201
|
Ling Poon S, Lau MT, Hammond GL, Leung PCK. Gonadotropin-releasing hormone-II increases membrane type I metalloproteinase production via beta-catenin signaling in ovarian cancer cells. Endocrinology 2011; 152:764-72. [PMID: 21239435 DOI: 10.1210/en.2010-0942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH-II is produced by ovarian cancer cells and enhances their invasiveness in vitro. In our studies of OVCAR-3 and CaOV-3 ovarian cancer cell lines, GnRH-II treatment induced phosphorylation of Akt and glycogen synthase kinase (GSK)3β, as well as β-catenin accumulation in the nucleus, and the latter was reduced by small interfering RNA (siRNA)-mediated depletion of the GnRH receptor. The phosphatidylinositol 3 kinase (PI3K)/Akt pathway is involved in β-catenin-dependent signaling, and pretreatment of these human ovarian cancer cells with a PI3K/Akt inhibitor, LY294002, attenuated GnRH-II-stimulated phosphorylation of GSK3β and inhibited GnRH-II-induced invasion. It also attenuated GnRH-II induced trans-activation of a β-catenin-dependent reporter gene, most likely because GSK3β phosphorylation promotes translocation of β-catenin to the nucleus. Membrane type I matrix metalloproteinase (MT1-MMP) contributes to tumor progression directly, or by processing the latent MMP-2 zymogen, and is a known target of β-catenin signaling. When OVCAR-3 and CaOV-3 cells were treated with GnRH-II, MT1-MMP levels increased approximately 3-fold, whereas siRNA-mediated depletion of GnRH receptor or pretreatment with LY294002 abrogated this. In addition, lithium chloride, which increases GSK3β phosphorylation and the nuclear translocation of β-catenin, increased MT1-MMP levels in these ovarian cancer cells. By contrast, depletion of β-catenin by siRNA treatment abolished GnRH-II-induced MT1-MMP synthesis and reduced their invasive potential. Furthermore, siRNA-mediated reduction of MT1-MMP levels reduced GnRH-II-induced invasion in ovarian cancer cells. We therefore conclude that GnRH-II stimulates the PI3K/Akt pathway, and the phosphorylation of GSK3β, thereby enhancing the β-catenin-dependent up-regulation of MT1-MMP production, which contributes to ovarian cancer metastasis.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynaecology, University of British Columbia, Room 2H-30, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | |
Collapse
|
202
|
Cardozo AJ, Gómez DE, Argibay PF. Transcriptional characterization of Wnt and Notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. J Mol Neurosci 2011; 44:186-94. [PMID: 21360053 DOI: 10.1007/s12031-011-9503-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/07/2011] [Indexed: 01/01/2023]
Abstract
Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.
Collapse
Affiliation(s)
- Alejandra Johana Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
203
|
McCarthy TL, Kallen CB, Centrella M. β-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 2011; 479:16-28. [PMID: 21335072 DOI: 10.1016/j.gene.2011.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/08/2011] [Indexed: 12/19/2022]
Abstract
Osteoblasts are controlled by the individual and combined effects of systemic and local growth regulators. Here we show functional and physical interactions between estradiol (17βE) and Wnt activated pathways in osteoblasts. 17βE increased gene promoter activity by the Wnt pathway transcriptional effector T cell factor (TCF) in an estrogen receptor (ER) dependent way. This occurred independently of its activity through traditional estrogen response elements and was not replicated by androgen receptor activation. 17βE also increased the stimulatory effect of LiCl on TCF activity, LiCl increased the stimulatory effect of 17βE through estrogen response elements, and both were further enhanced by a noncanonical Wnt receptor agonist (WAg) that functions independently of β-catenin stabilization. In contrast to LiCl, WAg increased DNA synthesis and reduced relative collagen synthesis and alkaline phosphatase activity in otherwise untreated or 17βE stimulated cells. In addition, WAg suppressed Runx2, osterix, and alkaline phosphatase mRNA levels, and potently induced osteoprotegerin mRNA, whereas LiCl was ineffective alone and inhibitory in combination with 17βE. A definitive intersection between the 17βE and Wnt pathways occurred at the protein level, where ERα physically associated with TCF-4 independently of its β-catenin binding domain. This interaction required ligand-dependent exposure of a TCF binding region that mapped to ERα domain E and was further enhanced by Wnt pathway activation. Our studies reveal highly focused co-regulatory effects between the 17βE and Wnt pathways in osteoblasts that involve activated ERα and TCF-4 and downstream changes in gene expression, osteoblast proliferation, and differentiated cell function.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT, 06520-8041, USA.
| | | | | |
Collapse
|
204
|
Lee H, Bae S, Yoon Y. The WNT/β-catenin pathway mediates the anti-adipogenic mechanism of SH21B, a traditional herbal medicine for the treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:788-795. [PMID: 21070846 DOI: 10.1016/j.jep.2010.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY This study was conducted to elucidate the molecular mechanisms of SH21B, a traditional Korean herbal medicine commonly used for the treatment of obesity. MATERIALS AND METHODS 3T3-L1 preadipocytes were differentiated into adipocytes in the presence or absence of SH21B. Changes in mRNA or protein levels were analyzed using microarray, real-time polymerase chain reaction and western blotting analyses. Small interference (si)RNA transfection experiments were conducted to elucidate the essential role of β-catenin. RESULTS Microarray analyses showed that components of the WNT/β-catenin pathway including β-catenin, cyclin D1 and dishevelled 2 were up-regulated more than two-fold as a result of SH21B treatment during adipogenesis, which were confirmed by real-time PCR and western blotting. Modulation of the WNT/β-catenin pathway by SH21B resulted in the nuclear accumulation of β-catenin. Both intracellular lipid droplet formation and expressions of adipogenic genes including PPARγ, C/EBPα, FABP4 and LPL, which were inhibited by SH21B, were significantly recovered by β-catenin siRNA transfection. CONCLUSIONS SH21B modulates components of the WNT/β-catenin pathway during adipogenesis, and β-catenin plays a crucial role in the anti-adipogenic mechanism of SH21B.
Collapse
Affiliation(s)
- Haeyong Lee
- Department of Microbiology, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
205
|
Abstract
Epithelial-mesenchymal transition (EMT) refers to the process by which cells transit from epithelial phenotype to mesenchymal phenotype. EMT is critical for tumor invasion and metastasis, however, the underlying mechanism is little known so far. It has been known that complex signaling pathways are involved in this process. MicroRNAs also play an important role in tumors via many EMT-related signaling pathways. Numerous studies have established that there is a link between EMT-related signaling pathways and microRNAs in tumors. This review focuses on the action mechanism of various EMT-related signaling pathways and their relationship with microRNAs in tumors.
Collapse
|
206
|
Zheng D, Gu S, Li Y, Ji C, Xie Y, Mao Y. A global genomic view on LNX siRNA-mediated cell cycle arrest. Mol Biol Rep 2010; 38:2771-83. [PMID: 21104141 DOI: 10.1007/s11033-010-0422-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/08/2010] [Indexed: 01/09/2023]
Abstract
LNX protein is the first described PDZ domain-containing member of the RING finger-type E3 ubiquitin ligase family. Studies have approved that LNX could participate in signal transduction, such as Notch pathway, and play an important role in tumorigenesis. In this study, we found that down-regulation of LNX resulted in G0/G1 cell cycle arrest in G0/G1 phase in HEK293 cells. To explore the molecular mechanism of this phenomenon, we employed expression microarray to comparatively analyze the genome-wide expression between the LNX-knockdown cells and the normal cells. We also used quantitative real-time PCR to further confirm the differential expression patterns of 25 transcripts involved in cell cycle. Combined with known information about genic functions, signal pathways and cell cycle machinery, we analyzed the role of endogenous LNX in cell cycle. The results suggest that down-regulation of LNX could result in cell cycle arrest in G0/G1 phase through inhibition of β-catenin, MAPK, NFκB, c-Myc-dependent pathway and activation of p53, TGF-β-dependent pathway. This study provides new perspectives on LNX's pleiotropic activities, especially its essential role in cell proliferation and cell cycle.
Collapse
Affiliation(s)
- Dan Zheng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
207
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
208
|
Abstract
Desmosomes are intercellular junctions that tether intermediate filaments to the plasma membrane. Desmogleins and desmocollins, members of the cadherin superfamily, mediate adhesion at desmosomes. Cytoplasmic components of the desmosome associate with the desmosomal cadherin tails through a series of protein interactions, which serve to recruit intermediate filaments to sites of desmosome assembly. These desmosomal plaque components include plakoglobin and the plakophilins, members of the armadillo gene family. Linkage to the cytoskeleton is mediated by the intermediate filament binding protein, desmoplakin, which associates with both plakoglobin and plakophilins. Although desmosomes are critical for maintaining stable cell-cell adhesion, emerging evidence indicates that they are also dynamic structures that contribute to cellular processes beyond that of cell adhesion. This article outlines the structure and function of the major desmosomal proteins, and explores the contributions of this protein complex to tissue architecture and morphogenesis.
Collapse
Affiliation(s)
- Emmanuella Delva
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
209
|
Kim M, Kim H, Jho EH. Identification of ptpro as a novel target gene of Wnt signaling and its potential role as a receptor for Wnt. FEBS Lett 2010; 584:3923-8. [PMID: 20804755 DOI: 10.1016/j.febslet.2010.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 01/01/2023]
Abstract
Wnt/β-catenin signaling plays critical roles in embryonic development and tissue homeostasis in adults by controlling the expression of target genes. We found that expression of ptpro, which encodes a protein tyrosine phosphatase receptor type O (PTPRO), was induced by Wnt/β-catenin signaling in a T cell factor/lymphoid enhancer factor dependent manner. Biochemical assays found that PTPRO interacted with Wnt via its extracellular domain. In addition, ectopic expression of this extracellular domain inhibited Wnt-mediated reporter activity. These results suggest that ptpro is a target gene of Wnt/β-catenin signaling and that PTPRO may function as a novel receptor for Wnt.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Life Science, The University of Seoul, Seoul, Republic of Korea
| | | | | |
Collapse
|
210
|
Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell Mol Life Sci 2010; 68:523-35. [PMID: 20694829 PMCID: PMC3021259 DOI: 10.1007/s00018-010-0467-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
Abstract
Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation.
Collapse
|
211
|
A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res Treat 2010; 126:487-95. [DOI: 10.1007/s10549-010-1094-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 01/16/2023]
|
212
|
Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Dev Biol 2010; 344:210-23. [DOI: 10.1016/j.ydbio.2010.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/22/2023]
|
213
|
Lee H, Bae S, Kim K, Kim W, Chung SI, Yoon Y. Beta-Catenin mediates the anti-adipogenic effect of baicalin. Biochem Biophys Res Commun 2010; 398:741-6. [PMID: 20627088 DOI: 10.1016/j.bbrc.2010.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
Abstract
beta-Catenin reportedly inhibits adipogenesis through the down-regulations of peroxisome proliferator-activated receptor (PPAR)gamma and CCAAT/enhancer binding protein (C/EBP)alpha. We report that baicalin, a natural flavonoid compound, inhibits adipogenesis by modulating beta-Catenin. During 3T3-L1 cell adipogenesis, beta-Catenin was down-regulated, but baicalin treatment maintained beta-Catenin expression. Anti-adipogenic effects of baicalin were significantly attenuated by beta-Catenin siRNA transfection. beta-Catenin siRNA rescued the reduced expressions of PPARgamma, C/EBPalpha, fatty acid binding protein 4 and lipoprotein lipase by baicalin. Furthermore, baicalin modulated members of the WNT/beta-Catenin pathway by maintaining the expressions of low-density lipoprotein receptor-related protein 6, disheveled (DVL)2 and DVL3. These findings suggest that beta-Catenin mediates the anti-adipogenic effects of baicalin.
Collapse
Affiliation(s)
- Haeyong Lee
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 156-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
214
|
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
215
|
George AJ, Gordon L, Beissbarth T, Koukoulas I, Holsinger RMD, Perreau V, Cappai R, Tan SS, Masters CL, Scott HS, Li QX. A serial analysis of gene expression profile of the Alzheimer's disease Tg2576 mouse model. Neurotox Res 2010; 17:360-79. [PMID: 19760337 DOI: 10.1007/s12640-009-9112-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/22/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Serial analysis of gene expression (SAGE), a technique that allows for the simultaneous detection of expression levels of the entire genome without a priori knowledge of gene sequences, was used to examine the transcriptional expression pattern of the Tg2576 mouse model of Alzheimer's disease (AD). Pairwise comparison between the Tg2576 and nontransgenic SAGE libraries identified a number of differentially expressed genes in the Tg2576 SAGE library, some of which were not previously revealed by the microarray studies. Real-time PCR was used to validate a panel of genes selected from the SAGE analysis in the Tg2576 mouse brain, as well as the hippocampus and temporal cortex of sporadic AD and normal age-matched controls. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 (NDUFA5) and FXYD domain-containing ion transport regulator 6 (FXYD6) were found to be significantly decreased in the Tg2576 mouse brain and AD hippocampus. PTEN-induced putative kinase 1 (PINK1), phosphatidylethanolamine binding protein (PEBP), crystalline mu (CRYM), and neurogranin (NRGN) were significantly decreased in AD tissues. The gene ontologies represented in the Tg2576 data were statistically analyzed and demonstrated a significant under-representation of genes involved with G-protein-coupled receptor signaling and odorant binding, while genes significantly over-represented were focused on cellular communication and cellular physiological processes. The novel approach of profiling the Tg2576 mouse brain using SAGE has identified different genes that could subsequently be examined for their potential as peripheral diagnostic and prognostic markers for Alzheimer's disease.
Collapse
Affiliation(s)
- Amee J George
- Department of Pathology, The University of Melbourne and The Mental Health Research Institute of Victoria, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C, Huang B, Fenger U, Niehrs C, Chen YG, Wu W. Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem 2010; 285:10890-901. [PMID: 20103590 PMCID: PMC2856295 DOI: 10.1074/jbc.m109.058347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/30/2009] [Indexed: 11/06/2022] Open
Abstract
The beta-catenin-lymphoid enhancer factor (LEF) protein complex is the key mediator of canonical Wnt signaling and initiates target gene transcription upon ligand stimulation. In addition to beta-catenin and LEF themselves, many other proteins have been identified as necessary cofactors. Here we report that the evolutionally conserved splicing factor and transcriptional co-regulator, SKIP/SNW/NcoA62, forms a ternary complex with LEF1 and HDAC1 and mediates the repression of target genes. Loss-of-function studies showed that SKIP is obligatory for Wnt signaling-induced target gene transactivation, suggesting an important role of SKIP in the canonical Wnt signaling. Consistent with its involvement in beta-catenin signaling, the C-terminally truncated forms of SKIP are able to stabilize beta-catenin and enhance Wnt signaling. In Xenopus embryos, both overexpression and knockdown of Skip lead to reduced neural crest induction, consistent with down-regulated Wnt signaling in both cases. Our results indicate that SKIP is a novel component of the beta-catenin transcriptional complex.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Chromatin Immunoprecipitation
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Gene Library
- HeLa Cells
- Humans
- Immunoenzyme Techniques
- Luciferases/metabolism
- Mice
- Neural Crest/cytology
- Neural Crest/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Wnt1 Protein/genetics
- Wnt1 Protein/metabolism
- Xenopus laevis
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Ying Wang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Yu Fu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Lei Gao
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Guixin Zhu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Juan Liang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Chan Gao
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Binlu Huang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Ursula Fenger
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Christof Niehrs
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Ye-Guang Chen
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Wei Wu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| |
Collapse
|
217
|
Laeremans H, Rensen SS, Ottenheijm HCJ, Smits JFM, Blankesteijn WM. Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 2010; 87:514-23. [PMID: 20189955 DOI: 10.1093/cvr/cvq067] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The Wnt/frizzled (Fzd) signal transduction cascade has been implicated in the proliferation, differentiation, and migration of many cell types, but the role of this pathway in cardiac fibroblast differentiation is not known. Our lab previously showed an up-regulation of Fzd-1 and -2 expression in myofibroblasts after myocardial infarction (MI), indicating a potential role for the Fzd receptor in fibroblast-myofibroblast differentiation. The present study was performed to further define the role of specific Wnt and Fzd proteins in the proliferation, migration, and differentiation of cardiac fibroblasts. METHODS AND RESULTS Because primary fibroblasts become senescent after a few passages and are difficult to transfect, we immortalized rat cardiac fibroblasts with telomerase [cardiac fibroblasts immortalized with telomerase (CFIT)]. Proliferation of CFIT was not significantly influenced by Wnt/Fzd signalling. The migration, however, was attenuated by all Wnt/Fzd combinations tested. Also, specific Wnt/Fzd combinations modulated the expression of the following myofibroblast markers: collagen Ialpha1, collagen III, fibronectin and its splice variants, and alpha-smooth muscle actin. CONCLUSION The results indicate that myofibroblast migration and differentiation, but not proliferation, can be modulated by interventions in Wnt/Fzd signalling. Therefore, Wnt/Fzd signalling may serve as a novel therapeutic target to ameliorate wound healing after MI.
Collapse
Affiliation(s)
- Hilde Laeremans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 50 Universiteitssingel, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
218
|
Inkster B, Nichols TE, Saemann PG, Auer DP, Holsboer F, Muglia P, Matthews PM. Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta substrates and major depression. Neuroimage 2010; 53:908-17. [PMID: 20219685 DOI: 10.1016/j.neuroimage.2010.02.065] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 01/05/2023] Open
Abstract
Several lines of evidence implicate glycogen synthase kinase 3 beta (GSK3beta) in mood disorders. We recently reported associations between GSK3beta polymorphisms and brain structural changes in patients with recurrent major depressive disorder (MDD). Here we provide supporting observations by showing that polymorphisms in additional genes encoding proteins directly related to GSK3beta biological functions are associated with similar regional grey matter (GM) volume changes in MDD patients. We tested specifically for associations with genetic variation in canonical Wnt signaling pathway genes and in genes that encode substrate proteins of GSK3beta. We applied a general linear model with non-stationary cluster-based inference to examine associations between polymorphisms and regional voxel-based morphometry GM volume differences in recurrent MDD patients (n=134) and in age-, gender-, and ethnicity-matched healthy controls (n=144) to test for genotype-by-MDD interactions. We observed associations for polymorphisms in 8/13 canonical Wnt pathway genes and 5/10 GSK3beta substrate genes, predominantly in the temporolateral and medial prefrontal cortices. Similar associations were not found for 100 unrelated polymorphisms tested. This work suggests that identifying SNPs related to genes that encode functionally-interacting proteins that modulate common anatomical regions offers a useful approach to increasing confidence in outcomes from imaging genetics association studies. This is of particular interest when replication datasets are not available. Our observations lend support to the hypothesis that polymorphisms in GSK3beta play a role in MDD susceptibility or expression, in part, by acting via the canonical Wnt signaling pathway and related substrates.
Collapse
Affiliation(s)
- Becky Inkster
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
The purpose of this review is to provide a better understanding for the LRP co-receptor-mediated Wnt pathway signaling. Using proteomics, we have also subdivided the LRP receptor family into six sub-families, encompassing the twelve family members. This review includes a discussion of proteins containing a cystine-knot protein motif (i.e., Sclerostin, Dan, Sostdc1, Vwf, Norrin, Pdgf, Mucin) and discusses how this motif plays a role in mediating Wnt signaling through interactions with LRP.
Collapse
|
220
|
Tal TL, Franzosa JA, Tanguay RL. Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish - a mini-review. Gerontology 2009; 56:231-40. [PMID: 19923791 DOI: 10.1159/000259327] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/28/2009] [Indexed: 12/11/2022] Open
Abstract
This short review provides a current synopsis of caudal fin regeneration in zebrafish with an emphasis on the molecular signaling networks that dictate epimorphic regeneration. At the outset, the fundamentals of caudal fin architecture and the stages of epimorphic regeneration are described. This is followed by a detailed look at the main networks implicated in fin regeneration, namely the Wnt, fibroblast growth factor, activin-betaA, retinoic acid and hedgehog signaling pathways. Throughout this mini-review, these molecular networks are examined through the lens of wound healing, blastema formation or regenerative outgrowth, three of the main stages of epimorphic regeneration. Next, the emerging role of noncoding RNAs as regulators of regeneration and mechanisms of regenerative termination are discussed. Finally, the implications for future research and the broader field of regenerative medicine are examined.
Collapse
Affiliation(s)
- Tamara L Tal
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, 97331-7301, USA
| | | | | |
Collapse
|
221
|
Adler KB, Matalon S. Highlights of the November Issue. Am J Respir Cell Mol Biol 2009. [DOI: 10.1165/rcmb.2009-2011ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
222
|
Wang L, Gesty-Palmer D, Fields TA, Spurney RF. Inhibition of WNT signaling by G protein-coupled receptor (GPCR) kinase 2 (GRK2). Mol Endocrinol 2009; 23:1455-65. [PMID: 19556343 PMCID: PMC2737558 DOI: 10.1210/me.2009-0084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/16/2009] [Indexed: 11/19/2022] Open
Abstract
Activation of Wnt signaling pathways causes release and stabilization of the transcription regulator beta-catenin from a destruction complex composed of axin and the adenomatous polyposis coli (APC) protein (canonical signaling pathway). Assembly of this complex is facilitated by a protein-protein interaction between APC and a regulator of G protein signaling (RGS) domain in axin. Because G protein-coupled receptor kinase 2 (GRK2) has a RGS domain that is closely related to the RGS domain in axin, we determined whether GRK2 regulated canonical signaling. We found that GRK2 inhibited Wnt1-induced activation of a reporter construct as well as reduced Wnt3a-dependent stabilization and nuclear translocation of beta-catenin. GRK2 enzymatic activity was required for this negative regulatory effect, and depletion of endogenous GRK2 using small interfering RNA enhanced canonical signaling. GRK2-dependent inhibition of canonical signaling is relevant to osteoblast (OB) biology because overexpression of GRK2 attenuated Wnt/beta-catenin signaling in calvarial OBs. Coimmunoprecipitation studies found that: 1) GRK2 bound APC; 2) The GRK2-APC interaction was promoted by GRK2 enzymatic activity; and 3) Deletion of the RGS domain in GRK2 prevented both the GRK2-APC interaction and GRK2-dependent inhibition of canonical signaling. These data suggest that: 1) GRK2 negatively regulates Wnt signaling; 2) GRK2-dependent inhibition of canonical signaling requires a protein-protein interaction between the RGS domain in GRK2 and APC; and 3) Enzymatic activity promotes the GRK2-APC interaction and is required for the negative regulatory effect on canonical signaling. We speculate that inhibiting GRK2 activity in bone-forming OBs might be a useful therapeutic strategy for increasing bone mass.
Collapse
Affiliation(s)
- Liming Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
223
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
224
|
Koh SH, Kim SH, Kim HT. Role of glycogen synthase kinase-3 inl-DOPA-induced neurotoxicity. Expert Opin Drug Metab Toxicol 2009; 5:1359-68. [DOI: 10.1517/17425250903170663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
225
|
Bandapalli OR, Dihlmann S, Helwa R, Macher-Goeppinger S, Weitz J, Schirmacher P, Brand K. Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J Pathol 2009; 218:370-9. [PMID: 19347947 DOI: 10.1002/path.2539] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
beta-Catenin is a pivotal molecule of the Wnt-signalling pathway, involved in regulation of developmental and oncogenic processes as well as in intercellular adhesion. So far, beta-catenin has been thought to be regulated mainly at the protein level. Here, we provide evidence for a transcriptional mechanism of beta-catenin regulation at the invasion front of colorectal liver metastases. In a nude mouse/LS174T cell xenograft model of colorectal liver metastases, we observed beta-catenin up-regulation at the mRNA and protein levels and a 13.7-fold increase of beta-catenin promoter activity in the cancer cells of the invasion front. In addition, the promoter activity was five-fold higher in the interior of the tumour than in cells growing in cell culture. In vitro studies revealed binding of TCF-4 to the beta-catenin promoter and reduced promoter activity by over-expression of dominant negative TCF-4, or beta-catenin knock-down and increased activity by beta-catenin over-expression, indicating that beta-catenin acts as co-transcription factor of its own promoter. In 55% (7/13) of clinical specimens, beta-catenin mRNA was markedly elevated in the cancer cells of the invasion front. Elevation of mRNA was paralleled by increased nuclear and cytoplasmic beta-catenin protein concentrations. These data indicate that transcriptional regulation contributes to the dynamic changes of beta-catenin levels upon the confrontation of tumour cells with the host microenvironment.
Collapse
|
226
|
Rawal N, Corti O, Sacchetti P, Ardilla-Osorio H, Sehat B, Brice A, Arenas E. Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochem Biophys Res Commun 2009; 388:473-8. [PMID: 19591802 DOI: 10.1016/j.bbrc.2009.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates beta-catenin protein levels in vivo. Stabilization of beta-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of beta-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and beta-catenin-induced cell death.
Collapse
Affiliation(s)
- Nina Rawal
- Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, Stockholm S-17177, Sweden
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Fracture repair is a complex regenerative process initiated in response to injury, resulting in optimal restoration of skeletal function. Although histology characteristics at various phases of fracture repair are clear and well established, much remains to be understood about the process of bone healing, particularly at the molecular signaling level. During the past decade, secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic development processes. Wnt signaling pathway also plays a pivotal role in the regulation of bone mass. Recent published data reveal that Wnt signaling pathway is activated during postnatal bone regenerative events, such as ectopic endochondral bone formation and fracture repair. Dysregulation of this pathway greatly inhibits bone formation and healing process. Interestingly, activation of Wnt pathway has potential to improve bone healing, but only utilized after mesenchymal cells have become committed to the osteoblast lineage. These advances suggest an essential role of Wnt pathway in bone regeneration.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
228
|
Stigliano I, Puricelli L, Filmus J, Sogayar MC, Bal de Kier Joffé E, Peters MG. Glypican-3 regulates migration, adhesion and actin cytoskeleton organization in mammary tumor cells through Wnt signaling modulation. Breast Cancer Res Treat 2009; 114:251-62. [PMID: 18404367 DOI: 10.1007/s10549-008-0009-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/03/2008] [Indexed: 12/24/2022]
Abstract
Glypican-3 (GPC3) is a proteoglycan involved in migration, proliferation and cell survival modulation in several tissues. There are many reports demonstrating a downregulation of GPC3 expression in some human tumors, including mesothelioma, ovarian and breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their in vivo invasive and metastatic capacities together with a higher susceptibility to in vitro apoptosis. Currently, the signaling mechanism of GPC3 is not clear. First, it was speculated that GPC3 regulates the insulin-like growth factor (IGF) signaling system. This hypothesis, however, has been strongly challenged. Recently, several reports indicated that at least in some cell types GPC3 serves as a selective regulator of Wnt signaling. Here we provide new data demonstrating that GPC3 regulates Wnt pathway in the metastatic adenocarcinoma mammary LM3 cell line. We found that GPC3 is able to inhibit canonical Wnt signals involved in cell proliferation and survival, as well as it is able to activate non canonical pathway, which directs cell morphology and migration. This is the first report indicating that breast tumor cell malignant properties can be reverted, at least in part, by GPC3 modulation of Wnt signaling. Our results are consistent with the potential role of GPC3 as a metastasis suppressor.
Collapse
Affiliation(s)
- Ivan Stigliano
- Cell Biology Department, Research Area, Institute of Oncology Angel H Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
229
|
Establishment of a transitory dorsal-biased window of localized Ca2+ signaling in the superficial epithelium following the mid-blastula transition in zebrafish embryos. Dev Biol 2009; 327:143-57. [DOI: 10.1016/j.ydbio.2008.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/24/2008] [Accepted: 12/03/2008] [Indexed: 12/28/2022]
|
230
|
Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS One 2009; 4:e4580. [PMID: 19238201 PMCID: PMC2640460 DOI: 10.1371/journal.pone.0004580] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/09/2009] [Indexed: 01/07/2023] Open
Abstract
β-catenin is an essential component of two cellular systems: cadherin-based adherens junctions (AJ) and the Wnt signaling pathway. A functional or physical connection between these β-catenin pools has been suggested in previous studies, but not conclusively demonstrated to date. To further examine this intersection, we treated A431 cell colonies with lysophosphatidic acid (LPA), which forces rapid and synchronized dissociation of AJ. A combination of immunostaining, time-lapse microscopy using photoactivatable-GFP-tagged β-catenin, and image analyses indicate that the cadherin-bound pool of β-catenin, internalized together with E-cadherin, accumulates at the perinuclear endocytic recycling compartment (ERC) upon AJ dissociation, and can be translocated into the cell nucleus upon Wnt pathway activation. These results suggest that the ERC may be a site of residence for β-catenin destined to enter the nucleus, and that dissociation of AJ may influence β-catenin levels in the ERC, effectively affecting β-catenin substrate levels available downstream for the Wnt pathway. This intersection provides a mechanism for integrating cell-cell adhesion with Wnt signaling and could be critical in developmental and cancer processes that rely on β-catenin-dependent gene expression.
Collapse
Affiliation(s)
- Yoonseok Kam
- Cancer Biology Department, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Vito Quaranta
- Cancer Biology Department, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
231
|
Abstract
The adenomatous polyposis coli gene (Apc) is mutated in most colorectal cancers. The multifunctional character of the Apc protein in the regulation of beta-catenin-mediated gene transcription and cytoskeletal proteins has been well described. An important question is how this protein affects the behaviour of cells within a tumour and how its mutational status influences the prognosis for these tumours. Here we provide an overview of the functions of Apc and examine how this information can be used in the prognosis and development of directed therapy in colorectal cancer.
Collapse
|
232
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
233
|
Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. ACTA ACUST UNITED AC 2009; 58:3485-97. [PMID: 18975341 DOI: 10.1002/art.23954] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. METHODS Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 microg/kg) or risedronate (5 microg/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. RESULTS Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (-27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. CONCLUSION Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization.
Collapse
Affiliation(s)
- Wei Yao
- University of California Davis Medical Center, Sacramento
| | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis in the elderly. A large body of evidence, including familial aggregation and classic twin studies, indicates that primary OA has a strong hereditary component that is likely polygenic in nature. Traits related to OA, such as longitudinal changes in cartilage volume and progression of radiographic features, are also under genetic control. In recent years several linkage analyses and candidate gene studies have been performed and unveiled some of the specific genes involved in disease risk, such as FRZB and GDF5. This article discusses the impact that future genome-wide association scans can have on our understanding of the pathogenesis of OA and on identifying individuals at high risk for developing severe OA.
Collapse
Affiliation(s)
- Ana M Valdes
- Twin Research and Genetic Epidemiology Unit, St. Thomas Hospital Campus, Kings College, London School of Medicine, London SE1 7EH, UK.
| | | |
Collapse
|
235
|
Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene 2008; 433:1-7. [PMID: 19135507 DOI: 10.1016/j.gene.2008.12.008] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/26/2008] [Accepted: 12/03/2008] [Indexed: 12/14/2022]
Abstract
Multipotential mesenchymal stem cells (MSCs) are able to differentiate along several known lineages and have been shown to be efficacious for in vivo wound repair. The growth and differentiation of MSCs are known to be tightly regulated via interactions with specific extracellular mediators. Recent studies have shown that Wnts and their downstream signaling pathways play an important role in the self-renewal and differentiation of MSCs. Indeed altered bone-mass is known to result from mutations in LRP5, a Wnt co-receptor, that suggests Wnt plays an important signaling role during bone formation, possibly involving MSCs. This review outlines the current understanding of the distinct Wnt intracellular pathways including both canonical beta-catenin/TCF(LEF1) signaling and non-canonical cascades mediated by JNK, PKC, Ca(2+) or Rho, and how they are involved in the regulation of MSC proliferation and differentiation. We also discuss the coordination between different Wnt signaling cascades to precisely control MSC cell fate decisions, and we dissect the functional cross-talk of Wnt signaling that is known to occur with other growth factor signaling pathways.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Medical Biology, Singapore
| | | | | |
Collapse
|
236
|
Doi T, Puri P, Bannigan J, Thompson J. Downregulation of ROCK-I and ROCK-II gene expression in the cadmium-induced ventral body wall defect chick model. Pediatr Surg Int 2008; 24:1297-301. [PMID: 18956198 DOI: 10.1007/s00383-008-2270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE In the chick embryo, administration of the heavy metal cadmium (Cd) after 60 h incubation induces the ventral body wall defect (VBW) with similarities to the human omphalocele. Rho-associated coiled-coil-containing protein kinase (ROCK) I and ROCK-II mediate signalling from Rho to the actin cytoskeleton in the Wnt non-canonical pathway. ROCK-I knockout (KO), ROCK-II KO, and ROCK-I/ROCK-II double heterozygous mice have been shown to cause failure of closure of the VBW. The exact mechanism by which Cd acts in the Wnt signalling pathway still remains unclear. We designed this study to test the hypothesis, that the gene expression levels of ROCK-I and ROCK-II are downregulated during the critical period of embryogenesis in the Cd-induced VBW defect chick model. METHODS Chick embryos were harvested 1 h (1H), 4 h (4H), and 8 h (8H) after treatment of cadmium and divided into two groups: control (n = 8 at each time point), and Cd (n = 8 at each time point). Real-time RT-PCR was performed to evaluate the relative mRNA levels of ROCK-I and ROCK-II expression in the Cd-induced VBW defect chick model. Differences between the two groups at each time point were tested by using Mann-Whitney's U test and statistical significance was accepted at P < 0.05. RESULTS The relative mRNA levels of ROCK-I and ROCK-II at 4H were significantly decreased in Cd group compared to controls (P < 0.01 and P < 0.001, respectively). The expression levels of ROCK-I and ROCK-II at 1H and 8H were not significantly different between Cd group and controls. CONCLUSIONS Our results provide evidence, for the first time, that the gene expression levels of ROCK-I and ROCK-II are significantly downregulated at 4 h after treatment of Cd in the VBW defect model of chick embryo. We speculate that the downregulation of ROCK-I and ROCK-II gene expressions during this narrow window of embryogenesis may cause VBW defect by disrupting Wnt non-canonical pathway.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | | | | | |
Collapse
|
237
|
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis in the elderly. A large body of evidence, including familial aggregation and classic twin studies, indicates that primary OA has a strong hereditary component that is likely polygenic in nature. Furthermore, traits related to OA, such as longitudinal changes in cartilage volume and progression of radiographic features, are also under genetic control. In recent years, several linkage analysis and candidate gene studies have been performed and have unveiled some of the specific genes involved in disease risk, such as FRZB and GDF5. The authors discuss the impact that future genome-wide association scans can have on our understanding of the pathogenesis of OA and on identifying individuals at high risk for developing severe OA.
Collapse
Affiliation(s)
- Ana M Valdes
- Twin Research & Genetic Epidemiology Unit, St. Thomas' Hospital Campus, Kings College London School of Medicine, London SE1 7EH, UK.
| | | |
Collapse
|
238
|
Saldanha RG, Xu N, Molloy MP, Veal DA, Baker MS. Differential proteome expression associated with urokinase plasminogen activator receptor (uPAR) suppression in malignant epithelial cancer. J Proteome Res 2008; 7:4792-806. [PMID: 18808175 DOI: 10.1021/pr800357h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulation of the plasminogen activation cascade is a prototypic feature in many malignant epithelial cancers. Principally, this is thought to occur through activation of overexpressed urokinase plasminogen activator (uPA) concomitant with binding to its high specificity cell surface receptor urokinase plasminogen activator receptor (uPAR). Up-regulation of uPA and uPAR in cancer appears to potentiate the malignant phenotype, either (i) directly by triggering plasmin-mediated degradation or activation of uPA's or plasmin's proteolytic targets (e.g., extracellular matrix zymogen proteases or nascent growth factors) or indirectly by simultaneously altering a range of downstream functions including signal transduction pathways ( Romer, J. ; Nielsen, B. S. ; Ploug, M. The urokinase receptor as a potential target in cancer therapy Curr. Pharm. Des. 2004, 10 ( 19), 235976 ). Because many malignant epithelial cancers express high levels of uPAR, uPA or other components of the plasminogen activation cascade and because these are often associated with poor prognosis, characterizing how uPAR changes the downstream cellular "proteome" is fundamental to understanding any role in cancer. This study describes a carefully designed proteomic study of the effects of antisense uPAR suppression in a previously studied colon cancer cell line (HCT116). The study utilized replicate 2DE gels and two independent gel image analysis software packages to confidently identify 64 proteins whose expression levels changed (by > or =2 fold) coincident with a moderate ( approximately 40%) suppression of cell-surface uPAR. Not surprisingly, many of the altered proteins have previously been implicated in the regulation of tumor progression (e.g., p53 tumor suppressor protein and c-myc oncogene protein among many others). In addition, through a combination of proteomics and immunological methods, this study demonstrates that stathmin 1alpha, a cytoskeletal protein implicated in tumor progression, undergoes a basic isoelectric point shift (p I) following uPAR suppression, suggesting that post-translational modification of stathmin occur secondary to uPAR suppression. Overall, these results shed new light on the molecular mechanisms involved in uPAR signaling and how it may promulgate the malignant phenotype.
Collapse
Affiliation(s)
- Rohit G Saldanha
- Department of Chemistry and Biomolecular Sciences and Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
239
|
Gaumann A, Bode-Lesniewska B, Zimmermann DR, Fanburg-Smith JC, Kirkpatrick CJ, Hofstädter F, Woenckhaus M, Stoehr R, Obermann EC, Dietmaier W, Hartmann A. Exploration of the APC/beta-catenin (WNT) pathway and a histologic classification system for pulmonary artery intimal sarcoma. A study of 18 cases. Virchows Arch 2008; 453:473-84. [PMID: 18807072 DOI: 10.1007/s00428-008-0671-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 02/05/2023]
Abstract
APC, a tumor suppressor gene in the Wnt pathway, stabilizes beta-catenin and controls cell growth. Mutation of APC or beta-catenin leads to nuclear accumulation of beta-catenin and transcription of cyclin D1/cyclin A. Pulmonary artery sarcoma (PAS) were studied by morphologic, immunohistochemical, and molecular genetic methods of the Wnt pathway. Eighteen cases were included: mean age 52 years, primary intraluminal location with typical clinical presentation. PAS were classified as epithelioid (n = 4) or malignant fibrous histiocytoma (MFH; spindled/pleomorphic, n = 4), myxofibrosarcoma (n = 8), and one each hemangiopericytoma-like or malignant inflammatory myofibroblastic tumor-like. The tumor cells demonstrated vimentin, focal actins, and rare focal desmin positivity. All but one were grade 2 or 3 by FNCLCC grading. Alteration in chromosome 5q21 (APC) was found in 4/14 PAS by LOH, mostly epithelioid-type; an MFH-type case demonstrated microsatellite instability (MSI) and nuclear beta-catenin. Cyclin D1 was expressed in seven tumors, all myxofibrosarcoma-type. No mutations were detected in APC or beta-catenin. In summary, PAS are predominantly intermediate grade myxofibrosarcoma in middle-aged males, and fatal in two-thirds of patients. Despite myofibroblastic phenotype, APC/beta-catenin pathway changes are rare. Cyclin D1, only expressed in the myxofibrosarcoma-type, is likely transcribed via factors other than beta-catenin.
Collapse
Affiliation(s)
- A Gaumann
- Institute of Pathology, University of Regensburg, Franz-Josef Strauss Allee 11, D-93042, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Yanamoto S, Kawasaki G, Yamada SI, Yoshitomi I, Yoshida H, Mizuno A. Ribonucleotide reductase small subunit p53R2 promotes oral cancer invasion via the E-cadherin/beta-catenin pathway. Oral Oncol 2008; 45:521-5. [PMID: 18804405 DOI: 10.1016/j.oraloncology.2008.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/04/2008] [Accepted: 07/11/2008] [Indexed: 01/02/2023]
Abstract
The p53-inducible p53R2 gene has been isolated and shown to play a crucial role in DNA repair and synthesis after DNA damage. Moreover, the expression and activity of p53R2 has been reported to be associated with the anticancer agent resistance of human cancer cells. Previously, we reported that the presence of p53R2 expression was a predictive factor for regional lymph node metastasis in oral squamous cell carcinoma; however, the mechanism of cancer metastasis by p53R2 expression is still unclear. In the present study, we analyzed the correlation of p53R2 expression with cancer invasion in vitro. Three human oral cancer cell lines (SAS, HSC-3 and Ca9-22) were cultured, and the invasive potential of these cancer cells was evaluated using Matrigel invasion assay. To investigate the effect of p53R2 on cancer invasion, the down-regulation of p53R2 was examined by small interfering RNA (siRNA). Moreover, we examined the intracellular localization of cell adhesion molecules (E-cadherin and beta-catenin) in subcellular extractions of cancer cells by immunoblotting. The proteolytic activity of matrix metalloproteinases (MMPs) was assessed by gelatin zymography. Down-regulation of p53R2 significantly enhanced the invasion potential (p<0.01), and enhanced nuclear translocation of beta-catenin with loss of total cellular E-cadherin expression in p53 mutant cancer cells, but not in p53 wild-type cancer cells. These changes in the invasion index by p53R2 siRNA transfection were not accompanied by alterations in MMP activity and expression. These results suggested that the expression of p53R2 could be associated with the invasion of cancer cells, and indicated that p53R2 might promote cancer invasion via the E-cadherin/beta-catenin pathway without the alteration of MMP activity.
Collapse
Affiliation(s)
- Souichi Yanamoto
- Department of Oral and Maxillofacial Surgery, Unit of Translational Medicine, Course of Medical and Dental Sciences, University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
241
|
Hidestrand M, Richards-Malcolm S, Gurley CM, Nolen G, Grimes B, Waterstrat A, Zant GV, Peterson CA. Sca-1-expressing nonmyogenic cells contribute to fibrosis in aged skeletal muscle. J Gerontol A Biol Sci Med Sci 2008; 63:566-79. [PMID: 18559630 DOI: 10.1093/gerona/63.6.566] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report an age-dependent increase in nonimmunohematopoietic cells (CD45neg) in regenerating muscle characterized by high stem-cell antigen (Sca-1) expression. In aged regenerating muscle, only 14% of these CD45negSca-1pos cells express MyoD, whereas 82% of CD45negSca-1(pos) cells are MyoDpos in young adult muscle. In vitro, CD45negMyoDnegSca-1pos cells overexpress fibrosis-promoting genes, potentially controlled by Wnt2. The cells are proliferative, nonmyogenic, and nonadipogenic, and arise in clonally derived myoblast cultures from aged mice. MyoDneg Sca-1pos nonmyogenic cells also emerge in C2C12 myoblast cultures at late passage. Both in vitro and in vivo studies suggest that MyoDnegSca-1pos cells from aged muscle are more susceptible to apoptosis than myoblasts, which may contribute to depletion of the satellite cell pool. Thus, with age, a subset of myoblasts takes on an altered phenotype, which is marked by high Sca-1 expression. These cells do not participate in muscle regeneration, and instead may contribute to muscle fibrosis in aged muscle.
Collapse
Affiliation(s)
- Mats Hidestrand
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 105, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis.
Collapse
Affiliation(s)
- L. A. Davis
- Department of Surgery and Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 2XY United Kingdom
| | - N. I. zur Nieden
- Fraunhofer Institute for Cell Therapy and Immunology, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
243
|
New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol 2008; 20:553-9. [DOI: 10.1097/bor.0b013e32830aba48] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
244
|
Geetha-Loganathan P, Nimmagadda S, Scaal M, Huang R, Christ B. Wnt signaling in somite development. Ann Anat 2008; 190:208-22. [DOI: 10.1016/j.aanat.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 01/30/2023]
|
245
|
Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND. Canonical WNT/β-catenin signaling is required for ureteric branching. Dev Biol 2008; 317:83-94. [DOI: 10.1016/j.ydbio.2008.02.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/30/2008] [Accepted: 02/05/2008] [Indexed: 12/23/2022]
|
246
|
Jovanovic V, Dugast AS, Heslan JM, Ashton-Chess J, Giral M, Degauque N, Moreau A, Pallier A, Chiffoleau E, Lair D, Usal C, Smit H, Vanhove B, Soulillou JP, Brouard S. Implication of matrix metalloproteinase 7 and the noncanonical wingless-type signaling pathway in a model of kidney allograft tolerance induced by the administration of anti-donor class II antibodies. THE JOURNAL OF IMMUNOLOGY 2008; 180:1317-25. [PMID: 18209025 DOI: 10.4049/jimmunol.180.3.1317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rats, tolerance to MHC-incompatible renal allografts can be induced by the administration of anti-donor class II Abs on the day of transplantation. In this study we explored the mechanisms involved in the maintenance phase of this tolerance by analyzing intragraft gene expression profiles by microarray in long-term accepted kidneys. Comparison of the gene expression patterns of tolerated to syngeneic kidneys revealed 5,954 differentially expressed genes (p < 0.05). Further analysis of this gene set revealed a key role for the wingless-type (WNT) signaling pathway, one of the pivotal pathways involved in cell regulation that has not yet been implicated in transplantation. Several genes within this pathway were significantly up-regulated in the tolerated grafts, particularly matrix metalloproteinase 7 (MMP7; fold change > 40). Analysis of several other pathway-related molecules indicated that MMP7 overexpression was the result of the noncanonical WNT signaling pathway. MMP7 expression was restricted to vascular smooth muscle cells and was specific to anti-class II Ab-induced tolerance, as it was undetectable in other models of renal and heart transplant tolerance and chronic rejection induced across the same strain combination. These results suggest a novel role for noncanonical WNT signaling in maintaining kidney transplant tolerance in this model, with MMP7 being a key target. Determining the mechanisms whereby MMP7 contributes to transplant tolerance may help in the development of new strategies to improve long-term graft outcome.
Collapse
Affiliation(s)
- Vojislav Jovanovic
- INSERM U643, Institut de Transplantation et de Recherche en Transplantation, Centre Hospitalier Universitaire du Nantes, 30 Boulevard Jean Monnet, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood 2008; 111:4338-47. [PMID: 18258796 DOI: 10.1182/blood-2007-07-103291] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deletions on chromosome 9q are seen in a subset of acute myeloid leukemia (AML) cases and are specifically associated with t(8;21) AML. We previously defined the commonly deleted region in del(9q) AML and characterized the genes in this interval. To determine the critical lost gene(s) that might cooperate with the AML1-ETO fusion gene produced by t(8;21), we developed a set of shRNAs directed against each gene in this region. Within this library, shRNAs to TLE1 and TLE4 were the only shRNAs capable of rescuing AML1-ETO expressing U937T-A/E cells from AML1-ETO-induced cell-cycle arrest and apoptosis. Knockdown of TLE1 or TLE4 levels increased the rate of cell division of the AML1-ETO-expressing Kasumi-1 cell line, whereas forced expression of either TLE1 or TLE4 caused apoptosis and cell death. Knockdown of Gro3, a TLE homolog in zebrafish, cooperated with AML1-ETO to cause an accumulation of noncirculating hematopoietic blast cells. Our data are consistent with a model in which haploinsufficiency of these TLEs overcomes the negative survival and antiproliferative effects of AML1-ETO on myeloid progenitors, allowing preleukemic stem cells to expand into AML. This study is the first to implicate the TLEs as potential tumor suppressor genes in myeloid leukemia.
Collapse
|
248
|
Abstract
We describe the protocols for measuring Rho-associated coiled-coil-containing kinase (ROCK) activity in vitro. A His-tagged, constitutively active form of the protein (lacking C-terminal inhibitory domains) is expressed in baculovirus. The protein is purified by a combination of metal affinity, ion exchange, and size exclusion chromatography. Enzymatic activity is measured spectrophotometrically in a coupled assay format wherein a molecule of NADH is oxidized to NAD+ each time a phosphate is transferred by ROCK.
Collapse
Affiliation(s)
- John D Doran
- Protein Biochemistry, Vertex Pharmaceuticals, Cambridge, MA, USA
| | | |
Collapse
|
249
|
Abstract
Wnt proteins mediate the transduction of at least three major signaling pathways that play central roles in many early and late developmental decisions. They control diverse cellular behaviors, such as cell fate decisions, proliferation, and migration, and are involved in many important embryological events, including axis specification, gastrulation, and limb, heart, or neural development. The three major Wnt pathways are activated by ligands, the Wnts, which clearly belong to the same gene family. However, their signal is then mediated by three separate sets of extracellular, cytoplasmic, and nuclear components that are pathway-specific and that distinguish each of them. Homologs of the Wnt genes and of the Wnt pathways components have been discovered in many eukaryotic model systems and functional investigations have been carried out for most of them. This review extracts available data on the Wnt pathways, from the protist Dictyostelium discoideum to humans, and provides from an evolutionary prospective the overall molecular and functional conservation of the three Wnt pathways and their activators throughout the eukaryotic superkingdom.
Collapse
|
250
|
Dufourcq P, Leroux L, Ezan J, Descamps B, Lamazière JMD, Costet P, Basoni C, Moreau C, Deutsch U, Couffinhal T, Duplàa C. Regulation of endothelial cell cytoskeletal reorganization by a secreted frizzled-related protein-1 and frizzled 4- and frizzled 7-dependent pathway: role in neovessel formation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:37-49. [PMID: 18156211 DOI: 10.2353/ajpath.2008.070130] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.
Collapse
|