201
|
Kawamoto H, Morita T, Shimizu A, Inada T, Aiba H. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes Dev 2005; 19:328-38. [PMID: 15650111 PMCID: PMC546511 DOI: 10.1101/gad.1270605] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulation of phosphosugars such as glucose-6-phosphate causes a rapid degradation of ptsG mRNA encoding the major glucose transporter IICB(Glc) in an RNase E/degradosome-dependent manner. The destabilization of ptsG mRNA is caused by a small antisense RNA (SgrS) that is induced by phosphosugar stress. In this study, we analyzed a series of ptsG-crp translational fusions to identify the mRNA region required for the rapid degradation of ptsG mRNA. We found that the ptsG-crp mRNA is destabilized in response to phosphosugar stress when it contains the 5' portion of ptsG mRNA corresponding up to the first two transmembrane domains (TM1 and TM2) of IICB(Glc). The destabilization of ptsG-crp mRNA was largely eliminated by frameshift mutations in the transmembrane region. The IICB(Glc)-CRP fusion proteins containing more than two transmembrane domains were localized at the membrane. The efficient destabilization of ptsG-crp mRNA was restored when TM1 and TM2 of IICB(Glc) were replaced by part of the LacY transmembrane region. We conclude that the membrane-targeting property of IICB(Glc) protein rather than the particular nucleotide or amino acid sequence is required for the efficient degradation of ptsG mRNA in response to metabolic stress. The stimulation of ptsG-crp mRNA degradation was completely eliminated when either the hfq or sgrS gene is inactivated. The efficient mRNA destabilization was observed in the absence of membrane localization when translation was reduced by introducing a mutation in the ribosome-binding site in the cytoplasmic ptsG-crp mRNA. Taken together, we conclude that mRNA localization to the inner membrane coupled with the membrane insertion of nascent peptide mediates the Hfq/SgrS-dependent ptsG mRNA destabilization presumably by reducing second rounds of translation.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
202
|
Lease RA, Woodson SA. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 2005; 344:1211-23. [PMID: 15561140 DOI: 10.1016/j.jmb.2004.10.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/22/2004] [Accepted: 10/06/2004] [Indexed: 11/15/2022]
Abstract
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.
Collapse
Affiliation(s)
- Richard A Lease
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2865, USA
| | | |
Collapse
|
203
|
Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 2005; 67:289-98. [PMID: 15635462 DOI: 10.1007/s00253-004-1814-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/22/2004] [Accepted: 10/23/2004] [Indexed: 11/24/2022]
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Production of these proteins has a remarkable demand in the market. Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically therapeutic proteins such as insulin and bovine growth hormone. These demands have driven the development of a variety of strategies for achieving high-level expression of protein, particularly involving several aspects such as expression vectors design, gene dosage, promoter strength (transcriptional regulation), mRNA stability, translation initiation and termination (translational regulation), host design considerations, codon usage, and fermentation factors available for manipulating the expression conditions, which are the major challenges is obtaining the high yield of protein at low cost.
Collapse
Affiliation(s)
- S Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
204
|
Abstract
Small noncoding RNAs have been found in all organisms, primarily as regulators of translation and message stability. The most exhaustive searches have taken place in E. coli, resulting in identification of more than 50 small RNAs, or 1%-2% of the number of protein-coding genes. One large class of these small RNAs uses the RNA chaperone Hfq; members of this class act by pairing to target messenger RNAs. Among the members of this class are DsrA and RprA, which positively regulate rpoS translation, OxyS, which negatively regulates rpoS translation and fhlA translation, RyhB, which reapportions iron use in the cell by downregulating translation of many genes that encode Fe-containing proteins, and Spot 42, which changes the polarity of translation in the gal operon. The promoters of these small RNAs are tightly regulated, frequently as part of well-understood regulons. Lessons learned from the study of small RNAs in E. coli can be applied to finding these important regulators in other organisms.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
205
|
Antal M, Bordeau V, Douchin V, Felden B. A small bacterial RNA regulates a putative ABC transporter. J Biol Chem 2004; 280:7901-8. [PMID: 15618228 DOI: 10.1074/jbc.m413071200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A small noncoding bacterial ribonucleic acid of 62-64 nucleotides, RydC, was identified in the genomes of Escherichia coli, Salmonella, and Shigella. In vivo, RydC binds to the RNA-binding protein Hfq, and it is unstable when Hfq is absent. Mobility assays reveal that complex formation between RydC and Hfq is specific, with an apparent binding constant of approximately 300 nm. Sequence alignments combined with structural probing demonstrate that RydC folds as a pseudoknot. Hfq binds the loops crossing the deep and shallow grooves of the pseudoknotted RNA and reorganizes its overall conformation. An interaction with a polycistronic mRNA, yejABEF, which encodes a putative ABC transporter, was detected by affinity purification of immobilized RNA-Hfq complexes. In vivo, the yejABEF operon is expressed on minimal medium. Remarkably, its expression is reduced when RydC is absent, and the operon is degraded when RydC expression is stimulated. This observation correlates with the growth defects associated with a stimulation of its expression in vivo, generating a thermosensitive phenotype that affects growth on minimal media supplemented with glycerol, maltose, or ribose. We conclude that RydC regulates the yejABEF-encoded ABC permease at the mRNA level. This small RNA may contribute to optimal adaptation of some Enterobacteria to environmental conditions.
Collapse
Affiliation(s)
- Maria Antal
- Biochimie Pharmaceutique, Université de Rennes I, UPRES Jeune Equipe 2311, Espri Inserm, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | |
Collapse
|
206
|
Sonnleitner E, Napetschnig J, Afonyushkin T, Ecker K, Vecerek B, Moll I, Kaberdin VR, Bläsi U. Functional effects of variants of the RNA chaperone Hfq. Biochem Biophys Res Commun 2004; 323:1017-23. [PMID: 15381101 DOI: 10.1016/j.bbrc.2004.08.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Indexed: 11/17/2022]
Abstract
The ring-shaped RNA chaperone Hfq has recently received much attention owing to its multiple roles in RNA metabolism. In this study we have performed a mutational analysis of the Escherichia coli hfq gene, and have studied the effects of amino acid substitutions at several positions in the Hfq protein as well as of C-terminal truncations on its role in phage Qbeta replication, in repression of a target mRNA, and on the stability of the small regulatory RNA DsrA. These functional studies provided insights into the interaction of Hfq with RNA and suggested a role for the C-terminus of Hfq in DsrA stability.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 2004; 11:1206-14. [PMID: 15531892 PMCID: PMC3071270 DOI: 10.1038/nsmb858] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 09/30/2004] [Indexed: 11/08/2022]
Abstract
The bacterial Sm-like protein Hfq facilitates RNA-RNA interactions involved in post-transcriptional regulation of the stress response. Specifically, Hfq helps pair noncoding RNAs (ncRNAs) with complementary regions of target mRNAs. To probe the mechanism of this pairing, we generated a series of Hfq mutants and measured their affinity for RNAs like those with which Hfq must associate in vivo. We tested the mutants' DsrA-dependent activation of rpoS, and their ability to stabilize DsrA ncRNA against degradation in vivo. Our results suggest that Hfq has two independent RNA-binding surfaces. In addition to a well-known site around the core of the Hfq hexamer, we observe interactions with the distal face of Hfq, a new locus with which mRNAs and poly(A) sequences associate. Our model explains how Hfq can simultaneously bind a ncRNA and its mRNA target to facilitate the strand displacement reaction required for Hfq-dependent translational regulation.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | | | | | | | | | | |
Collapse
|
208
|
Baker KE, Condon C. Under the Tucson sun: a meeting in the desert on mRNA decay. RNA (NEW YORK, N.Y.) 2004; 10:1680-1691. [PMID: 15496519 PMCID: PMC1370653 DOI: 10.1261/rna.7163104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Kristian E Baker
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, 1007 East Lowell Street, Room 403 Life Sciences South, Tucson, AZ 85745, USA.
| | | |
Collapse
|
209
|
Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004; 118:69-82. [PMID: 15242645 DOI: 10.1016/j.cell.2004.06.009] [Citation(s) in RCA: 742] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 11/20/2022]
Abstract
Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.
Collapse
Affiliation(s)
- Derrick H Lenz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
210
|
Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 2004; 51:1525-33. [PMID: 15009882 DOI: 10.1111/j.1365-2958.2003.03935.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conserved RNA-binding protein Hfq, originally discovered in Escherichia coli as a host factor for Qbeta replicase, has emerged as a pleiotropic regulator that modulates the stability or the translation of an increasing number of mRNAs. During the past 5 years, Hfq-mediated control has been an area of increasing focus because the protein has been linked to the action of many versatile RNA-based regulators that use basepairing interactions to regulate the expression of target mRNAs. The recent findings that Hfq assists in bimolecular RNA-RNA interactions and is similar structurally and functionally to eukaryotic Sm proteins have further fueled interest in this important post-transcriptional regulator. Here, we summarize the history of Hfq and highlight results that have led to an important gain in insight into the physiology, biochemistry and evolution of Hfq and its homologues.
Collapse
Affiliation(s)
- Poul Valentin-Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
211
|
Storz G, Opdyke JA, Zhang A. Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 2004; 7:140-4. [PMID: 15063850 DOI: 10.1016/j.mib.2004.02.015] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have led to the identification of more than 50 small regulatory RNAs in Escherichia coli. Only a subset of these RNAs has been characterized. However, it is clear that many of the RNAs, such as the MicF, OxyS, DsrA, Spot42 and RyhB RNAs, act by basepairing to activate or repress translation or to destabilize mRNAs. Basepairing between these regulatory RNAs and their target mRNAs requires the Sm-like Hfq protein which most likely functions as an RNA chaperone to increase RNA unfolding or local target RNA concentration. Here we summarize the physiological roles of the basepairing RNAs, examine their prevalence in bacteria and discuss unresolved questions regarding their mechanisms of action.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA.
| | | | | |
Collapse
|
212
|
Bernstein JA, Lin PH, Cohen SN, Lin-Chao S. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci U S A 2004; 101:2758-63. [PMID: 14981237 PMCID: PMC365694 DOI: 10.1073/pnas.0308747101] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNase E, an essential endoribonuclease of Escherichia coli, interacts through its C-terminal region with multiple other proteins to form a complex termed the RNA degradosome. To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase. Our results show that the functions of all four of these proteins are necessary for normal mRNA turnover. We identified specific transcripts and functionally distinguishable transcript classes whose half-life and abundance were affected congruently by multiple degradosome proteins, affected differentially by mutations in degradosome constituents, or not detectably altered by degradosome mutations. Our results, which argue that decay of some E. coli mRNAs in vivo depends on the action of assembled degradosomes, whereas others are acted on by degradosome proteins functioning independently of the complex, imply the existence of structural features or biochemical factors that target specific classes of mRNAs for decay by degradosomes.
Collapse
|