201
|
Lennertz RC, Tsunozaki M, Bautista DM, Stucky CL. Physiological basis of tingling paresthesia evoked by hydroxy-alpha-sanshool. J Neurosci 2010; 30:4353-61. [PMID: 20335471 PMCID: PMC2852189 DOI: 10.1523/jneurosci.4666-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/23/2009] [Accepted: 02/11/2010] [Indexed: 12/15/2022] Open
Abstract
Hydroxy-alpha-sanshool, the active ingredient in plants of the prickly ash plant family, induces robust tingling paresthesia by activating a subset of somatosensory neurons. However, the subtypes and physiological function of sanshool-sensitive neurons remain unknown. Here we use the ex vivo skin-nerve preparation to examine the pattern and intensity with which the sensory terminals of cutaneous neurons respond to hydroxy-alpha-sanshool. We found that sanshool excites virtually all D-hair afferents, a distinct subset of ultrasensitive light-touch receptors in the skin and targets novel populations of Abeta and C fiber nerve afferents. Thus, sanshool provides a novel pharmacological tool for discriminating functional subtypes of cutaneous mechanoreceptors. The identification of sanshool-sensitive fibers represents an essential first step in identifying the cellular and molecular mechanisms underlying tingling paresthesia that accompanies peripheral neuropathy and injury.
Collapse
Affiliation(s)
- Richard C. Lennertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Makoto Tsunozaki
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Diana M. Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| |
Collapse
|
202
|
Analysis of the antinociceptive interactions in two-drug combinations of gabapentin, oxcarbazepine and amitriptyline in streptozotocin-induced diabetic mice. Eur J Pharmacol 2010; 628:75-82. [DOI: 10.1016/j.ejphar.2009.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/26/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022]
|
203
|
Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2009; 47:130-9. [PMID: 20034667 DOI: 10.1016/j.ceca.2009.11.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 01/02/2023]
Abstract
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.
Collapse
Affiliation(s)
- Paul Fernyhough
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E0T6.
| | | |
Collapse
|
204
|
Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, Lee WY, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 2009; 58:2656-65. [PMID: 19651818 PMCID: PMC2768156 DOI: 10.2337/db08-1763] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Morbid obesity may be accompanied by diabetes and painful diabetic neuropathy, a poorly understood condition that is manifested by mechanical or thermal allodynia and hyperalgesia. Recent studies have highlighted the importance of T-type calcium channels (T-channels) in peripheral nociception; therefore, our goal was to examine the function of these channels in the pathophysiology and development of painful diabetic neuropathy. RESEARCH DESIGN AND METHODS In vivo testing of mechanical and thermal sensation, morphometric peripheral nerve studies, and electrophysiological and biochemical measurements were used to characterize the role of T-channels and the development of painful diabetic neuropathy in leptin-deficient (ob/ob) mice. RESULTS We found that ob/ob mice developed significant mechanical and thermal hypersensitivity early in life that coincided with hyperglycemia and was readily reversed with insulin therapy. These disturbances were accompanied by significant biophysical and biochemical modulation of T-channels in dorsal root ganglion neurons as measured by a large increase in the amplitude of T-currents and the expression of mRNA. The most prevalent subtype, alpha1H (Ca(v)3.2), was most strongly affected. Moreover, (3beta,5alpha,17beta)-17-hydroxyestrane-3-carbonitrile (ECN), a novel neuroactive steroid and selective T-channel antagonist, provided dose-dependent alleviation of neuropathic thermal and mechanical hypersensitivity in diabetic ob/ob mice. CONCLUSIONS Our results indicate that pharmacological antagonism of T-channels is potentially an important novel therapeutic approach for the management of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Janelle R Latham
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Perret D, Luo ZD. Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics 2009; 6:679-92. [PMID: 19789072 PMCID: PMC2755636 DOI: 10.1016/j.nurt.2009.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/09/2009] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated calcium channels (VGCC) play obligatory roles in diverse physiological functions. Pathological conditions leading to changes in their biophysical properties and expression levels may cause malfunctions of VGCC-mediated activities, resulting in disease states. It is believed that changes in VGCC properties under pain-inducing conditions may play a causal role in the development of chronic pain, including nerve injury-induced pain or neuropathic pain. For the past several decades, preclinical and clinical research in developing VGCC blockers or modulators for chronic pain management has been fruitful, leading to some U.S. Food and Drug Administration-approved drugs currently available for chronic pain management. However, their efficacy in pain relief is limited in some patients, and their long-term use is limited by their side-effect profiles. Certainly, there is room for improvement in developing more subtype-specific VGCC blockers or modulators for chronic pain conditions. In this review, we summarized the most recent preclinical and clinical studies related to chronic pain medications acting on the VGCC. We also included clinical trials aiming to expand the application of approved VGCC drugs to different pain states derived from various pathological conditions, as well as drug combination therapies trying to improve the efficacies and side-effect profiles of current pain medications.
Collapse
Affiliation(s)
- Danielle Perret
- grid.266093.80000000106687243Department of Anesthesiology & Perioperative Care, University of California Irvine, 92697 Irvine, California
- grid.266093.80000000106687243Department of Physical Medicine & Rehabilitation, School of Medicine, University of California Irvine, 92697 Irvine, California
| | - Z. David Luo
- grid.266093.80000000106687243Department of Anesthesiology & Perioperative Care, University of California Irvine, 92697 Irvine, California
- grid.266093.80000000106687243Department of Pharmacology, University of California Irvine, 92697 Irvine, California
- grid.417319.9000000040434883XDepartment of Anesthesiology & Perioperative Care, University of California, Irvine Medical Center, Bldg 53, Room 227, 101 The City Dr. South, 92868 Orange, CA
| |
Collapse
|
206
|
Bartels P, Behnke K, Michels G, Groner F, Schneider T, Henry M, Barrett PQ, Kang HW, Lee JH, Wiesen MHJ, Matthes J, Herzig S. Structural and biophysical determinants of single Ca(V)3.1 and Ca(V)3.2 T-type calcium channel inhibition by N(2)O. Cell Calcium 2009; 46:293-302. [PMID: 19783046 DOI: 10.1016/j.ceca.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
We investigated the biophysical mechanism of inhibition of recombinant T-type calcium channels Ca(V)3.1 and Ca(V)3.2 by nitrous oxide (N(2)O). To identify functionally important channel structures, chimeras with reciprocal exchange of the N-terminal domains I and II and C-terminal domains III and IV were examined. In whole-cell recordings N(2)O significantly inhibited Ca(V)3.2, and - less pronounced - Ca(V)3.1. A Ca(V)3.2-prevalent inhibition of peak currents was also detected in cell-attached multi-channel patches. In cell-attached patches containing < or = 3 channels N(2)O reduced average peak current of Ca(V)3.2 by decreasing open probability and open time duration. Effects on Ca(V)3.1 were smaller and mediated by a reduced fraction of sweeps containing channel activity. Without drug, single Ca(V)3.1 channels were significantly less active than Ca(V)3.2. Chimeras revealed that domains III and IV control basal gating properties. Domains I and II, in particular a histidine residue within Ca(V)3.2 (H191), are responsible for the subtype-prevalent N(2)O inhibition. Our study demonstrates the biophysical (open times, open probability) and structural (domains I and II) basis of action of N(2)O on Ca(V)3.2. Such a fingerprint of single channels can help identifying the molecular nature of native channels. This is exemplified by a characterization of single channels expressed in human hMTC cells as functional homologues of recombinant Ca(V)3.1.
Collapse
Affiliation(s)
- Peter Bartels
- Department of Pharmacology, University of Cologne, 50931 Koeln, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway. J Neurosci 2009; 29:9500-9. [PMID: 19641113 DOI: 10.1523/jneurosci.5803-08.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca(V)3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons. Lipoic acid locally injected into peripheral receptive fields of pain-sensing sensory neurons (nociceptors) in vivo decreased sensitivity to noxious thermal and mechanical stimuli in wild-type but not Ca(V)3.2 knock-out mice. Ensuing molecular studies demonstrated that lipoic acid inhibited recombinant Ca(V)3.2 channels heterologously expressed in human embryonic kidney 293 cells by oxidating specific thiol residues on the cytoplasmic face of the channel. This study provides the first mechanistic demonstration of a nociceptive ion channel modulation that may contribute to the documented analgesic properties of lipoic acid in vivo.
Collapse
|
208
|
Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V. In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 2009; 145:184-95. [PMID: 19577366 DOI: 10.1016/j.pain.2009.06.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/08/2023]
Abstract
Earlier, we showed that streptozocin (STZ)-induced type 1 diabetes in rats leads to the development of painful peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia and mechanical allodynia accompanied by significant enhancement of T-type calcium currents (T-currents) and cellular excitability in medium-sized dorsal root ganglion (DRG) neurons. Here, we studied the in vivo and in vitro effects of gene-silencing therapy specific for the Ca(V)3.2 isoform of T-channels, on thermal and mechanical hypersensitivities, and T-current expression in small- and medium-sized DRG neurons of STZ-treated rats. We found that silencing of the T-channel Ca(V)3.2 isoform using antisense oligonucleotides, had a profound and selective anti-hyperalgesic effect in diabetic rats and is accompanied by significant down-regulation of T-currents in DRG neurons. Anti-hyperalgesic effects of Ca(V)3.2 antisense oligonucleotides in diabetic rats were similar in models of rapid and slow onset of hyperglycemia following intravenous and intraperitoneal injections of STZ, respectively. Furthermore, treatments of diabetic rats with daily insulin injections reversed T-current alterations in DRG neurons in parallel with reversal of thermal and mechanical hypersensitivities in vivo. This confirms that Ca(V)3.2 T-channels, important signal amplifiers in peripheral sensory neurons, may contribute to the cellular hyperexcitability that ultimately leads to the development of painful PDN.
Collapse
Affiliation(s)
- Richard B Messinger
- Department of Anesthesiology, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Belardetti F, Tringham E, Eduljee C, Jiang X, Dong H, Hendricson A, Shimizu Y, Janke DL, Parker D, Mezeyova J, Khawaja A, Pajouhesh H, Fraser RA, Arneric SP, Snutch TP. A Fluorescence-Based High-Throughput Screening Assay for the Identification of T-Type Calcium Channel Blockers. Assay Drug Dev Technol 2009; 7:266-80. [DOI: 10.1089/adt.2009.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francesco Belardetti
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Panora Pharmaceuticals Inc., Vancouver, British Columbia, Canada
| | | | - Cyrus Eduljee
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Xinpo Jiang
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Haiheng Dong
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: WuXi Pharmatech, Shanghai, China
| | - Adam Hendricson
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Bristol-Myers Squibb, Wallingford, Connecticut
| | - Yoko Shimizu
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Centre for Drug Research and Development, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana L. Janke
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: WorkSafeBC, Burnaby, British Columbia, Canada
| | - David Parker
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Janette Mezeyova
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Afsheen Khawaja
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Hassan Pajouhesh
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada
| | - Robert A. Fraser
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Centre for Drug Research and Development, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen P. Arneric
- Neuromed Pharmaceuticals Ltd., Vancouver, British Columbia, Canada. Present address: Eli Lilly & Company, Indianapolis, Indiana
| | - Terrance P. Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
210
|
Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: Signalling pathways and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:947-52. [DOI: 10.1016/j.bbamcr.2008.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/15/2022]
|
211
|
Abstract
The fundamental role of calcium ions (Ca(2+)) in an excitable tissue, the frog heart, was first demonstrated in a series of classical reports by Sydney Ringer in the latter part of the nineteenth century (1882a, b; 1893a, b). Even so, nearly a century elapsed before it was proven that Ca(2+) regulated the excitability of primary sensory neurons. In this chapter we review the sites and mechanisms whereby internal and external Ca(2+) can directly or indirectly alter the excitability of primary sensory neurons: excitability changes being manifested typically by variations in shape of the action potential or the pattern of its discharge.
Collapse
|
212
|
Abstract
Voltage gated calcium channels (VGCCs) are well established mediators of pain signals in primary afferent neurons. N-type calcium channels are localized to synaptic nerve terminals in laminae 1 and 2 of the dorsal horn where their opening results in the release of neurotransmitters such as glutamate and substance P. The contribution of N-type channels to the processing of pain signals is regulated by alternate splicing of the N-type channel gene, with unique N-type channel splice variants being expressed in small nociceptive neurons. In contrast, T-type VGCCs of the Ca(v)3.2 subtype are likely localized to nerve endings where they regulate cellular excitability. Consequently, inhibition of N-type and Ca(v)3.2 T-type VGCCs has the propensity to mediate analgesia. T-type channel activity is regulated by redox modulation, and can be inhibited by a novel class of small organic blockers. N-type VGCC activity can be potently inhibited by highly selective peptide toxins that are delivered intrathecally, and the search for small organic blockers with clinical efficacy is ongoing. Here, we provide a brief overview of recent advances in this area, as presented at the Spring Pain Research conference (Grand Cayman, 2008).
Collapse
|
213
|
Iftinca MC, Zamponi GW. Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci 2008; 30:32-40. [PMID: 19042038 DOI: 10.1016/j.tips.2008.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 12/11/2022]
Abstract
T-type calcium channels are critically important for regulating neuronal excitability, both in the central and peripheral nervous system, and are essential mediators of hormone secretion. Conversely, T-type channel hyperactivity has been linked to neurological disorders such as absence epilepsy and neuropathic pain. Hence, it is critical to understand the cellular mechanisms that control T-type channel activity, including means of altering expression patterns of the channels, activation of intracellular messenger cascades that directly affect channel activity, and the regulation of alternate splicing of T-type channel genes. Although there is substantial literature dealing with regulation of native T-type channels, the underlying molecular mechanism have only recently been addressed. Here, we highlight recent advances in our understanding of T-type channel regulation, and their implications for brain function.
Collapse
Affiliation(s)
- Mircea C Iftinca
- Department of Physiology and Biophysics, University of Calgary, Calgary T2N 4N1, Canada
| | | |
Collapse
|
214
|
Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E. I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One 2008; 3:e2976. [PMID: 18714336 PMCID: PMC2495038 DOI: 10.1371/journal.pone.0002976] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/26/2008] [Indexed: 11/25/2022] Open
Abstract
The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cavβ subunits and plays significant roles in channel function, including trafficking the α1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (−30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3.
Collapse
Affiliation(s)
- Joel P Baumgart
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | | | | | | | | |
Collapse
|
215
|
Naik A, Pathirathna S, Jevtovic-Todorovic V. GABAA receptor modulation in dorsal root ganglia in vivo affects chronic pain after nerve injury. Neuroscience 2008; 154:1539-53. [DOI: 10.1016/j.neuroscience.2008.04.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/28/2022]
|
216
|
Beck H, Yaari Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 2008; 9:357-69. [DOI: 10.1038/nrn2371] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
217
|
Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008; 99:3151-6. [PMID: 18417624 DOI: 10.1152/jn.01031.2007] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent data indicate that peripheral T-type Ca2+ channels are instrumental in supporting acute pain transmission. However, the function of these channels in chronic pain processing is less clear. To address this issue, we studied the expression of T-type Ca2+ currents in small nociceptive dorsal root ganglion (DRG) cells from L4-5 spinal ganglia of adult rats with neuropathic pain due to chronic constrictive injury (CCI) of the sciatic nerve. In control rats, whole cell recordings revealed that T-type currents, measured in 10 mM Ba2+ as a charge carrier, were present in moderate density (20 +/- 2 pA/pF). In rats with CCI, T-type current density (30 +/- 3 pA/pF) was significantly increased, but voltage- and time-dependent activation and inactivation kinetics were not significantly different from those in controls. CCI-induced neuropathy did not significantly change the pharmacological sensitivity of T-type current in these cells to nickel. Collectively, our results indicate that CCI-induced neuropathy significantly increases T-type current expression in small DRG neurons. Our finding that T-type currents are upregulated in a CCI model of peripheral neuropathy and earlier pharmacological and molecular studies suggest that T-type channels may be potentially useful therapeutic targets for the treatment of neuropathic pain associated with partial mechanical injury to the sciatic nerve.
Collapse
Affiliation(s)
- Miljen M Jagodic
- Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908-0710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Swayne LA, Bourinet E. Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Arch 2008; 456:459-66. [PMID: 18389277 DOI: 10.1007/s00424-007-0390-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 01/16/2023]
Abstract
N- and T-type voltage-gated calcium channels are key established players in chronic pain. Current work suggests that alternative splicing of these channels constitutes an important aspect in the investigation of their roles in the pathogenesis of chronic pain. Recent N-type channel studies describe a nociceptor-enriched alternatively spliced module responsible for voltage-independent G protein modulation and internalization, which is implicated in the control of distinct nociceptive pathways. On the contrary, although a large body of work has demonstrated that peripheral Cav 3.2-encoded T-type currents are involved in several types of chronic pain, little is known with respect to the expression of numerous newly discovered splice variants in specific pain pathways. The elucidation of the new layers of molecular complexity uncovered in N- and T-type channel splice variants and their respective locations and roles in different pain pathways will allow for the development of better therapeutic strategies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Département de Physiologie, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France
| | | |
Collapse
|
219
|
Spitzer MJS, Reeh PW, Sauer SK. Mechanisms of potassium- and capsaicin-induced axonal calcitonin gene-related peptide release: involvement of L- and T-type calcium channels and TRPV1 but not sodium channels. Neuroscience 2007; 151:836-42. [PMID: 18178321 DOI: 10.1016/j.neuroscience.2007.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/08/2007] [Accepted: 10/25/2007] [Indexed: 11/16/2022]
Abstract
We have previously shown that capsaicin, noxious heat, protons and potassium ions (K(+)) induce a graded, calcium- and receptor-dependent increase of immunoreactive calcitonin gene-related peptide (iCGRP) release from isolated rat sciatic axons. Morphological evidence for axonal vesicular exocytosis has also been presented. Here we determine the differential contribution of voltage-gated calcium and sodium channels to high extracellular potassium and capsaicin-induced iCGRP secretion. Blockade of L-type calcium channels significantly decreased the K(+)-induced axonal response (nimodipine (10 microM) by 66% and methoxyverapamil, D600 (50 microM), by 77%). Interestingly, however, D600 was unable to reduce the capsaicin-induced iCGRP release. Omega-Conotoxin GVIA (1 microM), a N-type blocker, and omega-agatoxin TK (0.1 microM), a P/Q-type blocker, had no significant effect. Also the anticonvulsant gabapentin (50 microM and 100 microM), reported to impede calcium channels, was ineffective. Inhibition of low threshold T-type calcium channels by mibefradil (10 microM) significantly reduced potassium (by 47%) but not capsaicin-stimulated iCGRP release. Reduction of total sodium channel conductance by tetrodotoxin (1 microM), lidocaine (10 microM, 50 microM or 500 microM) or by replacement of extracellular sodium with choline-chloride did not result in a reduction of either potassium- or capsaicin-induced axonal iCGRP release. These results suggest that slow depolarization by high extracellular potassium activates axonal low threshold (T-type) as well as high threshold-activated (L-type) voltage-gated calcium channels to mediate iCGRP release, and that capsaicin-induced release is largely dependent on calcium influx through TRPV1. Action potential generation and propagation are not required for axonal release mechanisms.
Collapse
Affiliation(s)
- M J S Spitzer
- Institut für Physiologie und Pathophysiologie, Universität Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | | | | |
Collapse
|