201
|
McManaman JL, Russell TD, Schaack J, Orlicky DJ, Robenek H. Molecular determinants of milk lipid secretion. J Mammary Gland Biol Neoplasia 2007; 12:259-68. [PMID: 17999166 DOI: 10.1007/s10911-007-9053-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 12/20/2022] Open
Abstract
Mammary epithelial cells secrete lipids by an envelopment process that produces lipid droplets coated by membranes derived from the plasma membrane and possibly secretory vesicles. This secretion process, which resembles viral budding, is hypothesized to be mediated by specific interactions between molecules on the surface of intracellular lipids and membrane elements of the cell. Multiple lines of evidence indicate that milk lipid secretion occurs through a tripartite complex between the integral transmembrane protein, butyrophilin (BTN); the soluble metabolic enzyme, xanthine oxidoreductase (XOR); and the lipid droplet surface protein, adipophilin (ADPH). However, topological evidence from freeze-fracture replica immunolabelling (FRIL) challenge this model and suggests that milk lipid secretion is mediated by butyrophilin alone. Advances in our understanding of the molecular, structural, and functional properties of these proteins now make it possible to understand the physiological functions of each of these molecules in detail and to identify the specific molecular determinants that mediate milk lipid secretion.
Collapse
Affiliation(s)
- James L McManaman
- Department of Obstetrics and Gynecology, University of Colorado Denver and Health Sciences Center, Aurora, CO, USA.
| | | | | | | | | |
Collapse
|
202
|
Brasaemle DL. Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007; 48:2547-59. [PMID: 17878492 DOI: 10.1194/jlr.r700014-jlr200] [Citation(s) in RCA: 741] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
203
|
De Domenico S, Tsesmetzis N, Di Sansebastiano GP, Hughes RK, Casey R, Santino A. Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC PLANT BIOLOGY 2007; 7:58. [PMID: 17983471 PMCID: PMC2180173 DOI: 10.1186/1471-2229-7-58] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 11/05/2007] [Indexed: 05/22/2023]
Abstract
BACKGROUND Hydroperoxide lyase (HPL) is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX) to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively. RESULTS To study the subcellular localisation of plant 9/13-HPLs, a set of YFP-tagged chimeric constructs were prepared using two M. truncatula HPL cDNAs and the localisation of the corresponding chimeras were verified by confocal microscopy in tobacco protoplasts and leaves. Results reported here indicated a distribution of M.truncatula 9/13-HPL (HPLF) between cytosol and lipid droplets (LD) whereas, as expected, M.truncatula 13-HPL (HPLE) was targeted to plastids. Notably, such endocellular localisation has not yet been reported previously for any 9/13-HPL. To verify a possible physiological significance of such association, purified recombinant HPLF was used in activation experiments with purified seed lipid bodies. Our results showed that lipid bodies can fully activate HPLF. CONCLUSION We provide evidence for the first CYP74C enzyme, to be targeted to cytosol and LD. We also showed by sedimentation and kinetic analyses that the association with LD or lipid bodies can result in the protein conformational changes required for full activation of the enzyme. This activation mechanism, which supports previous in vitro work with synthetic detergent micelle, fits well with a mechanism for regulating the rate of release of volatile aldehydes that is observed soon after wounding or tissue disruption.
Collapse
Affiliation(s)
- Stefania De Domenico
- Institute of Sciences of Food Production C.N.R. Section of Lecce, via Monteroni, 73100, Lecce, Italy
| | | | - Gian Pietro Di Sansebastiano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via Monteroni, 73100, Lecce, Italy
| | | | - Rod Casey
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R. Section of Lecce, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
204
|
Distribution of xanthine oxidase and xanthine dehydrogenase activity in bovine milk: Physiological and technological implications. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2007.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
205
|
Boulant S, Targett-Adams P, McLauchlan J. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 2007; 88:2204-2213. [PMID: 17622624 DOI: 10.1099/vir.0.82898-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In infected cells, hepatitis C virus (HCV) core protein is targeted to lipid droplets, which serve as intracellular storage organelles. Using a tissue culture system to generate infectious HCV, we have shown that the coating of lipid droplets by the core protein occurs in a time-dependent manner and coincides with higher rates of virus production. At earlier times, the protein was located at punctate sites in close proximity to the edge of lipid droplets. Investigations by using Z-stack analysis have shown that many lipid droplets contained a single punctate site that could represent positions where core transfers from the endoplasmic reticulum membrane to droplets. The effects of lipid droplet association on virus production were studied by introducing mutations into the domain D2, the C-terminal region of the core protein necessary for droplet attachment. Alteration of a phenylalanine residue that was crucial for lipid droplet association generated an unstable form of the protein that could only be detected in the presence of a proteasome inhibitor. Moreover, converting two proline residues in D2 to alanines blocked coating of lipid droplets by core, although the protein was directed to punctate sites that were indistinguishable from those observed at early times for wild-type core protein. Neither of these virus mutants gave rise to virus progeny. By contrast, mutation at a cysteine residue positioned 2 aa upstream of the phenylalanine residue did not affect lipid droplet localization and produced wild-type levels of infectious progeny. Taken together, our findings indicate that lipid droplet association by core is connected to virus production.
Collapse
Affiliation(s)
- Steeve Boulant
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - John McLauchlan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
206
|
Abstract
The freeze-fracture technique consists of physically breaking apart (fracturing) a frozen biological sample; structural detail exposed by the fracture plane is then visualized by vacuum-deposition of platinum-carbon to make a replica for examination in the transmission electron microscope. The four key steps in making a freeze-fracture replica are (i) rapid freezing, (ii) fracturing, (iii) replication and (iv) replica cleaning. In routine protocols, a pretreatment step is carried out before freezing, typically comprising fixation in glutaraldehyde followed by cryoprotection with glycerol. An optional etching step, involving vacuum sublimation of ice, may be carried out after fracturing. Freeze fracture is unique among electron microscopic techniques in providing planar views of the internal organization of membranes. Deep etching of ultrarapidly frozen samples permits visualization of the surface structure of cells and their components. Images provided by freeze fracture and related techniques have profoundly shaped our understanding of the functional morphology of the cell.
Collapse
Affiliation(s)
- Nicholas J Severs
- Imperial College London, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
207
|
Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:236-44. [PMID: 17434788 DOI: 10.1016/j.pbi.2007.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/03/2007] [Indexed: 05/14/2023]
Abstract
Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.
Collapse
Affiliation(s)
- Edgar B Cahoon
- US Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, Missouri 63132, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Chang BHJ, Chan L. Regulation of Triglyceride Metabolism. III. Emerging role of lipid droplet protein ADFP in health and disease. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1465-8. [PMID: 17194897 DOI: 10.1152/ajpgi.00566.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ADFP is the major lipid droplet protein present in all cells that accumulate lipids either normally or abnormally. Although discovered about 15 years ago, it was only in the last few years that we began to have a working knowledge of its possible role in lipid droplet homeostasis at the whole organism level. In this perspective, we concentrate on the potential function of ADFP in various tissues. Space limitation has precluded a complete cataloging of all publications on the topic. We instead highlight some of the salient developments in the last few years.
Collapse
Affiliation(s)
- Benny Hung-Junn Chang
- Division of Diabetes, Endocrinology, and Metabolism, Depts. of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
209
|
Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48:1905-14. [PMID: 17699733 DOI: 10.1194/jlr.r700007-jlr200] [Citation(s) in RCA: 426] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the context of obesity and its related maladies, the adipocyte plays a central role in the balance, or imbalance, of metabolic homeostasis. An obese, hypertrophic adipocyte is challenged by many insults, including surplus energy, inflammation, insulin resistance, and considerable stress to various organelles. The endoplasmic reticulum (ER) is one such vital organelle that demonstrates significant signs of stress and dysfunction in obesity and insulin resistance. Under normal conditions, the ER must function in the unique and trying environment of the adipocyte, adapting to meet the demands of increased protein synthesis and secretion, energy storage in the form of triglyceride droplet formation, and nutrient sensing that are particular to the differentiated fat cell. When nutrients are in pathological excess, the ER is overwhelmed and the unfolded protein response (UPR) is activated. Remarkably, the consequences of UPR activation have been causally linked to the development of insulin resistance through a multitude of possible mechanisms, including c-jun N-terminal kinase activation, inflammation, and oxidative stress. This review will focus on the function of the ER under normal conditions in the adipocyte and the pathological effects of a stressed ER contributing to adipocyte dysfunction and a thwarted metabolic homeostasis.
Collapse
Affiliation(s)
- Margaret F Gregor
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
210
|
Graham IA, Larson T, Napier JA. Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr Opin Biotechnol 2007; 18:142-7. [PMID: 17292601 DOI: 10.1016/j.copbio.2007.01.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/05/2007] [Accepted: 01/31/2007] [Indexed: 12/29/2022]
Abstract
The health-beneficial effects of long-chain polyunsaturated fatty acids (LC-PUFAs), derived mainly from fish oil, coupled with the growing requirement for an alternative and sustainable source of these compounds, has led to efforts to engineer oilseed crops for their production. LC-PUFA synthesis has been achieved using combinations of heterologous endomembrane desaturases and elongases expressed in model oilseed plants. Two general approaches have been employed that both use endogenous 18 carbon fatty acids as the starting substrates: the Delta6- and Delta8-pathways, which perform desaturation followed by elongation or elongation followed by desaturation, respectively. However, yields above 20% have not yet been realized owing to bottlenecks that become apparent in the endogenous biosynthetic pathways when heterologous genes are expressed. These bottlenecks might be caused partly by inefficient non-native enzymes in the host system or also by suboptimal acyl-exchange mechanisms between the acyl-CoA and lipid class pools. The fine-tuning of the fatty acid flux between the acyl-CoA, phospholipid, and triacylglycerol pools will be essential to maximise polyunsaturated fatty acid yields in seed oils. In addition, efficient substrate channelling and lipid synthesis could depend on specific endoplasmic reticulum subdomain localisation for key endogenous enzymes, and this organization could be compromised in heterologous systems.
Collapse
Affiliation(s)
- Ian A Graham
- CNAP, Department of Biology (Area 7), University of York, PO Box 373, York YO10 5YW, UK.
| | | | | |
Collapse
|
211
|
Spener F, Kohlwein SD, Schmitz G. Lipid droplets and lamellar bodies – from innocent bystanders to prime targets of lipid research for combating human diseases. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200690040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|