201
|
Davido B, Saleh-Mghir A, Laurent F, Danel C, Couzon F, Gatin L, Vandenesch F, Rasigade JP, Crémieux AC. Phenol-Soluble Modulins Contribute to Early Sepsis Dissemination Not Late Local USA300-Osteomyelitis Severity in Rabbits. PLoS One 2016; 11:e0157133. [PMID: 27275944 PMCID: PMC4898696 DOI: 10.1371/journal.pone.0157133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/21/2022] Open
Abstract
Introduction In bone and joint infections (BJIs), bacterial toxins are major virulence factors: Panton—Valentine leukocidin (PVL) expression leads to severe local damage, including bone distortion and abscesses, while α-hemolysin (Hla) production is associated with severe sepsis-related mortality. Recently, other toxins, namely phenol-soluble modulins (PSMs) expressed by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain USA300 (LAC WT) were shown to have ex vivo intracellular cytotoxic activity after S. aureus invasion of osteoblasts, but their in vivo contribution in a relatively PVL-sensitive osteomyelitis model remains poorly elucidated. Materials and Methods We compared the outcomes of experimental rabbit osteomyelitises induced with pvl+hla+psms+ LAC WT and its isogenic Δpsm derivatives (LAC Δpsmα and LAC Δpsmαβhld) using an inoculum of 3 × 108 CFUs. Mortality, hematogenous spread (blood culture, spleen and kidney), lung and bone involvements were assessed in two groups (non-survivors of severe sepsis and survivors sacrificed on day (D) 14). Results Severe sepsis-related mortality tended to be lower for Δpsm derivatives (Kaplan—Meier curves, P = .06). Non-survivors’ bone LAC-Δpsmα (6.9 log10 CFUs/g of bone, P = .04) or -Δpsmαβhld (6.86 log10 CFUs/g of bone, P = .014) densities were significantly higher than LAC WT (6.43 log10 CFUs/g of bone). Conversely, lung Δpsmαβhld CFUs were significantly lower than LAC WT (P = .04). LAC Δpsmα, Δpsmαβhld and WT induced similar bone damage in D14 survivors, with comparable bacterial densities (respectively: 5.89, 5.91, and 6.15 log10 CFUs/g of bone). Meanwhile, pulmonary histological scores of inflammation were significantly higher for LAC Δpsmα- and Δpsmαβhld-infected rabbits compared to LAC WT (P = .04 and .01, respectively) but with comparable lung bacterial densities. Conclusion Our experimental results showed that deactivating PSM peptides significantly limited bacterial dissemination from bone during the early phase of infection, but did not affect local severity of USA300 rabbit osteomyelitis.
Collapse
Affiliation(s)
- Benjamin Davido
- Département de Médecine Aigüe Spécialisée, Hôpital Universitaire Raymond-Poincaré, Assistance Publique–Hôpitaux de Paris, Garches, and EA 3647, Faculté de Médecine Paris–Île-de-France Ouest, Université Versailles–Saint-Quentin, Versailles, France
- * E-mail:
| | - Azzam Saleh-Mghir
- Département de Médecine Aigüe Spécialisée, Hôpital Universitaire Raymond-Poincaré, Assistance Publique–Hôpitaux de Paris, Garches, and EA 3647, Faculté de Médecine Paris–Île-de-France Ouest, Université Versailles–Saint-Quentin, Versailles, France
| | - Frédéric Laurent
- CIRI, International Center for Infectiology Research, Inserm U1111-CNRS UMR5308, ENS Lyon–Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Claire Danel
- Département de Pathologie, UFR de Médecine Paris 7, site Bichat, Paris, France
| | - Florence Couzon
- CIRI, International Center for Infectiology Research, Inserm U1111-CNRS UMR5308, ENS Lyon–Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Laure Gatin
- Département de Médecine Aigüe Spécialisée, Hôpital Universitaire Raymond-Poincaré, Assistance Publique–Hôpitaux de Paris, Garches, and EA 3647, Faculté de Médecine Paris–Île-de-France Ouest, Université Versailles–Saint-Quentin, Versailles, France
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, Inserm U1111-CNRS UMR5308, ENS Lyon–Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, International Center for Infectiology Research, Inserm U1111-CNRS UMR5308, ENS Lyon–Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Anne-Claude Crémieux
- Département de Médecine Aigüe Spécialisée, Hôpital Universitaire Raymond-Poincaré, Assistance Publique–Hôpitaux de Paris, Garches, and EA 3647, Faculté de Médecine Paris–Île-de-France Ouest, Université Versailles–Saint-Quentin, Versailles, France
| |
Collapse
|
202
|
Fagerlund A, Langsrud S, Heir E, Mikkelsen MI, Møretrø T. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents. Front Microbiol 2016; 7:856. [PMID: 27375578 PMCID: PMC4893552 DOI: 10.3389/fmicb.2016.00856] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride (BC)-containing disinfectants is due to biofilm formation, matrix composition, or BC efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2), S. cohnii, S. epidermidis, S. lentus (2), and S. saprophyticus (2). The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of BC both in suspension and biofilm than the remaining five biofilm producing strains. The five BC susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding BC efflux pumps could grow at higher concentrations of BC than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or polysaccharide nature, and this may affect the sensitivity toward a commonly used disinfectant.
Collapse
Affiliation(s)
- Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research Ås, Norway
| | - Maria I Mikkelsen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅs, Norway; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research Ås, Norway
| |
Collapse
|
203
|
Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci Rep 2016; 6:24748. [PMID: 27103062 PMCID: PMC4840435 DOI: 10.1038/srep24748] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
Abstract
Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.
Collapse
|
204
|
Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 2016; 138:50-59. [PMID: 26979645 DOI: 10.1016/j.mimet.2016.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry, HEALTH, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Bioscience, Science and Technology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
205
|
Abstract
In the biofilm form, bacteria are more resistant to various antimicrobial treatments. Bacteria in a biofilm can also survive harsh conditions and withstand the host's immune system. Therefore, there is a need for new treatment options to treat biofilm-associated infections. Currently, research is focused on the development of antibiofilm agents that are nontoxic, as it is believed that such molecules will not lead to future drug resistance. In this review, we discuss recent discoveries of antibiofilm agents and different approaches to inhibit/disperse biofilms. These new antibiofilm agents, which contain moieties such as imidazole, phenols, indole, triazole, sulfide, furanone, bromopyrrole, peptides, etc. have the potential to disperse bacterial biofilms in vivo and could positively impact human medicine in the future.
Collapse
|
206
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
207
|
Payne DE, Boles BR. Emerging interactions between matrix components during biofilm development. Curr Genet 2015; 62:137-41. [PMID: 26515441 PMCID: PMC4723619 DOI: 10.1007/s00294-015-0527-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.
Collapse
Affiliation(s)
- David E Payne
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
208
|
Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers. PLoS One 2015; 10:e0140388. [PMID: 26485271 PMCID: PMC4618944 DOI: 10.1371/journal.pone.0140388] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/24/2015] [Indexed: 01/30/2023] Open
Abstract
Microorganisms produce functional amyloids that can be examined and manipulated in vivo and in vitro. Escherichia coli assemble extracellular adhesive amyloid fibers termed curli that mediate adhesion and promote biofilm formation. We have characterized the dye binding properties of the hallmark amyloid dye, Congo red, with curliated E. coli and with isolated curli fibers. Congo red binds to curliated whole cells, does not inhibit growth, and can be used to comparatively quantify whole-cell curliation. Using Surface Plasmon Resonance, we measured the binding and dissociation kinetics of Congo red to curli. Furthermore, we determined that the binding of Congo red to curli is pH-dependent and that histidine residues in the CsgA protein do not influence Congo red binding. Our results on E. coli strain MC4100, the most commonly employed strain for studies of E. coli amyloid biogenesis, provide a starting point from which to compare the influence of Congo red binding in other E. coli strains and amyloid-producing organisms.
Collapse
|
209
|
Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 2015; 99:123-34. [PMID: 26365835 DOI: 10.1111/mmi.13219] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
Abstract
Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.
Collapse
Affiliation(s)
- Kelly Schwartz
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mahesh Ganesan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David E Payne
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
210
|
Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. NPJ Biofilms Microbiomes 2015; 1. [PMID: 26855788 PMCID: PMC4739805 DOI: 10.1038/npjbiofilms.2015.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background/objectives: A disruption of epithelial barrier function can lead to intestinal inflammation. Toll-like receptor (TLR) 2 activation by microbial products promotes intestinal epithelial integrity and overall gut health. Several bacterial species, including enteric bacteria, actively produce amyloid proteins as a part of their biofilms. Recognition of amyloid fibres found in enteric biofilms, termed curli, by the Toll-like receptor (TLR)2/1 complex reinforces barrier function. Here, we investigated the effect of purified curli fibres on inflammation in a mouse model of acute colitis. Methods: Bone marrow–derived macrophages as well as lamina propria cells were treated with curli fibres of both pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli Nissle 1917 biofilms. Mice were given 0.1 or 0.4 mg of purified curli orally 1 day post administration of 1% 2,4,6-trinitrobenzene sulphonic acid (TNBS) enema. Histopathological analysis was performed on distal colonic tissue taken 6 days post TNBS enema. RNA extracted from colonic tissue was subjected to RT-PCR. Results: Here we show that curli fibres of both pathogenic and commensal bacteria are recognised by TLR2 leading to the production of IL-10, immunomodulatory cytokine of intestinal homeostasis. Treatment of mice with a single dose of curli heightens transcript levels of Il10 in the colon and ameliorates the disease pathology in TNBS-induced colitis. Curli treatment is comparable to the treatment with anti-tumour necrosis factor alpha (anti-TNFα) antibodies, a treatment known to reduce the severity of acute colitis in humans and mice. Conclusion: These results suggest that the bacterial amyloids had a role in helping to maintain immune homeostasis in the intestinal mucosa via the TLR2/IL-10 axis. Furthermore, bacterial amyloids may be a potential candidate therapeutic to treat intestinal inflammatory disorders owing to their remarkable immunomodulatory activity.
Collapse
|
211
|
Zeng G, Vad BS, Dueholm MS, Christiansen G, Nilsson M, Tolker-Nielsen T, Nielsen PH, Meyer RL, Otzen DE. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 2015; 6:1099. [PMID: 26500638 PMCID: PMC4595789 DOI: 10.3389/fmicb.2015.01099] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.
Collapse
Affiliation(s)
- Guanghong Zeng
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Brian S. Vad
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Morten S. Dueholm
- Center for Microbial Communities, Aalborg UniversityAalborg, Denmark
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus UniversityAarhus, Denmark
| | - Martin Nilsson
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Aalborg UniversityAalborg, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
212
|
Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 2015; 23:693-706. [PMID: 26439293 DOI: 10.1016/j.tim.2015.07.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023]
Abstract
Curli are functional amyloid fibers assembled by many Gram-negative bacteria as part of an extracellular matrix that encapsulates the bacteria within a biofilm. A multicomponent secretion system ensures the safe transport of the aggregation-prone curli subunits across the periplasm and outer membrane, and coordinates subunit self-assembly into surface-attached fibers. To avoid the build-up of potentially toxic intracellular protein aggregates, the timing and location of the interactions of the different curli proteins are of paramount importance. Here we review the structural and molecular biology of curli biogenesis, with a focus on the recent breakthroughs in our understanding of subunit chaperoning and secretion. The mechanistic insight into the curli assembly pathway will provide tools for new biotechnological applications and inform the design of targeted inhibitors of amyloid polymerization and biofilm formation.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Roger D Klein
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
213
|
Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin. mBio 2015; 6:mBio.01021-15. [PMID: 26307164 PMCID: PMC4550693 DOI: 10.1128/mbio.01021-15] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The macrophage response to planktonic Staphylococcus aureus involves the induction of proinflammatory microbicidal activity. However, S. aureus biofilms can interfere with these responses in part by polarizing macrophages toward an anti-inflammatory profibrotic phenotype. Here we demonstrate that conditioned medium from mature S. aureus biofilms inhibited macrophage phagocytosis and induced cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing found the active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry identified alpha-toxin (Hla) and leukocidin AB (LukAB) as critical molecules secreted by S. aureus biofilms that inhibit murine macrophage phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed by using hla and lukAB mutants, and synergy between the two toxins was demonstrated with a lukAB hla double mutant and verified by complementation. Independent confirmation of the effects of Hla and LukAB on macrophage dysfunction was demonstrated by using an isogenic strain in which Hla was constitutively expressed, an Hla antibody to block toxin activity, and purified LukAB peptide. The importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed by using a murine orthopedic implant biofilm infection model in which the lukAB hla double mutant displayed significantly lower bacterial burdens and more macrophage infiltrates than each single mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in promoting macrophage dysfunction and facilitating S. aureus biofilm development in vivo. Staphylococcus aureus has a propensity to form multicellular communities known as biofilms. While growing in a biofilm, S. aureus displays increased tolerance to nutrient deprivation, antibiotic insult, and even host immune challenge. Previous studies have shown that S. aureus biofilms thwart host immunity in part by preventing macrophage phagocytosis. It remained unclear whether this was influenced solely by the considerable size of biofilms or whether molecules were also actively secreted to circumvent macrophage-mediated phagocytosis. This is the first report to demonstrate that S. aureus biofilms inhibit macrophage phagocytosis and induce macrophage death through the combined action of leukocidin AB and alpha-toxin. Loss of leukocidin AB and alpha-toxin expression resulted in enhanced S. aureus biofilm clearance in a mouse model of orthopedic implant infection, suggesting that these toxins could be targeted therapeutically to facilitate biofilm clearance in humans.
Collapse
|
214
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
215
|
Garcia-Sherman MC, Lundberg T, Sobonya RE, Lipke PN, Klotz SA. A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes 2015; 1. [PMID: 26366292 PMCID: PMC4563996 DOI: 10.1038/npjbiofilms.2015.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES We have demonstrated the presence of Candida cell surface amyloids that are important in aggregation of fungi and adherence to tissue. Fungal amyloid was present in invasive human candidal infections and host serum amyloid P component (SAP) bound to the fungal amyloid. SAP is a protease-resistant glycoprotein that binds avidly to amyloid and interferes with host defence, especially against bacterial pathogens for which neutrophils are important. In this study, we investigated whether biofilm of fungal amyloid and SAP was a feature of other disseminated fungal infections. METHODS Tissue specimens from 15 autopsies were systematically evaluated with multiple histochemical stains including thioflavin T and Congo red (dyes that stain amyloid), as well as antibody to SAP. We studied specimens with disseminated aspergillosis, mucormycosis and coccidioidomycosis. The structure of the lesions, host inflammatory cells and the presence of fungal amyloid and SAP were determined. RESULTS The structure of the lesions was characteristic in aspergillosis ('starburst') and mucormycosis (closely apposed bundles of hyphae). Host inflammatory cells were absent or few in number within these lesions. In Coccidioides lesions, host inflammation was sparse as well. Fungal amyloid was a prominent feature of all lesions along with abundant SAP bound to hyphae and spherules. Fungal amyloid and SAP perhaps contributed to persistence in caseous necrosis lesions. SAP also bound to Aspergillus and Mucorales amyloid in vitro. CONCLUSIONS A biofilm including amyloid and SAP is present in invasive fungal infections. This biofilm may dampen host defence leading to the characteristic sparse inflammatory reaction found in these infections.
Collapse
Affiliation(s)
| | - Tracy Lundberg
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | | | - Peter N Lipke
- Department of Biology, City University of New York, Brooklyn College, Brooklyn, NY, USA
| | - Stephen A Klotz
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
216
|
Gallo PM, Rapsinski GJ, Wilson RP, Oppong GO, Sriram U, Goulian M, Buttaro B, Caricchio R, Gallucci S, Tükel Ç. Amyloid-DNA Composites of Bacterial Biofilms Stimulate Autoimmunity. Immunity 2015; 42:1171-84. [PMID: 26084027 PMCID: PMC4500125 DOI: 10.1016/j.immuni.2015.06.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 12/08/2014] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity.
Collapse
Affiliation(s)
- Paul M Gallo
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Glenn J Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - R Paul Wilson
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Gertrude O Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Uma Sriram
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bettina Buttaro
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
217
|
Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun 2015; 83:3428-37. [PMID: 26077761 DOI: 10.1128/iai.00401-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal that colonizes the skin. While it is normally innocuous, it has strong associations with atopic dermatitis pathogenesis and has become the leading cause of skin and soft tissue infections in the United States. The factors that dictate the role of S. aureus in disease are still being determined. In this work, we utilized primary keratinocyte culture and an epidermal murine colonization model to investigate the role of S. aureus phenol-soluble modulins (PSMs) in proinflammatory cytokine release and inflammation induction. We demonstrated that many species of Staphylococcus are capable of causing release of interleukin 18 (IL-18) from keratinocytes and that S. aureus PSMs are necessary and sufficient to stimulate IL-18 release from keratinocytes independently of caspase 1. Further, after 7 days of epicutaneous exposure to wild-type S. aureus, but not S. aureus Δpsm, we saw dramatic changes in gross pathology, as well as systemic release of proinflammatory cytokines. This work demonstrates the importance of PSM peptides in S. aureus-mediated inflammatory cytokine release from keratinocytes in vitro and in vivo and further implicates PSMs as important contributors to pathogenesis.
Collapse
|
218
|
Ramsugit S, Pillay M. Pili of Mycobacterium tuberculosis: current knowledge and future prospects. Arch Microbiol 2015; 197:737-44. [PMID: 25975850 DOI: 10.1007/s00203-015-1117-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
Abstract
Many pathogenic bacteria express filamentous appendages, termed pili, on their surface. These organelles function in several important bacterial processes, including mediating bacterial interaction with, and colonization of the host, signalling events, locomotion, DNA uptake, electric conductance, and biofilm formation. In the last decade, it has been established that the tuberculosis-causing bacterium, Mycobacterium tuberculosis, produces two pili types: curli and type IV pili. In this paper, we review studies on M. tuberculosis pili, highlighting their structure and biological significance to M. tuberculosis pathogenesis, and discuss their potential as targets for therapeutic intervention and diagnostic test development.
Collapse
Affiliation(s)
- Saiyur Ramsugit
- Medical Microbiology and Infection Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Private Bag 7, Congella, Durban, 4013, South Africa
| | | |
Collapse
|
219
|
Role of Phenol-Soluble Modulins in Formation of Staphylococcus aureus Biofilms in Synovial Fluid. Infect Immun 2015; 83:2966-75. [PMID: 25964472 DOI: 10.1128/iai.00394-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections, which, as we recently showed, proceed with the involvement of biofilm-like clusters that cause recalcitrance to antibiotic treatment. Here we analyzed why these clusters grow extraordinarily large, reaching macroscopically visible extensions (>1 mm). We found that while specific S. aureus surface proteins are a prerequisite for agglomeration in synovial fluid, low activity of the Agr regulatory system and subsequent low production of the phenol-soluble modulin (PSM) surfactant peptides cause agglomerates to grow to exceptional dimensions. Our results indicate that PSMs function by disrupting interactions of biofilm matrix molecules, such as the polysaccharide intercellular adhesin (PIA), with the bacterial cell surface. Together, our findings support a two-step model of staphylococcal prosthetic joint infection: As we previously reported, interaction of S. aureus surface proteins with host matrix proteins such as fibrin initiates agglomeration; our present results show that, thereafter, the bacterial agglomerates grow to extremely large sizes owing to the lack of PSM expression under the specific conditions present in joints. Our findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms of S. aureus infection, and have important implications for antistaphylococcal therapeutic strategies.
Collapse
|
220
|
Valle J, Burgui S, Langheinrich D, Gil C, Solano C, Toledo-Arana A, Helbig R, Lasagni A, Lasa I. Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromol Biosci 2015; 15:1060-9. [DOI: 10.1002/mabi.201500107] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jaione Valle
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Saioa Burgui
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Denise Langheinrich
- Fraunhofer Institute for Material and Beam Technology (IWS) Dresden; Winterbergstraße 28 01277 Dresden Germany
- Institute for Manufacturing Technology; TU Dresden; George-Bähr-Straße 3c 01069 Dresden Germany
| | - Carmen Gil
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Ralf Helbig
- Leibniz Institute of Polymer Research (IPF) Dresden; HoheStraße 6 01069 Dresden Germany
| | - Andrés Lasagni
- Fraunhofer Institute for Material and Beam Technology (IWS) Dresden; Winterbergstraße 28 01277 Dresden Germany
- Institute for Manufacturing Technology; TU Dresden; George-Bähr-Straße 3c 01069 Dresden Germany
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| |
Collapse
|
221
|
Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 2015; 39:649-69. [PMID: 25907113 PMCID: PMC4551309 DOI: 10.1093/femsre/fuv015] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 01/24/2023] Open
Abstract
Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars. Examining the structure and function of the biofilm extracellular matrix.
Collapse
Affiliation(s)
- Laura Hobley
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Catriona Harkins
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cait E MacPhee
- James Clerk Maxwell Building, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
222
|
The Matrix Reloaded: Probing the Extracellular Matrix Synchronizes Bacterial Communities. J Bacteriol 2015; 197:2092-2103. [PMID: 25825428 DOI: 10.1128/jb.02516-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In response to chemical communication, bacterial cells often organize themselves into complex multicellular communities that carry out specialized tasks. These communities are frequently referred to as biofilms, which involve collective behavior of different cell types. Like cells of multicellular eukaryotes, the biofilm cells are surrounded by self-produced polymers that constitute the extracellular matrix (ECM), which binds them to each other and to the surface. In multicellular eukaryotes, it has been evident for decades that cell-ECM interactions control multiple cellular processes during development. While cells, both in biofilms and in multicellular eukaryotes, are surrounded by ECM and activate various genetic programs, until recently it has been unclear whether cell-ECM interactions are recruited in bacterial communicative behaviors. In this review, we will describe the examples reported thus far for ECM involvement in control of cell behavior throughout the different stages of biofilm formation. The studies presented in this review provide a newly emerging perspective of the bacterial ECM as an active player in regulation of biofilm development.
Collapse
|
223
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7. [PMID: 25713785 PMCID: PMC4322838 DOI: 10.3389/fcimb.2015.00007] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
224
|
Caro-Astorga J, Pérez-García A, de Vicente A, Romero D. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Front Microbiol 2015; 5:745. [PMID: 25628606 PMCID: PMC4292775 DOI: 10.3389/fmicb.2014.00745] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed (i) the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and (ii) the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.
Collapse
Affiliation(s)
- Joaquín Caro-Astorga
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| |
Collapse
|
225
|
Dean SN, Walsh C, Goodman H, van Hoek ML. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry. BIOFOULING 2015; 31:151-161. [PMID: 25672229 DOI: 10.1080/08927014.2015.1011067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. This study is the first to use laser ablation electrospray ionization mass spectrometry (LAESI-MS) to rapidly study bacteria within a mixed biofilm. Fast, direct, non-invasive LAESI-MS analysis of biofilm could significantly accelerate biofilm studies and provide previously unavailable information on both biofilm composition and the effects of antibiofilm treatment. LAESI-MS was applied directly to a polymicrobial biofilm and analyzed with respect to whether P. aeruginosa and S. aureus were co-localized or self-segregated within the mixed biofilm. LAESI-MS was also used to analyze ions following LL-37 antimicrobial peptide treatment of the biofilm. This ambient ionization method holds promise for future biofilm studies. The use of this innovative technique has profound implications for the study of biofilms, as LAESI-MS eliminates the need for lengthy and disruptive sample preparation while permitting rapid analysis of unfixed and wet biofilms.
Collapse
Affiliation(s)
- Scott N Dean
- a School of Systems Biology and National Center for Biodefense and Infectious Diseases , George Mason University , Manassas , VA , USA
| | | | | | | |
Collapse
|
226
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015. [PMID: 25713785 DOI: 10.3389/fcimb.2015.00007/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
227
|
Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol 2014; 4:171. [PMID: 25540773 PMCID: PMC4261907 DOI: 10.3389/fcimb.2014.00171] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/21/2014] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g., in native valve endocarditis, bone tissue, and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasma proteins, staphylococcal biofilms grow, and produce a specific environment which provides the conditions for cell–cell interaction and formation of multicellular communities. Bacteria living in biofilms express a variety of macromolecules, including exopolysaccharides, proteins, extracellular eDNA, and other polymers. The S. aureus surface protein C and G (SasC and SasG), clumping factor B (ClfB), serine aspartate repeat protein (SdrC), the biofilm-associated protein (Bap), and the fibronectin/fibrinogen-binding proteins (FnBPA and FnBPB) are individually implicated in biofilm matrix formation. In S. epidermidis, a protein named accumulation-associated protein (Aap) contributes to both the primary attachment phase and the establishment of intercellular connections by forming fibrils on the cell surface. In S. epidermidis, proteinaceous biofilm formation can also be mediated by the extracellular matrix binding protein (Embp) and S. epidermidis surface protein C (SesC). Additionally, multifunctional proteins such as extracellular adherence protein (Eap) and extracellular matrix protein binding protein (Emp) of S. aureus and the iron-regulated surface determinant protein C (IsdC) of S. lugdunensis can promote biofilm formation in iron-depleted conditions. This multitude of proteins intervene at different stages of biofilm formation with certain proteins contributing to biofilm accumulation and others mediating primary attachment to surfaces. This review examines the contribution of proteins to biofilm formation in Staphylococci. The potential to develop vaccines to prevent protein-dependent biofilm formation during staphylococcal infection is discussed.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin Dublin, Ireland
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
228
|
Le KY, Dastgheyb S, Ho TV, Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol 2014; 4:167. [PMID: 25505739 PMCID: PMC4244807 DOI: 10.3389/fcimb.2014.00167] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 11/30/2022] Open
Abstract
Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: (1) attachment, (2) proliferation/structuring, and (3) detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs) have been consistently demonstrated to serve in this role under both in vitro and in vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr) system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.
Collapse
Affiliation(s)
- Katherine Y Le
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA ; Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Sana Dastgheyb
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA ; Department of Orthopedic Surgery, Thomas Jefferson University School of Medicine Philadelphia, PA, USA
| | - Trung V Ho
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA ; Uniformed Services University of the Health and Sciences, School of Medicine Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
229
|
Zhurina MV, Gannesen AV, Zdorovenko EL, Plakunov VK. Composition and functions of the extracellular polymer matrix of bacterial biofilms. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171406023x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
230
|
Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect Immun 2014; 83:693-701. [PMID: 25422268 DOI: 10.1128/iai.02370-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Amyloids are proteins with cross-β-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1β (IL-1β). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1β via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1β. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid β of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1β as a product of this interaction.
Collapse
|
231
|
Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 2014; 3:897-909. [PMID: 25257373 PMCID: PMC4263513 DOI: 10.1002/mbo3.214] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023] Open
Abstract
We demonstrate that the purified Staphylococcus aureus extracellular proteases aureolysin, ScpA, SspA, and SspB limit biofilm formation, with aureolysin having the greatest impact. Using protease-deficient derivatives of LAC, we confirmed that this is due to the individual proteases themselves. Purified aureolysin, and to a lesser extent ScpA and SspB, also promoted dispersal of an established biofilm. Mutation of the genes encoding these proteases also only partially restored biofilm formation in an FPR3757 sarA mutant and had little impact on restoring virulence in a murine bacteremia model. In contrast, eliminating the production of all of these proteases fully restored both biofilm formation and virulence in a sarA mutant generated in the closely related USA300 strain LAC. These results confirm an important role for multiple extracellular proteases in S. aureus pathogenesis and the importance of sarA in repressing their production. Moreover, purified aureolysin limited biofilm formation in 14 of 15 methicillin-resistant isolates and 11 of 15 methicillin-susceptible isolates, while dispersin B had little impact in UAMS-1, LAC, or 29 of 30 contemporary isolates of S. aureus. This suggests that the role of sarA and its impact on protease production is important in diverse strains of S. aureus irrespective of their methicillin resistance status.
Collapse
Affiliation(s)
- Allister J Loughran
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | | | | | |
Collapse
|
232
|
Greiner ER, Kelly JW, Palhano FL. Immunoprecipitation of amyloid fibrils by the use of an antibody that recognizes a generic epitope common to amyloid fibrils. PLoS One 2014; 9:e105433. [PMID: 25144803 PMCID: PMC4140755 DOI: 10.1371/journal.pone.0105433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Amyloid fibrils are associated with many maladies, including Alzheimer's disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ(1-40) amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ(1-40) amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ(1-40) amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this protocol to the isolation of amyloids.
Collapse
Affiliation(s)
- Erin R. Greiner
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Fernando L. Palhano
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
233
|
Weisman A, Chen YA, Hoshino Y, Zhang H, Shea K. Engineering Nanoparticle Antitoxins Utilizing Aromatic Interactions. Biomacromolecules 2014; 15:3290-5. [DOI: 10.1021/bm500666j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adam Weisman
- Department
of Chemistry University of California, Irvine, Irvine, California 92697, United States
| | - Yingyao Allie Chen
- Department
of Chemistry University of California, Irvine, Irvine, California 92697, United States
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Huiting Zhang
- Department
of Chemistry University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth Shea
- Department
of Chemistry University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
234
|
Syed AK, Boles BR. Fold modulating function: bacterial toxins to functional amyloids. Front Microbiol 2014; 5:401. [PMID: 25136340 PMCID: PMC4118032 DOI: 10.3389/fmicb.2014.00401] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022] Open
Abstract
Many bacteria produce cytolytic toxins that target host cells or other competing microbes. It is well known that environmental factors control toxin expression, however, recent work suggests that some bacteria manipulate the fold of these protein toxins to control their function. The β-sheet rich amyloid fold is a highly stable ordered aggregate that many toxins form in response to specific environmental conditions. When in the amyloid state, toxins become inert, losing the cytolytic activity they display in the soluble form. Emerging evidence suggest that some amyloids function as toxin storage systems until they are again needed, while other bacteria utilize amyloids as a structural matrix component of biofilms. This amyloid matrix component facilitates resistance to biofilm disruptive challenges. The bacterial amyloids discussed in this review reveal an elegant system where changes in protein fold and solubility dictate the function of proteins in response to the environment.
Collapse
Affiliation(s)
- Adnan K Syed
- Department of Molecular Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
235
|
The AgrD N-terminal leader peptide of Staphylococcus aureus has cytolytic and amyloidogenic properties. Infect Immun 2014; 82:3837-44. [PMID: 24980969 DOI: 10.1128/iai.02111-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus virulence is coordinated through the Agr quorum-sensing system to produce an array of secreted molecules. One important class of secreted virulence factors is the phenol-soluble modulins (PSMs). PSMs are small-peptide toxins that have recently been characterized for their roles in infection, biofilm development, and subversion of the host immune system. In this work, we demonstrate that the signal peptide of the S. aureus quorum-sensing signal, AgrD, shares structural and functional similarities with the PSM family of toxins. The efficacy of this peptide (termed N-AgrD) beyond AgrD propeptide trafficking has never been described before. We observe that N-AgrD, like the PSMs, is found in the amyloid fibrils of S. aureus biofilms and is capable of forming and seeding amyloid fibrils in vitro. N-AgrD displays cytolytic and proinflammatory properties that are abrogated after fibril formation. These data suggest that the N-AgrD leader peptide affects S. aureus biology in a manner similar to that described previously for the PSM peptide toxins. Taken together, our findings suggest that peptide cleavage products can affect cellular function beyond their canonical roles and may represent a class of virulence factors warranting further exploration.
Collapse
|
236
|
Abstract
The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.
Collapse
Affiliation(s)
- Raimon Sabate
- Conformational Diseases Group; Department of Physical Chemistry; Faculty of Pharmacy; University of Barcelona (UB); Barcelona, Spain; Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB); Barcelona, Spain
| |
Collapse
|
237
|
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol 2014; 45:167-78. [PMID: 25500382 DOI: 10.1016/j.fm.2014.04.015] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/27/2014] [Indexed: 12/19/2022]
Abstract
Microbial life abounds on surfaces in both natural and industrial environments, one of which is the food industry. A solid substrate, water and some nutrients are sufficient to allow the construction of a microbial fortress, a so-called biofilm. Survival strategies developed by these surface-associated ecosystems are beginning to be deciphered in the context of rudimentary laboratory biofilms. Gelatinous organic matrices consisting of complex mixtures of self-produced biopolymers ensure the cohesion of these biological structures and contribute to their resistance and persistence. Moreover, far from being just simple three-dimensional assemblies of identical cells, biofilms are composed of heterogeneous sub-populations with distinctive behaviours that contribute to their global ecological success. In the clinical field, biofilm-associated infections (BAI) are known to trigger chronic infections that require dedicated therapies. A similar belief emerging in the food industry, where biofilm tolerance to environmental stresses, including cleaning and disinfection/sanitation, can result in the persistence of bacterial pathogens and the recurrent cross-contamination of food products. The present review focuses on the principal mechanisms involved in the formation of biofilms of food-borne pathogens, where biofilm behaviour is driven by its three-dimensional heterogeneity and by species interactions within these biostructures, and we look at some emergent control strategies.
Collapse
Affiliation(s)
| | - P Sanchez-Vizuete
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Guilbaud
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - J-C Piard
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Naïtali
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - R Briandet
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France.
| |
Collapse
|
238
|
|
239
|
IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun 2014; 82:2448-59. [PMID: 24686057 DOI: 10.1128/iai.01542-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative staphylococcus that is a commensal of humans and an opportunistic pathogen. It can cause a spectrum of infections, including those that are associated with the ability to form biofilm, such as occurs with endocarditis or indwelling medical devices. The genome sequences of two strains revealed the presence of orthologues of the ica genes that are responsible for synthesis of poly-N-acetylglucosamine (PNAG) that is commonly associated with biofilm in other staphylococci. However, we discovered that biofilm formed by a panel of S. lugdunensis isolates growing in iron-restricted medium was susceptible to degradation by proteases and not by metaperiodate, suggesting that the biofilm matrix comprised proteins and not PNAG. When the iron concentration was raised to 1 mM biofilm formation by all strains tested was greatly reduced. A mutant of strain N920143 lacking the entire locus that encodes iron-regulated surface determinant (Isd) proteins was defective in biofilm formation under iron-limited conditions. An IsdC-null mutant was defective, whereas IsdK, IsdJ, and IsdB mutants formed biofilm to the same level as the parental strain. Expression of IsdC was required both for the primary attachment to unconditioned polystyrene and for the accumulation phase of biofilm involving cell-cell interactions. Purified recombinant IsdC protein formed dimers in solution and Lactococcus lactis cells expressing only IsdC adhered to immobilized recombinant IsdC but not to IsdJ, IsdK, or IsdB. This is consistent with a specific homophilic interaction between IsdC molecules on neighboring cells contributing to accumulation of S. lugdunensis biofilm in vivo.
Collapse
|
240
|
Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 2014; 18:96-104. [PMID: 24657330 DOI: 10.1016/j.mib.2014.02.008] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/26/2022]
Abstract
Biofilm development and quorum sensing (QS) are closely interconnected processes. Biofilm formation is a cooperative group behaviour that involves bacterial populations living embedded in a self-produced extracellular matrix. QS is a cell-cell communication mechanism that synchronizes gene expression in response to population cell density. Intuitively, it would appear that QS might coordinate the switch to a biofilm lifestyle when the population density reaches a threshold level. However, compelling evidence obtained in different bacterial species coincides in that activation of QS occurs in the formed biofilm and activates the maturation and disassembly of the biofilm in a coordinate manner. The aim of this review is to illustrate, using four bacterial pathogens as examples, the emergent concept that QS activates the biofilm dispersion process.
Collapse
Affiliation(s)
- Cristina Solano
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología-Departamento de Producción Agraria, Idab, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Pamplona 31006, Navarra, Spain
| | - Maite Echeverz
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología-Departamento de Producción Agraria, Idab, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Pamplona 31006, Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología-Departamento de Producción Agraria, Idab, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Pamplona 31006, Navarra, Spain.
| |
Collapse
|
241
|
Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in Plain Sight: Interplay between Staphylococcal Biofilms and Host Immunity. Front Immunol 2014; 5:37. [PMID: 24550921 PMCID: PMC3913997 DOI: 10.3389/fimmu.2014.00037] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are notable for their propensity to form biofilms on implanted medical devices. Staphylococcal biofilm infections are typified by their recalcitrance to antibiotics and ability to circumvent host immune-mediated clearance, resulting in the establishment of chronic infections that are often recurrent in nature. Indeed, the immunomodulatory lifestyle of biofilms seemingly shapes the host immune response to ensure biofilm engraftment and persistence in an immune competent host. Here, we provide a brief review of the mechanisms whereby S. aureus and S. epidermidis biofilms manipulate host–pathogen interactions and discuss the concept of microenvironment maintenance in infectious outcomes, as well as speculate how these findings pertain to the challenges of staphylococcal vaccine development.
Collapse
Affiliation(s)
- Tyler D Scherr
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - John M Morrison
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
242
|
Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J Bacteriol 2014; 196:1505-13. [PMID: 24488317 DOI: 10.1128/jb.01363-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.
Collapse
|
243
|
Cheung GYC, Joo HS, Chatterjee SS, Otto M. Phenol-soluble modulins--critical determinants of staphylococcal virulence. FEMS Microbiol Rev 2014; 38:698-719. [PMID: 24372362 DOI: 10.1111/1574-6976.12057] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are a recently discovered family of amphipathic, alpha-helical peptides that have multiple roles in staphylococcal pathogenesis and contribute to a large extent to the pathogenic success of virulent staphylococci, such as Staphylococcus aureus. PSMs may cause lysis of many human cell types including leukocytes and erythrocytes, stimulate inflammatory responses, and contribute to biofilm development. PSMs appear to have an original role in the commensal lifestyle of staphylococci, where they facilitate growth and spreading on epithelial surfaces. Aggressive, cytolytic PSMs seem to have evolved from that original role and are mainly expressed in highly virulent S. aureus. Here, we will review the biochemistry, genetics, and role of PSMs in the commensal and pathogenic lifestyles of staphylococci, discuss how diversification of PSMs defines the aggressiveness of staphylococcal species, and evaluate potential avenues to target PSMs for drug development against staphylococcal infections.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
244
|
Joo HS, Otto M. The isolation and analysis of phenol-soluble modulins of Staphylococcus epidermidis. Methods Mol Biol 2014; 1106:93-100. [PMID: 24222457 DOI: 10.1007/978-1-62703-736-5_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phenol-soluble modulins (PSMs) are multifunctional peptide toxins produced by many staphylococcal strains. PSMs have received much recent attention, owing to multiple reports underscoring their importance for staphylococcal pathogenesis. Members of the PSM family may be strongly cytolytic to neutrophils and other cell types; promote inflammatory, receptor-mediated responses in several human cell types; and contribute to biofilm structuring and detachment. Here we describe biochemical methods to isolate, purify, and quantitatively analyze Staphylococcus epidermidis PSMs.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
245
|
Cassat JE, Smeltzer MS, Lee CY. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. Methods Mol Biol 2014; 1085:195-211. [PMID: 24085698 DOI: 10.1007/978-1-62703-664-1_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Invasive methicillin-resistant Staphylococcus aureus (MRSA) infections are often characterized by recalcitrance to antimicrobial therapy, which is a function not only of widespread antimicrobial resistance among clinical isolates, but also the capacity to form biofilms. Biofilms consist of ordered populations of bacterial colonies encased in a polysaccharide and/or proteinaceous matrix. This unique physiologic adaptation limits penetration of antimicrobial molecules and innate immune effectors to the infectious focus, increasing the likelihood of treatment failure and progression to chronic infection. Investigation of mechanisms of biofilm formation and dispersal, as well as the physiologic adaptations to the biofilm lifestyle, is therefore critical to developing new therapies to combat MRSA infections. In this chapter, we describe two in vitro methods for the investigation of staphylococcal biofilm formation, a microtiter plate-based assay of biofilm formation under static conditions and a flow cell-based assay of biofilm formation under fluid shear. We also detail an in vivo murine model of catheter-associated biofilm formation that is amenable to imaging and microbiologic analyses. Special consideration is given to the conditions necessary to support biofilm formation by clinical isolates of S. aureus.
Collapse
Affiliation(s)
- James E Cassat
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | |
Collapse
|
246
|
Li S, Huang H, Rao X, Chen W, Wang Z, Hu X. Phenol-soluble modulins: novel virulence-associated peptides of staphylococci. Future Microbiol 2013; 9:203-16. [PMID: 24295365 DOI: 10.2217/fmb.13.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phenol-soluble modulins (PSMs), a novel class of small peptides with an amphipathic α-helical structure and strong surfactant-like properties, are produced by most staphylococci, especially pathogenic Staphylococcus aureus and Staphylococcus epidermidis. PSMs can: induce the production of proinflammatory cytokines; recruit, activate and lyse neutrophils to help staphylococci evade immune damage; lyse erythrocytes and are associated with the hemolysis of staphylococcal disease; facilitate the structuring and detachment of staphylococcal biofilms and disseminate biofilm-associated infection; and kill competing microbes and act as weapons in interbacterial warfare. Therefore, PSMs are considered to be critical virulence-associated factors and to play important roles in the pathogenesis of staphylococci. This review summarizes the classification, structure, expression regulation and biological functions of PSMs. The possible means to prevent PSM-associated diseases are also outlined in order to emphasize the need to investigate PSMs as potential targets for drug and vaccine design against staphylococcal infections.
Collapse
Affiliation(s)
- Shu Li
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
247
|
Garcia M, Lipke P, Klotz S. Pathogenic microbial amyloids: Their function and the host response. OA MICROBIOLOGY 2013; 1:2. [PMID: 25419543 PMCID: PMC4238391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional microbial amyloids are ubiquitous in nature and some contribute to the pathogenesis of infectious diseases. Three pathogenic microbial amyloids are compared and their contribution to the disease process explained. The recent demonstration and visualization of fungal amyloid in human invasive candidiasis is discussed. Moreover, the binding of host serum amyloid P component to Candida functional amyloid in invasive human disease is presented in light of its possible role of masking fungi from the host defenses.
Collapse
Affiliation(s)
- Mc Garcia
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, NY
| | - Pn Lipke
- Department of Medicine, University of Arizona, Tucson, AZ
| | | |
Collapse
|
248
|
Abstract
PSMs are a recently discovered family of short, amphipathic, α-helical peptides in staphylococci. Several PSMs are key virulence determinants, particularly in highly virulent Staphylococcus aureus strains. PSMα peptides of S. aureus facilitate neutrophil lysis after phagocytosis, and are key contributors to several infection types, including skin infection and bacteremia. Furthermore, all PSMs contribute to biofilm structuring and the dissemination of biofilm-associated infection. Cytolytic PSMs as produced by S. aureus appear to have evolved from original functions in the non-infectious lifestyle of staphylococci. The surfactant properties of PSMs, which they all share, are believed to facilitate growth on epithelial surfaces. The basic role of PSMs in staphylococcal physiology is underscored, for example, by their exceptionally strict and direct control by quorum-sensing and the presence of a dedicated secretion system. Targeting PSMs for anti-staphylococcal drug development may be a promising approach to overcome the problems associated with widespread antibiotic resistance in staphylococci.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MA, USA.
| |
Collapse
|
249
|
Ren Q, Kwan AH, Sunde M. Two forms and two faces, multiple states and multiple uses: Properties and applications of the self-assembling fungal hydrophobins. Biopolymers 2013; 100:601-12. [DOI: 10.1002/bip.22259] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/08/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Qin Ren
- Discipline of Pharmacology, School of Medical Sciences; University of Sydney; New South Wales 2006 Australia
| | - Ann H. Kwan
- School of Molecular Bioscience; University of Sydney; New South Wales 2006 Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences; University of Sydney; New South Wales 2006 Australia
| |
Collapse
|
250
|
Affiliation(s)
- David A. Hufnagel
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|