201
|
Hsieh TC, Wong C, John Bennett D, Wu JM. Regulation of p53 and cell proliferation by resveratrol and its derivatives in breast cancer cells: an in silico and biochemical approach targeting integrin αvβ3. Int J Cancer 2011; 129:2732-43. [PMID: 21225623 DOI: 10.1002/ijc.25930] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/30/2010] [Indexed: 01/11/2023]
Abstract
Resveratrol is a grape polyphenol with cancer preventative activities in tissue culture and animal model studies. Potential of resveratrol as a broad-based chemopreventive agent have been questioned by its limited bioavailability. The bioefficacy of resveratrol was compared with its derivatives, triacetyl-resveratrol (trans-3,5,4'-triacetylstilbene) and trimethoxy-resveratrol (trans-3,5,4'-trimethoxystilbene) in both estrogen receptor-α (ERα)-positive MCF-7 and ERα-negative MDA-MB-231 breast cancer cells. Binding to integrin αvβ3 and control of cell proliferation and p53 were chosen as targets for comparative analysis using an in silico and biochemical approach. Resveratrol and triacetyl-resveratrol interacted avidly and specifically with integrin αvβ3 through binding at the site targeted by the high affinity cyclic Arg-Gly-Asp (RGD) peptide. In contrast, binding of trimethoxy-resveratrol to this site was substantially less robust. Moreover, the different stilbenes also elicited diverse cellular and signaling responses in MCF-7 and MDA-MB-231 cells, as evidenced by analysis of colony formation, cell proliferation, cell cycle phase transition, the extent of phosphorylation of p53 at Ser15 and p53-inducible proteins, p21 and p53R2, respectively. Further, stilbene-elicited signaling cascade leading to p53 activation was examined in MCF-7 cells and results showed that resveratrol and triacetyl-resveratrol induced both ERK and p38 phosphorylation, whereas only marginal changes in state of phosphorylation in these two kinases were observed in trimethoxy-resveratrol-treated cells. Taken together, these results support that resveratrol and triacetyl-resveratrol regulate proliferation and gene expression in breast cancer cells by utilizing largely similar signaling molecules and pathways and cellular events, which appear quite distinct from those targeted by trimethoxy-resveratrol.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
202
|
Yamane J, Ohnishi H, Sasaki H, Narimatsu H, Ohgushi H, Tachibana K. Formation of microvilli and phosphorylation of ERM family proteins by CD43, a potent inhibitor for cell adhesion: cell detachment is a potential cue for ERM phosphorylation and organization of cell morphology. Cell Adh Migr 2011; 5:119-32. [PMID: 21045567 DOI: 10.4161/cam.5.2.13908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD43/sialophorin/leukosialin, a common leukocyte antigen, is known as an inhibitor for cell adhesion. The ectodomain of CD43 is considered as a molecular barrier for cell adhesion, while the cytoplasmic domain has a binding site for Ezrin/Radixin/Moesin (ERM). We found expression of CD43 induced cell rounding, inhibition of cell re-attachment, augmentation of microvilli, and phosphorylation of ERM in HEK293T cells. Mutant studies revealed the ectodomain of CD43, but not the intracellular domain, essential and sufficient for all these phenomena. We also found that forced cell detachment by itself induced phosphorylation of ERM in HEK293T cells. Taken together, these findings indicate that inhibition of cell adhesion by the ectodomain of CD43 induces phosphorylation of ERM, microvilli formation, and eventual cell rounding. Furthermore, our study suggests a novel possibility that cell detachment itself induces activation of ERM and modification of cell shape.
Collapse
Affiliation(s)
- Junko Yamane
- Health Research Institute, Tissue Engineering Research Group, National Institute of Advanced Industrial Science and Technology, Nakouji, Amagasaki, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
203
|
Abstract
Integrins are large, membrane-spanning, heterodimeric proteins that are essential for a metazoan existence. All members of the integrin family adopt a shape that resembles a large "head" on two "legs," with the head containing the sites for ligand binding and subunit association. Most of the receptor dimer is extracellular, but both subunits traverse the plasma membrane and terminate in short cytoplasmic domains. These domains initiate the assembly of large signaling complexes and thereby bridge the extracellular matrix to the intracellular cytoskeleton. To allow cells to sample and respond to a dynamic pericellular environment, integrins have evolved a highly responsive receptor activation mechanism that is regulated primarily by changes in tertiary and quaternary structure. This review summarizes recent progress in the structural and molecular functional studies of this important class of adhesion receptor.
Collapse
Affiliation(s)
- Iain D Campbell
- Department of Biochemistry, University of Oxford, United Kingdom.
| | | |
Collapse
|
204
|
Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, Pozzi A, Zutter MM, Wasserman DH. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Diabetes 2011; 60:416-26. [PMID: 21270253 PMCID: PMC3028340 DOI: 10.2337/db10-1116] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)β(1) was tested. RESEARCH DESIGN AND METHODS The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)β(1)-null (itga2(-/-)), integrin α(1)β(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)β(1) and integrin α(1)β(1) signaling pathways have opposing actions. RESULTS HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates. CONCLUSIONS ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)β(1) interaction.
Collapse
Affiliation(s)
- Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
206
|
Abstract
Integrin adhesion receptors are essential for the development and functioning of multicellular animals. Integrins mediate cell adhesion to the extracellular matrix and to counter-receptors on adjacent cells, and the ability of integrins to bind extracellular ligands is regulated in response to intracellular signals that act on the short cytoplasmic tails of integrin subunits. Integrin activation, the rapid conversion of integrin receptors from low to high affinity, requires binding of talin to integrin β tails and, once bound, talin provides a connection from activated integrins to the actin cytoskeleton. A wide range of experimental approaches have contributed to the current understanding of the importance of talin in integrin signaling. Here, we describe two methods that have been central to our investigations of talin; a biochemical assay that has allowed characterization of interactions between integrin cytoplasmic tails and talin, and a fluorescent-activated cell-sorting procedure to assess integrin activation in cultured cells expressing talin domains, mutants, dominant negative constructs, or shRNA.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
207
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
208
|
Anthis NJ, Wegener KL, Critchley DR, Campbell ID. Structural diversity in integrin/talin interactions. Structure 2010; 18:1654-66. [PMID: 21134644 PMCID: PMC3157975 DOI: 10.1016/j.str.2010.09.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
The adhesion of integrins to the extracellular matrix is regulated by binding of the cytoskeletal protein talin to the cytoplasmic tail of the β-integrin subunit. Structural studies of this interaction have hitherto largely focused on the β3-integrin, one member of the large and diverse integrin family. Here, we employ NMR to probe interactions and dynamics, revealing marked structural diversity in the contacts between β1A, β1D, and β3 tails and the Talin1 and Talin2 isoforms. Coupled with analysis of recent structures of talin/β tail complexes, these studies elucidate the thermodynamic determinants of this heterogeneity and explain why the Talin2/β1D isoforms, which are co-localized in striated muscle, form an unusually tight interaction. We also show that talin/integrin affinity can be enhanced 1000-fold by deleting two residues in the β tail. Together, these studies illustrate how the integrin/talin interaction has been fine-tuned to meet varying biological requirements.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| | - Kate L. Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| | - David R. Critchley
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, UK
| |
Collapse
|
209
|
Visualization of allostery in P-selectin lectin domain using MD simulations. PLoS One 2010; 5:e15417. [PMID: 21170343 PMCID: PMC2999562 DOI: 10.1371/journal.pone.0015417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022] Open
Abstract
Allostery of P-selectin lectin (Lec) domain followed by an epithelial growth factor (EGF)-like domain is essential for its biological functionality, but the underlying pathways have not been well understood. Here the molecular dynamics simulations were performed on the crystallized structures to visualize the dynamic conformational change for state 1 (S1) or state 2 (S2) Lec domain with respective bent (B) or extended (E) EGF orientation. Simulations illustrated that both S1 and S2 conformations were unable to switch from one to another directly. Instead, a novel S1' conformation was observed from S1 when crystallized B-S1 or reconstructed “E-S1” structure was employed, which was superposed well with that of equilibrated S1 Lec domain alone. It was also indicated that the corresponding allosteric pathway from S1 to S1' conformation started with the separation between residues Q30 and K67 and terminated with the release of residue N87 from residue C109. These results provided an insight into understanding the structural transition and the structure-function relationship of P-selectin allostery.
Collapse
|
210
|
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 2010; 9:804-20. [PMID: 20885411 DOI: 10.1038/nrd3266] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets.
Collapse
Affiliation(s)
- Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
211
|
Kalson NS, Holmes DF, Kapacee Z, Otermin I, Lu Y, Ennos RA, Canty-Laird EG, Kadler KE. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery. Matrix Biol 2010; 29:678-89. [PMID: 20736063 PMCID: PMC3611596 DOI: 10.1016/j.matbio.2010.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/27/2010] [Accepted: 08/17/2010] [Indexed: 02/03/2023]
Abstract
Tendons attach muscles to bone and thereby transmit tensile forces during joint movement. However, a detailed understanding of the mechanisms that establish the mechanical properties of tendon has remained elusive because of the practical difficulties of studying tissue mechanics in vivo. Here we have performed a study of tendon-like constructs made by culturing embryonic tendon cells in fixed-length fibrin gels. The constructs display mechanical properties (toe-linear-fail stress-strain curve, stiffness, ultimate tensile strength, and failure strain) as well as collagen fibril volume fraction and extracellular matrix (ECM)/cell ratio that are statistically similar to those of embryonic chick metatarsal tendons. The development of mechanical properties during time in culture was abolished when the constructs were treated separately with Triton X-100 (to solubilise membranes), cytochalasin (to disassemble the actin cytoskeleton) and blebbistatin (a small molecule inhibitor of non-muscle myosin II). Importantly, these treatments had no effect on the mechanical properties of the constructs that existed prior to treatment. Live-cell imaging and (14)C-proline metabolic labeling showed that blebbistatin inhibited the contraction of the constructs without affecting cell viability, procollagen synthesis, or conversion of procollagen to collagen. In conclusion, the mechanical properties per se of the tendon constructs are attributable to the ECM generated by the cells but the improvement of mechanical properties during time in culture was dependent on non-muscle myosin II-derived forces.
Collapse
Key Words
- cvf, cell volume fraction, the fraction of the construct occupied by cells
- ecm, extracellular matrix
- ecmt, embryonic chick metatarsal tendon
- em, electron microscopy
- facs, fluorescence activated cell sorting
- fvf, fibril volume fraction, the fraction of the construct occupied by collagen fibrils
- nmmii, non-muscle myosin ii
- pbs, phosphate buffered saline
- bio-artificial tendon
- collagen
- elasticity
- electron microscopy
- extracellular matrix
- myosin
- fibril
- fibrin
- tension
Collapse
Affiliation(s)
- Nicholas S. Kalson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Zoher Kapacee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Iker Otermin
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Roland A. Ennos
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Elizabeth G. Canty-Laird
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
212
|
Papusheva E, Heisenberg CP. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 2010; 29:2753-68. [PMID: 20717145 DOI: 10.1038/emboj.2010.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 12/17/2022] Open
Abstract
Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.
Collapse
|
213
|
Murphy G. Fell-Muir Lecture: Metalloproteinases: from demolition squad to master regulators. Int J Exp Pathol 2010; 91:303-13. [PMID: 20666850 DOI: 10.1111/j.1365-2613.2010.00736.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two families of the Metzincin clan of metalloproteinases, the matrix metalloproteinases and the disintegrin metalloproteinases have attracted much attention as important effectors of cellular interactions with their environment. They appear to play significant roles in the modulation of components of the extracellular matrix, matrix and cell receptors, as well as the cytokines and growth factors and their receptors. Such functions at the 'cutting edge' of cell biology puts these enzymes in pivotal roles in the orchestration of the rapid response of cells to their environment, acting as key switches between different signalling pathways. Inevitably such enzymes should be regarded as suitable targets for therapeutic approaches to many diseases where such pathways become dysregulated. A major challenge to the development of direct inhibitors of catalysis has been the broad structural similarity of the Metzincin catalytic site. More detailed knowledge of active site structures has helped to some extent to resolve the development of more specific chemical inhibitors and selected enzymes are now being targeted. An alternative strategy is the consideration of the role of the extracatalytic domains that are determinants of specificity at a variety of levels. Dissecting the relationships between structure and function of these interaction sites is allowing the development of new approaches to inhibition of enzyme function. Antibodies are proving useful tools in this respect and may pave the way to a novel biologics approach to disease therapy.
Collapse
Affiliation(s)
- Gillian Murphy
- Department of Oncology, Cambridge University, Cancer Research UK, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
214
|
Stepp MA, Daley WP, Bernstein AM, Pal-Ghosh S, Tadvalkar G, Shashurin A, Palsen S, Jurjus RA, Larsen M. Syndecan-1 regulates cell migration and fibronectin fibril assembly. Exp Cell Res 2010; 316:2322-39. [PMID: 20580707 PMCID: PMC3141227 DOI: 10.1016/j.yexcr.2010.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/10/2010] [Accepted: 05/18/2010] [Indexed: 01/25/2023]
Abstract
Corneal scarring is a major cause of blindness worldwide and can result from the deposition of abnormal amounts of collagen fibers lacking the correct size and spacing required to produce a clear cornea. Collagen fiber formation requires a preformed fibronectin (FN) matrix. We demonstrate that the loss of syndecan1 (sdc1) in corneal stromal cells (CSC) impacts cell migration rates, the sizes and composition of focal and fibrillar adhesions, the activation of integrins, and the assembly of fibronectin into fibrils. Integrin and fibronectin expression are not altered on sdc1-null CSCs. Cell adhesion, spreading, and migration studies using low compared to high concentrations of FN and collagen I (CNI) or vitronectin (VN) with and without activation of integrins by manganese chloride show that the impact of sdc1 depletion on integrin activation varies depending on the integrin-mediated activity evaluated. Differences in FN fibrillogenesis and migration in sdc1-null CSCs are reversed by addition of manganese chloride but cell spreading differences remain. To determine if our findings on sdc1 were specific to the cornea, we compared the phenotypes of sdc1-null dermal fibroblasts with those of CSCs. We found that without sdc1, both cell types migrate faster; however, cell-type-specific differences in FN expression and its assembly into fibrils exist between these two cell types. Together, our data demonstrate that sdc1 functions to regulate integrin activity in multiple cell types. Loss of sdc1-mediated integrin function results in cell-type specific differences in matrix assembly. A better understanding of how different cell types regulate FN fibril formation via syndecans and integrins will lead to better treatments for scarring and fibrosis.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington DC 20037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Smagghe BJ, Huang PS, Ban YEA, Baker D, Springer TA. Modulation of integrin activation by an entropic spring in the {beta}-knee. J Biol Chem 2010; 285:32954-32966. [PMID: 20670939 DOI: 10.1074/jbc.m110.145177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that the length of a loop in the β-knee, between the first and second cysteines (C1-C2) in integrin EGF-like (I-EGF) domain 2, modulates integrin activation. Three independent sets of mutants, including swaps among different integrin β-subunits, show that C1-C2 loop lengths of 12 and longer favor the low affinity state and masking of ligand-induced binding site (LIBS) epitopes. Shortening length from 12 to 4 residues progressively increases ligand binding and LIBS epitope exposure. Compared with length, the loop sequence had a smaller effect, which was ascribable to stabilizing loop conformation, and not interactions with the α-subunit. The data together with structural calculations support the concept that the C1-C2 loop is an entropic spring and an emerging theme that disordered regions can regulate allostery. Diversity in the length of this loop may have evolved among integrin β-subunits to adjust the equilibrium between the bent and extended conformations at different set points.
Collapse
Affiliation(s)
- Benoit J Smagghe
- From the Immune Disease Institute, Children's Hospital Boston, and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Po-Ssu Huang
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Yih-En Andrew Ban
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - David Baker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Timothy A Springer
- From the Immune Disease Institute, Children's Hospital Boston, and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
216
|
Reinehr R, Gohlke H, Sommerfeld A, Vom Dahl S, Häussinger D. Activation of integrins by urea in perfused rat liver. J Biol Chem 2010; 285:29348-56. [PMID: 20643649 DOI: 10.1074/jbc.m110.155135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High concentrations of urea were shown to induce a paradoxical regulatory volume decrease response with K(+) channel opening and subsequent hepatocyte shrinkage (Hallbrucker, C., vom Dahl, S., Ritter, M., Lang, F., and Häussinger, D. (1994) Pflügers Arch. 428, 552-560), although the hepatocyte plasma membrane is thought to be freely permeable to urea. The underlying mechanisms remained unclear. As shown in the present study, urea (100 mmol/liter) induced within 1 min an activation of β(1) integrins followed by an activation of focal adhesion kinase, c-Src, p38(MAPK), extracellular signal-regulated kinases, and c-Jun N-terminal kinase. Because α(5)β(1) integrin is known to act as a volume/osmosensor in hepatocytes, which becomes activated in response to hepatocyte swelling, the findings suggest that urea at high concentrations induces a nonosmotic activating perturbation of this osmosensor, thereby triggering a volume regulatory K(+) efflux. In line with this, similar to hypo-osmotic hepatocyte swelling, urea induced an inhibition of hepatic proteolysis, which was sensitive to p38(MAPK) inhibition. Molecular dynamics simulations of a three-dimensional model of the ectodomain of α(5)β(1) integrin in water, urea, or thiourea solutions revealed significant conformational changes of α(5)β(1) integrin in urea and thiourea solutions, in contrast to the simulation of α(5)β(1) in water. These changes lead to an unbending of the integrin structure around the genu, which may suggest activation, whereas the structures of single domains remained essentially unchanged. It is concluded that urea at high concentrations affects hepatic metabolism through direct activation of the α(5)β(1) integrin system.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
217
|
Hadas S, Reichert F, Rotshenker S. Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. Glia 2010; 58:823-30. [PMID: 20091776 DOI: 10.1002/glia.20966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) microglia (MG) and peripheral tissue macrophages (MO) remove pathogens by phagocytosis. Zymosan, a model yeast pathogen, is a beta-glucan rich particle that readily activates the complement system and then becomes C3bi-opsonized (op). Complement receptor-3 (CR3) has initially been implicated in mediating the phagocytosis of both C3bi-op and non-opsonized (nop) zymosan by MO through C3bi and beta-glucan binding sites, respectively. Later, the role of CR3 as a phagocytic beta-glucan receptor has been questioned and the supremacy of beta-glucan receptor Dectin-1 advocated. We compare here between primary mouse CNS MG and peripheral tissue MO with respect to CR3 and Dectin-1 mediated phagocytosis of C3bi-op and nop zymosan. We report that MG and MO display similar as well as dissimilar functional properties in this respect. Although CR3 and Dectin-1 function both as beta-glucan/non-opsonic receptors in MG during nop zymosan phagocytosis, Dectin-1, but not CR3, does so in MO. CR3 functions also as a C3bi/opsonic receptor in MG and MO during C3bi-op zymosan phagocytosis, leading to phagocytosis which is more efficient than that of nop zymosan. Dectin-1 contributes, albeit less than CR3, to phagocytosis of C3bi-op zymosan in MG and further less in MO, suggesting that C3bi-opsonization does not block all beta-glucan sites on zymosan from binding Dectin-1 on phagocytes. Thus, altogether CR3 and Dectin-1 contribute both to phagocytosis of nop and C3bi-op zymosan in MG, whereas MO switch from CR3-independent/Dectin-1-dependent phagocytosis of nop zymosan to phagocytosis of C3bi-op zymosan where CR3 dominates over Dectin-1.
Collapse
Affiliation(s)
- Smadar Hadas
- Department of Medical Neurobiology, IMRIC, Hebrew University Hadassah Medical School and the Eric Roland Center for Neurodegenerative Diseases, Jerusalem, Israel
| | | | | |
Collapse
|
218
|
Rosano C, Rocco M. Solution properties of full-length integrin alpha(IIb)beta3 refined models suggest environment-dependent induction of alternative bent /extended resting states. FEBS J 2010; 277:3190-202. [PMID: 20584077 DOI: 10.1111/j.1742-4658.2010.07724.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recently published novel integrin alpha(IIb)beta(3) ectodomain crystallographic structure and NMR structures of its transmembrane/cytoplasmic segments were employed to refine previously developed molecular models. Alternative complete alpha(IIb)beta(3) models were built and evaluated, and their shape was compared with EM maps and their computed hydrodynamic/conformational properties were compared with the available experimental data. A partially extended/closed model, or a mixture of bent/closed and extended/closed conformations, are both compatible with the results of a recent small-angle neutron scattering study of Triton X-100-solubilized resting alpha(IIb)beta(3), while new electron microscopy evidence of nanodiscs-embedded alpha(IIb)beta(3) supports the bent/closed resting form. However, only an extended/closed model matches well the hydrodynamics of either octyl-glucoside-solubilized or nanodiscs-embedded resting alpha(IIb)beta(3), suggesting that different solubilization strategies and substrate interactions might operate a conformational selection between alternative, stable states. Furthermore, extended/open models are required to match the electron tomography map and the hydrodynamics following the priming-induced beta(3) hybrid domain swing-out, but without immediate full tail separation. Importantly, both extension and opening transitions can occur by pivoting at the recently identified beta(3) hinge point, which does not appear to be freely flexible. The structure and mechanism of action of integrins thus seem to depend on discrete transitions and to be more tightly coupled to the local environment than previously thought.
Collapse
Affiliation(s)
- Camillo Rosano
- Nanobiotecnologie, Istituto Nazionale per la Ricerca sul Cancro (IST), Genova, Italy
| | | |
Collapse
|
219
|
Lim SM, Kreipe BA, Trzeciakowski J, Dangott L, Trache A. Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells. Exp Cell Res 2010; 316:2833-48. [PMID: 20599954 DOI: 10.1016/j.yexcr.2010.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/25/2010] [Accepted: 06/09/2010] [Indexed: 02/02/2023]
Abstract
Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5h, while a significant inhibition was recorded at 24h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.
Collapse
Affiliation(s)
- Soon-Mi Lim
- Department of Systems Biology & Translational Medicine, College of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, 336 Reynolds Medical Bldg., College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
220
|
Fang Z, Yao W, Xiong Y, Zhang J, Liu L, Li J, Zhang C, Wan J. Functional elucidation and methylation-mediated downregulation of ITGA5 gene in breast cancer cell line MDA-MB-468. J Cell Biochem 2010; 110:1130-41. [DOI: 10.1002/jcb.22626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
221
|
Schwinn MK, Gonzalez JM, Gabelt BT, Sheibani N, Kaufman PL, Peters DM. Heparin II domain of fibronectin mediates contractility through an alpha4beta1 co-signaling pathway. Exp Cell Res 2010; 316:1500-12. [PMID: 20302860 PMCID: PMC2871963 DOI: 10.1016/j.yexcr.2010.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/26/2010] [Accepted: 03/10/2010] [Indexed: 01/12/2023]
Abstract
In the trabecular meshwork (TM) of the eye, regulation of tissue contractility by the PPRARI sequence within the Heparin II (HepII) domain of fibronectin is believed to control the movement of aqueous humor and dictate the level of intraocular pressure. This study shows that the HepII domain utilizes activated alpha4beta1 integrin and collagen to mediate a co-signaling pathway that down-regulates contractility in TM cells. siRNA silencing of alpha4beta1 integrin blocked the actin disrupting effects of both PPRARI and the HepII domain. The down-regulation of the actin cytoskeleton and contractility did not involve syndecan-4 or other heparan sulfate proteoglycans (HSPGs) since siRNA silencing of syndecan-4 expression or heparitinase removal of cell surface HSPGs did not prevent the HepII-mediated disruption of the actin cytoskeleton. HepII-mediated disruption of the cytoskeleton depended upon the presence of collagen in the extracellular matrix, and cell binding studies indicated that HepII signaling involved cross-talk between alpha4beta1 and alpha1/alpha2beta1 integrins. This is the first time that the PPRARI sequence in the HepII domain has been shown to serve as a physiological alpha4beta1 ligand, suggesting that alpha4beta1 integrin may be a key regulator of tissue contractility.
Collapse
Affiliation(s)
- Marie K. Schwinn
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jose M. Gonzalez
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - B’Ann T. Gabelt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
222
|
Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 2010; 141:645-55. [PMID: 20478255 PMCID: PMC2905812 DOI: 10.1016/j.cell.2010.03.038] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/24/2009] [Accepted: 03/03/2010] [Indexed: 12/28/2022]
Abstract
The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lectin) domain and causes a twist in the beta sandwich fold of the latter. This loosens the mannose-binding pocket on the opposite end of the lectin domain, resulting in an inactive low-affinity state of the adhesin. The autoinhibition effect of the pilin domain is removed by application of tensile force across the bond, which separates the domains and causes the lectin domain to untwist and clamp tightly around the ligand like a finger-trap toy. Thus, beta sandwich domains, which are common in multidomain proteins exposed to tensile force in vivo, can undergo drastic allosteric changes and be subjected to mechanical regulation.
Collapse
Affiliation(s)
- Isolde Le Trong
- Department of Biological Structure, Univ. of Wash., Box 357420, Seattle, WA 98195
| | - Pavel Aprikian
- Department of Microbiology, Univ. of Wash., Box 357242, Seattle, WA 98195
| | - Brian A. Kidd
- Department of Bioengineering, Univ. of Wash., Box 355061, Seattle, WA, 98195
| | - Manu Forero-Shelton
- Department of Physics, Universidad de los Andes, Bogotá, Colombia
- Department of Materials, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | | | - Ponni Rajagopal
- Department of Biochemistry, Univ. of Wash., Box 357350, Seattle, WA 98195
| | - Victoria Rodriguez
- Department of Bioengineering, Univ. of Wash., Box 355061, Seattle, WA, 98195
| | - Gianluca Interlandi
- Department of Bioengineering, Univ. of Wash., Box 355061, Seattle, WA, 98195
| | - Rachel Klevit
- Department of Biochemistry, Univ. of Wash., Box 357350, Seattle, WA 98195
| | - Viola Vogel
- Department of Materials, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Ronald E. Stenkamp
- Department of Biological Structure, Univ. of Wash., Box 357420, Seattle, WA 98195
- Department of Biochemistry, Univ. of Wash., Box 357350, Seattle, WA 98195
- Biomolecular Structure Center, Univ. of Wash., Box 357420, Seattle, WA 98195
| | | | - Wendy E. Thomas
- Department of Bioengineering, Univ. of Wash., Box 355061, Seattle, WA, 98195
| |
Collapse
|
223
|
Nieves B, Jones CW, Ward R, Ohta Y, Reverte CG, LaFlamme SE. The NPIY motif in the integrin beta1 tail dictates the requirement for talin-1 in outside-in signaling. J Cell Sci 2010; 123:1216-26. [PMID: 20332112 PMCID: PMC2848110 DOI: 10.1242/jcs.056549] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2010] [Indexed: 12/11/2022] Open
Abstract
Protein interactions with the integrin beta-subunit cytoplasmic domain (beta-tail) are essential for adhesion-dependent processes, including cell spreading and the connection of integrins with actin filaments at adhesion sites. Talin-1 binds to the conserved membrane-proximal NPxY motif of beta-tails (NPIY in beta1 integrin) promoting the inside-out activation of integrins and providing a linkage between integrins and the actin cytoskeleton. Here, we characterize the role of interactions between talin-1 and beta-tail downstream of integrin activation, in the context of recombinant integrins containing either the wild type (WT) or the (YA) mutant beta1A tail, with a tyrosine to alanine substitution in the NPIY motif. In addition to inhibiting integrin activation, the YA mutation suppresses cell spreading, integrin signaling, focal adhesion and stress-fiber formation, as well as microtubule assembly. Constitutive activation of the mutant integrin restores these integrin-dependent processes, bringing into question the importance of the NPIY motif downstream of integrin activation. Depletion of talin-1 using TLN1 siRNA demonstrated that talin-1 is required for cell spreading, focal adhesion and stress-fiber formation, as well as microtubule assembly, even when cells are adhered by constitutively activated WT integrins. Depletion of talin-1 does not inhibit these processes when cells are adhered by constitutively activated mutant integrins, suggesting that the binding of an inhibitory protein to the NPIY motif negatively regulates integrin function when talin-1 is depleted. We identified filamin A (FLNa) as this inhibitory protein; it binds to the beta1A tail in an NPIY-dependent manner and inhibition of FLNa expression in talin-1-depleted cells restores integrin function when cells are adhered by constitutively activated WT integrins. FLNa binds FilGAP, which is a negative regulator of Rac activation. Expression of the dominant inhibitory mutant, FilGAP(DeltaGAP), which lacks GAP activity restores spreading in cells adhered by constitutively activated integrins containing the beta1A tail, but not by integrins containing the beta1D tail, which is known to bind poorly to FLNa. Together, these results suggest that the binding of talin-1 to the NPIY motif is required downstream of integrin activation to promote cell spreading by preventing the inappropriate recruitment of FLNa and FilGAP to the beta1A tail. Our studies emphasize the importance of understanding the mechanisms that regulate the differential binding FLNa and talin-1 to the beta1 tail downstream of integrin activation in promoting integrin function.
Collapse
Affiliation(s)
- Bethsaida Nieves
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Christopher W. Jones
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Rachel Ward
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Yasutaka Ohta
- Department of Biosciences, School of Science, Kitasato University, Kanagawa, Japan
| | - Carlos G. Reverte
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Susan E. LaFlamme
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| |
Collapse
|
224
|
Ulmer TS. Structural basis of transmembrane domain interactions in integrin signaling. Cell Adh Migr 2010; 4:243-8. [PMID: 20168080 DOI: 10.4161/cam.4.2.10592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric alphabeta integrins is correlated to the association state of the single-pass alpha and beta transmembrane domains. The association of integrin alphaIIbbeta3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (alphaIIb) and tilted (beta3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual alphaIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the beta3 transmembrane helix, enabling alphaIIb(D723)beta3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/beta complex that overlap with the alphabeta transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
225
|
Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression. Mol Cell Biol 2010; 30:3048-58. [PMID: 20368353 DOI: 10.1128/mcb.00892-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production.
Collapse
|
226
|
Eckes B, Nischt R, Krieg T. Cell-matrix interactions in dermal repair and scarring. FIBROGENESIS & TISSUE REPAIR 2010; 3:4. [PMID: 20222960 PMCID: PMC2855519 DOI: 10.1186/1755-1536-3-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 03/11/2010] [Indexed: 12/14/2022]
Abstract
Regulation of cellular functions during dermal repair following injury is complex and critically dependent on the interaction of cells with the surrounding extracellular matrix (ECM). The ECM comprises various families of macromolecules that form the structural scaffold of the tissue, but also carry distinct biological activities. After injury to the skin, the defect is filled by a provisional matrix that is invaded by inflammatory cells, sprouting blood vessels and fibroblasts. In a later phase, the wound contracts, the tissue is replaced by mature connective tissue produced by activated fibroblasts, and a scar is formed. All cells involved communicate directly with the ECM by integrins and other matrix receptors. These transmit signals and induce adaptive responses to the environment by the embedded cells. The ECM or proteolytic fragments of individual ECM constituents exert defined biological activities influencing cell survival, differentiation of myofibroblasts, ECM synthesis and turnover, wound angiogenesis and scar remodeling. Extensive crosstalk exists between ECM and growth factors, and between growth factors and integrins. ECM-cell contact also enables direct transmission of mechanical tension, which then modulates many activities of all cellular players. Understanding this complex interplay is important to provide a basis for designing effective wound therapy and for strategic interference with mechanisms that have gone out of control in fibrotic conditions.
Collapse
Affiliation(s)
- Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
227
|
Neveux I, Doe J, Leblanc N, Valencik ML. Influence of the extracellular matrix and integrins on volume-sensitive osmolyte anion channels in C2C12 myoblasts. Am J Physiol Cell Physiol 2010; 298:C1006-17. [PMID: 20164377 DOI: 10.1152/ajpcell.00359.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether extracellular matrix (ECM) composition through integrin receptors modulated the volume-sensitive osmolyte anion channels (VSOACs) in skeletal muscle-derived C2C12 cells. Cl(-) currents were recorded in whole cell voltage-clamped cells grown on laminin (LM), fibronectin (FN), or in the absence of a defined ECM (NM). Basal membrane currents recorded in isotonic media (300 mosmol/kg) were larger in cells grown on FN (3.8-fold at +100 mV) or LM (8.8-fold at +100 mV) when compared with NM. VSOAC currents activated by cell exposure to hypotonic solution were larger in cells grown on LM (1.72-fold at +100 mV) or FN (1.75-fold at +100 mV) compared with NM. Additionally, the kinetics of VSOAC activation was approximately 27% quicker on FN and LM. These currents were tamoxifen sensitive, displayed outward rectification, reversed at the equilibrium potential of Cl(-) and inactivated at potentials >+60 mV. Specific knockdown of beta(1)-integrin by short hairpin RNA interference strongly inhibited the VSOAC Cl(-) currents in cells plated on FN. In conclusion, ECM composition and integrins profoundly influence the biophysical properties and mechanisms of onset of VSOACs.
Collapse
Affiliation(s)
- Iva Neveux
- Dept. of Biochemistry, Univ. of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
228
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
229
|
|
230
|
Abstract
Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
Collapse
Affiliation(s)
- Harvey W Smith
- Goodman Cancer Centre, McGill University, West Montreal, Quebec, H3A 1A3, Canada.
| | | |
Collapse
|
231
|
Abstract
Magnetic nanoparticles can be coated with specific ligands that enable them to bind to receptors on a cell's surface. When a magnetic field is applied, it pulls on the particles so that they deliver nanoscale forces at the ligand-receptor bond. It has been observed that mechanical stimulation in this manner can activate cellular signaling pathways that are known as mechanotransduction pathways. Integrin receptors, stretch-activated ion channels, focal adhesions, and the cytoskeleton are key players in activating these pathways, but there is still much we do not know about how these mechanosensors work. Current evidence indicates that applied forces at these structures can activate Ca(2+) signaling, Src family protein kinase, MAPK, and RhoGTPase pathways. The techniques of magnetic twisting and magnetic tweezers, which use magnetic particles to apply forces to cells, afford a fine degree of control over how cells are stimulated and hold much promise in elucidating the fundamentals of mechanotransduction. The particles are generally not harmful to cellular health, and their nanoscale dimensions make them advantageous for probing a cell's molecular-scale sensory structures. This review highlights the basic aspects of magnetic nanoparticles, magnetic particle techniques and the structures and pathways that are involved in mechanotransduction.
Collapse
Affiliation(s)
- Nathan J Sniadecki
- Department of Mechanical Engineering, Box 352600 University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
232
|
Ahmed SM, Daulat AM, Meunier A, Angers S. G protein betagamma subunits regulate cell adhesion through Rap1a and its effector Radil. J Biol Chem 2010; 285:6538-51. [PMID: 20048162 DOI: 10.1074/jbc.m109.069948] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The activation of several G protein-coupled receptors is known to regulate the adhesive properties of cells in different contexts. Here, we reveal that Gbetagamma subunits of heterotrimeric G proteins regulate cell-matrix adhesiveness by activating Rap1a-dependent inside-out signals and integrin activation. We show that Gbetagamma subunits enter in a protein complex with activated Rap1a and its effector Radil and establish that this complex is required downstream of receptor stimulation for the activation of integrins and the positive modulation of cell-matrix adhesiveness. Moreover, we demonstrate that Gbetagamma and activated Rap1a promote the translocation of Radil to the plasma membrane at sites of cell-matrix contacts. These results add to the molecular understanding of how G protein-coupled receptors impinge on cell adhesion and suggest that the Gbetagamma x Rap1 x Radil complex plays important roles in this process.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | | | | |
Collapse
|
233
|
Costa P, Parsons M. New insights into the dynamics of cell adhesions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:57-91. [PMID: 20801418 DOI: 10.1016/s1937-6448(10)83002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adhesion to the extracellular matrix (ECM) and to adjacent cells is a fundamental requirement for survival, differentiation, and migration of numerous cell types during both embryonic development and adult homeostasis. Different types of adhesion structures have been classified within different cell types or tissue environments. Much is now known regarding the complexity of protein composition of these critical points of cell contact with the extracellular environment. It has become clear that adhesions are highly ordered, dynamic structures under tight spatial control at the subcellular level to enable localized responses to extracellular cues. However, it is only in the last decade that the relative dynamics of these adhesion proteins have been closely studied. Here, we provide an overview of the recent data arising from such studies of cell-matrix and cell-cell contact and an overview of the imaging strategies that have been developed and implemented to study the intricacies and hierarchy of protein turnover within adhesions.
Collapse
Affiliation(s)
- Patricia Costa
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, United Kingdom
| | | |
Collapse
|
234
|
Affiliation(s)
- M G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
235
|
Mould AP, Koper E, Byron A, Zahn G, Humphries MJ. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem J 2009; 424:179-89. [PMID: 19747169 PMCID: PMC3329623 DOI: 10.1042/bj20090992] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Integrin alpha5beta1 is a key receptor for the extracellular matrix protein fibronectin. Antagonists of human integrin alpha5beta1 have therapeutic potential as anti-angiogenic agents in cancer and diseases of the eye. However, the structure of the integrin is unsolved and the atomic basis of fibronectin and antagonist binding by integrin alpha5beta1 is poorly understood. In the present study, we demonstrate that zebrafish alpha5beta1 integrins do not interact with human fibronectin or the human alpha5beta1 antagonists JSM6427 and cyclic peptide CRRETAWAC. Zebrafish alpha5beta1 integrins do bind zebrafish fibronectin-1, and mutagenesis of residues on the upper surface and side of the zebrafish alpha5 subunit beta-propeller domain shows that these residues are important for the recognition of the Arg-Gly-Asp (RGD) motif and the synergy sequence [Pro-His-Ser-Arg-Asn (PHSRN)] in fibronectin. Using a gain-of-function analysis involving swapping regions of the zebrafish integrin alpha5 subunit with the corresponding regions of human alpha5 we show that blades 1-4 of the beta-propeller are required for human fibronectin recognition, suggesting that fibronectin binding involves a broad interface on the side and upper face of the beta-propeller domain. We find that the loop connecting blades 2 and 3 of the beta-propeller, the D3-A3 loop, contains residues critical for antagonist recognition, with a minor role played by residues in neighbouring loops. A new homology model of human integrin alpha5beta1 supports an important function for D3-A3 loop residues Trp157 and Ala158 in the binding of antagonists. These results will aid the development of reagents that block integrin alpha5beta1 functions in vivo.
Collapse
Affiliation(s)
- A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ewa Koper
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
236
|
The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 2009; 28:3623-32. [PMID: 19798053 DOI: 10.1038/emboj.2009.287] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/03/2009] [Indexed: 11/08/2022] Open
Abstract
Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside-out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the beta integrin subunit. Here, we report the first structure of talin bound to an authentic full-length beta integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane-proximal helix of the beta tail disrupts an integrin alpha/beta salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside-out TM signalling.
Collapse
|
237
|
Abstract
Integrins are cell adhesion receptors that are evolutionary old and that play important roles during developmental and pathological processes. The integrin family is composed of 24 αβ heterodimeric members that mediate the attachment of cells to the extracellular matrix (ECM) but that also take part in specialized cell-cell interactions. Only a subset of integrins (8 out of 24) recognizes the RGD sequence in the native ligands. In some ECM molecules, such as collagen and certain laminin isoforms, the RGD sequences are exposed upon denaturation or proteolytic cleavage, allowing cells to bind these ligands by using RGD-binding receptors. Proteolytic cleavage of ECM proteins might also generate fragments with novel biological activity such as endostatin, tumstatin, and endorepellin. Nine integrin chains contain an αI domain, including the collagen-binding integrins α1β1, α2β1, α10β1, and α11β1. The collagen-binding integrins recognize the triple-helical GFOGER sequence in the major collagens, but their ability to recognize these sequences in vivo is dependent on the fibrillar status and accessibility of the interactive domains in the fibrillar collagens. The current review summarizes some basic facts about the integrin family including a historical perspective, their structure, and their ligand-binding properties.
Collapse
|
238
|
MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 2009; 4:e6565. [PMID: 19668337 PMCID: PMC2719060 DOI: 10.1371/journal.pone.0006565] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background Lung injury promotes the expression of matrix metalloproteinase-7 (MMP7, matrilysin), which is required for neutrophil recruitment and re-epithelialization. MMP7 governs the lung inflammatory response through the shedding of syndecan-1. Because inflammation and repair are related events, we evaluated the role of syndecan-1 shedding in lung re-epithelialization. Methodology/Principal Finding Epithelial injury induced syndecan-1 shedding from wild-type epithelium but not from Mmp7−/− mice in vitro and in vivo. Moreover, cell migration and wound closure was enhanced by MMP7 shedding of syndecan-1. Additionally, we found that syndecan-1 augmented cell adhesion to collagen by controlling the affinity state of the α2β1 integrin. Conclusion/Significance MMP7 shedding of syndecan-1 facilitates wound closure by causing the α2β1 integrin to assume a less active conformation thereby removing restrictions to migration. MMP7 acts in the lungs to regulate inflammation and repair, and our data now show that both these functions are controlled through the shedding of syndecan-1.
Collapse
|
239
|
Jülich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 2009; 136:2913-21. [PMID: 19641014 DOI: 10.1242/dev.038935] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs) coat and subdivide animal tissues, but it is unclear how ECM formation is restricted to tissue surfaces and specific cell interfaces. During zebrafish somite morphogenesis, segmental assembly of an ECM composed of Fibronectin (FN) depends on the FN receptor Integrin alpha5beta1. Using in vivo imaging and genetic mosaics, our studies suggest that incipient Itgalpha5 clustering along the nascent border precedes matrix formation and is independent of FN binding. Integrin clustering can be initiated by Eph/Ephrin signaling, with Ephrin reverse signaling being sufficient for clustering. Prior to activation, Itgalpha5 expressed on adjacent cells reciprocally and non-cell-autonomously inhibits spontaneous Integrin clustering and assembly of an ECM. Surface derepression of this inhibition provides a self-organizing mechanism for the formation and maintenance of ECM along the tissue surface. Within the tissue, interplay between Eph/Ephrin signaling, ligand-independent Integrin clustering and reciprocal Integrin inhibition restricts de novo ECM production to somite boundaries.
Collapse
Affiliation(s)
- Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
240
|
Bass R, Wagstaff L, Ravenhill L, Ellis V. Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration. J Biol Chem 2009; 284:27712-20. [PMID: 19638634 DOI: 10.1074/jbc.m109.038919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the beta1 integrin subunit, and subsequently both alpha3beta1 and alpha5beta1, but not alphavbeta3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to alpha5beta1 was confirmed using a recombinant alpha5beta1-Fc fusion protein. Using conformation-dependent anti-beta1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of alpha5beta1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human alpha5 integrin, but not those lacking alpha5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment.
Collapse
Affiliation(s)
- Rosemary Bass
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
241
|
Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 2009; 114:2344-53. [PMID: 19617577 DOI: 10.1182/blood-2009-04-218636] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leukocyte adhesion deficiency (LAD)-III is associated with homozygous stop codon mutations in Kindlin-3, the hematopoietic member of the Kindlin family of integrin coactivators. In addition, a subgroup of LAD-III patients has a homozygous splice junction mutation in and reduced expression of the Rap-1 guanine nucleotide exchange factor, CalDAG-GEFI (CDGI). In this study, we compared the adhesive properties of the leukocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrins in both primary and activated leukocytes derived from these 2 LAD-III subgroups. Primary lymphocytes lacking both Kindlin-3 and CDGI lost all firm T-cell receptor-stimulated LFA-1 adhesiveness, in contrast to LAD-III lymphocytes deficient in Kindlin-3 alone. Effector T cells expanded from all tested LAD-III variants expressed normal CDGI, but lacked Kindlin-3. These Kindlin-3-null effector T cells exhibited total loss of inside-out LFA-1 activation by chemokine signals as well as abrogated intrinsic LFA-1 adhesiveness. Surprisingly, VLA-4 in Kindlin-3-null resting or effector lymphocytes retained intrinsic rolling adhesions to vascular cell adhesion molecule-1 and exhibited only partial defects in chemokine-stimulated adhesiveness to vascular cell adhesion molecule-1. Deletion of the putative beta(1) Kindlin-3 binding site also retained VLA-4 adhesiveness. Thus, our study provides the first evidence that Kindlin-3 is more critical to LFA-1 than to VLA-4-adhesive functions in human lymphocytes.
Collapse
|
242
|
Chigaev A, Waller A, Amit O, Halip L, Bologa CG, Sklar LA. Real-time analysis of conformation-sensitive antibody binding provides new insights into integrin conformational regulation. J Biol Chem 2009; 284:14337-46. [PMID: 19251697 PMCID: PMC2682882 DOI: 10.1074/jbc.m901178200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Indexed: 01/15/2023] Open
Abstract
Integrins are heterodimeric adhesion receptors that regulate immune cell adhesion. Integrin-dependent adhesion is controlled by multiple conformational states that include states with different affinity to the ligand, states with various degrees of molecule unbending, and others. Affinity change and molecule unbending play major roles in the regulation of cell adhesion. The relationship between different conformational states of the integrin is unclear. Here we have used conformationally sensitive antibodies and a small LDV-containing ligand to study the role of the inside-out signaling through formyl peptide receptor and CXCR4 in the regulation of alpha(4)beta(1) integrin conformation. We found that in the absence of ligand, activation by formyl peptide or SDF-1 did not result in a significant exposure of HUTS-21 epitope. Occupancy of the ligand binding pocket without cell activation was sufficient to induce epitope exposure. EC(50) for HUTS-21 binding in the presence of LDV was identical to a previously reported ligand equilibrium dissociation constant at rest and after activation. Furthermore, the rate of HUTS-21 binding was also related to the VLA-4 activation state even at saturating ligand concentration. We propose that the unbending of the integrin molecule after guanine nucleotide-binding protein-coupled receptor-induced signaling accounts for the enhanced rate of HUTS-21 binding. Taken together, current results support the existence of multiple conformational states independently regulated by both inside-out signaling and ligand binding. Our data suggest that VLA-4 integrin hybrid domain movement does not depend on the affinity state of the ligand binding pocket.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | |
Collapse
|
243
|
Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 2009; 28:1351-61. [PMID: 19279667 PMCID: PMC2683045 DOI: 10.1038/emboj.2009.63] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/18/2009] [Indexed: 12/16/2022] Open
Abstract
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi-directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single-pass transmembrane (TM) segments of the alpha and beta subunits is central to these signalling events. Here, we report the structure of the integrin alphaIIbbeta3 TM complex, structure-based site-directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine-packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24- and 29-residue alphaIIb and beta3 TM helices. The structurally unique, highly conserved integrin alphaIIbbeta3 TM complex rationalizes bi-directional signalling and represents the first structure of a heterodimeric TM receptor complex.
Collapse
Affiliation(s)
- Tong-Lay Lau
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chungho Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
244
|
Bruggeman SWM, Hulsman D, van Lohuizen M. Bmi1 deficient neural stem cells have increased integrin dependent adhesion to self-secreted matrix. Biochim Biophys Acta Gen Subj 2009; 1790:351-60. [PMID: 19298843 DOI: 10.1016/j.bbagen.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neural cells deficient for Polycomb group (PcG) protein Bmi1 are impaired in the formation and differentiation of high grade glioma, an incurable cancer of the brain. It was shown that mechanisms involved in cell adhesion and migration were specifically affected in these tumors. METHODS Using biochemical and cell biological approaches, we investigated the adhesive capacities of Bmi1;Ink4a/Arf deficient primary neural stem cells (NSCs). RESULTS Bmi1;Ink4a/Arf deficient NSCs have altered expression of Collagen-related genes, secrete increased amounts of extracellular matrix, and exhibit enhanced cell-matrix binding through the Beta-1 Integrin receptor. These traits are independent from the well described role of Bmi1 as repressor of the Ink4a/Arf tumor suppressor locus. CONCLUSION In addition to proliferative processes, Bmi1 controls the adhesive capacities of primary NSCs by modulating extracellular matrix secretion. GENERAL SIGNIFICANCE Since PcG protein Bmi1 is important for both normal development and tumorigenesis, it is vital to understand the complete network in which this protein acts. Whereas it is clear that control of Ink4a/Arf is a major Bmi1 function, there is evidence that other downstream mechanisms exist. Hence, our novel finding that Bmi1 also governs cell adhesion significantly contributes to our understanding of the PcG proteins.
Collapse
Affiliation(s)
- Sophia W M Bruggeman
- The Netherlands Cancer Institute, Division of Molecular Genetics, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | |
Collapse
|
245
|
Chapter 4 Activation of Leukocyte Integrins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|