201
|
Nakamura H, Kikuma T, Jin FJ, Maruyama JI, Kitamoto K. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J Biosci Bioeng 2015; 121:365-71. [PMID: 26467693 DOI: 10.1016/j.jbiosc.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Feng Jie Jin
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
202
|
Zhang C, Wang J, Tao H, Dang X, Wang Y, Chen M, Zhai Z, Yu W, Xu L, Shim WB, Lu G, Wang Z. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. Front Microbiol 2015; 6:1096. [PMID: 26500635 PMCID: PMC4597114 DOI: 10.3389/fmicb.2015.01096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a possibly carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.
Collapse
Affiliation(s)
- Chengkang Zhang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jianqiang Wang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hong Tao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xie Dang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yang Wang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Miaoping Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhenzhen Zhai
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Guodong Lu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
203
|
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses inFusarium graminearum. Environ Microbiol 2015; 17:4615-30. [DOI: 10.1111/1462-2920.12993] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ye Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Na Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yanni Yin
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 Zhejiang China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
204
|
Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 2015; 98:770-86. [PMID: 26256689 DOI: 10.1111/mmi.13157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Members of Cdc14 phosphatases are common in animals and fungi, but absent in plants. Although its orthologs are conserved in plant pathogenic fungi, their functions during infection are not clear. In this study, we showed that the CDC14 ortholog is important for pathogenesis and morphogenesis in Fusarium graminearum. FgCDC14 is required for normal cell division and septum formation and FgCdc14 possesses phosphatase activity with specificity for a subset of Cdk-type phosphorylation sites. The Fgcdc14 mutant was reduced in growth, conidiation, and ascospore formation. It was defective in ascosporogenesis and pathogenesis. Septation in Fgcdc14 was reduced and hyphal compartments contained multiple nuclei, indicating defects in the coordination between nuclear division and cytokinesis. Interestingly, foot cells of mutant conidia often differentiated into conidiogenous cells, resulting in the production of inter-connected conidia. In the interphase, FgCdc14-GFP localized to the nucleus and spindle-pole-body. Taken together, our results indicate that Cdc14 phosphatase functions in cell division and septum formation in F. graminearum, likely by counteracting Cdk phosphorylation, and is required for plant infection.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michael Melesse
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shijie Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - ChaoFeng Hao
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mark C Hall
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
205
|
Jiang C, Xu JR, Liu H. Distinct cell cycle regulation during saprophytic and pathogenic growth in fungal pathogens. Curr Genet 2015; 62:185-9. [PMID: 26337287 DOI: 10.1007/s00294-015-0515-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 01/26/2023]
Abstract
In a number of dimorphic and hemibiotrophic pathogens, cell cycle regulation has been shown to be important for morphological changes related to infectious growth or infection-related morphogenesis. However, the role of mitotic CDK kinase Cdc2, the key regulator of cell cycle, in pathogenic growth is not clear, because most fungal pathogens have a single CDC2 gene that is essential for cell cycle progression and viability. Interestingly, the wheat scab fungus Fusarium graminearum has two CDC2 genes. Although CDC2A and CDC2B have redundant functions in vegetative growth and asexual production, only CDC2A is required for invasive growth and plant infection. In this study, we showed that Cdc2A and Cdc2B interacted with each other and may form homo- and heterodimers in vegetative hyphae. We also identified sequence and structural differences between Cdc2A and Cdc2B that may be related to their functional divergence. These results, together with earlier studies with cyclins, important for differentiation and infection in Candida albicans and Ustilago maydis, indicated that dimorphic and hemibiotrophic fungal pathogens may have stage-specific cyclin-CDK combinations or CDK targets during saprophytic and pathogenic growth.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
206
|
Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015; 17:4672-89. [PMID: 26248223 DOI: 10.1111/1462-2920.13010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
Conidiation and appressorium differentiation are key processes for polycyclic dissemination and infection in many pathogens. Our previous study using DNA microarray led to the discovery of the MoYAK1 gene in Magnaporthe oryzae that is orthologous to YAK1 in Saccharomyces cerevisiae. Although the mechanistic roles of YAK1 in S. cerevisiae have been described, roles of MoYAK1 in M. oryzae, a phytopathogenic fungus responsible for rice blast, remain uncharacterized. Targeted disruption of MoYAK1 results in pleiotropic defects in M. oryzae development and pathogenicity. The ΔMoyak1 mutant exhibits a severe reduction in aerial hyphal formation and conidiation. Conidia in the ΔMoyak1 are delayed in germination and demonstrate decreased glycogen content in a conidial age-dependent manner. The expression of hydrophobin-coding genes is dramatically changed in the ΔMoyak1 mutant, leading to a loss of surface hydrophobicity. Unlike the complete inability of the ΔMoyak1 mutant to develop appressoria on an inductive surface, the mutant forms appressoria of abnormal morphology in response to exogenous cyclic adenosine-5'-monophosphate and host-driven signals, which are all defective in penetrating host tissues due to abnormalities in glycogen and lipid metabolism, turgor generation and cell wall integrity. These data indicate that MoYAK1 is a protein kinase important for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Joon-Hee Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hye-Min Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong-Hwan Shin
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,BioHerb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| |
Collapse
|
207
|
Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ. Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 2015; 98:403-19. [PMID: 26192090 PMCID: PMC4791171 DOI: 10.1111/mmi.13132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 12/19/2022]
Abstract
Protein kinase C constitutes a family of serine–threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of Magnaporthe oryzae. First, all attempts to generate a target deletion of PKC1, the single copy protein kinase C‐encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2‐encoding gene, MDL2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue‐sensitive PKC1AS allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re‐modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M. oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease.
Collapse
Affiliation(s)
- Tina J Penn
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Mark E Wood
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Darren M Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael Csukai
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Andrew John Corran
- Biological Sciences, Syngenta, Jeallott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
208
|
|
209
|
Qi L, Kim Y, Jiang C, Li Y, Peng Y, Xu JR. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:881-91. [PMID: 26057388 DOI: 10.1094/mpmi-12-14-0391-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Appressorium formation and invasive growth are two important steps in the infection cycle of Magnaporthe oryzae that are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase (MAPK) pathway. However, the molecular mechanism involved in the activation of Mst11 MAPK kinase kinase is not clear in the rice blast fungus. In this study, we functionally characterized the regulatory region of Mst11 and its self-inhibitory binding. Deletion of the middle region of Mst11, which contains the Ras-association (RA) domain and two conserved phosphorylation sites (S453 and S458), blocked Pmk1 activation and appressorium formation. However, the MST11(ΔRA) transformant MRD-2 still formed appressoria, although it was reduced in virulence. Interestingly, over 50% of its germ tubes branched and formed two appressoria by 48 h, which was suppressed by treatments with exogenous cAMP. The G18V dominant active mutation enhanced the interaction of Ras2 with Mst11, suggesting that Mst11 has stronger interactions with the activated Ras2. Furthermore, deletion and site-directed mutagenesis analyses indicated that phosphorylation at S453 and S458 of Mst11 is important for appressorium formation and required for the activation of Pmk1. We also showed that the N-terminal region of Mst11 directly interacted with its kinase domain, and the S789G mutation reduced their interactions. Expression of the MST11(S789G) allele rescued the defect of the mst11 mutant in plant infection and resulted in the formation of appressoria on hydrophilic surfaces, suggesting the gain-of-function effect of the S789G mutation. Overall, our results indicate that the interaction of Mst11 with activated Ras2 and phosphorylation of S453 and S458 play regulatory roles in Mst11 activation and infection-related morphogenesis, possibly by relieving its self-inhibitory interaction between its N-terminal region and the C-terminal kinase domain. In addition, binding of Mst11 to Ras2 may be involved in the feedback inhibition of cAMP signaling and further differentiation of germ tubes after appressorium formation.
Collapse
Affiliation(s)
- Linlu Qi
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Yangseon Kim
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Cong Jiang
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Youliang Peng
- 1 MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jin-Rong Xu
- 2 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- 3 NWAFU-PU Joint Research Center, Northwestern A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
210
|
King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 2015. [PMID: 26198851 PMCID: PMC4511438 DOI: 10.1186/s12864-015-1756-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Accurate genome assembly and gene model annotation are critical for comparative species and gene functional analyses. Here we present the completed genome sequence and annotation of the reference strain PH-1 of Fusarium graminearum, the causal agent of head scab disease of small grain cereals which threatens global food security. Completion was achieved by combining (a) the BROAD Sanger sequenced draft, with (b) the gene predictions from Munich Information Services for Protein Sequences (MIPS) v3.2, with (c) de novo whole-genome shotgun re-sequencing, (d) re-annotation of the gene models using RNA-seq evidence and Fgenesh, Snap, GeneMark and Augustus prediction algorithms, followed by (e) manual curation. Results We have comprehensively completed the genomic 36,563,796 bp sequence by replacing unknown bases, placing supercontigs within their correct loci, correcting assembly errors, and inserting new sequences which include for the first time complete AT rich sequences such as centromere sequences, subtelomeric regions and the telomeres. Each of the four F. graminearium chromosomes was found to be submetacentric with respect to centromere positioning. The position of a potential neocentromere was also defined. A preferentially higher frequency of genetic recombination was observed at the end of the longer arm of each chromosome. Within the genome 1529 gene models have been modified and 412 new gene models predicted, with a total gene call of 14,164. The re-annotation impacts upon 69 entries held within the Pathogen-Host Interactions database (PHI-base) which stores information on genes for which mutant phenotypes in pathogen-host interactions have been experimentally tested, of which 59 are putative transcription factors, 8 kinases, 1 ATP citrate lyase (ACL1), and 1 syntaxin-like SNARE gene (GzSYN1). Although the completed F. graminearum contains very few transposon sequences, a previously unrecognised and potentially active gypsy-type long-terminal-repeat (LTR) retrotransposon was identified. In addition, each of the sub-telomeres and centromeres contained either a LTR or MarCry-1_FO element. The full content of the proposed ancient chromosome fusion sites has also been revealed and investigated. Regions with high recombination previously noted to be rich in secretome encoding genes were also found to be rich in tRNA sequences. This study has identified 741 F. graminearum species specific genes and provides the first complete genome assembly for a Sordariomycetes species. Conclusions This fully completed F. graminearum PH-1 genome and manually curated annotation, available at Ensembl Fungi, provides the optimum resource to perform interspecies comparative analyses and gene function studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1756-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert King
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | | - Keywan Hassani-Pak
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| |
Collapse
|
211
|
Yun Y, Liu Z, Yin Y, Jiang J, Chen Y, Xu JR, Ma Z. Functional analysis of the Fusarium graminearum phosphatome. THE NEW PHYTOLOGIST 2015; 207:119-134. [PMID: 25758923 DOI: 10.1111/nph.13374] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Collapse
Affiliation(s)
- Yingzi Yun
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zunyong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
212
|
Jia LJ, Tang WH. The omics era of Fusarium graminearum: opportunities and challenges. THE NEW PHYTOLOGIST 2015; 207:1-3. [PMID: 26017464 DOI: 10.1111/nph.13457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
213
|
Liu H, Zhang S, Ma J, Dai Y, Li C, Lyu X, Wang C, Xu JR. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum. PLoS Pathog 2015; 11:e1004913. [PMID: 26083253 PMCID: PMC4470668 DOI: 10.1371/journal.ppat.1004913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle regulation is different between vegetative and infectious hyphae in F. graminearum and Cdc2A, possibly by interacting with a stage-specific cyclin, plays a more important role than Cdc2B during ascosporogenesis and plant infection. In the model yeasts and filamentous fungi, CDC2 is an essential gene that encodes the only CDK essential for mitotic cell cycle progression. However, the wheat scab fungus F. graminearum contains two CDC2 orthologs. The cdc2A and cdc2B deletion mutants had no defects in vegetative growth but deletion of both is lethal. Whereas the cdc2B mutant was normal, the cdc2A mutant was almost non-pathogenic, indicating that only Cdc2A is essential in infectious hyphae. Cdc2A and Cdc2B differ in subcellular localization and only localization of Cdc2A to the nucleus was increased in cells active in mitosis. Furthermore, F. graminearum uniquely has two orthologs of Ipl1 Aurora kinase and mutants deleted of orthologs of five essential yeast mitotic kinase genes were viable. However, most of these mutants were significantly reduced in virulence. Overall, our data indicate that F. graminearum differs from the model fungi in CDK and other key mitotic kinase genes, and cell cycle regulation is different between vegetative and infectious hyphae. This is the first report on two Cdc2 kinases in fungi and they differ in subcellular localization and functions during sexual reproduction and plant infection.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiwen Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xueliang Lyu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
214
|
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. THE NEW PHYTOLOGIST 2015; 206:315-328. [PMID: 25388878 DOI: 10.1111/nph.13158] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in Fusarium graminearum. Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50-Ste11-Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol (DON) biosynthesis in F. graminearum. Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum. The yeast two-hybrid, coimmunoprecipitation, colocalization and affinity capture-mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50-Ste11-Ste7 in F. graminearum. Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50-Ste11-Ste7 in F. graminearum, which is different from what is known in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Qin Gu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ye Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengqi Zhang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
215
|
Cheng L, Ling J, Liang L, Luo Z, Zhang J, Xie B. Qip gene in Fusarium oxysporum is required for normal hyphae morphology and virulence. Mycology 2015; 6:130-137. [PMID: 30151321 PMCID: PMC6106068 DOI: 10.1080/21501203.2015.1027313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/04/2015] [Indexed: 01/07/2023] Open
Abstract
Ribonucleic acid (RNA)-silencing mechanisms exist in many eukaryotes to regulate a variety of biological processes. The known molecular components are related to Dicers, Argonautes and RNA-dependent RNA polymerases. Previous biochemical studies have also suggested that Qip, with an exonuclease domain, facilitates the conversion of duplex small interfering RNAs into single strands. In our study, the Qip gene in Fusarium oxysporum was disrupted using homologous recombination technology. The deletion of the Qip gene resulted in a decrease in colony growth rates but increased the number of branches. Additionally, the ΔQip mutant had a reduced pathogenicity in cabbage. Our results show Qip gene in F. oxysporum is required for normal hyphae morphology and virulence. The mutant will be useful for elucidating the relationship between the RNA-silencing mechanism and hyphal growth and development in F. oxysporum.
Collapse
Affiliation(s)
- Lin Cheng
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| | - Liqin Liang
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Zhongqin Luo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| | - Jie Zhang
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| |
Collapse
|
216
|
Son H, Park AR, Lim JY, Lee YW. Fss1 is involved in the regulation of anENA5homologue for sodium and lithium tolerance inFusarium graminearum. Environ Microbiol 2015; 17:2048-63. [DOI: 10.1111/1462-2920.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 Korea
- Center for Fungal Pathogenesis; Seoul National University; Seoul 151-921 Korea
| | - Ae Ran Park
- Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 Korea
- Center for Fungal Pathogenesis; Seoul National University; Seoul 151-921 Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 Korea
- Center for Fungal Pathogenesis; Seoul National University; Seoul 151-921 Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 Korea
- Center for Fungal Pathogenesis; Seoul National University; Seoul 151-921 Korea
| |
Collapse
|
217
|
Yang C, Liu H, Li G, Liu M, Yun Y, Wang C, Ma Z, Xu JR. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Environ Microbiol 2015; 17:2762-76. [PMID: 25627073 DOI: 10.1111/1462-2920.12747] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Meigang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yingzi Yun
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
218
|
Qin J, Wang G, Jiang C, Xu JR, Wang C. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 2015; 5:8504. [PMID: 25703795 PMCID: PMC4336942 DOI: 10.1038/srep08504] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
219
|
Zhang X, Chen X, Jiang J, Yu M, Yin Y, Ma Z. The tubulin cofactor A is involved in hyphal growth, conidiation and cold sensitivity in Fusarium asiaticum. BMC Microbiol 2015; 15:35. [PMID: 25886735 PMCID: PMC4342098 DOI: 10.1186/s12866-015-0374-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tubulin cofactor A (TBCA), one of the members of tubulin cofactors, is of great importance in microtubule functions through participating in the folding of α/β-tubulin heterodimers in Saccharomyces cerevisiae. However, little is known about the roles of TBCA in filamentous fungi. RESULTS In this study, we characterized a TBCA orthologue FaTBCA in Fusarium asiaticum. The deletion of FaTBCA caused dramatically reduced mycelial growth and abnormal conidiation. The FaTBCA deletion mutant (ΔFaTBCA-3) showed increased sensitivity to low temperatures and even lost the ability of growth at 4°C. Microscopic observation found that hyphae of ΔFaTBCA-3 exhibited blebbing phenotypes after shifting from 25 to 4°C for 1- or 3-day incubation and approximately 72% enlarged nodes contained several nuclei after 3-day incubation at 4°C. However, hyphae of the wild type incubated at 4°C were phenotypically indistinguishable from those incubated at 25°C. These results indicate that FaTBCA is involved in cell division under cold stress (4°C) in F. asiaticum. Unexpectedly, ΔFaTBCA-3 did not exhibit increased sensitivity to the anti-microtubule drug carbendazim although quantitative real-time assays showed that the expression of FaTBCA was up-regulated after treatment with carbendazim. In addition, pathogenicity assays showed that ΔFaTBCA-3 exhibited decreased virulence on wheat head and on non-host tomato. CONCLUSION Taken together, results of this study indicate that FaTBCA plays crucial roles in vegetative growth, conidiation, temperature sensitivity and virulence in F. asiaticum.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xiang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Jinhua Jiang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Menghao Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
220
|
Hu W, Zhang X, Chen X, Zheng J, Yin Y, Ma Z. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum. Res Microbiol 2015; 166:132-42. [PMID: 25660319 DOI: 10.1016/j.resmic.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
The filamentous ascomycete Fusarium asiaticum contains two homologous genes FaTUA1 and FaTUA2 encoding α-tubulins. In this study, we found that FaTUA2 was dispensable for vegetative growth and sporulation in F. asiaticum. The deletion of FaTUA1 however led to dramatically reduced mycelial growth, twisted hyphae and abnormal nuclei in apical cells of hyphae. The FaTUA1 deletion mutant (ΔFaTuA1-5) also showed a significant decrease in conidiation, and produced abnormal conidia. Pathogenicity assays showed that ΔFaTuA1-5 exhibited decreased virulence on wheat head. Unexpectedly, the deletion of FaTUA1 led to resistance to high temperatures. In addition, ΔFaTuA2 showed increased sensitivity to carbendazim. Furthermore, increased FaTUA2 expression in ΔFaTuA1-5 partially restored the defects of the mutant in mycelial growth, conidial production and virulence, vice versa, increased FaTUA1 expression in the FaTUA2 deletion mutant also partially relieved the defect of the mutant in the delay of conidial germination. Taken together, these results indicate that FaTuA1 plays crucial roles in vegetative growth and development, and the functions of FaTuA1 and FaTuA2 are partially interchangeable in F. asiaticum.
Collapse
Affiliation(s)
- Weiqun Hu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoping Zhang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiang Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingwu Zheng
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
221
|
Cheng Y, Wang X, Yao J, Voegele RT, Zhang Y, Wang W, Huang L, Kang Z. Characterization of protein kinase PsSRPKL, a novel pathogenicity factor in the wheat stripe rust fungus. Environ Microbiol 2015; 17:2601-17. [PMID: 25407954 DOI: 10.1111/1462-2920.12719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
As in other eukaryotes, protein kinases (PKs) are generally evolutionarily conserved and play major regulatory roles in plant pathogenic fungi. Many PKs have been proven to be important for pathogenesis in model fungal plant pathogens, but little is currently known about their roles in the pathogenesis of cereal rust fungi, devastating pathogens in agriculture worldwide. Here, we report on an in planta highly induced PK gene PsSRPKL from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), one of the most important cereal rust fungi. PsSRPKL belongs to a group of PKs that are evolutionarily specific to cereal rust fungi. It shows a high level of intraspecies polymorphism in the kinase domains and directed green fluorescent protein chimers to plant nuclei. Overexpression of PsSRPKL in fission yeast induces aberrant cell morphology and a decreased resistance to environmental stresses. Most importantly, PsSRPKL is proven to be an important pathogenicity factor responsible for fungal growth and responses to environmental stresses, therefore contributing significantly to Pst virulence in wheat. We hypothesize that cereal rust fungi have developed specific PKs as pathogenicity factors for adaptation to their host species during evolution. Thus, our findings provide significant insights into pathogenicity and virulence evolution in cereal rust fungi.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf T Voegele
- Fachgebiet Phytopathologie, Fakultät Agrarwissenschaften, Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | - Yanru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wumei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
222
|
Zhang C, Chen Y, Yin Y, Ji HH, Shim WB, Hou Y, Zhou M, Li XD, Ma Z. A small molecule species specifically inhibits Fusarium myosin I. Environ Microbiol 2015; 17:2735-46. [PMID: 25404531 DOI: 10.1111/1462-2920.12711] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/28/2022]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F. graminearum (FgMyo1). FgMyo1 is essential for F. graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F. graminearum resistance to JS399-19. In addition, transformation of F. graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms.
Collapse
Affiliation(s)
- Chengqi Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Huan-Hong Ji
- National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Yiping Hou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Li
- National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
223
|
Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015; 43:D645-55. [PMID: 25414340 PMCID: PMC4383963 DOI: 10.1093/nar/gku1165] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s).
Collapse
Affiliation(s)
- Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Rashmi Pant
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Arathi Raghunath
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Alistair G Irvine
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Helder Pedro
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
224
|
Gu Q, Zhang C, Liu X, Ma Z. A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:1-13. [PMID: 24832137 PMCID: PMC6638345 DOI: 10.1111/mpp.12155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast Fus3/Kss1 mating/filamentation pathway is involved in the regulation of vegetative development and pathogenicity in Fusarium graminearum. However, little is known about the downstream transcription factors of this pathway. In Saccharomyces cerevisiae, the homeodomain protein Ste12 is a key transcription factor activated by Fus3/Kss1. In this study, we characterized a Ste12 orthologue FgSte12 in F. graminearum. The FgSTE12 deletion mutant (ΔFgSte12) was impaired in virulence and in the secretion of cellulase and protease, although it did not show recognizable phenotype changes in hyphal growth, conidiation or deoxynivalenol (DON) biosynthesis. In addition, ΔFgSte12 and the FgGPMK1 (a FUS3/KSS1-related MAPK gene) mutant shared several phenotypic traits. Furthermore, we found that FgGpmk1 controls the nuclear localization of FgSte12. Yeast two-hybrid and affinity capture assays indicated that FgSte12 interacts with the FgSte11-Ste7-Gpmk1 complex. Taken together, these results indicate that FgSte12 is a downstream target of FgSte11-Ste7-Gpmk1 and plays an important role in pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Qin Gu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
225
|
Luo Y, Zhang H, Qi L, Zhang S, Zhou X, Zhang Y, Xu JR. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum. THE NEW PHYTOLOGIST 2014; 204:943-54. [PMID: 25078365 DOI: 10.1111/nph.12953] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 05/20/2023]
Abstract
The Kin1/Par-1/MARK kinases regulate various cellular processes in eukaryotic organisms. Kin1 orthologs are well conserved in fungal pathogens but none of them have been functionally characterized. Here, we show that KIN1 is important for pathogenesis and growth in two phytopathogenic fungi and that FgKin1 regulates ascospore germination and the localization of Tub1 β-tubulins in Fusarium graminearum. The Fgkin1 mutant and putative FgKIN1(S172A) kinase dead (nonactivatable) transformants were characterized for defects in plant infection, sexual and asexual reproduction, and stress responses. The localization of FgKin1 and two β-tubulins were examined in the wild-type and mutant backgrounds. Deletion of FgKIN1 resulted in reduced virulence and defects in ascospore germination and release. FgKin1 localized to the center of septal pores. FgKIN1 deletion had no effect on Tub2 microtubules but disrupted Tub1 localization. In the mutant, Tub1 appeared to be enriched in the nucleolus. In Magnaporthe oryzae, MoKin1 has similar functions in growth and infection and it also localizes to septal pores. The S172A mutation had no effect on the localization and function of FgKIN1 during sexual reproduction. These results indicate that FgKIN1 has kinase-dependent and independent functions and it specifically regulates Tub1 β-tubulins. FgKin1 plays a critical role in ascospore discharge, germination, and plant infection.
Collapse
Affiliation(s)
- Yongping Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
226
|
Lai Y, Liu K, Zhang X, Zhang X, Li K, Wang N, Shu C, Wu Y, Wang C, Bushley KE, Xiang M, Liu X. Comparative genomics and transcriptomics analyses reveal divergent lifestyle features of nematode endoparasitic fungus Hirsutella minnesotensis. Genome Biol Evol 2014; 6:3077-93. [PMID: 25359922 PMCID: PMC4255773 DOI: 10.1093/gbe/evu241] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism.
Collapse
Affiliation(s)
- Yiling Lai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Keke Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niuniu Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
227
|
Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep 2014; 4:6746. [PMID: 25339375 PMCID: PMC5381371 DOI: 10.1038/srep06746] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
Microtubules are essential for various cellular activities and β-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom. Phylogenetic analysis showed that α-/β-tubulin genes underwent multiple independent duplications and losses in different fungal lineages and formed distinct paralogous/orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two paralogs of α-tubulin (α1/α2) and β-tubulin (β1/β2) genes but α2-tubulin genes were lost in basidiomycetes and β2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that α1, α2, and β2-tubulins have been under strong divergent selection and adaptive positive selection. Many positively selected sites are at or adjacent to important functional sites and likely contribute to functional diversification. We further experimentally confirmed functional divergence of two β-tubulins in Fusarium and identified type II variations in FgTub2 responsible for function shifts. In this study, we also identified δ-/ε-/η-tubulins in Chytridiomycetes. Overall, our results illustrated that different evolutionary mechanisms drive functional diversification of α-/β-tubulin genes in different fungal lineages, and residues under positive selection could provide targets for further experimental study.
Collapse
|
228
|
Chen D, Wang Y, Zhou X, Wang Y, Xu JR. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. PLoS One 2014; 9:e105811. [PMID: 25144230 PMCID: PMC4140829 DOI: 10.1371/journal.pone.0105811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022] Open
Abstract
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley worldwide. In a previous study on functional characterization of the F. graminearum kinome, one protein kinase gene important for virulence is orthologous to SCH9 that is functionally related to the cAMP-PKA and TOR pathways in the budding yeast. In this study, we further characterized the functions of FgSCH9 in F. graminearum and its ortholog in Magnaporthe oryzae. The ΔFgsch9 mutant was slightly reduced in growth rate but significantly reduced in conidiation, DON production, and virulence on wheat heads and corn silks. It had increased tolerance to elevated temperatures but became hypersensitive to oxidative, hyperosmotic, cell wall, and membrane stresses. The ΔFgsch9 deletion also had conidium morphology defects and produced smaller conidia. These results suggest that FgSCH9 is important for stress responses, DON production, conidiogenesis, and pathogenesis in F. graminearum. In the rice blast fungus Magnaporthe oryzae, the ΔMosch9 mutant also was defective in conidiogenesis and pathogenesis. Interestingly, it also produced smaller conidia and appressoria. Taken together, our data indicate that the SCH9 kinase gene may have a conserved role in regulating conidium size and plant infection in phytopathogenic ascomycetes.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
229
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
230
|
Yu F, Gu Q, Yun Y, Yin Y, Xu JR, Shim WB, Ma Z. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. THE NEW PHYTOLOGIST 2014; 203:219-32. [PMID: 24684168 DOI: 10.1111/nph.12776] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/14/2014] [Indexed: 05/28/2023]
Abstract
The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum.
Collapse
Affiliation(s)
- Fangwei Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
231
|
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:557-66. [PMID: 24450772 DOI: 10.1094/mpmi-10-13-0306-r] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.
Collapse
|
232
|
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 2014; 9:e95543. [PMID: 24743270 PMCID: PMC3990668 DOI: 10.1371/journal.pone.0095543] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/28/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. METHODOLOGY/PRINCIPAL FINDINGS Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana 'Brazil' in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety 'Brazil'. CONCLUSIONS/SIGNIFICANCE Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Laying Yang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huicai Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | - Guofen Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | | | - Changcong Liang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lei Liu
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jun Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chao Mao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junsheng Huang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
233
|
De Souza CP, Hashmi SB, Osmani AH, Osmani SA. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans. PLoS One 2014; 9:e90911. [PMID: 24599037 PMCID: PMC3944740 DOI: 10.1371/journal.pone.0090911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients of SIN activity promote asymmetric septation.
Collapse
Affiliation(s)
- Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shahr B. Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aysha H. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
234
|
Turrà D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:267-88. [PMID: 25090477 DOI: 10.1146/annurev-phyto-102313-050143] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytopathogenic fungi have evolved an amazing diversity of infection modes and nutritional strategies, yet the signaling pathways that govern pathogenicity are remarkably conserved. Protein kinases (PKs) catalyze the reversible phosphorylation of proteins, regulating a variety of cellular processes. Here, we present an overview of our current understanding of the different classes of PKs that contribute to fungal pathogenicity on plants and of the mechanisms that regulate and coordinate PK activity during infection-related development. In addition to the well-studied PK modules, such as MAPK (mitogen-activated protein kinase) and cAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) cascades, we also discuss new PK pathways that have emerged in recent years as key players of pathogenic development and disease. Understanding how conserved PK signaling networks have been recruited during the evolution of fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease.
Collapse
Affiliation(s)
- David Turrà
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; , ,
| | | | | |
Collapse
|
235
|
Zhang C, Wang Y, Wang J, Zhai Z, Zhang L, Zheng W, Zheng W, Yu W, Zhou J, Lu G, Shim WB, Wang Z. Functional characterization of Rho family small GTPases in Fusarium graminearum. Fungal Genet Biol 2013; 61:90-9. [DOI: 10.1016/j.fgb.2013.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
236
|
WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum. EUKARYOTIC CELL 2013; 13:87-98. [PMID: 24186953 DOI: 10.1128/ec.00220-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi.
Collapse
|
237
|
Yu J, Son H, Park AR, Lee SH, Choi GJ, Kim JC, Lee YW. Functional characterization of sucrose non-fermenting 1 protein kinase complex genes in the Ascomycete Fusarium graminearum. Curr Genet 2013; 60:35-47. [PMID: 24057127 DOI: 10.1007/s00294-013-0409-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase complex is a heterotrimer that functions in energy homeostasis in eukaryotes by regulating transcription of glucose-repressible genes. Our previous study revealed that SNF1 of the homothallic ascomycete fungus Fusarium graminearum plays important roles in vegetative growth, sexual development, and virulence. In this study, we further identified the components of the SNF1 complex in F. graminearum and characterized their functions. We found that the SNF1 complex in F. graminearum consists of one alpha subunit (FgSNF1), one beta subunit (FgGAL83), and one gamma subunit (FgSNF4). Deletion of Fggal83 and Fgsnf4 resulted in alleviated phenotype changes in vegetative growth and sexual development as compared to those of the Fgsnf1 deletion mutant. However, all of the single, double, and triple deletion mutants among Fgsnf1, Fggal83, and Fgsnf4 had similar levels of decreased virulence. In addition, there was no synergistic effect of the mutant (single, double, or triple deletions of SNF1 complex component genes) phenotypes except for sucrose utilization. In this study, we revealed that FgSNF1 is mainly required for SNF1 complex functions, and the other two SNF1 complex components have adjunctive roles with FgSNF1 in sexual development and vegetative growth but have a major role in virulence in F. graminearum.
Collapse
Affiliation(s)
- Jungheon Yu
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
238
|
Son H, Kim MG, Min K, Seo YS, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. PLoS One 2013; 8:e72915. [PMID: 24039821 PMCID: PMC3769392 DOI: 10.1371/journal.pone.0072915] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/15/2013] [Indexed: 12/03/2022] Open
Abstract
Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Myung-Gu Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
239
|
Lysenko A, Urban M, Bennett L, Tsoka S, Janowska-Sejda E, Rawlings CJ, Hammond-Kosack KE, Saqi M. Network-based data integration for selecting candidate virulence associated proteins in the cereal infecting fungus Fusarium graminearum. PLoS One 2013; 8:e67926. [PMID: 23861834 PMCID: PMC3701590 DOI: 10.1371/journal.pone.0067926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
The identification of virulence genes in plant pathogenic fungi is important for understanding the infection process, host range and for developing control strategies. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach. Here we study 133 genes in the globally important Ascomycete fungus Fusarium graminearum that have been experimentally tested for their involvement in virulence. An integrated network that combines information from gene co-expression, predicted protein-protein interactions and sequence similarity was employed and, using 100 genes known to be required for virulence, we found a total of 215 new proteins potentially associated with virulence of which 29 are annotated as hypothetical proteins. The majority of these potential virulence genes are located in chromosomal regions known to have a low recombination frequency. We have also explored the taxonomic diversity of these candidates and found 25 sequences, which are likely to be fungal specific. We discuss the biological relevance of a few of the potentially novel virulence associated genes in detail. The analysis of already verified virulence genes in phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a 'guilt by association' approach.
Collapse
Affiliation(s)
- Artem Lysenko
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| | - Laura Bennett
- Department of Informatics, School of Natural and Mathematical Sciences, Kings College London, Strand, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, School of Natural and Mathematical Sciences, Kings College London, Strand, London, United Kingdom
| | - Elzbieta Janowska-Sejda
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| | - Chris J. Rawlings
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| | - Kim E. Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
- * E-mail:
| | - Mansoor Saqi
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
240
|
Son H, Lee J, Lee YW. A novel gene, GEA1, is required for ascus cell-wall development in the ascomycete fungus Fusarium graminearum. Microbiology (Reading) 2013; 159:1077-1085. [DOI: 10.1099/mic.0.064287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 604-714, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
241
|
Towards systems biology of mycotoxin regulation. Toxins (Basel) 2013; 5:675-82. [PMID: 23598563 PMCID: PMC3705286 DOI: 10.3390/toxins5040675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022] Open
Abstract
Systems biology is a scientific approach that integrates many scientific disciplines to develop a comprehensive understanding of biological phenomena, thus allowing the prediction and accurate simulation of complex biological behaviors. It may be presumptuous to write about toxin regulation at the level of systems biology, but the last decade of research is leading us closer than ever to this approach. Past research has delineated multiple levels of regulation in the pathways leading to the biosynthesis of secondary metabolites, including mycotoxins. At the top of this hierarchy, the global or master transcriptional regulators perceive various environmental cues such as climatic conditions, the availability of nutrients, and the developmental stages of the organism. Information accumulated from various inputs is integrated through a complex web of signalling networks to generate the eventual outcome. This review will focus on adapting techniques such as chemical and other genetic tools available in the model system Saccharomyces cerevisiae, to disentangle the various biological networks involved in the biosynthesis of mycotoxins in the Fusarium spp.
Collapse
|
242
|
Kong LA, Li GT, Liu Y, Liu MG, Zhang SJ, Yang J, Zhou XY, Peng YL, Xu JR. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet Biol 2013; 56:33-41. [PMID: 23591122 DOI: 10.1016/j.fgb.2013.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 12/13/2022]
Abstract
Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips. Whereas appressorium formation by conidial germ tubes has been well characterized, formation of appressorium-like structures by hyphal tips is under-investigated. In a previous study, we found that the chs7 deletion mutant failed to form appressoria on germ tubes but were normal in the development of appressorium-like structures on artificial hydrophobic surfaces. In this study, we compared the differences between the formation of appressoria by germ tubes and appressorium-like structures by hyphal tips in M. oryzae. Structurally, both appressoria and appressorium-like structures had a melanin layer that was absent in the pore region. In general, the latters were 1.4-fold larger in size but had lower turgor pressure than appressoria, which is consistent with its lower efficiency in plant penetration. Treatments with cAMP, IBMX, or a cutin monomer efficiently induced appressorium formation but not the development of appressorium-like structures. In contrast, coating surfaces with waxes stimulated the formation of both infection structures. Studies with various signaling mutants indicate that Osm1 and Mps1 are dispensable but Pmk1 is essential for both appressorium formation and development of appressorium-like structures on hyphal tips. Interestingly, the cpkA mutant was reduced in the differentiation of appressorium-like structures but not appressorium formation. We also observed that the con7 mutant generated in our lab failed to form appressorium-like structures on hyphal tips but still produced appressoria by germ tubes on hydrophobic surfaces. Con7 is a transcription factor regulating the expression of CHS7. Overall, these results indicate that the development of appressorium-like structures by hyphal tips and formation of appressoria by germ tubes are not identical differentiation processes in M. oryzae and may involve different molecular mechanisms.
Collapse
Affiliation(s)
- Ling-An Kong
- NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs.
Collapse
|
244
|
Cools HJ, Hammond-Kosack KE. Exploitation of genomics in fungicide research: current status and future perspectives. MOLECULAR PLANT PATHOLOGY 2013; 14:197-210. [PMID: 23157348 PMCID: PMC6638899 DOI: 10.1111/mpp.12001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Every year, fungicide use to control plant disease caused by pathogenic fungi increases. The global fungicide market is now worth more than £5.3 billion, second only to the herbicide market in importance. In the UK, over 5500 tonnes of fungicide were applied to crops in 2010 (The Food and Environment Research Agency, Pesticide Usage Statistics), with 95.5% of the wheat-growing area receiving three fungicide sprays. Although dependence on fungicides to produce food securely, reliably and cheaply may be moderated in the future by further developments in crop biotechnology, modern crop protection will continue to require a diversity of solutions, including effective and safe chemical control. Therefore, investment in exploiting the increasingly available genome sequences of the most devastating fungal and oomycete phytopathogenic species should bring an array of new opportunities for chemical intervention. To date, the impact of whole genome research on the development, introduction and stewardship of fungicides has been limited, but ongoing improvements in computational analysis, molecular biology, chemical genetics, genome sequencing and transcriptomics will facilitate the development and registration of the future suite of crop protection chemicals.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
245
|
Liu X, Jiang J, Yin Y, Ma Z. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2013; 14:71-83. [PMID: 22947191 PMCID: PMC6638626 DOI: 10.1111/j.1364-3703.2012.00829.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant-pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C-24 reductase, which catalyses the conversion of ergosta-5,7,22,24-tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4-2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4-2 revealed increased resistance to cell wall-degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4-2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over-expression of SBI target genes in the mutant. ΔFgErg4-2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild-type progenitor. All of these phenotypic defects of ΔFgErg4-2 were complemented by the reintroduction of a full-length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
246
|
Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. THE PLANT CELL 2012; 24:5159-76. [PMID: 23266949 PMCID: PMC3556981 DOI: 10.1105/tpc.112.105957] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/24/2012] [Accepted: 12/07/2012] [Indexed: 05/18/2023]
Abstract
The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat (Triticum aestivum). To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles and then examined pathogen gene expression inside wheat coleoptiles at 16, 40, and 64 h after inoculation (HAI) using laser capture microdissection and microarray analysis. We identified 344 genes that were preferentially expressed during invasive growth in planta. Gene expression profiles for 134 putative plant cell wall-degrading enzyme genes suggest that there was limited cell wall degradation at 16 HAI and extensive degradation at 64 HAI. Expression profiles for genes encoding reactive oxygen species (ROS)-related enzymes suggest that F. graminearum primarily scavenges extracellular ROS before a later burst of extracellular ROS is produced by F. graminearum enzymes. Expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum relies on the glyoxylate cycle at an early stage of plant infection. A secondary metabolite biosynthesis gene cluster was specifically induced at 64 HAI and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert penetration strategies and switches to overt cellular destruction of tissues at an advanced stage of infection.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Gang Jiang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Address correspondence to
| |
Collapse
|
247
|
Woloshuk CP, Shim WB. Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 2012; 37:94-109. [PMID: 23078349 DOI: 10.1111/1574-6976.12009] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 01/03/2023] Open
Abstract
Plant pathogenic fungi Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum infect seeds of the most important food and feed crops, including maize, wheat, and barley. More importantly, these fungi produce aflatoxins, fumonisins, and trichothecenes, respectively, which threaten health and food security worldwide. In this review, we examine the molecular mechanisms and environmental factors that regulate mycotoxin biosynthesis in each fungus, and discuss the similarities and differences in the collective body of knowledge. Whole-genome sequences are available for these fungi, providing reference databases for genomic, transcriptomic, and proteomic analyses. It is well recognized that genes responsible for mycotoxin biosynthesis are organized in clusters. However, recent research has documented the intricate transcriptional and epigenetic regulation that affects these gene clusters. Significantly, molecular networks that respond to environmental factors, namely nitrogen, carbon, and pH, are connected to components regulating mycotoxin production. Furthermore, the developmental status of seeds and specific tissue types exert conditional influences during fungal colonization. A comparison of the three distinct mycotoxin groups provides insight into new areas for research collaborations that will lead to innovative strategies to control mycotoxin contamination of grain.
Collapse
Affiliation(s)
- Charles P Woloshuk
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
248
|
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 2012; 7:e49495. [PMID: 23166686 PMCID: PMC3498113 DOI: 10.1371/journal.pone.0049495] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.
Collapse
Affiliation(s)
- Dawei Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| | - Chenfang Wang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Xiang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| |
Collapse
|
249
|
Zheng W, Zhao X, Xie Q, Huang Q, Zhang C, Zhai H, Xu L, Lu G, Shim WB, Wang Z. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLoS One 2012; 7:e45432. [PMID: 23029006 PMCID: PMC3448628 DOI: 10.1371/journal.pone.0045432] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/16/2012] [Indexed: 01/21/2023] Open
Abstract
Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study, our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F. verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species. These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi.
Collapse
Affiliation(s)
- Wenhui Zheng
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xu Zhao
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qiurong Xie
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingping Huang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengkang Zhang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huanchen Zhai
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Henan University of Technology, Zhengzhou, Henan, Fujian, China
| | - Liping Xu
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guodong Lu
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Won-Bo Shim
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (WBS); (ZW)
| | - Zonghua Wang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (WBS); (ZW)
| |
Collapse
|
250
|
Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang C, Feng MG. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2012; 2:483. [PMID: 22761991 PMCID: PMC3387728 DOI: 10.1038/srep00483] [Citation(s) in RCA: 452] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022] Open
Abstract
The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide.
Collapse
Affiliation(s)
- Guohua Xiao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|