201
|
Moi L, Braaten T, Al-Shibli K, Lund E, Busund LTR. Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study. J Transl Med 2019; 17:334. [PMID: 31581940 PMCID: PMC6775665 DOI: 10.1186/s12967-019-2086-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are promising biomarkers due to their structural stability and distinct expression profile in various cancers. We wanted to explore the miRNA expression in benign breast tissue and breast cancer subgroups in the Norwegian Women and Cancer study. Methods Specimens and histopathological data from study participants in Northern Norway diagnosed with breast cancer, and benign tissue from breast reduction surgery were collected. Main molecular subtypes were based on surrogate markers; luminal A (ER+ and/or PR+, HER2− and Ki67 ≤ 30%), luminal B (ER+ and/or PR+, HER2− and Ki67 > 30% or ER+ and/or PR+ and HER2+), HER2 positive (ER− and PR− and HER2+) and triple-negative (ER−, PR− and HER2−). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue, and miRNAs were successfully analyzed in 102 cancers and 36 benign controls using the 7th generation miRCURY LNA microarray containing probes targeting all human miRNAs as annotated in miRBASE version 19.0. Validation with RT-qPCR was performed. Results On average, 450 miRNAs were detected in each sample, and 304 miRNAs were significantly different between malignant and benign tissue. Subgroup analyses of cancer cases revealed 23 miRNAs significantly different between ER+ and ER− tumors, and 47 miRNAs different between tumors stratified according to grade. Significantly higher levels were found in high grade tumors for miR-17-5p (p = 0.006), miR-20a-5p (p = 0.007), miR-106b-5p (p = 0.007), miR-93-5p (p = 0.007) and miR-25-3p (p = 0.015) from the paralogous clusters miR-17-92 and miR-106b-25. Expression of miR-17-5p (p = 0.0029), miR-20a-5p (p = 0.0021), miR-92a-3p (p = 0.011) and miR-106b-5p (p = 0.021) was significantly higher in triple-negative tumors compared to the rest, and miR-17-5p and miR-20a-5p were significantly lower in luminal A tumors. Conclusions miRNA expression profiles were significantly different between malignant and benign tissue and between cancer subgroups according to ER− status, grade and molecular subtype. miRNAs in the miR-17-92 cluster and miR-17 family were overexpressed in high grade and triple-negative tumors associated with aggressive behavior. The expression and functional role of these miRNAs should be further studied in breast cancer to explore their potential as biomarkers in diagnostic pathology and clinical oncology.
Collapse
Affiliation(s)
- Line Moi
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway.
| | - Tonje Braaten
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Khalid Al-Shibli
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Pathology, Nordland Hospital, Bodø, Norway
| | - Eiliv Lund
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Cancer Registry of Norway, Oslo, Norway
| | - Lill-Tove Rasmussen Busund
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
202
|
Xiao Y, Wang X, Dong X, Zhang Y, Liu H. RBPJ inhibits the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway. Onco Targets Ther 2019; 12:8075-8084. [PMID: 31632061 PMCID: PMC6778847 DOI: 10.2147/ott.s212519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background Recombination signal-binding protein J (RBPJ) is a crucial downstream effector of Notch signaling, which is involved cell proliferation, differentiation, and apoptosis. It plays an important role in tumorigenesis although the further studies and concrete evidence are still needed. Especially for endometrial carcinoma, the functions and mechanism of RBPJ are still elusive. Methods The RNA expressions of RBPJ, miR-155, NF-κB, TNF-α and κB-Ras1 were examined by rt-PCR, and their protein levels were determined by Western Blot. Their expressions were inhibited by transient transfection of related siRNAs. Wound healing and transwell invasion assays were performed in ECC003 cells for measuring the migration and invasion ability, respectively. The ROS levels were detected by flow cytometry with H2DCFDA. Purpose This study was designed to investigate biological characteristics and molecular pathway of RBPJ in endometrial carcinoma cells, which may provide a potential therapeutic target for the treatments against endometrial carcinoma. Results It was shown in our study that the expression levels of RBPJ were significantly downregulated in different endometrial carcinoma cell lines. And a siRNA-mediated reduction of RBPJ enhanced the migration and invasion ability of ECC003 obviously. Besides, the results showed that the reactive oxygen
species (ROS) levels increase when inhibiting RBPJ. To investigate the molecular pathway of RBPJ, we examined the expression of nuclear factor-κB (NF-κB), NF-κB inhibitor interacting Ras-like protein 1 (κB-Ras1), tumor necrosis factor-α (TNF-α) and miR-155. The results suggested that the expression of NF-κB and TNF-α significantly was promoted, while κB-Ras1 was inhibited. An upregulated expression was observed with miR-155 as well, which suggested the inhibition of NF-κB signal pathway was mediated by miR-155. Our results of Notch intracellular domain (NICD) knockdown also demonstrated that NICD is required for the inhibition of RBPJ on miR-155. And knockdown of miR-155 could inhibit the mobility of endometrial carcinoma cells. Conclusion Our study suggested that RBPJ can inhibit the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Xiaoli Wang
- Department of Gynecology, Liangshan People's Hospital, Jining, Shandong Province 272699, People's Republic of China
| | - Xiping Dong
- Department of Obstetrics and Gynecology, The First People's Hospital of Ji'nan, Ji'nan, Shandong Province 250011, People's Republic of China
| | - Yan Zhang
- Department of Gynecology, Chengwu People's Hospital, Heze, Shandong Province 274700, People's Republic of China
| | - Haibin Liu
- Department of Gynecology and Obstetrics, Heze Municipal Hospital, Heze, Shandong Province 274000, People's Republic of China
| |
Collapse
|
203
|
Houri H, Ghalavand Z, Faghihloo E, Fallah F, Mohammadi-Yeganeh S. Exploiting yoeB-yefM toxin-antitoxin system of Streptococcus pneumoniae on the selective killing of miR-21 overexpressing breast cancer cell line (MCF-7). J Cell Physiol 2019; 235:2925-2936. [PMID: 31541457 DOI: 10.1002/jcp.29198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin (TA) systems are two-component genetic modules widespread in bacterial and archaeal genomes, in which the toxin module is rendered inactive under resting conditions by its antitoxin counterpart. Under stress conditions, however, the antitoxin is degraded, freeing the toxin to exert its lethal effects. Although not evolved to function in eukaryotes, some studies have established the lethal activity of these bacterial toxins by inducing apoptosis in mammalian cells, an effect that can be neutralized by its cognate antitoxin. Inspired by the way the toxin can become active in eukaryotes cells, we produced an engrained yoeB-yefM TA system to selectively kill human breast cancer cells expressing a high level of miR-21. Accordingly, we generated an engineered yefM antitoxin gene with eight miR-21 target sites placed in its 3'untranslated region. The resulting TA system acts autonomously in human cells, distinguishing those that overexpress miR-21, killed by YoeB, from those that do not, remaining protected by YefM. Thus, we indicated that microRNA-control of the antitoxin protein of bacterial TA systems constitutes a novel strategy to enhance the selective killing of human cancer cells by the toxin module. The present study provides significant insights for developing novel anticancer strategies avoiding off-target effects, a challenge that has been pursued by many investigators over the years.
Collapse
Affiliation(s)
- Hamidreza Houri
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
204
|
Ando W, Kikuchi K, Uematsu T, Yokomori H, Takaki T, Sogabe M, Kohgo Y, Otori K, Ishikawa S, Okazaki I. Novel breast cancer screening: combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis. Sci Rep 2019; 9:13595. [PMID: 31537868 PMCID: PMC6753125 DOI: 10.1038/s41598-019-50084-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Serum and tissue miR-21 expression in patients with breast cancer (BC) is a useful biomarker for cancer diagnosis, progression, and treatment. Matrix metalloproteinase-1 (MMP-1) is also important in breast cancer carcinogenesis. However, miR-21 and MMP-1/CD63 in urine exosomes in these patients have not been examined. Urine samples were collected from patients with BC and 26 healthy females. Urinary exosomes were isolated and confirmed by western blotting with anti-CD63 antibody and electron microscopy observation. MiR-21 and MMP-1/CD63 expression was examined by quantitative RT-PCR and western blotting, respectively. Patients with very early stage breast cancer were evaluated. MiR-21 expression in the patients was 0.26 [95% CI: 0.20–0.78], which was significant lower than in the 26 controls (1.00 [95% CI: 1.01–3.37], p = 0.0947). MMP-1/CD63 expression in patients was significantly higher than in controls (1.74 [95% CI: 0.86–5.08] vs 0.535 [95% CI: −0.01–2.81], p = 0.0001). Sensitivity and specificity were 0.708 and 0.783 for miR-21 and 0.792 and 0.840 for MMP-1/CD63, respectively. Sensitivity and specificity of combined expression were 95% and 79%, respectively. The sensitivity of MMP-1/CD63 expression in urinary exosomes was better than that of miR-21 expression. Thus, miR-21 and MMP/CD63 may be useful markers for BC screening.
Collapse
Affiliation(s)
- Wataru Ando
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kiyoshi Kikuchi
- Department of Surgery, Sanno Hospital, International University of Health and Welfare, 8-10-16 Akasaka, Minato-ku, Tokyo, 107-0052, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto City, Saitama, 364-8501, Japan
| | - Hiroaki Yokomori
- Department of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto City, Saitama, 364-8501, Japan
| | - Takashi Takaki
- Division of Electron microscopy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masaya Sogabe
- Department of General Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yutaka Kohgo
- Department of Internal Medicine, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasu-Shiobara, Tochigi, 329-2763, Japan.,Health Care Center, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasu-Shiobara, Tochigi, 329-2763, Japan
| | - Katsuya Otori
- Department of Clinical Pharmacy, Center for Clinical Pharmacy and Sciences, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shigemi Ishikawa
- Department of Chest Surgery, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasu-Shiobara, Tochigi, 329-2763, Japan
| | - Isao Okazaki
- Department of Internal Medicine, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasu-Shiobara, Tochigi, 329-2763, Japan. .,Health Care Center, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasu-Shiobara, Tochigi, 329-2763, Japan. .,Department of Internal Medicine, Sanno Hospital, International University of Health and Welfare, 8-10-16 Akasaka, Minato-ku, Tokyo, 107-0052, Japan.
| |
Collapse
|
205
|
Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinformatics 2019; 20:480. [PMID: 31533612 PMCID: PMC6751684 DOI: 10.1186/s12859-019-3050-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are noncoding RNA molecules heavily involved in human tumors, in which few of them circulating the human body. Finding a tumor-associated signature of miRNA, that is, the minimum miRNA entities to be measured for discriminating both different types of cancer and normal tissues, is of utmost importance. Feature selection techniques applied in machine learning can help however they often provide naive or biased results. Results An ensemble feature selection strategy for miRNA signatures is proposed. miRNAs are chosen based on consensus on feature relevance from high-accuracy classifiers of different typologies. This methodology aims to identify signatures that are considerably more robust and reliable when used in clinically relevant prediction tasks. Using the proposed method, a 100-miRNA signature is identified in a dataset of 8023 samples, extracted from TCGA. When running eight-state-of-the-art classifiers along with the 100-miRNA signature against the original 1046 features, it could be detected that global accuracy differs only by 1.4%. Importantly, this 100-miRNA signature is sufficient to distinguish between tumor and normal tissues. The approach is then compared against other feature selection methods, such as UFS, RFE, EN, LASSO, Genetic Algorithms, and EFS-CLA. The proposed approach provides better accuracy when tested on a 10-fold cross-validation with different classifiers and it is applied to several GEO datasets across different platforms with some classifiers showing more than 90% classification accuracy, which proves its cross-platform applicability. Conclusions The 100-miRNA signature is sufficiently stable to provide almost the same classification accuracy as the complete TCGA dataset, and it is further validated on several GEO datasets, across different types of cancer and platforms. Furthermore, a bibliographic analysis confirms that 77 out of the 100 miRNAs in the signature appear in lists of circulating miRNAs used in cancer studies, in stem-loop or mature-sequence form. The remaining 23 miRNAs offer potentially promising avenues for future research. Electronic supplementary material The online version of this article (10.1186/s12859-019-3050-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, David de Wied building,Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands.
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos. Departamento de Posgrado. Escuela Superior de Medicina del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gustavo U Martinez-Ruiz
- Faculty of Medicine, National Autonomous University of Mexico; Federico Gomez Children's Hospital of Mexico, Mexico City, Mexico
| | | | - Alberto Tonda
- UMR 782 GMPA, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| |
Collapse
|
206
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
207
|
Liu L, Kuang Y, Yang H, Chen Y. An amplification strategy using DNA-Peptide dendrimer probe and mass spectrometry for sensitive MicroRNA detection in breast cancer. Anal Chim Acta 2019; 1069:73-81. [DOI: 10.1016/j.aca.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
|
208
|
Wei D, Yu G, Zhao Y. MicroRNA-30a-3p inhibits the progression of lung cancer via the PI3K/AKT by targeting DNA methyltransferase 3a. Onco Targets Ther 2019; 12:7015-7024. [PMID: 31695416 PMCID: PMC6717841 DOI: 10.2147/ott.s213583] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs, involved in pathological and physiological processes via regulating target genes expression. Abnormally expressed miR-30a-3p has been verified in several tumors, such as liver cancer, esophageal cancer and lung cancer. It was reported that DNA methylation plays a critical role in the tumorigenesis of lung cancer through regulated tumor suppressor genes silencing. Nevertheless, the potential mechanism of miR-30a-3p in restoring abnormal DNA methylation patterns is still unclear in lung cancer. Therefore, because the miR-30a-3p is complementary to the 3ʹ-untranslated regions (3ʹ-UTR) of DNA methyltransferase 3A (DNMT3A), we investigated whether miRNA-30a-3p could target DNMT3a to regulate the progression of lung cancer cell. Methods qRT-PCR was used to evaluate miR-30a-3p and DNMT3a mRNA expression levels in A549 lung cancer cells and normal cell line BEAS-2B. MiR-30a-3p expression plasmid was transferred into A549 cells. The target of miR-30a-3p was detected by luciferase reporter assay. Western blot was used to measure related protein expression levels. MTT assay was used to measure the proliferation of cells in each group. The cycle and apoptosis of cells were detected by flow cytometry. Results We found down-regulation of miR-30a-3p mRNA expression and up-regulation of DNMT3a mRNA expression in A549 cells. Overexpression of miR-30a-3p downregulates DNMT3a or blocked DNMT3a by interference vector, significantly inhibited the proliferation and G1/S transition in A549 cells via regulating p38 MAPK pathway, and induced the apoptosis in A549 cells via regulating Bcl-2/Bax protein levels. Furthermore, we observed the opposite phenomenon in A549 cells transfected with both miR-30a-3p and DNMT3a vector. Conclusion Our data show that miR-30a-3p suppressed the progression of lung cancer via regulating p38 MAPK pathway by targeting DNMT3A in A549 cells, indicating that miR-30a-3p might be a novel potential therapeutic strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Desheng Wei
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Yeping Zhao
- Department of B-Ultrasonic Room, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
209
|
Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, Wang W, Li X. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med 2019; 17:270. [PMID: 31416448 PMCID: PMC6694687 DOI: 10.1186/s12967-019-2015-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT. METHODS EPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis. RESULTS Here, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT. CONCLUSIONS Our data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lili Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Hongfei Sang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Aiming Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wendong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Huoqi Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dandan Song
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
210
|
Yu B, You W, Chen G, Yu Y, Yang Q. MiR-140-5p inhibits cell proliferation and metastasis by regulating MUC1 via BCL2A1/MAPK pathway in triple negative breast cancer. Cell Cycle 2019; 18:2641-2650. [PMID: 31411515 DOI: 10.1080/15384101.2019.1653107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Noncoding RNAs play important roles in the progression of malignant tumors, including triple negative breast cancer (TNBC). Accumulating evidence supported the involvement of the oncogenic MUC1 in tumor metastasis. Our study aimed to explore the roles of miR-140-5p and MUC1 in TNBC and identify the potential underlying mechanisms. In the present study, we found that miR-140-5p expression was significantly decreased in TNBC tissues and associated with advanced clinical features and poor prognosis. MiR-140-5p overexpression suppressed TNBC cells proliferation, invasion ability in vitro and reduced tumor growth in vivo. Subsequently, MUC1 was verified to be a direct target of miR-140-5p in TNBC. Furthermore, we revealed that MUC1 could regulate MAPK pathway through regulating BCL2A1 expression in TNBC. Thus, our study indicated that miR-140-5p might regulate MUC1 to suppress TNBC cells proliferation and metastasis by regulating BCL2A1/MAPK pathway, suggesting miR-140-5p could serve as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Bofan Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan Province , China
| | - Wei You
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan Province , China
| | - Guang Chen
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan Province , China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan Province , China
| | - Qinheng Yang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan Province , China
| |
Collapse
|
211
|
Lin QY, Wang JQ, Wu LL, Zheng WE, Chen PR. miR-638 represses the stem cell characteristics of breast cancer cells by targeting E2F2. Breast Cancer 2019; 27:147-158. [PMID: 31410735 DOI: 10.1007/s12282-019-01002-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The miR-638 acted as a tumor suppressor and E2F transcription factor 2 (E2F2) was a critical regulator in some cancers, while the role of them on stemness of breast cancer stem cells (BCSCs) was rarely detailed. Hence, we focused on exploring the effects of miR-638 and E2F2 on BCSCs stemness. METHODS The proportion of CD24 -/CD44 + cells of BCSCs was detected by flow cytometry. The target relationship of miR-638 and E2F2 was explored using luciferase assays. The ability of self-renewal, proliferation, and invasion of BCSCs were determined by Mammosphere forming, Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays. Xenograft tumor was established to detect the influence of miR-638 on tumor growth. RESULTS miR-638 was down-regulated, while E2F2 was elevated in breast cancer. The E2F2 level was negatively correlated with miR-638. The BCSCs represented higher proportion of CD24 -/CD44 + cells and levels of sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4). The miR-638 was down-regulated and E2F2 was increased in BCSCs. MiR-638 could target to E2F2 and decreased the level of E2F2 in BCSCs cells. Overexpression of miR-638 decreased the proportion of CD24 -/CD44 + cells and the levels of SOX2 and OCT4 by inhibiting E2F2. The overexpression of miR-638 also inhibited the abilities of self-renewal, proliferation, and invasion of BCSCs by inhibiting E2F2. The miR-638 overexpression inhibited the breast tumor growth. CONCLUSION MiR-638 represses the characteristics and behaviors of BCSCs by targeting E2F2. MiR-638 may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Qiu-Yan Lin
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Jia-Qi Wang
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Li-Li Wu
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Wei-E Zheng
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China
| | - Pei-Rui Chen
- Department of Medical Oncology, Ruian People's Hospital, Wansong Road No. 108, Wenzhou, 325200, Zhejiang, China.
| |
Collapse
|
212
|
Moody L, Dvoretskiy S, An R, Mantha S, Pan YX. The Efficacy of miR-20a as a Diagnostic and Prognostic Biomarker for Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:cancers11081111. [PMID: 31382594 PMCID: PMC6721456 DOI: 10.3390/cancers11081111] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs have altered expression levels in various diseases and may play an important role in the diagnosis and prognosis of colorectal cancer (CRC). Methods: We systemically reviewed and quantitatively synthesized the scientific evidence pertaining to microRNA-20a (miR-20a) as a CRC biomarker. A keyword and reference search in PubMed yielded 32 studies, in which miR-20a was measured in feces, serum, or tumor tissue. Data were extracted from a total of 5014 cancer cases and 2863 controls. Results: Twenty out of 21 relevant studies found that miR-20a was upregulated in CRC patients compared to controls. Meta-analysis revealed a pooled miR-20a fold change of 2.45 (95% CI: 2.24-2.66) in CRC patients versus controls. To estimate sensitivity and specificity of miR-20a as a diagnostic biomarker of CRC, a pooled area under the receiver operating characteristic curve (AUROC) was calculated (0.70, 95% CI: 0.63-0.78). The prognostic capacity of miR-20a was assessed using hazard ratios (HRs) for the overall survival (OS). The meta-analysis estimated the pooled HR for OS to be 2.02 (95% CI: 0.90-3.14) in CRC patients with high miR-20a expression. Conclusions: miR-20a may be a valid biomarker for CRC detection but may not be a strong predictor of poor prognosis in CRC.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruopeng An
- Department of Kinesiology and Community Health, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Suparna Mantha
- Carle Physician Group, Carle Cancer Center, Carle Foundation Hospital, Urbana, IL 61802, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
213
|
Wang S, Ding J, Zhou W. An aptamer-tethered, DNAzyme-embedded molecular beacon for simultaneous detection and regulation of tumor-related genes in living cells. Analyst 2019; 144:5098-5107. [PMID: 31373344 DOI: 10.1039/c9an01097a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simultaneous detection and regulation of tumor-related genes presents a promising strategy for early diagnosis and treatment of cancer, but achieving this has been a huge challenge for both chemical and biomedical communities. Towards this objective, we have devised a novel aptamer-tethered, DNAzyme-embedded molecular beacon (MB) for multiple functions in cancer cells. In this design, a tumor targeting aptamer was employed to specifically deliver the sensor into cancer cells for target gene detection, and an RNA-cleaving DNAzyme was embedded to realize gene regulation. Both aptamer-tethering and DNAzyme-embedding had little influence on the sensor performance, with a detection limit of ∼2 nM and high specificity. After delivering into tumor cells, our device could monitor the tumor-related genes by producing detectable fluorescence signals, and regulate the gene expression at both mRNA and protein levels as evidenced by the RT-PCR and western blot analyses. This study provides a simple and efficient strategy to rationally combine various functional nucleic acids for multi-functional applications in living cells, which hold great potential for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shengfeng Wang
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410013, China. and Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410013, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
214
|
Hatab HM, Abdel Hamid FF, Soliman AF, Al-Shafie TA, Ismail YM, El-Houseini ME. A combined treatment of curcumin, piperine, and taurine alters the circulating levels of IL-10 and miR-21 in hepatocellular carcinoma patients: a pilot study. J Gastrointest Oncol 2019; 10:766-776. [PMID: 31392057 PMCID: PMC6657326 DOI: 10.21037/jgo.2019.03.07] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Investigating and evaluating possible alternative therapeutic strategies to control hepatocellular carcinoma (HCC) is a critical need because of its high prevalence and being one of the most lethal cancers. Curcumin and taurine showed potent anti-tumor activities in pre-clinical and clinical studies by targeting multiple pathways. Thus, this study was designed to assess the effect of a combined treatment consisted of curcumin, piperine, and taurine on circulating levels of interleukin-10 (IL-10), and microRNAs miR-141 and miR-21. METHODS Twenty eligible HCC patients administrated an oral dose of 4 g curcumin, 40 mg piperine, and 500 mg taurine daily for three successive treatment cycles, each was a 30-day. The level of IL-10 along with the expression levels of miR-141, and miR-21 were monitored in serum before starting the treatment and after each cycle. Patients were followed-up for a period of 24 months. RESULTS The combined treatment was able to produce a significant decrease in the levels of serum IL-10, and miR-21 while it resulted in a non-significant up-regulation of serum miR-141 expression level. At the end of the follow-up period, the median overall survival (OS) rate was found to be 17.00 months with a worse OS in patients with high baseline levels of circulating IL-10 and miR-21 compared to those with low levels. In contrast, a low baseline level of circulating miR-141 was associated with poor prognosis. CONCLUSIONS The combined treatment may be able to increase the OS rate by altering the circulating level of IL-10 and miR-21.
Collapse
Affiliation(s)
- Hala M. Hatab
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Ahmed F. Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Tamer A. Al-Shafie
- Pharmacology and Therapeutics Department, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Yahia M. Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Motawa E. El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
215
|
Gu T, Ren Z, Li X, Huang J, Han G. A flexible smart membrane consisting of GO composite fibres and upconversion MSNs for microRNA detection. Chem Commun (Camb) 2019; 55:9104-9107. [PMID: 31298232 DOI: 10.1039/c9cc02907a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have developed a photoluminescent membrane for microRNA detection, consisting of chemically modified mesoporous silica nanoparticles (CaF2:Yb/Ho@MSNs) attached, via single stranded DNA probes, to flexible polyurethane fibres coated with graphene oxide (GO). By detecting the release of the luminescent nanoparticles resulting from complementary co-hybridization between target miRNA sequences and the DNA probe, accurate measurements of the miRNA concentration at high sensitivity levels can be obtained. The constructs therefore offer a route to rapid detection and the potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | | | | | | | | |
Collapse
|
216
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
217
|
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, Lu Z, Tu J. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer 2019; 19:738. [PMID: 31351450 PMCID: PMC6661096 DOI: 10.1186/s12885-019-5951-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer is the most common cancer type in female. As microRNAs play vital role in breast cancer, this study aimed to explore the molecular mechanism and clinical value of miR-21 in breast cancer. Methods qRT-PCR was performed to detect miR-21 levels in plasma of 127 healthy controls, 82 benign breast tumor, 252 breast cancer patients, as well as in breast cancer cell lines. Transwell and wound healing assay were used to analyze breast cancer metastasis in response to miR-21 inhibitor. Colony formation and eFluor™ 670 based flow cytometric analysis were used to test breast cancer proliferation following miR-21 inhibitor treatment. Leucine zipper transcription factor-like 1 (LZTFL1), the target gene of miR-21 was predicted by MIRDB, TargetScan 5.1, PicTar and miRanda. Survival analysis of LZTFL1 levels in breast cancer prognosis was estimated with the Kaplan–Meier method by log-rank test according to data from the Cancer Genome Atlas. Luciferase activity assay was performed to confirm the regulation of miR-21 on LZTFL1. LZTFL1 siRNA and miR-21 inhibitor were co-transfected to breast cancer cells, then cell proliferation, migration and epithelial–mesenchymal transition (EMT) makers were tested. BALB/c nude mice were injected in situ with Hs578T cells stably overexpressing miR-21. Breast tumor growth, metastasis and the expression of EMT markers or LZTFL1 were detected in vivo. Results Plasma miR-21 levels were elevated in breast cancer patients compared with healthy controls and benign breast tumor patients, and the miR-21 levels were significantly decreased after surgery comparing with pre operation in 44 patients. Inhibition of miR-21 suppressed cell proliferation and metastasis in breast cancer cells. LZTFL1 was identified as a novel target gene of miR-21. Knockdown of LZTFL1 overcame the suppression of miR-21 inhibitor on cell proliferation, metastasis and the expression of EMT markers in breast cancer cells. miR-21 overexpression promoted breast cancer cell proliferation and metastasis in vivo. Conclusions These results indicate that plasma miR-21 level is a crucial biomarker for breast cancer diagnosis and targeting miR-21–LZTFL1–EMT axis might be a promising strategy in breast cancer therapy. Trial registration Retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12885-019-5951-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Department and Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu road, Wuhan, 430071, People's Republic of China.,Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Hu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongzhou Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chao Zheng
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiuling Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jing Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shuiyi Liu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiancheng Tu
- Department and Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
218
|
Camerlingo R, Miceli R, Marra L, Rea G, D’Agnano I, Nardella M, Montella R, Morabito A, Normanno N, Tirino V, Rocco G. Conditioned medium of primary lung cancer cells induces EMT in A549 lung cancer cell line by TGF-ß1 and miRNA21 cooperation. PLoS One 2019; 14:e0219597. [PMID: 31344049 PMCID: PMC6657837 DOI: 10.1371/journal.pone.0219597] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/27/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) plays a key role in tumor progression, drug resistance and metastasis. Recently, numerous microRNA (miRNA) have been described to regulate EMT in tumor progression. In this study, we found that conditioned medium from the LC212 non-small-cell lung cancer (NSCLC) cell line (LC212-CM) induces morphological changes and overexpression of Vimentin, CD90, SMAD 2/3, SLUG and TWIST in A549 NSCLC cells, consistent with a mesenchymal phenotype. To identify the soluble mediators in LC212-CM involved in this phenomenon, we performed miRNA profiling and TGF-β1 quantification. We found that LC212-CM contains high levels of TGF-β1 as well as different secreted miRNAs. We focused our attention on Homo sapiens-microRNA21 (hsa-miR21), one of most relevant miRNA associated with lung cancer progression, metastasis and EMT. An hsa-miR21 antagomiR was able to prevent the LC212-CM-induced EMT phenotype in A549 cells. Furthermore, we found that TGF-β1 and hsa-miR21 cooperate in the induction of EMT in A549 cells. Intriguingly, TGF-β1 was found to induce hsa-miR21 expression in A549 cell, thus suggesting that the hsa-miR21 mediates at least in part the pro-EMT effects of TGF-β1. In conclusion, hsa-miR21 and TGF-β1 are involved in autocrine and paracrine circuits that regulate the EMT status of lung cancer cells.
Collapse
Affiliation(s)
- Rosa Camerlingo
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Igea D’Agnano
- Institute of Cell Biology and Neurobiology-CNR, Monterotondo, Rome, Italy
- Institute for Biomedical Technologies-CNR, Segrate, Milan, Italy
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberta Montella
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale Naples, Italy
| | - Nicola Normanno
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
- * E-mail:
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, NY, United States of America
| |
Collapse
|
219
|
Wu Q, Wang H, Gong K, Shang J, Liu X, Wang F. Construction of an Autonomous Nonlinear Hybridization Chain Reaction for Extracellular Vesicles-Associated MicroRNAs Discrimination. Anal Chem 2019; 91:10172-10179. [PMID: 31288510 DOI: 10.1021/acs.analchem.9b02181] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs) have emerged as promising tumor biomarkers for early cancer diagnosis, as primary tumor-secreted EVs carry characteristic molecular information on parent cells. It is thus desirable to realize the efficient discrimination of the signatured EVs-associated microRNAs (miRNAs) with low expression and subtle variation. Here, we introduce an autonomous nonlinear enzyme-free signal amplification paradigm for EVs discrimination through a highly sensitive and selective detection of their inherent miRNAs in situ. Our proposed amplifier consists of a modularized DNAzyme-amplified two-stage cascaded hybridization chain reaction (CHCR-DNAzyme) circuit, where the analyte-generated output of the preceding hybridization chain reaction (HCR1) stage serves as input to motivate the following hybridization chain reaction (HCR2) stage and the concomitant assembly of numerous DNAzyme biocatalysts. By incorporating a flexibly configurable sensing module, this modular CHCR-DNAzyme circuit can further extend to "plug-and-play" sensing mode that enables the miRNA assay with high specificity. The sophisticated design and the detecting performance of our CHCR-DNAzyme scheme were systematically investigated in vitro. The optimized CHCR-DNAzyme system was further applied for distinguishing EVs derived from different cells through the amplified detection of a putative miRNA biomarker in EVs. This compact CHCR-DNAzyme amplifier provides a universal and facile toolbox for highly efficient identification of multiple miRNAs-involved EVs and thus holds great potential for early cancer diagnosis.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| | - Keke Gong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| | - Jinhua Shang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , People's Republic of China
| |
Collapse
|
220
|
Li D, Xu X, Miao J, Cai J. MicroRNA-125a inhibits tumorigenesis by targeting Smurf1 in colorectal carcinoma. FEBS Open Bio 2019; 9:1305-1314. [PMID: 31141316 PMCID: PMC6609577 DOI: 10.1002/2211-5463.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant expression of microRNAs (miRNAs) may contribute to the initiation and development of multiple types of human cancer. Several miRNAs have been found to be strongly correlated with the diagnosis, progression, and prognosis of colorectal carcinoma (CRC), but the role of miR-125a in CRC remains unclear. In the present study, the function of miR-125a on the expression of Smad ubiquitin regulatory factor 1 (Smurf1) was investigated in vitro and in vivo. We verified that Smurf1 is a downstream target gene of miR-125a and is involved in miR-125a-mediated regulation of CT26 cell (colon cancer cell) proliferation and migration. Overexpression of miR-125a suppresses CT26 cell growth by inhibiting cell proliferation. Additionally, wound healing assays were performed to show that overexpression of miR-125a significantly reduced CT26 cell migration, which was reversed by overexpression of Smurf1. In vivo, miR-125a overexpression downregulated the expression of Ki67 and Smurf1, thus leading to a marked reduction in tumor growth. These results revealed that miR-125a plays a critical role in CRC by directly targeting Smurf1, a finding that may facilitate the development of improved diagnostic and therapeutic techniques for CRC.
Collapse
Affiliation(s)
- Dongbin Li
- Department of Gastrointestinal SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiangmei Xu
- Department of CardiologyThe No. 1 Hospital of ShijiazhuangChina
| | - Jihao Miao
- Department of General SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jianhui Cai
- Hebei Medical UniversityShijiazhuangChina
- The Forth Department of General SurgeryHebei General HospitalShijiazhuangChina
| |
Collapse
|
221
|
Kuang Y, Cao J, Xu F, Chen Y. Duplex-Specific Nuclease-Mediated Amplification Strategy for Mass Spectrometry Quantification of MiRNA-200c in Breast Cancer Stem Cells. Anal Chem 2019; 91:8820-8826. [DOI: 10.1021/acs.analchem.8b04468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuqiong Kuang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianxiang Cao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
222
|
Current Evidence on miRNAs as Potential Theranostic Markers for Detecting Chemoresistance in Colorectal Cancer: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Mol Diagn Ther 2019; 23:65-82. [PMID: 30726546 DOI: 10.1007/s40291-019-00381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from observational clinical studies examining the relationship between biomarker expression and theranosis in colorectal cancer (CRC) have been conflicting. OBJECTIVE We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways. METHODS Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of hazard ratios (HRs) across the included studies. Cochran's Q test and the I2 statistic were used to detect heterogeneity. A funnel plot was used to assess potential publication bias. RESULTS Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug-regulatory pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428-1.110), indicating that the expression of miRNAs decreased the likelihood of death by about 32%. CONCLUSION Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies. PROSPERO REGISTRATION NUMBER CRD42017082196.
Collapse
|
223
|
Abstract
RNA structures play a pivotal role in many biological processes and the progression of human disease, making them an attractive target for therapeutic development. Often RNA structures operate through the formation of complexes with RNA-binding proteins, however, much like protein-protein interactions, RNA-protein interactions span large surface areas and often lack traditional druggable properties, making it challenging to target them with small molecules. Peptides provide much greater surface areas and therefore greater potential for forming specific and high affinity interactions with RNA. In this chapter, we discuss our approach for engineering peptides that bind to structured RNAs by highlighting methods and design strategies from previous successful projects aimed at inhibiting the HIV Tat-TAR interaction and the biogenesis of oncogenic microRNAs.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
224
|
Functionalized h‐BN Nanosheets as a Theranostic Platform for SERS Real‐Time Monitoring of MicroRNA and Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 58:7757-7761. [DOI: 10.1002/anie.201902776] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 01/17/2023]
|
225
|
Zhang B, Wang X, Deng J, Zheng H, Liu W, Chen S, Tian J, Wang F. p53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma. Cancer Lett 2019; 459:50-58. [PMID: 31163195 DOI: 10.1016/j.canlet.2019.05.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) were involved in cancer progression, and the targeting of miRNAs by natural agents has opened avenues for cancer treatment and drug development. miR-16 functions as a tumor suppressor and is frequently deleted or downregulated in various human cancers, including hepatocellular carcinoma (HCC). In the present study, we employed a miR-16-responsive luciferase reporter to screen candidate compounds that modulate miR-16 expression from a natural product library. One compound, sanguinarine (SG), was capable of activating miR-16 in HCC cells with wildtype or mutated p53 expression but not in p53-deleted HCC cells. Mechanistic investigations revealed that SG increased p53 occupancy on the miR-16-2 promoter and decreased the expression of miR-16 target genes, including Bcl-2 and cyclin D1. Moreover, SG significantly inhibited HCC cell proliferation in a p53-dependent manner by inducing cell cycle arrest and reactive oxygen species (ROS)-associated apoptosis. Silencing miR-16 by treatment with anti-miR16 miRNA inhibitors rescued the cell viability repression effect caused by SG. Importantly, SG dramatically suppressed tumor growth in an HCC xenograft model, with little cytotoxicity. Taken together, our results provide a preclinical proof-of-concept for SG as a potential strategy for HCC treatment based on the restoration of miR-16 tumor suppressor function.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jiacong Deng
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fuqing, Fujian, 350300, China
| | - Haifeng Zheng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation Chinese Academy of Sciences, Beijing, 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100190, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
226
|
Liu Z, Wu S, Wang L, Kang S, Zhao B, He F, Liu X, Zeng Y, Liu J. Prognostic Value of MicroRNA-497 in Various Cancers: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2019; 2019:2491291. [PMID: 31191744 PMCID: PMC6525922 DOI: 10.1155/2019/2491291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Some studies showed that microRNA-497 (miR-497) might act as a prognostic biomarker of cancer. However, the conclusion was not consistent. The aim of this study was to investigate the prognostic role of miR-497 in various carcinomas. METHODS We systematically searched the databases of PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang Data to identify relevant studies. Two independent reviewers performed the data extraction and assessed the study quality. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for overall survival (OS) and disease-free survival/relapse-free survival (DFS/RFS) were used to assess the associations between miR-497 expression and cancer prognosis. RESULTS A total of 15 studies involving 1760 participants fulfilled the inclusion criteria. The lower level of miR-497 expression was significantly associated with shorter overall survival (HR = 2.19, 95% CI: 1.84-2.60). No significant association was found between miR-497 expression and DFS/RFS in various carcinomas (HR = 1.17, 95% CI: 0.53-2.57). Subgroup analyses by ethnicity and cancer type showed the consistent results. CONCLUSION Our studies suggested that miR-497 might be a prognostic biomarker in cancers. However, further multicenter prospective clinical researches are needed to confirm the association between miR-497 expression and cancer prognosis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
| | - Shanshan Wu
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
| | - Shuling Kang
- Fuzhou Center for Disease Control and Prevention, Fuzhou 350004, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
227
|
MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20092181. [PMID: 31052530 PMCID: PMC6540078 DOI: 10.3390/ijms20092181] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and it can be locally invasive and metastatic to distant sites. MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level. MicroRNAs have been implicated in diverse biological functions and diseases. In cancer, miRNAs can proceed either as oncogenic miRNAs (onco-miRs) or as tumor suppressor miRNAs (oncosuppressor-miRs), depending on the pathway in which they are involved. Dysregulation of miRNA expression has been shown in most of the tumors evaluated. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). In this review, we focus on the recent evidence about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer.
Collapse
|
228
|
Liu J, Zheng T, Tian Y. Functionalized h‐BN Nanosheets as a Theranostic Platform for SERS Real‐Time Monitoring of MicroRNA and Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jia Liu
- Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistrySchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistrySchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Yang Tian
- Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistrySchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
229
|
Hesari A, Azizian M, Darabi H, Nesaei A, Hosseini SA, Salarinia R, Motaghi AA, Ghasemi F. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem 2019; 120:7109-7114. [PMID: 30485486 DOI: 10.1002/jcb.27984] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
One of the most lethal cancers among women is breast cancer. MicroRNAs (miRNAs) can be of great importance in the early detection of breast cancer. This study aimed to investigate some miRNAs in the serum of patients with breast cancer compared with the control group. Total RNA was extracted from the serum of patients with breast cancer and healthy volunteers. The expression levels of miRNAs and the genes were assessed using real-time reverse transcriptase-polymerase chain reaction with specific primers. Our data showed that miR-25 and miR-133 were downregulated, and miR-17 was upregulated in patients with breast cancer. Upregulation of miR-17 is related to the poor survival time and increased cell proliferation. The reduced expression of miR-133 and miR-25 is significantly associated with clinical stage, metastasis, and survival time of patients with breast cancer. Expressions of miRNAs miR-17, miR-25, and miR-133 are altered in patients with clinical stage, metastasis, poor survival time.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hassan Darabi
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amir Ali Motaghi
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
230
|
Zhang Y, Chen J, Wang Y, Wang D, Cong W, Lai BS, Zhao Y. Multilayer network analysis of miRNA and protein expression profiles in breast cancer patients. PLoS One 2019; 14:e0202311. [PMID: 30946749 PMCID: PMC6448837 DOI: 10.1371/journal.pone.0202311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
MiRNAs and proteins play important roles in different stages of breast tumor development and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that combines machine learning algorithms and multilayer complex network analysis is hereby proposed to explore the potential diagnostic values of miRNAs and proteins. XGBoost and random forest algorithms were employed to screen the most important miRNAs and proteins. Maximal information coefficient was applied to assess intralayer and interlayer connection. A multilayer complex network was constructed to identify miRNAs and proteins that could serve as biomarkers for breast cancer. Proteins and miRNAs that are nodes in the network were subsequently categorized into two network layers considering their distinct functions. The betweenness centrality was used as the first measurement of the importance of the nodes within each single layer. The degree of the nodes was chosen as the second measurement to map their signalling pathways. By combining these two measurements into one score and comparing the difference of the same candidate between normal tissue and cancer tissue, this novel multilayer network analysis could be applied to successfully identify molecules associated with breast cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Jiannan Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Yu Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Dehua Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Weihui Cong
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Bo Shiun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yi Zhao
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
231
|
Jiang J, Chang W, Fu Y, Gao Y, Zhao C, Zhang X, Zhang S. SAV1, regulated by microRNA-21, suppresses tumor growth in colorectal cancer. Biochem Cell Biol 2019; 97:91-99. [PMID: 30681889 DOI: 10.1139/bcb-2018-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study investigated the role and action of the Salvador 1 protein (SAV1, also called WW45) in colorectal cancer (CRC). For this, CRC SW480 and HCT116 cells were infected with lentiviruses of SAV1 overexpression vector (lenti-SAV1) and SAV1 short hairpin RNA (sh-SAV1) to overexpress and silence SAV1 respectively, or transfected with microRNA-21 (miR-21) mimic to overexpress miR-21. Relative mRNA levels of SAV1 and relative miR-21 levels in CRC tissues or cells were detected. The effects of SAV1 and miR-21 on cell proliferation and apoptosis were evaluated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and annexin V – fluorescein isothiocyanate (FITC) – propidium iodide (PI) flow cytometry, respectively. Our results revealed that SAV1 was downregulated in CRC tissues compared with the adjacent noncancerous tissues. Furthermore, SAV1 overexpression inhibited proliferation and promoted apoptosis in SW480 and HCT116 cells, whereas knockdown of SAV1 exerted the opposite effect. Additionally, the tumorigenesis of SW480 cells in xenografted mice was significantly inhibited by SAV1 overexpression but promoted by SAV1 knockdown. MiR-21 levels significantly and negatively correlated with SAV1 expression in CRC tissues. More importantly, miR-21 overexpression significantly abolished the SAV1-mediated inhibition of proliferation and stimulation of apoptosis of SW480. In conclusion, SAV1 suppresses tumor growth in CRC and is regulated by miR-21.
Collapse
Affiliation(s)
- Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wei Chang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
232
|
Interfering Expression of Chimeric Transcript SEPT7P2-PSPH Promotes Cell Proliferation in Patients with Nasopharyngeal Carcinoma. JOURNAL OF ONCOLOGY 2019; 2019:1654724. [PMID: 31057610 PMCID: PMC6463592 DOI: 10.1155/2019/1654724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/09/2019] [Accepted: 02/03/2019] [Indexed: 01/09/2023]
Abstract
Introduction Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer which is mostly prevalent in southern China. The development of NPC involves accumulation of multiple genetic changes. Chromosomal translocation is always thought to be accompanied with the fusion chimeric products. To data, the role of the fusion chimeric transcript remains obscure. Materials and Methods We performed RNA sequencing to detect the fusion genes in ten NPC tissues. Sanger sequencing and quantitative RT-PCR were used to measure the level of the fusion chimeric transcript in NPC tissues and cell lines. The functional experiments such as CCK8 assay, colony formation, and migration/invasion were conducted to analyze the role of this transcript in NPC in vitro. Results We demonstrated that the chimeric transcript SEPT7P2-PSPH was formed by trans-splicing of adjacent genes in the absence of chromosomal rearrangement and observed in both NPC patients and cell lines in parallel. Low-expression of the SEPT7P2-PSPH chimeric transcript induced the protein expression of PSPH and promoted cell proliferation, metastasis/invasion, and transforming ability in vitro. Conclusions Our findings indicate that the chimeric transcript SEPT7P2-PSPH is a product of trans-splicing of two adjacent genes and might be a tumor suppressor gene, potentially having the role of anticancer activity.
Collapse
|
233
|
Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Nozhat Z, Fanaei SA, Hedayati M, Azizi F. BRAF V600E mutation and microRNAs are helpful in distinguishing papillary thyroid malignant lesions: Tissues and fine needle aspiration cytology cases. Life Sci 2019; 223:166-173. [PMID: 30890403 DOI: 10.1016/j.lfs.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
Abstract
AIMS Mutations of BRAF oncogene are considered to contribute in the invasiveness and poor clinicopathologic features of papillary thyroid cancer (PTC). As a step towards understanding the underlying molecular mechanisms of this contribution, we aimed to examine the association of four microRNAs' (miR-222, -137, -214, -181b) levels with BRAFV600E and clinicopathological features in PTC tissues and fine needle aspiration (FNA) specimens. METHODS In total, 56 PTC and 27 benign with multinodular goiter tissue samples, 95 FNA samples, and B-CPAP and HEK293 cell lines were examined. BRAFV600E mutation was examined in PTC tissues and FNA samples. Expression of microRNAs was assessed by real-time quantitative reverse transcription-PCR. KEY FINDINGS The frequency of BRAFV600E in PTC tissues and FNA samples "suspicious for PTC" was 41.1 and 36.8%, respectively. MiR-222, -137, -214, and -181b were significantly upregulated in PTC tumors (P < 0.05) and in B-CPAP cell line (P < 0.001). In FNA, the expressions of miR-222, -181b and -214 were significantly elevated in patients suspected for PTC (P < 0.05), while there was no significant difference in miR-137. After adjustment for age and sex, miR-181b was associated with an increased risk of bearing BRAFV600E mutation (OR: 1.27; 95% CI: 1.01-1.61; P = 0.045) and risk of lymphovascular invasion (OR: 1.66; 95% CI: 1.01-2.72; P = 0.045); miR-137 was associated with the risk of larger tumor size (OR: 1.31; 95% CI: 1.04-1.65; P = 0.022); miR-222 was related to increase in extracapsular invasion (OR: 1.28; 95% CI: 1.04-1.57; P = 0.018). SIGNIFICANCE Upregulation of miR-222, -214 and -181b has been confirmed in PTC tumors, FNA samples and cell line. MiR-137 upregulation has been confirmed in PTC tumors and cell line, but not in FNA samples. MiR-222, -137 and -181b showed an association with the degree of malignancy in PTC tumors.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nozhat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
234
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
235
|
Sun T, Song Y, Yu H, Luo X. Identification of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis's proliferates and anti-apoptotic effect on breast cancer using co-expression network analysis. Cancer Biol Ther 2019; 20:760-773. [PMID: 30810442 PMCID: PMC6605980 DOI: 10.1080/15384047.2018.1564563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies occurring in women worldwide. Weighted gene co-expression network analysis (WGCNA) has not been widely utilized in uncovering the biomarkers which played pivotal roles in BC treatment. This study aimed to verify the proliferative and anti-apoptotic effect of lncRNA TRPM2-AS/miR-140-3p/PYCR1 axis on BC based on WGCNA. WGCNA was applied for determining hub genes using gene expression data gained from breast cancer and adjacent tissues which were downloaded from the Cancer Genome Atlas (TCGA) database. The correlative curves showed the correlation between OS/DFS of BC patients and TRPM2-AS expression or PYCR1 expression based on the data of survival rate of BC patients obtained from the TCGA database. QRT-PCR was employed in detecting the expression levels of TRPM2-AS, miR-140-3p and PYCR1, and western blot analysis was adopted for determination of protein expression level of PYCR1. Dual luciferase assay was applied to verify the targeting relationship between TRPM2-AS and miR-140-3p, as well as miR-140-3p and PYCR1. The roles of TRPM2-AS, miR-140-3p, and PYCR1 in proliferation, migration, and apoptosis of BC cell were identified by CCK-8 assay, cell migration assay and flow cytometry. Hub genes were also gained from WGCNA test. The prognostic study showed a significant negative correlation between the high expression of PYCR1 and TRPM2-AS and the BC survival. QRT-PCR demonstrated that PYCR1 and TRPM2-AS were both overexpressed, while miR-140-3p was greatly down-regulated in BC cell. In addition, it was validated by dual luciferase assay that miR-140-3p directly targeted both TRPM2-AS and PYCR1. Furthermore, down-regulation of TRPM2-AS and PYCR1 inhibited proliferation yet promoted apoptosis of BC cell, and up-regulation of miR-140-3p in BC cell showed the same tendency. Taken together, TRPM2-AS could promote proliferation and inhibit apoptosis of BC cell through TRPM2-AS/miR-140-3p/PYCR1 axis.
Collapse
Affiliation(s)
- Tong Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Yu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
236
|
Yang Q, Yu W, Han X. Overexpression of microRNA‑101 causes anti‑tumor effects by targeting CREB1 in colon cancer. Mol Med Rep 2019; 19:3159-3167. [PMID: 30816471 PMCID: PMC6423622 DOI: 10.3892/mmr.2019.9952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has demonstrated that aberrantly expressed microRNAs (miRNAs) are involved in the initiation and progression of numerous types of human cancer. Although a number of miRNAs have been demonstrated to be associated with the diagnosis, progression and prognosis of colon cancer, the function of miRNA‑101 (miR‑101) in colon cancer remains unclear, and the molecular mechanisms underlying the effects of miR‑101 in colon cancer require further investigation. The present study investigated the role of miR‑101 in colon cancer, and the results suggested that miR‑101 expression levels were significantly decreased in colorectal carcinoma tissues and in three types of colorectal cancer cell lines. Furthermore, overexpression of miR‑101 inhibited cell proliferation and migration in HT29 cells. The transcription factor cAMP responsive element binding protein 1 (CREB1) was identified to be a direct target of miR‑101 using a luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction analysis and western blot assay. miR‑101 overexpression in tumor xenografts in vivo decreased the expression levels of proliferating cell nuclear antigen and CREB1, and suppressed tumor growth. The present results suggested that miR‑101 may serve a role in colon cancer by directly targeting CREB1. Collectively, the present study may contribute to the development of improved diagnosis and prognostics for colon cancer.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Weijie Yu
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Xiaoli Han
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
237
|
Salinas-Vera YM, Marchat LA, Gallardo-Rincón D, Ruiz-García E, Astudillo-De La Vega H, Echavarría-Zepeda R, López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 2019; 43:657-670. [PMID: 30483765 DOI: 10.3892/ijmm.2018.4003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti‑angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti‑angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non‑coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet‑derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor‑1, as well as mitogen‑activated protein kinase, phosphoinositide 3‑kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti‑angiogenic tumor therapy was explored.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnologia, Instituto Politecnico Nacional, Ciudad de Mexico 07320, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Horacio Astudillo-De La Vega
- Laboratorio de Investigacion Translacional en Cáncer y Terapia Celular, Hospital de Oncologia, Centro Médico Nacional Siglo XXI, Ciudad de Mexico 06720, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
238
|
Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 2019; 10:966-981. [PMID: 30847025 PMCID: PMC6398176 DOI: 10.18632/oncotarget.26629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Circulating miRNAs (miRs) are increasingly recognized as potential biomarkers in cancer. We aimed to evaluate the differential expression of miR-23b and miR-190 which are involved in tumor dormancy, miR-21 involved in metastasis and miR-200b and miR-200c involved in epithelial-mesenchymal transition (EMT) and metastasis, in the plasma of patients with early and metastatic breast cancer (MBC). We also aimed to identify associations of the expression levels with patient and disease characteristics and outcomes in metastatic patients treated with first-line chemotherapy. Results miR-21 (p < 0.001), miR-23b (p = 0.033), miR-200b (p < 0.001) and miR-200c (p < 0.001) expression was higher in metastatic compared to early breast cancer. ROC curve analysis showed that miR-21 (AUC = 0.722; p < 0.001) and miR-200b (AUC = 0.720; p < 0.001) distinguished with high accuracy among the two disease states, whereas the combination of miR-21, miR-190, miR-200b and miR-200c, further improved accuracy (AUC = 0.797; p < 0.001). High miR-200b expression independently predicted for shorter OS (p = 0.026) in MBC. High expression of both miR23b and miR-190 emerged as a strong independent factor associated with shorter PFS (p = 0.001) in de novo metastatic patients and high miR-200b independently predicted for decreased OS in the HER2-negative subgroup (p = 0.007). Materials and Methods Blood samples were obtained from patients with early (n = 133) and MBC (n = 110) before adjuvant or first-line chemotherapy, respectively. Plasma miRNA expression levels were assessed by RT-qPCR and were classified as high or low according to the median values. Conclusions Our results are in support of the concept that circulating miRNAs represent a tool with significant diagnostic and prognostic implications in breast cancer.
Collapse
|
239
|
Meerson A, Eliraz Y, Yehuda H, Knight B, Crundwell M, Ferguson D, Lee BP, Harries LW. Obesity impacts the regulation of miR-10b and its targets in primary breast tumors. BMC Cancer 2019; 19:86. [PMID: 30658617 PMCID: PMC6339293 DOI: 10.1186/s12885-019-5300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity increases breast cancer (BC) risk in post-menopausal women by mostly unknown molecular mechanisms which may partly be regulated by microRNAs (miRNAs). METHODS We isolated RNA from paired benign and malignant biopsies from 83 BC patients and determined miRNA profiles in samples from 12 women at the extremes of the BMI distribution by RNA-seq. Candidates were validated in all samples. Associations between miR-10b expression and validated target transcript levels, and effects of targeted manipulation of miR-10b levels in a primary BC cell line on proliferation and invasion potential, were explored. RESULTS Of the 148 miRNAs robustly expressed in breast tissues, the levels of miR-21, miR-10b, miR-451a, miR-30c, and miR-378d were significantly associated with presence of cancer. Of these, miR-10b showed a stronger down-regulation in the tumors of the obese subjects, as opposed to the lean. In ductal but not lobular tumors, significant inverse correlations were observed between the tumor levels of miR-10b and miR-30c and the mRNA levels of cancer-relevant target genes SRSF1, PIEZO1, MAPRE1, CDKN2A, TP-53 and TRA2B, as well as tumor grade. Suppression of miR-10b levels in BT-549 primary BC-derived cells increased cell proliferation and invasive capacity, while exogenous miR-10b mimic decreased invasion. Manipulation of miR-10b levels also inversely affected the mRNA levels of miR-10b targets BCL2L11, PIEZO1 and NCOR2. CONCLUSIONS Our findings suggest that miR-10b may be a mediator between obesity and cancer in post-menopausal women, regulating several known cancer-relevant genes. MiR-10b expression may have diagnostic and therapeutic implications for the incidence and prognosis of BC in obese women.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Yaniv Eliraz
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Hila Yehuda
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Bridget Knight
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
| | - Malcolm Crundwell
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Douglas Ferguson
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Benjamin P. Lee
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | | |
Collapse
|
240
|
Qiang H, Zhan X, Wang W, Cheng Z, Ma S, Jiang C. A Study on the Correlations of the miR-31 Expression with the Pathogenesis and Prognosis of Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:189-195. [PMID: 30628842 DOI: 10.1089/cbr.2018.2621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To investigate the correlations of miR-31 expression with cell proliferation, invasion, and prognosis of patients with head and neck squamous cell carcinoma (HNSCC). METHODS The expression of miR-31 in human laryngeal cancer TU686 cells, human nasopharyngeal carcinoma CNE-2 cells, and normal human oral keratinocyte (NHOK) epithelial cells was detected via quantitative real-time polymerase chain reaction (qRT-PCR). The effects of miR-31 on the proliferation and invasion of HNSCC cells were explored through transfecting miR-31 analogs (miR-31 mimics) and miR-31 inhibitors (anti-miR-31). qRT-PCR was applied to detect the expressions of miR-31 in 56 cases of HNSCC tumor tissues and tumor-adjacent normal tissues. The correlation of miR-31 expression with pathological parameters and survival prognosis of HNSCC patients was also analyzed. RESULTS The expressions of miR-31 in TU686 and CNE-2 cell lines were significantly higher than that in NHOK cells (p < 0.01). Compared with those in the negative control group, the proliferation and invasion abilities of cells transfected with miR-31 mimics were notably enhanced (p < 0.01), and those of cells transfected with anti-miR-31 were significantly reduced (p < 0.01). In addition, miR-31 mimics significantly reduced ARID1A expression (p < 0.01) and anti-miR-31 increased its expression (p < 0.05). The expression of miR-31 in tumor tissues of HNSCC patients was remarkably higher than that in tumor-adjacent normal tissues (p < 0.01). This, together with clinical data analysis, revealed that the expression of miR-31 was associated with tumor differentiation, metastasis, and staging of patients, and the survival period of patients with lowly expressed miR-31 was longer. CONCLUSIONS The highly expressed miR-31 can stimulate the proliferation and invasion of HNSCC cells, closely correlated with tumor differentiation, metastasis, and staging of patients. Patients with lowly expressed miR-31 have a longer survival period. Therefore, miR-31 expression can be taken as a crucial reference indicator for the prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Hualong Qiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaodong Zhan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhongqiang Cheng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengyi Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
241
|
Kim WH, Lee JU, Song S, Kim S, Choi YJ, Sim SJ. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar. Analyst 2019; 144:1768-1776. [DOI: 10.1039/c8an01745j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of head-flocked gold nanopillars and sandwich DNA probes is an advanced label-free, ultra-high sensitive, multiplexed nanoplasmonic detection system of circulating miRNAs for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Woo Hyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Young Jae Choi
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| |
Collapse
|
242
|
Kontomanolis EN, Fasoulakis Z, Papamanolis V, Koliantzaki S, Dimopoulos G, Kambas NJ. The Impact of microRNAs in Breast Cancer Angiogenesis and Progression. Microrna 2019; 8:101-109. [PMID: 30332982 DOI: 10.2174/2211536607666181017122921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The study aims to review the recent data considering the expression profile and the role of microRNAs in breast tumorigenesis, and their impact on -the vital for breast cancer progression- angiogenesis. METHODS PubMed was searched for studies focused on data that associate microRNA with breast cancer, using the terms ''breast", "mammary gland", "neoplasia'', "angiogenesis" and ''microRNA'' between 1997-2018. RESULTS Aberrant expression of several circulating and tissue miRNAs is observed in human breast neoplasms with the deregulation of several miRNAs having a major participation in breast cancer progression. Angiogenesis seems to be directly affected by either overexpression or down regulation of many miRNAs, defining the overall prognostic rates. Many miRNAs differentially expressed in breast cancer that reveal a key role in suppression - progression and metastasis of breast cancer along with the contribution of the EGF, TNF-a and EGF cytokines. Conclusion Angiogenesis has proven to be vital for tumor development and metastasis while microRNAs are proposed to have multiple biological roles, including participation in immunosuppressive, immunomodulatory and recent studies reveal their implication in angiogenesis and its possible use as prognostic factors in cancer Even though larger studies are needed in order to reach safe conclusions, important steps are made that reveal the connection of serum microRNA expression to the angiogenic course of breast cancer, while miRNAs could be potential prognostic factors for the different breast cancer types.
Collapse
Affiliation(s)
- Emmanuel N. Kontomanolis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | - Zacharias Fasoulakis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | | | - Sofia Koliantzaki
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Georgios Dimopoulos
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Nikolaos J. Kambas
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| |
Collapse
|
243
|
Nguyen VT, Le BH, Seo YJ. T7 exo-mediated FRET-breaking combined with DSN–RNAse–TdT for the detection of microRNA with ultrahigh signal-amplification. Analyst 2019; 144:3216-3220. [DOI: 10.1039/c9an00303g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DSN–RNAse–TdT–T7 exo probing system allows the detection of miRNA 21 with very high sensitivity (LOD = 2.57 fM) and selectivity—the result of (i) avoiding the false-positive signal from miRNA reacting with TdT polymerase and (ii) signal amplification occurring through a FRET-breaking mechanism involving T7 exo.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Binh Huy Le
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
- Department of Chemistry
- Chonbuk National University
| |
Collapse
|
244
|
Manzanarez-Ozuna E, Flores DL, Gutiérrez-López E, Cervantes D, Juárez P. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer. Theor Biol Med Model 2018; 15:24. [PMID: 30594253 PMCID: PMC6310970 DOI: 10.1186/s12976-018-0095-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background The Smad7 protein is negative regulator of the TGF-β signaling pathway, which is upregulated in patients with breast cancer. miRNAs regulate proteins expressions by arresting or degrading the mRNAs. The purpose of this work is to identify a miRNAs profile that regulates the expression of the mRNA coding for Smad7 in breast cancer using the data from patients with breast cancer obtained from the Cancer Genome Atlas Project. Methods We develop an automatic search method based on genetic algorithms to find a predictive model based on deep neural networks (DNN) which fit the set of biological data and apply the Olden algorithm to identify the relative importance of each miRNAs. Results A computational model of non-linear regression is shown, based on deep neural networks that predict the regulation given by the miRNA target transcripts mRNA coding for Smad7 protein in patients with breast cancer, with R2 of 0.99 is shown and MSE of 0.00001. In addition, the model is validated with the results in vivo and in vitro experiments reported in the literature. The set of miRNAs hsa-mir-146a, hsa-mir-93, hsa-mir-375, hsa-mir-205, hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c, hsa-mir-497, hsa-mir-107, hsa-mir-125a, hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-mir-15b, hsa-mir-224, hsa-mir-185 and hsa-mir-10b integrate a profile that critically regulates the expression of the mRNA coding for Smad7 in breast cancer. Conclusions We developed a genetic algorithm to select best features as DNN inputs (miRNAs). The genetic algorithm also builds the best DNN architecture by optimizing the parameters. Although the confirmation of the results by laboratory experiments has not occurred, the results allow suggesting that miRNAs profile could be used as biomarkers or targets in targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12976-018-0095-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edgar Manzanarez-Ozuna
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Dora-Luz Flores
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico.
| | - Everardo Gutiérrez-López
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - David Cervantes
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico
| |
Collapse
|
245
|
Shi CX, Li SX, Chen ZP, Liu Q, Yu RQ. Label-Free and Multiplexed Quantification of microRNAs by Mass Spectrometry Based on Duplex-Specific-Nuclease-Assisted Recycling Amplification. Anal Chem 2018; 91:2120-2127. [DOI: 10.1021/acs.analchem.8b04583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cai-Xia Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Sheng-Xian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Qing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
246
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
247
|
Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam M. Emerging ways to treat breast cancer: will promises be met? Cell Oncol (Dordr) 2018; 41:605-621. [PMID: 30259416 DOI: 10.1007/s13402-018-0409-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC. CONCLUSIONS Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.
Collapse
Affiliation(s)
- Pouria Samadi
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Saki
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Karimi Dermani
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Pourjafar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
248
|
Noori J, Sharifi M, Haghjooy Javanmard S. miR-30a Inhibits Melanoma Tumor Metastasis by Targeting the E-cadherin and Zinc Finger E-box Binding Homeobox 2. Adv Biomed Res 2018; 7:143. [PMID: 30596053 PMCID: PMC6282499 DOI: 10.4103/abr.abr_146_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Epithelial–mesenchymal transition (EMT) is actively involved in tumor invasion. The main hallmark of EMT is downregulation of the adherens junction protein E-cadherin due to transcriptional repression. Candidate E-cadherin transcription repressors are members of ZEB family, ZEB2 belong to the ZEB family transcription factor that is pivotal for embryonic development and tumor progression. ZEB2 (zinc finger E-box binding homeobox 2) is most widely known as an inducer of EMT. Growing evidence have shown the involvement of microRNAs in cancer progression. In this study, we demonstrate that miR-30a is a potent suppressor of melanoma metastasis to the lung. Materials and Methods: In this study, miR-30a has been transfected into B16-F10 melanoma cells, and then cells were injected intravenously into C57BL/6 mice. Then, the mice were sacrificed and nodules in the lungs were enumerated. Results: Ectopic expression of miR-30a in melanoma cell line resulted in the suppression of pulmonary metastasis. We also found that transfected miR-30a into melanoma cells could increase E-cadherin and decrease ZEB2 expression. Conclusions: Our findings showed that increased expression of miR-30a in melanoma inhibited metastasis in vivo by targeting ZEB2 and E-cadherin.
Collapse
Affiliation(s)
- Jahangir Noori
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
249
|
Javadian M, Gharibi T, Shekari N, Abdollahpour‐Alitappeh M, Mohammadi A, Hossieni A, Mohammadi H, Kazemi T. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol 2018; 234:5399-5412. [DOI: 10.1002/jcp.27445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Arezoo Hossieni
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
250
|
Ma Y, Feng S, Wang X, Qazi IH, Long K, Luo Y, Li G, Ning C, Wang Y, Hu S, Xiao J, Li X, Lan D, Hu Y, Tang Q, Ma J, Jin L, Jiang A, Li M. Exploration of exosomal microRNA expression profiles in pigeon 'Milk' during the lactation period. BMC Genomics 2018; 19:828. [PMID: 30458711 PMCID: PMC6245878 DOI: 10.1186/s12864-018-5201-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pigeon crop has the unique ability to produce a nutrient rich substance termed pigeon ‘milk’ (PM), which has functional resemblance with the mammalian milk. Previous researches have demonstrated that a large number of exosomes and exosomal miRNAs exist in mammalian milk, and many of them are associated with immunity, growth and development. However, to date, little is known about the exosomes and exosomal miRNAs in PM. Results In this study, we isolated the exosomes from PM and used small RNA sequencing to investigate the distribution and expression profiles of exosomal miRNAs. A total of 301 mature miRNAs including 248 conserved and 53 novel miRNAs were identified in five lactation stages i.e. 1d, 5d, 10d, 15d, and 20d. From these, four top 10 conserved miRNAs (cli-miR-21-5p, cli-miR-148a-3p, cli-miR-10a-5p and cli-miR-26a-5p) were co-expressed in all five stages. We speculate that these miRNAs may have important role in the biosynthesis and metabolism of PM. Moreover, similar to the mammalian milk, a significant proportion of immune and growth-related miRNAs were also present and enriched in PM exosomes. Furthermore, we also identified 41 orthologous miRNAs group (giving rise to 81 mature miRNA) commonly shared with PM, human, bovine and porcine breast milk. Additionally, functional enrichment analysis revealed the role of exosomal miRNAs in organ development and in growth-related pathways including the MAPK, Wnt and insulin pathways. Conclusions To sum-up, this comprehensive analysis will contribute to a better understanding of the underlying functions and regulatory mechanisms of PM in squabs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5201-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Siyuan Feng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Izhar Hyder Qazi
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Department of Veterinary Anatomy and Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guojun Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yixin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Xiao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dan Lan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|