a clinical trial. J Neurotrauma 2022. [PMID: 36222612 DOI: 10.1089/neu.2022.0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sports-related concussion (SRC) is most commonly sustained in contact sports, and is defined as a mild traumatic brain injury. An exercise-induced elevation of core body temperature is associated with increased brain temperature that may accelerate secondary injury processes following SRC, and exacerbate the brain injury. In a recent pilot study, acute head-neck cooling of 29 concussed ice hockey players resulted in shorter time to return-to-play. Here, we extended the clinical trial to include players of 19 male elite Swedish ice hockey teams over 5 seasons (2016-2021). In the intervention teams, acute head-neck cooling was implemented using a head cap for ≥45 minutes in addition to the standard SRC management used in controls. The primary endpoint was time from SRC until return-to-play (RTP). Sixty-one SRCs were included in the intervention group and 71 SRCs in the control group. The number of previous SRCs was 2 (median and interquartile range (IQR): 1.0 - 2.0) and 1 (IQR 1.0 - 2.0) in the intervention and control groups, respectively; p= 0.293. Median time to initiate head-neck cooling was 10 min (IQR 7-15; range 5-30 min) and median duration of cooling was 45 min (IQR 45-50; range 45-70 min). The median time to RTP was 9 days in the intervention group (IQR 7-13.5 days) and 13 days in the control group (IQR 9-30; p<0.001). The proportion of players out from play for more than the expected recovery time of 14 days was 24.7% in the intervention group, and 43.7% in controls (p<0.05). Study limitations include that a) allocation to cooling or control management was at the discretion of the medical staff of each teams, decided prior to each season, and not by strict randomization, b) no sham cap was used and evaluations could not be performed by blinded assessors and c) it could not be established with certainty that injury severity was similar between groups. While the results should thus be interpreted with caution, early head-neck cooling, with the aim of attenuating cerebral hyperthermia, may reduce post-SRC symptoms and lead to earlier return-to-play in elite ice hockey players.
Collapse
Affiliation(s)
- Ali Al-Husseini
- Lund University, 5193, Department of Clinical Sciences, Neurosurgery, Lund, Sweden;
| | | | - Anna Gard
- Lund University, 5193, Department of Clinical Sciences Lund, Entregatan 7, Hisshall EA, plan 4, Lund, Lund, Skane, Sweden, 22242;
| | - Yelverton Tegner
- Luleå University of Technology, Division of Medical Sciences, Department of Health Sciences, Department of Health Sciences, Luleå, Sweden, SE 971 87;
| | - Niklas Marklund
- Lund University, 5193, Clinical Sciences, Neurosurgery, Klinikgatan 17B, Lund, Sweden, 221 85.,Skåne University Hospital Lund, 59564, Neurosurgery, Lund, Sweden, 221 85;
| |
Collapse
|
231
|
Ernst N, Eagle S, Trbovich A, Kissinger-Knox A, Bitzer H, Kontos AP. Lower post-injury psychological resilience is associated with increased recovery time and symptom burden following sport-related concussion. APPLIED NEUROPSYCHOLOGY. CHILD 2022; 11:781-788. [PMID: 34410842 DOI: 10.1080/21622965.2021.1964966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to compare athletes with high and low resilience scores on concussion outcomes, and identify significant predictors associated with protracted recovery (>30 days). Forty-five adolescent and young adult athletes (28 males; aged 15.13 ± 2.74; range of 11-22) were diagnosed with an SRC within 14 days of injury (M = 4.9 days) and grouped as high or low resilience based on score on the Connor-Davidson Resilience Scale-10 (CD-RISC-10). Primary dependent measures included days to full clearance, Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), Depression Anxiety and Stress Scale-21 (DASS-21), and Vestibular/Ocular Motor Screening (VOMS). The low resilience group (n = 22) had a longer recovery (36.0 ± 27.6 vs 17.8 ± 11.2 days), endorsed more mood symptoms (PCSS Affective cluster; 3.8 ± 0.8 vs 0.9 ± 0.7), and were more likely to have VOMS scores above cut off (p = 0.01-0.02), compared to those with high psychological resilience (n = 23). Logistic regression found low resilience scores was the only significant predictor for protracted recovery among injury characteristics and risk factors. Psychological resilience is a critical factor associated with recovery time following sport-related concussions. Low resilience was also associated with other poor clinical outcomes, greater subjective symptom report, more severe vestibular dysfunction, and elevated levels of mood symptoms following injury.
Collapse
Affiliation(s)
- Nathan Ernst
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - Shawn Eagle
- Department of Orthopedics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alicia Trbovich
- Department of Orthopedics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopedics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Hannah Bitzer
- Department of Orthopedics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P Kontos
- Department of Orthopedics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopedics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
232
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
233
|
Ludwig R, Rippee M, D'Silva LJ, Radel J, Eakman AM, Morris J, Drerup M, Siengsukon C. Assessing Cognitive Behavioral Therapy for Insomnia to Improve Sleep Outcomes in Individuals With a Concussion: Protocol for a Delayed Randomized Controlled Trial. JMIR Res Protoc 2022; 11:e38608. [PMID: 36149737 PMCID: PMC9547332 DOI: 10.2196/38608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sleep disturbances post concussion have been associated with more frequent and severe concussion symptoms and may contribute to poorer recovery. Cognitive behavioral therapy for insomnia (CBT-I) is an effective treatment for insomnia; however, it remains unclear if this treatment method is effective in improving sleep outcomes and reducing concomitant postconcussion symptoms. OBJECTIVE The hypotheses for this study are that (1) CBT-I will improve sleep outcomes and (2) CBT-I will improve concomitant postconcussion symptoms. METHODS In total, 40 individuals who are within ≥4 weeks of postconcussion injury and have insomnia symptoms will be enrolled in this randomized controlled trial. Participants will be randomized into either a group that starts a 6-week CBT-I program immediately after baseline or a waitlist control group that starts CBT-I following a 6-week waiting period. All participants will be reassessed 6, 12, and 18 weeks after baseline. Standardized assessments measuring sleep outcomes, postconcussion symptoms, and mood will be used. Linear regression and t tests will be used for statistical analyses. RESULTS Enrollment of 40 participants was completed July 2022, data collection will be completed in November 2022, and publication of main findings is anticipated in May 2023. It is anticipated that participants experience reduced insomnia symptoms and postconcussion symptoms following CBT-I and these improvements will be retained for at least 12 weeks. Additionally, we expect to observe a positive correlation between sleep and postconcussion symptom improvement. CONCLUSIONS Successful completion of this pilot study will allow for a better understanding of the treatment of insomnia and postconcussion symptoms in individuals following a concussion. TRIAL REGISTRATION ClinicalTrials.gov NCT04885205; https://clinicaltrials.gov/ct2/show/NCT04885205. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38608.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael Rippee
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Linda J D'Silva
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeff Radel
- Department of Occupational Therapy and Therapeutic Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron M Eakman
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States
| | - Jill Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michelle Drerup
- Cleveland Clinic, Neurological Institute, Sleep Disorders Center, Cleveland, OH, United States
| | - Catherine Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
234
|
Wu T, Rifkin JA, Rayfield AC, Anderson ED, Panzer MB, Meaney DF. Concussion Prone Scenarios: A Multi-Dimensional Exploration in Impact Directions, Brain Morphology, and Network Architectures Using Computational Models. Ann Biomed Eng 2022; 50:1423-1436. [PMID: 36125606 DOI: 10.1007/s10439-022-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact. This work investigated each of these features simultaneously using computational modeling and analyses of simulated functional connectivity. Unlike the past studies that assess the severity of TBI based on the quantification of brain tissue damage (e.g., principal strain), we approached the brain as a complex network in which neuronal oscillations orchestrate to produce normal brain function (estimated by functional connectivity) and, to this end, both the anatomical damage location and its topological characteristics within the brain network contribute to the severity of brain function disruption and injury. To represent the variations in the population, we analyzed a publicly available database of brain imaging data and selected five distinct network architectures, seven different brain sizes, and three uniaxial head rotational conditions to study the consequences of 74 virtual impact scenarios. Results show impact direction produces the most significant change in connections across brain areas (structural connectome) and the functional coupling of activity across these brain areas (functional connectivity). Axial rotations were more injurious than those with sagittal and coronal rotations when the head kinematics were the same for each condition. When the impact direction was held constant, brain network architecture showed a significantly different vulnerability across axial and sagittal, but not coronal rotations. As expected, brain size significantly affected the expected change in structural and functional connectivity after impact. Together, these results provided groupings of predicted vulnerability to impact-a subgroup of male brain architectures exposed to axial impacts were most vulnerable, while a subgroup of female brain architectures was the most tolerant to the sagittal impacts studied. These findings lay essential groundwork for subject-specific analyses of concussion and provide invaluable guidance for designing personalized protection equipment.
Collapse
Affiliation(s)
- Taotao Wu
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Jared A Rifkin
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Adam C Rayfield
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA. .,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
235
|
Ellingson CJ, Singh J, Ellingson CA, Sirant LW, Krätzig GP, Dorsch KD, Piskorski J, Neary JP. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life (Basel) 2022; 12:life12091400. [PMID: 36143435 PMCID: PMC9500648 DOI: 10.3390/life12091400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Current methods to diagnose concussions are subjective and difficult to confirm. A variety of physiological biomarkers have been reported, but with conflicting results. This study assessed heart rate variability (HRV), spontaneous baroreflex sensitivity (BRS), and systolic blood pressure variability (BPV) in concussed athletes. The assessment consisted of a 5-min seated rest followed by a 5-min (0.1 Hz) controlled breathing protocol. Thirty participants completed baseline assessments. The protocol was repeated during the post-injury acute phase (days one to five). Total (p = 0.02) and low-frequency (p = 0.009) BPV spectral power were significantly decreased during the acute phase of concussion. BRS down-sequence (p = 0.036) and up-sequence (p = 0.05) were significantly increased in the acute phase of concussion, with a trend towards an increased BRS pooled (p = 0.06). Significant decreases in HRV were also found. Acute concussion resulted in altered BRS and BPV dynamics compared to baseline. These findings highlight objective physiological parameters that could aid concussion diagnosis and return-to-play protocols.
Collapse
Affiliation(s)
- Chase J. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Cody A. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- College of Medicine, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Gregory P. Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D. Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jaroslaw Piskorski
- Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Correspondence: ; Tel.: +1-306-585-4844
| |
Collapse
|
236
|
Nguyen JVK, McKay A, Ponsford J, Davies K, Makdissi M, Drummond SPA, Reyes J, Willmott C. Interdisciplinary Rehabilitation for Concussion Recovery (i-RECOveR): protocol of an investigator-blinded, randomised, case series with multiple baseline design to evaluate the feasibility and preliminary efficacy of a 12-week treatment for persistent post-concussion symptoms. Pilot Feasibility Stud 2022; 8:198. [PMID: 36064489 PMCID: PMC9441831 DOI: 10.1186/s40814-022-01153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Up to 25% of concussed individuals experience persistent post-concussion symptoms (PPCSs) which may interfere with the return to pre-injury activities and cause significant stress. Given that multiple etiological factors are thought to contribute to PPCSs, an interdisciplinary approach is recommended. This pilot study aims to primarily investigate the feasibility of a novel interdisciplinary treatment for PPCSs. Given this intervention is novel, uncertainty exists in terms of potential recruitment and retention rates, adverse events, and treatment adherence and fidelity. These factors will be explored to inform the feasibility of a phase-2 randomised controlled trial. Preliminary efficacy of this intervention will also be explored. METHODS Fifteen individuals with mild traumatic brain injury and PPCSs will receive up to 12 weeks of interdisciplinary treatments including psychology, physiotherapy, and medical interventions. Primary feasibility outcomes including data on recruitment and retention rates and treatment adherence will be explored descriptively. The cognitive therapy rating scale will be used to assess treatment fidelity. A single-case series with multiple baseline design will be used to explore preliminary efficacy. Participants will be randomly assigned to baseline phases of 2, 4, or 6 weeks. Regarding patient-centred secondary outcomes, the Rivermead Post-Concussion Symptoms Questionnaire will be assessed three times a week during baseline and treatment phases. Secondary outcomes also include measures of mood, sleep and fatigue, physical functioning, return to activity, and health-related quality of life. Patient-centred outcomes will be assessed at baseline, pretreatment, post-treatment, and one- and three-month follow-up. Thematic analysis of participant experiences will be explored through qualitative interviews. DISCUSSION Results from this trial will inform the feasibility and preliminary efficacy of this interdisciplinary concussion intervention and whether proceeding to a future definitive phase-2 randomised controlled trial is worthwhile. Understanding the end-user perspective of the treatment will also enable modifications to the treatment protocol for future trials to best suit the needs of individuals with PPCSs after mTBI. Outcomes from this trial can be directly translated into community rehabilitation programmes. TRIAL REGISTRATION ANZCTR, ACTRN12620001111965. Registered 27 October 2020, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=379118.
Collapse
Affiliation(s)
- Jack V K Nguyen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia
| | - Adam McKay
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia.,Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia.,Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - Katie Davies
- Neurological Rehabilitation Group, Melbourne, Australia
| | - Michael Makdissi
- Olympic Park Sports Medicine Centre, Melbourne, Australia.,Australian Football League, AFL House, 140 Harbour Esplanade, Docklands, Melbourne, VIC, 3008, Australia
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia
| | - Jonathan Reyes
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia.,Australian Football League, AFL House, 140 Harbour Esplanade, Docklands, Melbourne, VIC, 3008, Australia
| | - Catherine Willmott
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, GPO Box 1449, Melbourne, VIC, 3001, Australia. .,Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia. .,Australian Football League, AFL House, 140 Harbour Esplanade, Docklands, Melbourne, VIC, 3008, Australia.
| |
Collapse
|
237
|
Xiong F, Li T, Pan Y, Liu Y, Zhang J, Bai L. Arterial spin labeling magnetic resonance evaluates changes of cerebral blood flow in patients with mild traumatic brain injury. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1016-1024. [PMID: 36097769 PMCID: PMC10950119 DOI: 10.11817/j.issn.1672-7347.2022.210754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The patients with mild traumatic brain injury (mTBI) accounts for more than 80% of the patients with brain injury. Most patients with mTBI have no abnormalities in CT examination. Therefore, most patients choose to self-care and recover rather than seeking medical treatment. In fact, mTBI may result in persistent cognitive decline and neurobehavioral dysfunction. In addition, changes occurred in neurochemistry, metabolism, and cells after injury may cause changes in cerebral blood flow (CBF), which is one of the causes of secondary injury and slow brain repair. This study aims to evaluate the changes of CBF with the progression of the disease in patients with mTBI based on arterial spin labeling (ASL) magnetic resonance imaging technology. METHODS In the outpatient or emergency department of the Second Affiliated Hospital of Wenzhou Medical University, 43 mTBI patients were collected as an mTBI group, and 43 normal subjects with age, gender, and education level matching served as a control group. They all received clinical neuropsychology and cognitive function evaluation and magnetic resonance imaging. In the mTBI group, 22 subjects were followed up at acute phase, 1 month, 3 months, and 12 months. Based on the control group, the abnormal regions of CBF in the whole brain of mTBI patients were analyzed. The abnormal regions were taken as the regions of interest (ROI). The correlation of the values of the CBF in ROIs with clinical indications, cognitive function, and the changes of CBF in ROI at each time point during the follow-up were analyzed. RESULTS Compared with the control group, the CBF in the bilateral dorsolateral superior frontal gyrus and auxiliary motor areas in the cortical region, as well as the right putamen, caudate nucleus, globus pallidus, and parahippocampus in the subcutaneous regions in the acute phase of the mTBI group were significantly increased (all P<0.01, TFCE-FWE correction). The analysis results of correlation of CBF with neuropsychology and cognitive domain showed that in the mTBI group, whole brain (r=0.528, P<0.001), right caudate nucleus (r=0.512, P<0.001), putamen (r=0.486, P<0.001), and globus pallidus (r=0.426, P=0.006) values of the were positively correlated with Backward Digit Span Test (BDST) score (reflectting working memory ability), and the right globus pallidus CBF was negatively correlated with the Post-Traumatic Stress Disorder Cheeklist-CivilianVersion (PCL-C) score (r=-0.402, P=0.010). Moreover, the follow-up study showed that abnormal CBF in these areas had not been restored. The correlation of CBF was negatively correlated with PCL-C and BDST at 1 months, 3 months, and 12 months (all P>0.05). CONCLUSIONS The elevated CBF value is one of the stress characteristics of brain injury in the mTBI patients at the acute phase. There is abnormal elevation of CBF values in multiple cortex or subcortical areas. Multi-time point studies show that there is no obvious change of CBF in abnormal areas, suggesting that potential clinical treatment is urgently needed for the mTBI patients.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049.
| | - Tianhui Li
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Yizhen Pan
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Yuling Liu
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Jie Zhang
- Department of Radiation Medicine, Military Preventive Medicine School, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049.
| |
Collapse
|
238
|
Glutamate, GABA and glutathione in adults with persistent post-concussive symptoms. Neuroimage Clin 2022; 36:103152. [PMID: 36007438 PMCID: PMC9424629 DOI: 10.1016/j.nicl.2022.103152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Persistent post-concussive symptoms (PPCS) are debilitating and endure beyond the usual recovery period after mild traumatic brain injury (mTBI). Altered neurotransmission, impaired energy metabolism and oxidative stress have been examined acutely post-injury but have not been explored extensively in those with persistent symptoms. Specifically, the antioxidant glutathione (GSH) and the excitatory and inhibitory metabolites, glutamate (Glu) and γ-aminobutyric acid (GABA), are seldom studied together in the clinical mTBI literature. While Glu can be measured using conventional magnetic resonance spectroscopy (MRS) methods at 3 Tesla, GABA and GSH require the use of advanced MRS methods. Here, we used the recently established Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) to simultaneously measure GSH and GABA and short-echo time point resolved spectroscopy (PRESS) to measure Glu to gain new insight into the pathophysiology of PPCS. Twenty-nine adults with PPCS (mean age: 45.69 years, s.d.: 10.73, 22 females, 7 males) and 29 age- and sex-matched controls (mean age: 43.69 years, s.d.: 11.00) completed magnetic resonance spectroscopy scans with voxels placed in the anterior cingulate and right sensorimotor cortex. Relative to controls, anterior cingulate Glu was significantly reduced in PPCS. Higher anterior cingulate GABA was significantly associated with a higher number of lifetime mTBIs, suggesting GABA may be upregulated with repeated incidence of mTBI. Furthermore, GSH in both regions of interest was positively associated with symptoms of sleepiness and headache burden. Collectively, our findings suggest that the antioxidant defense system is active in participants with PPCS, however this may be at the expense of other glutamatergic functions such as cortical excitation and energy metabolism.
Collapse
|
239
|
Malik H, Wolff MD, Teskey GC, Mychasiuk R. Electrographic seizures and brain hyperoxia may be key etiological factors for post-concussive deficits. J Neurophysiol 2022; 128:727-737. [PMID: 35976074 PMCID: PMC9484996 DOI: 10.1152/jn.00533.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Repetitive mild traumatic brain injuries (RmTBIs) are increasingly recognized to have long-term neurological sequelae in a significant proportion of patients. Individuals that have had RmTBIs exhibit a variety of sensory, cognitive, or behavioral consequences that can negatively impact quality of life. Brain tissue oxygen levels (PO2) are normally maintained through exquisite regulation of blood supply to stay within the normoxic zone (18–30 mmHg in the rat hippocampus). However, during neurological events in which brain tissue oxygen levels leave the normoxic zone, neuronal dysfunction and behavioral deficits have been observed, and are frequently related to poorer prognoses. The oxygenation response in the brain after RmTBIs/repeated concussions has been poorly characterized, with most preliminary research limited to the neocortex. Furthermore, the mechanisms by which RmTBIs impact changes to brain oxygenation and vice versa remain to be determined. In the current study, we demonstrate that upon receiving RmTBIs, rats exhibit posttraumatic, electrographic seizures in the hippocampus, without behavioral (clinical) seizures, that are accompanied by a long-lasting period of hyperoxygenation. These electrographic seizures and the ensuing hyperoxic episodes are associated with deficits in working memory and motor coordination that were reversible through attenuation of the posttraumatic and postictal (postseizure) hyperoxia, via administration of a vasoconstricting agent, the calcium channel agonist Bay K8644. We propose that the posttraumatic period characterized by brain oxygenation levels well above the normoxic zone, may be the basis for some of the common symptoms associated with RmTBIs. NEW & NOTEWORTHY We monitor oxygenation and electrographic activity in the hippocampus, immediately before and after mild traumatic brain injury. We demonstrate that as the number of injuries increases from 1 to 3, the proportion of rats that exhibit electrographic seizures and hyperoxia increases. Moreover, the presence of electrographic seizures and hyperoxia are associated with postinjury behavioral impairments, and if the hyperoxia is blocked with Bay K8644, the behavioral deficits are eliminated.
Collapse
Affiliation(s)
- Haris Malik
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Richelle Mychasiuk
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychology, University of Calgary, Calgary, Canada.,Department of Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|
240
|
Sirant LW, Singh J, Martin S, Gaul CA, Stuart-Hill L, Candow DG, Mang C, Neary JP. Long-term effects of multiple concussions on prefrontal cortex oxygenation during repeated squat-stands in retired contact sport athletes. Brain Inj 2022; 36:931-938. [PMID: 35968581 DOI: 10.1080/02699052.2022.2109737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND This study investigated the long-term effects of multiple concussions on prefrontal cortex oxygenation using near-infrared spectroscopy (NIRS) during a squat-stand maneuver that activated dynamic cerebral autoregulation. METHODS Active male retired contact sport athletes with a history of 3+ concussions (mTBI; n = 55), and active retired athletes with no concussion history (CTRL; n = 29) were recruited. Participants completed a 5-min squat-stand maneuve (10-s squat, 10-s stand, 0.05 Hz; 15 times). Oxygenated (O2Hb), deoxygenated (HHb), total (tHb) hemoglobin, and hemoglobin difference (HbDiff) were analyzed through the change in maximal and minimal values during the test (∆MAX), Z-scores, and standard deviations. RESULTS mTBI group showed left prefrontal cortex O2Hb ∆MAX (p = 0.046) and HbDiff ∆MAX (p = 0.018) were significantly higher. Within-group analyses showed significantly higher left HHb ∆MAX (p = 0.003) and lower left HbDiff Z-scores (p = 0.010) only in the mTBI group. The CTRL group demonstrated significantly lower left HbDiff SD (p = 0.039), tHb Z-scores (p = 0.030), and HbDiff ∆MAX (p = 0.037) compared to right prefrontal cortex response. CONCLUSION These preliminary results suggest changes in prefrontal cortex oxygenation potentially affecting the brain's ability to adapt to changing cerebral perfusion pressure after multiple previous concussions.
Collapse
Affiliation(s)
- Luke W Sirant
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Steve Martin
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Catherine A Gaul
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Cameron Mang
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
241
|
Deschamps A, Giguère-Lemieux É, Fait P, Corbin-Berrigan LA. Test-retest reliability of the neurotracker compared to the impact test for the management of mild traumatic brain injuries during two consecutive university sport seasons. Brain Inj 2022; 36:977-984. [PMID: 35950219 DOI: 10.1080/02699052.2022.2109738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Neurocognitive assessment tools such as the Neurotracker and ImPACT have been proposed to optimize sports-related mild traumatic brain injury (mTBI) management. Baseline testing is recommended with such assessments to individualize monitoring of athletes' remission. While the ideal timeframe between baseline updates has been studied for the ImPACT, these data are missing for the Neurotracker. OBJECTIVE The current study aimed to compare the test-retest reliability of the ImPACT and Neurotracker for two consecutive seasons in university athletes participating in sports at risk for mTBI. METHODS At the start of two consecutive seasons, 30 athletes with no recent history of mTBI completed a baseline assessment including the Neurotracker and the ImPACT. The test-retest reliability of the results was analyzed by considering intra-class correlation (ICC), Becker's standardized mean difference (dB) and Bland-Altman' plot of each outcome. RESULTS The Neurotracker and the Visual Motor Speed composite score of the ImPAC were the only outcomes with significative ICCs and acceptable dB between the two seasons. Neurotracker was the only outcome with a significative bias (+0.179). CONCLUSION Our research suggests that the Neurotracker has an acceptable level of test-retest reliability after one year in comparison to the ImPACT.
Collapse
Affiliation(s)
- Alexandre Deschamps
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Quebec, Canada.,Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| | - Élizabeth Giguère-Lemieux
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Quebec, Canada
| | - Philippe Fait
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Quebec, Canada.,Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada.,Centre de Recherche en Neuropsychologie et Cognition, Montréal, Québec, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, Canada
| | - Laurie-Ann Corbin-Berrigan
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Quebec, Canada.,Groupe de recherche sur les affections neuromusculosquelettiques, Trois-Rivières, Québec, Canada
| |
Collapse
|
242
|
Leichtes Schädel-Hirn-Trauma im Kindes- und Jugendalter – Update Gehirnerschütterung. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
243
|
Hiskens MI. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J Pharmacol Exp Ther 2022; 382:149-166. [PMID: 35644464 DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 03/08/2025] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to disability and death worldwide, and manifests in cognitive, behavioral, and motor impairment. Although there have been numerous pre-clinical studies that have identified promising pharmacologic treatments, to date, all Phase III clinical trials have failed. Thus, this is a priority area for ongoing research and development. Treatment strategies have traditionally focused on neuroprotection of the injured brain to reduce secondary injury, neuronal death, and lesion size. The aim of this minireview is to describe the secondary injury pathophysiology of TBI and give an examination of key targets of neuroprotection, select Phase III trials that have been undertaken, and future possibilities for successful drug development. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the key Phase III clinical trials that have been undertaken in the development of a neuropharmacological treatment for traumatic brain injury. The article discusses the key targets for treatment, the potential reasons for the lack of translation of promising pre-clinical compounds, and the most promising avenues for future development.
Collapse
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD; and School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, QLD
| |
Collapse
|
244
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
245
|
Habashy KJ, Ahmad F, Ibeh S, Mantash S, Kobeissy F, Issa H, Habis R, Tfaily A, Nabha S, Harati H, Reslan MA, Yehya Y, Barsa C, Shaito A, Zibara K, El-Yazbi AF, Kobeissy FH. Western and ketogenic diets in neurological disorders: can you tell the difference? Nutr Rev 2022; 80:1927-1941. [PMID: 35172003 DOI: 10.1093/nutrit/nuac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The prevalence of obesity tripled worldwide between 1975 and 2016, and it is projected that half of the US population will be overweight by 2030. The obesity pandemic is attributed, in part, to the increasing consumption of the high-fat, high-carbohydrate Western diet, which predisposes to the development of the metabolic syndrome and correlates with decreased cognitive performance. In contrast, the high-fat, low-carbohydrate ketogenic diet has potential therapeutic roles and has been used to manage intractable seizures since the early 1920s. The brain accounts for 25% of total body glucose metabolism and, as a result, is especially susceptible to changes in the types of nutrients consumed. Here, we discuss the principles of brain metabolism with a focus on the distinct effects of the Western and ketogenic diets on the progression of neurological diseases such as epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury, highlighting the need to further explore the potential therapeutic effects of the ketogenic diet and the importance of standardizing dietary formulations to assure the reproducibility of clinical trials.
Collapse
Affiliation(s)
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fatima Kobeissy
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ralph Habis
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Tfaily
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Yehya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
246
|
Foecking EM, Segismundo AB, Lotesto KM, Westfall EJ, Bolduan AJ, Peter TK, Wallace DG, Kozlowski DA, Stubbs EB, Marzo SJ, Byram SC. Testosterone treatment restores vestibular function by enhancing neuronal survival in an experimental closed-head repetitive mild traumatic brain injury model. Behav Brain Res 2022; 433:113998. [PMID: 35809692 DOI: 10.1016/j.bbr.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) results in a myriad of symptoms, including vestibular impairment. The mechanisms underlying vestibular dysfunction in rmTBI patients remain poorly understood. Concomitantly, acute hypogonadism occurs following TBI and can persist chronically in many patients. Using a repetitive mild closed-head animal model of TBI, the role of testosterone on vestibular function was tested. Male Long Evans Hooded rats were randomly divided into sham or rmTBI groups. Significant vestibular deficits were observed both acutely and chronically in the rmTBI groups. Systemic testosterone was administered after the development of chronic vestibular dysfunction. rmTBI animals given testosterone showed improved vestibular function that was sustained for 175 days post-rmTBI. Significant vestibular neuronal cell loss was, however, observed in the rmTBI animals compared to Sham animals at 175 days post-rmTBI and testosterone treatment significantly improved vestibular neuronal survival. Taken together, these data demonstrate a critical restorative role of testosterone in vestibular function following rmTBI. This study has important clinical implications because it identifies testosterone treatment as a viable therapeutic strategy for the long-term recovery of vestibular function following TBI.
Collapse
Affiliation(s)
- Eileen M Foecking
- Loyola University Chicago, Department of Otolaryngology, Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| | - Arthur B Segismundo
- Loyola University of Chicago, Biomedical Graduate School, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Krista M Lotesto
- Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Edward J Westfall
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Alyssa J Bolduan
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Tony K Peter
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Douglas G Wallace
- Northern Illinois University, Department of Psychology, 1425 Lincoln Hwy, DeKalb, IL 60115, the United States of America.
| | - Dorothy A Kozlowski
- DePaul University, Department of Biological Sciences and Neuroscience Program, 2325 N., Chicago, IL 60604, the United States of America.
| | - Evan B Stubbs
- Edward Hines Jr. VA Research Service, Hines, IL 60141, the United States of America; Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Sam J Marzo
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Susanna C Byram
- Loyola University Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| |
Collapse
|
247
|
Mito R, Parker DM, Abbott DF, Makdissi M, Pedersen M, Jackson GD. White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Commun 2022; 4:fcac208. [PMID: 36043140 PMCID: PMC9419063 DOI: 10.1093/braincomms/fcac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sports-related concussion, a form of mild traumatic brain injury, is characterized by transient disturbances of brain function. There is increasing evidence that functional brain changes may be driven by subtle abnormalities in white matter microstructure, and diffusion MRI has been instrumental in demonstrating these white matter abnormalities in vivo. However, the reported location and direction of the observed white matter changes in mild traumatic brain injury are variable, likely attributable to the inherent limitations of the white matter models used. This cross-sectional study applies an advanced and robust technique known as fixel-based analysis to investigate fibre tract-specific abnormalities in professional Australian Football League players with a recent mild traumatic brain injury. We used the fixel-based analysis framework to identify common abnormalities found in specific fibre tracts in participants with an acute injury (≤12 days after injury; n = 14). We then assessed whether similar changes exist in subacute injury (>12 days and <3 months after injury; n = 15). The control group was 29 neurologically healthy control participants. We assessed microstructural differences in fibre density and fibre bundle morphology and performed whole-brain fixel-based analysis to compare groups. Subsequent tract-of-interest analyses were performed within five selected white matter tracts to investigate the relationship between the observed tract-specific abnormalities and days since injury and the relationship between these tract-specific changes with cognitive abnormalities. Our whole-brain analyses revealed significant increases in fibre density and bundle cross-section in the acute mild traumatic brain injury group when compared with controls. The acute mild traumatic brain injury group showed even more extensive differences when compared with the subacute injury group than with controls. The fibre structures affected in acute concussion included the corpus callosum, left prefrontal and left parahippocampal white matter. The fibre density and cross-sectional increases were independent of time since injury in the acute injury group, and were not associated with cognitive deficits. Overall, this study demonstrates that acute mild traumatic brain injury is characterized by specific white matter abnormalities, which are compatible with tract-specific cytotoxic oedema. These potential oedematous changes were absent in our subacute mild traumatic brain injury participants, suggesting that they may normalize within 12 days after injury, although subtle abnormalities may persist in the subacute stage. Future longitudinal studies are needed to elucidate individualized recovery after brain injury.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - Donna M Parker
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - David F Abbott
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Olympic Park Sports Medicine Centre , Melbourne, VIC 3004 , Australia
| | - Mangor Pedersen
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT) , Auckland 1010 , New Zealand
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| |
Collapse
|
248
|
Weil ZM, White B, Whitehead B, Karelina K. The role of the stress system in recovery after traumatic brain injury: A tribute to Bruce S. McEwen. Neurobiol Stress 2022; 19:100467. [PMID: 35720260 PMCID: PMC9201063 DOI: 10.1016/j.ynstr.2022.100467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health concern. Although the majority of individuals that suffer mild-moderate TBI recover relatively quickly, a substantial subset of individuals experiences prolonged and debilitating symptoms. An exacerbated response to physiological and psychological stressors after TBI may mediate poor functional recovery. Individuals with TBI can suffer from poor stress tolerance, impairments in the ability to evaluate stressors, and poor initiation (and cessation) of neuroendocrine stress responses, all of which can exacerbate TBI-mediated dysfunction. Here, we pay tribute to the pioneering neuroendocrinologist Dr. Bruce McEwen by discussing the ways in which his work on stress physiology and allostatic loading impacts the TBI patient population both before and after their injuries. Specifically, we will discuss the modulatory role of hypothalamic-pituitary-adrenal axis responses immediately after TBI and later in recovery. We will also consider the impact of stressors and stress responses in promoting post-concussive syndrome and post-traumatic stress disorders, two common sequelae of TBI. Finally, we will explore the role of early life stressors, prior to brain injuries, as modulators of injury outcomes.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Brishti White
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| |
Collapse
|
249
|
Exploring Vestibular/Ocular and Cognitive Dysfunction as Prognostic Factors for Protracted Recovery in Sports-Related Concussion Patients Aged 8 to 12 Years. Clin J Sport Med 2022; 32:408-414. [PMID: 34516435 DOI: 10.1097/jsm.0000000000000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the prognostic ability of the vestibular/ocular motor screening (VOMS), King-Devick (K-D) Test, and C3 Logix Trails A and B to identify protracted recovery from sports-related concussion (SRC) in patients aged 8 to 12 years. DESIGN Retrospective cohort analysis. SETTING Specialty pediatric sports concussion clinic. PARTICIPANTS A total of 114 youth athletes aged 8 to 12 years who were diagnosed with an SRC within 7 days of injury. INDEPENDENT VARIABLES A positive screen on the VOMS, K-D, and C3 Logix Trails A and Trails B. Combined positive screens on multiple tests (ie, 2, 3, or all 4 positive screens of 4 possible). MAIN OUTCOME MEASURES Recovery time in days and protracted recovery (recovery time ≥30-days) were the primary outcomes of interest. RESULTS A positive VOMS screen was associated with 1.31 greater days to SRC recovery ( P = 0.02) than a negative VOMS screen. The K-D and C3 Logix tests were not significantly associated with recovery time, nor were any combinations of tests ( P > 0.05). The VOMS demonstrated moderate prognostic ability to predict normal recovery (negative predictive value = 80.78% [95% CI = 63.73-90.95]). Overall predictive accuracy of normal versus protracted recovery was strongest when a participant screened positive on all 4 tests (Accuracy = 76.32% [95% CI = 67.45-83.78]). CONCLUSIONS The VOMS was associated with overall recovery time and proved to be a useful test to identify those who would experience a normal recovery time. Combining the 4 tests improved the prognostic accuracy of the protocol in predicting protracted versus normal recovery. These findings suggest that combining multiple, varied assessments of cognition and vestibular/ocular functions may better explain factors contributing to protracted recovery.
Collapse
|
250
|
Podolak OE, Arbogast KB, Master CL, Sleet D, Grady MF. Pediatric Sports-Related Concussion: An Approach to Care. Am J Lifestyle Med 2022; 16:469-484. [PMID: 35860366 PMCID: PMC9290185 DOI: 10.1177/1559827620984995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 08/14/2023] Open
Abstract
Sports-related concussion (SRC) is a common sports injury in children and adolescents. With the vast amount of youth sports participation, an increase in awareness of concussion and evidence that the injury can lead to consequences for school, sports and overall quality of life, it has become increasingly important to properly diagnose and manage concussion. SRC in the student athlete is a unique and complex injury, and it is important to highlight the differences in the management of child and adolescent concussion compared with adults. This review focuses on the importance of developing a multimodal systematic approach to diagnosing and managing pediatric sports-related concussion, from the sidelines through recovery.
Collapse
Affiliation(s)
- Olivia E. Podolak
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christina L. Master
- Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - David Sleet
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew F. Grady
- Sports Medicine and Performance Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|