201
|
Useckaite Z, Rodrigues AD, Hopkins AM, Newman LA, Johnson J, Sorich MJ, Rowland A. Role of Extracellular Vesicle-Derived Biomarkers in Drug Metabolism and Disposition. Drug Metab Dispos 2021; 49:961-971. [PMID: 34353847 DOI: 10.1124/dmd.121.000411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are small, nonreplicating, lipid-encapsulated particles that contain a myriad of protein and nucleic acid cargo derived from their tissue of origin. The potential role of EV-derived biomarkers to the study of drug metabolism and disposition (DMD) has gained attention in recent years. The key trait that makes EVs an attractive biomarker source is their capacity to provide comparable insights to solid organ biopsy through an appreciably less invasive collection procedure. Blood-derived EVs exist as a heterogenous milieu of biologically distinct particles originating from different sources through different biogenesis pathways. Furthermore, blood (plasma and serum) contains an array of vesicular and nonvesicular contaminants, such as apoptotic bodies, plasma proteins, and lipoproteins that are routinely coisolated with EVs, albeit to a different extent depending on the isolation technique. The following minireview summarizes current studies reporting DMD biomarkers and addresses elements of EV isolation and quantification relevant to the application of EV-derived DMD biomarkers. Evidence based-best practice guidance aligned to Minimum Information for the Study of Extracellular Vesicles and EV-TRACK reporting standards are summarized in the context of DMD studies. SIGNIFICANCE STATEMENT: Extracellular vesicle (EV)-derived protein and nucleic acid cargo represent a potentially game-changing source of novel DMD biomarkers with the capacity to define within- and between-individual variability in drug exposure irrespective of etiology. However, robust translation of EV-derived biomarkers requires the generation of transparent reproducible evidence. This review outlines the critical elements of data generation and reporting relevant to achieving this evidence in a drug metabolism and disposition context.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - A David Rodrigues
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Jillian Johnson
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| |
Collapse
|
202
|
Jin E, Huang C, Zhang L, Chen S, Zhao X, Ren Z, Fu H. Expression of oncogenic long noncoding RNA PSMG3-antisense 1 in lung squamous cell carcinoma. Oncol Lett 2021; 22:751. [PMID: 34539855 PMCID: PMC8436406 DOI: 10.3892/ol.2021.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is one of the most common subtypes of lung cancer that accounts for ~50% of all lung cancer cases. Long noncoding RNA (lncRNA) PSMG3-antisense (AS) 1 has been suggested to play an important role in various types of cancer. Therefore, the aim of the present study was to investigate the role of PSMG3-AS1 using clinical specimens and data from 130 patients with LUSC. The expression levels of PSMG3-AS1 and miR-143-3p were detected in LUSC specimens, and the correlation between lncRNA PSMG3-AS1 expression and patient clinical characteristics was analyzed. Cell Counting Kit-8, Transwell migration and invasion assays were used to investigate the functional role of PSMG3-AS1 in LUSC. The mechanism of PSMG3-AS1 on LUSC cells was also investigated using a luciferase activity assay with wild-type or mutated PSMG3-AS1. PSMG3-AS1 was found to be upregulated in LUSC, and high expression was associated with positive lymph node metastasis and a higher TNM stage. The results of multivariate Cox regression analysis revealed that PSMG3-AS1 may serve as an independent prognostic indicator in LUSC. Furthermore, inhibiting PSMG3-AS1 expression reduced tumor cell proliferative, migratory and invasive abilities. Moreover, PSMG3-AS1 was found to be closely associated with miR-143-3p in LUSC, and thus may become a potential prognostic marker and therapeutic target for the treatment of LUSC in the future.
Collapse
Affiliation(s)
- E Jin
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Chao Huang
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Lei Zhang
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Shiyi Chen
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Xiaochen Zhao
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Zheng Ren
- Department of Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Hong Fu
- Department of Interventional Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| |
Collapse
|
203
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
204
|
Yang L, Huang X, Guo H, Wang L, Yang W, Wu W, Jing D, Shao Z. Exosomes as Efficient Nanocarriers in Osteosarcoma: Biological Functions and Potential Clinical Applications. Front Cell Dev Biol 2021; 9:737314. [PMID: 34712664 PMCID: PMC8546119 DOI: 10.3389/fcell.2021.737314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Although localized osteosarcoma has an overall survival of >70% in the clinic, metastatic, refractory, and recurrent osteosarcoma have poorer survival rates. Exosomes are extracellular vesicles released by cells and originally thought to be a way for cells to discard unwanted products. Currently, exosomes have been reported to be involved in intercellular cross-talk and induce changes in cellular behavior by transferring cargoes (proteins, DNA, RNA, and lipids) between cells. Exosomes regulate osteosarcoma progression, and processes such as tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Increasing evidences shows that exosomes have significant potential in promoting osteosarcoma progression and development. In this review, we describe the current research status of exosomes in osteosarcoma, focusing on the biological functions of osteosarcoma exosomes as well as their application in osteosarcoma as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lingkai Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
205
|
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, Liu T, Lin B, Lu Y. High-Throughput Single-Cell Extracellular Vesicle Secretion Analysis on a Desktop Scanner without Cell Counting. Anal Chem 2021; 93:13152-13160. [PMID: 34551257 DOI: 10.1021/acs.analchem.1c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-cell EV (extracellular vesicle) secretion analysis is emerging for a better understanding of non-genetic cellular heterogeneity regulating human health and diseases through intercellular mediators. However, the requirements of expensive and bulky instrumentations hinder its widespread use. Herein, by combining gold nanoparticle-enhanced silver staining and the Poisson distribution, we reported the use of a home-use scanner to realize high-throughput single-cell EV secretion analysis without cell counting. We applied the platform to analyze the secretions of different EV phenotypes with the human oral squamous cell carcinoma cell line and primary cells from patients, which generated single-cell results comparable with those of the immunofluorescence approach. Notably, we also realized the quantification of the number of EVs secreted from every single cell using their respective titration curves obtained from population samples, making it possible to directly compare different EV phonotypes in regard to their secretion number, secretion rate, and so forth. The technology introduced here is simple, easy to operate, and of low cost, which make it a potential, easily accessible, and affordable tool for widespread use in both basic and clinical research.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Ji
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Bai
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
206
|
Panvongsa W, Siripoon T, Worakitchanon W, Arsa L, Trachu N, Jinawath N, Ngamphaiboon N, Chairoungdua A. Plasma extracellular vesicle microRNA-491-5p as diagnostic and prognostic marker for head and neck squamous cell carcinoma. Cancer Sci 2021; 112:4257-4269. [PMID: 34273216 PMCID: PMC8486186 DOI: 10.1111/cas.15067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Poor survival of patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is partly due to early diagnosis difficulties and the lack of reliable biomarkers for predicting treatment outcomes. In the discovery cohort, plasma-derived extracellular vesicles (EVs) from LA-HNSCC patients (n = 48) and healthy volunteers (n = 12) were used for profiling for microRNA (miRNA) expression by NanoString analysis. Ten EV-associated miRNAs were differentially expressed between LA-HNSCC patients and healthy volunteers. Subsequently, the results were validated in the individual discovery and additional cases (HNSCC, n = 73; control, n = 20) by quantitative RT-PCR. Among 10 EV-miRNAs, four (miR-27b-3p, miR-491-5p, miR-1910-5p, and miR-630) were significantly dysregulated in LA-HNSCC patients (n = 73) compared with healthy volunteers (n = 20). The miRNA prediction models were developed to discriminate HNSCC patients from healthy volunteers. The model using miR-491-5p was selected as a diagnostic biomarker for LA-HNSCC with a sensitivity and specificity of 46.6% and 100%, respectively (P < .001). The dynamic changes of miRNA model score (ΔmiRNAs) were determined using scores pre- and postdefinitive treatment to further investigate the prognostic value of miRNA prediction models. The univariate and multivariate analyses indicated that ΔmiR-491-5p was the most powerful and independent prognostic indicator for overall survival (hazard ratio [HR] 5.66, 95% confidence interval, 1.77-18.01; P = .003) and disease-free survival (HR 2.82, 95% CI, 1.13-7.05; P = .027) of HNSCC patients. In summary, the miR-491-5p prediction model could serve as a blood-based diagnostic marker for LA-HNSCC. Moreover, ΔmiR-491-5p could be a potential monitoring prognostic marker to reflect the survival of HNSCC patients.
Collapse
Affiliation(s)
- Wittaya Panvongsa
- Toxicology Graduate ProgramFaculty of ScienceMahidol UniversityBangkokThailand
- Excellent Center for Drug Discovery (ECDD)Mahidol UniversityBangkokThailand
| | - Teerada Siripoon
- Division of Medical OncologyDepartment of MedicineFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Wittawin Worakitchanon
- Excellent Center for Drug Discovery (ECDD)Mahidol UniversityBangkokThailand
- Department of PhysiologyFaculty of ScienceMahidol UniversityBangkokThailand
| | - Lalida Arsa
- Molecular Histopathology LaboratoryDepartment of PathologyFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Narumol Trachu
- Research CenterFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Natini Jinawath
- Program in Translational MedicineFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Integrative Computational BioScience Center (ICBS)Mahidol UniversityNakhon PathomThailand
| | - Nuttapong Ngamphaiboon
- Excellent Center for Drug Discovery (ECDD)Mahidol UniversityBangkokThailand
- Division of Medical OncologyDepartment of MedicineFaculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Arthit Chairoungdua
- Toxicology Graduate ProgramFaculty of ScienceMahidol UniversityBangkokThailand
- Excellent Center for Drug Discovery (ECDD)Mahidol UniversityBangkokThailand
- Department of PhysiologyFaculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
207
|
Liu F, Mao H, Chai S, Mao H. Meta-analysis of the diagnostic value of exosomal miR-21 as a biomarker for the prediction of cancer. J Clin Lab Anal 2021; 35:e23956. [PMID: 34492742 PMCID: PMC8529139 DOI: 10.1002/jcla.23956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early diagnosis of cancer is still the most effective method to increase survival and therapeutically effective patient management. Accumulating studies had exploited exosomes as an indicator for the diagnosis and prognosis of cancer. In addition to exosomes, exosome-derived miRs are widely investigated as a novel biomarker for diagnosis in cancer patients. The aim of this study was to clarify the diagnostic value of ex-miR-21 in cancer. METHODS Databases were searched for eligible studies up to June, 2021. Studies included in this meta-analysis were reviewed and selected independently by two authors. The data of sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves (SROC) of exosomal miR-21 as a diagnostic biomarker were extracted and calculated. Quality assessment was conducted by using the QUADAS-2 tool. RESULTS A total of 26 studies were included in the systematic analysis and meta-analysis. The pooled results of sensitivity, specificity, PLR/NLR, DOR, and area under the curve were 76% (95%CI, 0.70-0.81), 82% (0.77-0.87), 4.3 (3.1-6.0), 0.29 (0.22-0.38), 15 (8-26), and 0.86 (0.83-0.89), respectively. Sensitivity analysis and Deeks' funnel plot indicated that results remained unchanged and had no publication bias. For the subgroup analysis, it was showed that ex-miR-21 had a superior diagnostic accuracy on identifying PC. CONCLUSION Exosomal microRNA-21 can serve as an effective and widely used diagnostic biomarker for cancer, especially in PC. The using field of exosomes and exosome-derived miR can further extend the prognosis and therapeutic management. Standardized isolation of exosomes and miRNA-21 should be developed.
Collapse
Affiliation(s)
- Fanglan Liu
- Department of Preclinical MedicalJiangxi Medical CollegeShangraoChina
| | - Haifei Mao
- Department of AnesthesiologyShangrao People’s HospitalShangraoChina
| | - Shiquan Chai
- Department of AnesthesiologyShangrao People’s HospitalShangraoChina
| | - Haifeng Mao
- Department of AnesthesiologyTaizhou First People’s HospitalTaizhouChina
| |
Collapse
|
208
|
Upadhya R, Shetty AK. Extracellular Vesicles for the Diagnosis and Treatment of Parkinson's Disease. Aging Dis 2021; 12:1438-1450. [PMID: 34527420 PMCID: PMC8407884 DOI: 10.14336/ad.2021.0516] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) shed by neurons and glia in the central nervous system carry a cargo of specific bioactive molecules, facilitating intercellular communication. However, in neurodegenerative disease conditions, EVs carry pathological miRNAs and/or proteins involved in spreading the disease. Such EVs are also found in the cerebrospinal fluid (CSF) or the circulating blood, the characterization of which could identify biomarkers linked to specific neurodegenerative diseases. Moreover, EVs secreted by various stem/progenitor cells carry therapeutic miRNAs and proteins, which have shown promise to alleviate symptoms and slow down the progression of neurodegenerative diseases. The ability of exogenously administered EVs to easily cross the blood-brain barrier with no risk for thrombosis and incorporate into neurons and glia has also opened up the possibility of using nano-sized EVs as carriers of therapeutic drugs or bioactive proteins. This review summarizes the role and function of EVs in alpha-synuclein-mediated neurodegeneration and the spread of alpha-synuclein from neurons to glia, leading to the activation of the inflammatory response in Parkinson’s disease (PD). Moreover, the promise of brain-derived EVs in the CSF and the circulating blood for biomarker discovery and the efficacy of stem/progenitor cell-derived EVs or EVs loaded with bioactive molecules such as dopamine, catalase, curcumin, and siRNAs, in alleviating Parkinsonian symptoms are discussed.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
209
|
Li B, Cao Y, Sun M, Feng H. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J 2021; 35:e21916. [PMID: 34510546 DOI: 10.1096/fj.202100294rr] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are a novel class of intercellular signal modulators that contain a wide range of molecules and deliver information between cells and tissues. MicroRNAs (miRNAs), a type of regulatory non-coding RNA, are often incorporated into exosomes as signaling molecules. In this review, we discuss the expression of exosomal miRNAs from diverse origins such as tumor cells, solid tumor tissue, and biological fluids in various cancers (lung, breast, colorectal, liver, stomach, and pancreatic). We address the biological functions of exosome-derived miRNAs in processes such as tumor-cell proliferation, angiogenesis, metastasis, and chemoresistance in the tumor microenvironment. In particular, we discuss three oncogenic miRNAs, miR-21, miR-141, and miR-451, which occur within exosomes, in terms of gene regulation and intercellular communication. We consider therapeutic miRNA-based nanoparticles, which are widely expressed in tumors and show promise in drug therapy. The review assesses the wide-ranging evidence for using exosomal miRNAs as tumor markers in molecular diagnosis. Further, we consider the use of nanoparticle platforms to transport miRNAs, in the targeted treatment of disease and tumors.
Collapse
Affiliation(s)
- Bowen Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
210
|
Muraoka S, Lin W, Takamatsu-Yukawa K, Hu J, Ikezu S, DeTure MA, Dickson DW, Emili A, Ikezu T. Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. Aging Dis 2021; 12:1376-1388. [PMID: 34527416 PMCID: PMC8407888 DOI: 10.14336/ad.2020.1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of mild repetitive brain injury. The initial neuropathologic changes of CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau). Extracellular vesicles (EVs) are known to carry pathogenic molecules, such as tau in Alzheimer's disease and CTE suggesting their contribution in pathogenesis. We therefore examined the protein composition of EVs separated from CTE and an age-matched control brain tissues by tandem mass tag -mass spectrometry. The reporter ion intensity was used to quantify the identified molecules. A total of 516 common proteins were identified among three sets of experiments. Weighted protein co-expression network analysis identified 18 unique modules of co-expressed proteins. Two modules were significantly correlated with total tau (t-tau) and p-tau protein in the isolated EVs and enriched in cellular components and biological processes for synaptic vesicle secretion and multivesicular body-plasma membrane fusion. The p-tau (Thr181) level is significantly higher in CTE EVs compared to control EVs and can distinguish the two groups with 73.6% accuracy. A combination of t-tau or p-tau (Thr181) with SNAP-25, PLXNA4 or UBA1, enhanced the accuracy to 96.3, 93.8 and 93.8%, respectively. Bioinformatic protein-protein interaction analysis revealed the functional interaction of SNAP-25 and PLXNA4 with tau, suggesting their interaction in CTE EVs. These data indicate the future application of identified EV proteins for monitoring the CTE risk assessments and understanding the EV-mediated disease progression mechanism.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Weiwei Lin
- Department of Biochemistry, Boston University, Boston, MA, USA.
- Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Kayo Takamatsu-Yukawa
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Jianqiao Hu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Seiko Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | | | | | - Andrew Emili
- Department of Biochemistry, Boston University, Boston, MA, USA.
- Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Department of Neurology and Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
211
|
Shetty AK, Upadhya R. Extracellular Vesicles in Health and Disease. Aging Dis 2021; 12:1358-1362. [PMID: 34527414 PMCID: PMC8407881 DOI: 10.14336/ad.2021.0827] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
The journal, Aging and Disease, has released a special issue on "Extracellular Vesicles (EVs) in Health and Disease." The special issue comprises review and original research articles discussing the role of EVs in aging and senescence, the utility of evaluating EVs in body fluids for understanding the pathophysiology or progression of various diseases such as Parkinson's Disease, Multiple Sclerosis, Chronic Traumatic Encephalopathy, and Morphine induced amyloidopathy. Also, a series of articles discussed the promise of stem cell-derived EVs for treating Parkinson's Disease, Sjogren's Syndrome, and Inflammatory Bowel Disease, and advancements in loading EVs to deliver nucleic acid therapies. This editorial discusses the highlights from these articles.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
212
|
Muraoka S, DeLeo AM, Yang Z, Tatebe H, Yukawa-Takamatsu K, Ikezu S, Tokuda T, Issadore D, Stern RA, Ikezu T. Proteomic Profiling of Extracellular Vesicles Separated from Plasma of Former National Football League Players at Risk for Chronic Traumatic Encephalopathy. Aging Dis 2021; 12:1363-1375. [PMID: 34527415 PMCID: PMC8407879 DOI: 10.14336/ad.2020.0908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer's disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Annina M DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Zijian Yang
- Deprtment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, JAPAN.
| | - Kayo Yukawa-Takamatsu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Takahiko Tokuda
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, JAPAN.
| | - David Issadore
- Deprtment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, MA, USA.
- Departments of Anatomy & Neurobiology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
213
|
Zhang Q, Yang X, Liu H. Extracellular Vesicles in Cancer Metabolism: Implications for Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2021; 20:15330338211037821. [PMID: 34427131 PMCID: PMC8388228 DOI: 10.1177/15330338211037821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabolic reprogramming is one of the most common characteristics of cancer cells. The metabolic alterations of glucose, amino acids and lipids can support the aggressive phenotype of cancer cells. Exosomes, a kind of extracellular vesicles, participate in the intercellular communication through transferring bioactive molecules. Increasing evidence has demonstrated that enzymes, metabolites and non-coding RNAs in exosomes are responsible for the metabolic alteration of cancer cells. In this review, we summarize the past and recent findings of exosomes in altering cancer metabolism and elaborate on the role of the specific enzymes, metabolites and non-coding RNAs transferred by exosomes. Moreover, we give evidence of the role of exosomes in cancer diagnosis and treatment. Finally, we discuss the existing problems in the study and application of exosomes in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
214
|
庞 泳, 张 沙, 杨 华, 周 柔. [Serum LAPTM4B-35 protein as a novel diagnostic marker for hepatocellular carcinoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:710-715. [PMID: 34393233 PMCID: PMC8365064 DOI: 10.19723/j.issn.1671-167x.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVE LAPTM4B-35 protein is one of the isoforms that are encoded by a cancer driver gene, LAPTM4B. This gene was primarily found and identified in our lab of Peking University School of Basic Medical Sciences. The LAPTM4B-35 protein and its encoded mRNA are significantly over-expressed in a variety of cancers, such as hepatocellular carcinoma (HCC), lung cancers (including non small-cell lung cancer and small-cell lung cancer), stomach cancer, colorectal carcinoma, pancreatic cancer, gallbladder cancer, cholangiocarcinoma, breast cancer, prostate cancer, ovarian cancer, cervical cancer, endometrial cancer, and so on. It has firmly demonstrated through lab experiments either in vivo or in vitro, as well as clinical studies that the over-expression of LAPTM4B-35 can promote cancer growth, metastasis, and multidrug resistance. Specially, the expressive level of LAPTM4B-35 is associa-ted with recurrence of HCC. The aim of this study is to identify the release of LAPTM4B-35 protein from hepatocellular carcinoma into blood of HCC patients and into the medium of cultured HCC cells, and to identify its possible form of LAPTM4B-35 protein existed in blood and cell culture medium, as well as to explore the possibility of LAPTM4B-35 protein as a novel HCC biomarker for diagnosis of HCC and prognosis of HCC patients. METHODS Immunobloting (Western blot) and enzyme-linked immunosorbent assay (ELISA) were used for identification of LAPTM4B-35 protein in the blood of HCC patients and normal individuals. Ultrafiltration and ultracentrifugation were used to isolate and purify exosomes from the culture medium of HCC cells. RESULTS LAPTM4B-35 protein existed in the blood from HCC patients and normal donors that were demonstrated through Western blot and ELISA. LAPTM4B-35 was also released into the culture medium of HCC cells in the form of exosomes. Preliminary experiments showed that the average and the median of LAPTM4B-35 protein level in the blood of HCC patients (n=43) were both significantly higher than that in the blood of normal donors (n=33) through sandwich ELISA. CONCLUSION It is promising that the LAPTM4B-35 protein which is released from HCC cells in the form of exosomes into their extraenvironment may be exploited as a novel cancer biomarker for HCC serological diagnosis.
Collapse
Affiliation(s)
- 泳 庞
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 沙 张
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 华 杨
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 柔丽 周
- />北京大学基础医学院细胞生物学系,北京 100191Department of Cell Biology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| |
Collapse
|
215
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
216
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
217
|
Ding H, Li LX, Harris PC, Yang J, Li X. Extracellular vesicles and exosomes generated from cystic renal epithelial cells promote cyst growth in autosomal dominant polycystic kidney disease. Nat Commun 2021; 12:4548. [PMID: 34315885 PMCID: PMC8316472 DOI: 10.1038/s41467-021-24799-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by germline mutations of PKD1 or PKD2 on one allele and a somatic mutation inactivating the remaining normal allele. However, if and how null ADPKD gene renal epithelial cells affect the biology and function of neighboring cells, including heterozygous renal epithelial cells, fibroblasts and macrophages during cyst initiation and expansion remains unknown. Here we address this question with a "cystic extracellular vesicles/exosomes theory". We show that cystic cell derived extracellular vesicles and urinary exosomes derived from ADPKD patients promote cyst growth in Pkd1 mutant kidneys and in 3D cultures. This is achieved by: 1) downregulation of Pkd1 gene expression and upregulation of specific miRNAs, resulting in the activation of PKD associated signaling pathways in recipient renal epithelial cells and tissues; 2) the activation of fibroblasts; and 3) the induction of cytokine expression and the recruitment of macrophages to increase renal inflammation in cystic kidneys. Inhibition of exosome biogenesis/release with GW4869 significantly delays cyst growth in aggressive and milder ADPKD mouse models, suggesting that targeting exosome secretion has therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
218
|
Liu Q, Li S, Dupuy A, le Mai H, Sailliet N, Logé C, Robert JMH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci 2021; 22:ijms22157763. [PMID: 34360530 PMCID: PMC8346134 DOI: 10.3390/ijms22157763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nano-sized vesicles secreted by most cells that contain a variety of biological molecules, such as lipids, proteins and nucleic acids. They have been recognized as important mediators for long-distance cell-to-cell communication and are involved in a variety of biological processes. Exosomes have unique advantages, positioning them as highly effective drug delivery tools and providing a distinct means of delivering various therapeutic agents to target cells. In addition, as a new clinical diagnostic biomarker, exosomes play an important role in many aspects of human health and disease, including endocrinology, inflammation, cancer, and cardiovascular disease. In this review, we summarize the development of exosome-based drug delivery tools and the validation of novel biomarkers, and illustrate the role of exosomes as therapeutic targets in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Shiying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Amandine Dupuy
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Hoa le Mai
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Nicolas Sailliet
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - Cédric Logé
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - J.-Michel H. Robert
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
- Correspondence: (J.-M.H.R.); (S.B.)
| | - Sophie Brouard
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Correspondence: (J.-M.H.R.); (S.B.)
| |
Collapse
|
219
|
Khushman M, Prodduturvar P, Mneimneh W, Zotto VD, Akbar S, Grimm L, Rider P, Hunter J, Alkharabsheh O, Patel GK, Fabregas JC, Singh AP. The impact of neoadjuvant concurrent chemoradiation on exosomal markers (CD63 and CD9) expression and their prognostic significance in patients with rectal adenocarcinoma. Oncotarget 2021; 12:1490-1498. [PMID: 34316329 PMCID: PMC8310674 DOI: 10.18632/oncotarget.28025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Exosomes have pivotal roles in cancer development. The impact of neoadjuvant concurrent chemoradiation (NCCR) on exosomal markers (CD63 and CD9) expression and their prognostic significance in patients with rectal adenocarcinoma are yet to be explored. Materials and Methods: Between 2015 and 2018, 33 patients had rectal adenocarcinoma treated with NCCR and had pre-NCCR biopsy and post-NCCR resected rectum. CD63 and CD9 expression was assessed by immunohistochemistry (IHC). The short-term surrogate endpoint neoadjuvant rectal (NAR) score was used for assessment of prognostic significance. Un-Paired t-test was used for statistical analysis. Results: The mean tumor CD63 and CD9 scores in pre-NCCR biopsy vs. post-NCCR resected rectum were 106 vs. 165 (P = 0.0022) and 136 vs. 215 (P < 0.0001) respectively. The mean tumor CD63 and CD9 scores respectively in pre-NCCR biopsy was 99 and 130 in patients with low-intermediate NAR score compared to 117 and 144 in patients with high NAR score (P = 0.4934) (P = 0.5519). The mean tumor CD63 and CD9 scores respectively in post-NCCR resected rectum was 155 and 205 in patients with low-intermediate NAR score compared to 180 and 230 in patients with high NAR score (P = 0.3793) (P = 0.2837). Conclusions: The expression of the exosomal markers (CD63 and CD9) increased in patients with rectal adenocarcinoma after treatment with NCCR. The exosomal markers (CD63 and CD9) may have a prognostic significance. There was a trend for higher CD63 and CD9 expression in patients with high NAR score compared with low-intermediate NAR scores. The lack of statistical significance is likely due to the small sample size.
Collapse
Affiliation(s)
- Moh'd Khushman
- Hematology-Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wadad Mneimneh
- Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Shalla Akbar
- Pathology, The University of South Alabama, Mobile, AL, USA
| | - Leander Grimm
- Colorectal Surgery, The University of South Alabama, Mobile, AL, USA
| | - Paul Rider
- Colorectal Surgery, The University of South Alabama, Mobile, AL, USA
| | - John Hunter
- Colorectal Surgery, The University of South Alabama, Mobile, AL, USA
| | - Omar Alkharabsheh
- Hematology-Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Ajay P Singh
- Pathology, The University of South Alabama, Mobile, AL, USA
| |
Collapse
|
220
|
Vinduska V, Gallops CE, O’Connor R, Wang Y, Huang X. Exosomal Surface Protein Detection with Quantum Dots and Immunomagnetic Capture for Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1853. [PMID: 34361239 PMCID: PMC8308325 DOI: 10.3390/nano11071853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022]
Abstract
Exosomes carry molecular contents reflective of parental cells and thereby hold great potential as a source of biomarkers for non-invasive cancer detection and monitoring. However, simple and rapid exosomal molecular detection remains challenging. Here, we report a facile method for exosome surface protein detection using quantum dot coupled with immunomagnetic capture and enrichment. In this method, exosomes were captured by magnetic beads based on CD81 protein expression. Surface protein markers of interest were recognized by primary antibody and then detected by secondary antibody-conjugated quantum dot with fluorescent spectroscopy. Validated by ELISA, our method can specifically detect different surface markers on exosomes from different cancer cell lines and differentiate cancer exosomes from normal exosomes. The clinical potential was demonstrated with pilot plasma samples using HER2-positive breast cancer as the disease model. The results show that exosomes from HER2-positive breast cancer patients exhibited a five times higher level of HER2 expression than healthy controls. Exosomal HER2 showed strong diagnostic power for HER2-positive patients, with the area under the curve of 0.969. This quantum dot-based exosome method is rapid (less than 5 h) and only requires microliters of diluted plasma without pre-purification, practical for routine use for basic vesicle research, and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (V.V.); (C.E.G.); (R.O.); (Y.W.)
| |
Collapse
|
221
|
Chen X, Wang H, Huang Y, Chen Y, Chen C, Zhuo W, Teng L. Comprehensive Roles and Future Perspectives of Exosomes in Peritoneal Metastasis of Gastric Cancer. Front Oncol 2021; 11:684871. [PMID: 34268118 PMCID: PMC8276633 DOI: 10.3389/fonc.2021.684871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent digestive malignancies. A great number of patients at first visit or post curative resections are diagnosed with widespread metastasis within the peritoneal cavity. Overwhelming evidence has demonstrated that exosomes, a variety of biologically functional extracellular vesicles comprising active factors, mediate the progression and metastasis of GC. Although the regulatory mechanisms of exosomes remain fairly elusive, they are responsible for intercellular communication between tumor cells and normal stroma, cancer-related fibroblasts, immune cells within the primary tumor and metastatic niche. In this review, we provide new insight into the molecular signatures of GC-associated exosomes in reprogramming the tumor microenvironment and the subsequent promotion of peritoneal metastasis—including infiltration of the gastric wall, implantation of tumor cells onto the pre-metastatic peritoneum, and remodeling of the pre-metastatic niche. Based on this review, we hope to draw a more general conclusion for the functions of exosomes in the progression and peritoneal metastasis of GC and highlight the future perspective on strategies targeting exosomes in prognostic biomarkers and therapy for peritoneal metastasis.
Collapse
Affiliation(s)
- Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
222
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
223
|
Luo R, Liu M, Tan T, Yang Q, Wang Y, Men L, Zhao L, Zhang H, Wang S, Xie T, Tian Q. Emerging Significance and Therapeutic Potential of Extracellular vesicles. Int J Biol Sci 2021; 17:2476-2486. [PMID: 34326688 PMCID: PMC8315015 DOI: 10.7150/ijbs.59296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs), are membrane-bound vesicles that have many advantages over traditional nanocarriers for drug and gene delivery. Evidence from recent studies indicate that EVs have therapeutic capability with chemical or biological modification. Tumor-derived exosomes (TEXs) were used as a new type of antigens or tumor vaccines in anti-tumor immunotherapy. With superior characteristics, modified EVs were applied to loaded and delivered synthetic drugs, silencing RNA, and microRNA for treatment. Different surface functionalization strategies have been proposed to improve the therapeutic functions of EVs. Appropriately modified EVs for disease intervention provide new avenues for effective clinical treatment strategies. Therefore, this review aimed at elucidating the therapeutic functions of EVs to generate new ideas for treatment and to unlock their hidden potential in translational medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuling Wang
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Tian Xie
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| | - Qingchang Tian
- ✉ Corresponding authors: Shuling Wang (), Tian Xie (), Qingchang Tian ()
| |
Collapse
|
224
|
BMSC-Derived Exosomes Ameliorate LPS-Induced Acute Lung Injury by miR-384-5p-Controlled Alveolar Macrophage Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9973457. [PMID: 34234888 PMCID: PMC8216833 DOI: 10.1155/2021/9973457] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common critical diseases. Bone marrow mesenchymal stem cell (BMSC) transplantation is previously shown to effectively rescue injured lung tissues. The therapeutic mechanism of BMSC-derived exosomes is not fully understood. Here, we investigated the BMSC-derived exosomal microRNAs (miRNAs) on effecting lipopolysaccharide- (LPS-) induced ALI and its mechanism. In vitro, rat alveolar macrophages were treated with or without exosomes in the presence of 10 μg/ml LPS for 24 h. Cell viability was determined with Cell Counting Kit-8 assay. Apoptotic ratio was determined with TUNEL and Annexin V-FITC/PI double staining. The levels of miR-384-5p and autophagy-associated genes were measured by RT-qPCR and western blot. Autophagy was observed by TEM and assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay. In vivo, we constructed LPS-induced ALI rat models. Exosomes were injected into rats via the caudal vein or trachea 4 h later after LPS treatment. The lung histological pathology was determined by H&E staining. Pulmonary vascular permeability was assessed by wet-to-dry weight ratio and Evans blue dye leakage assay, and inflammatory cytokines in serum and BALF were measured by ELISA. Furthermore, the therapeutic mechanism involved in miR-384-5p and Beclin-1 was determined. The results showed that BMSC-derived exosomes were taken up by the alveolar macrophages and attenuated LPS-induced alveolar macrophage viability loss and apoptosis. Exosomes effectively improved the survival rate of ALI rats within 7 days, which was associated with alleviating lung pathological changes and pulmonary vascular permeability and attenuating inflammatory response. Furthermore, this study for the first time found that miR-384-5p was enriched in BMSC-derived exosomes, and exosomal miR-384-5p resulted in relieving LPS-injured autophagy disorder in alveolar macrophages by targeting Beclin-1. Therefore, exosomal miR-384-5p could be demonstrated as a promising therapeutic strategy for ALI/ARDS.
Collapse
|
225
|
Bhat EA, Sajjad N, Thokar FM. Current advancement of exosomes as biomarkers for cancer diagnosis and forecasting. Cancer Treat Res Commun 2021; 28:100417. [PMID: 34126578 DOI: 10.1016/j.ctarc.2021.100417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Exosomes are normal vesicles produced in the late endosomes of a cell. They are secreted by cells and play a role in cell-to-cell contact. They are an invaluable aid in cancer diagnosis as they include miRNA, proteins and lncRNAs. Depending on the function of these constituents in cancer, the expression of exosome constituents can be upregulated or downregulated in cancer. Exosomes provide high concentration and protective environment for their cargo, thereby making them superior targets for cancer diagnosis. It has recently been documented that exosomes modulate cell-cell connectivity by molecules included in the exosomes, leading to the maintenance of tissue homeostasis. In addition, exosomes released from cancer cells are implicated in the development of cancer. Data on the role of exosomes in cancer will thus enhance the effectiveness of new diagnostic and therapeutic approaches. In particular, exosomes are useful sources for biomarkers due to selective cargo loading and similarity to their parental cells. In this review, we summarize the recent findings to use exosomes as cancer biomarkers for early detection, diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life sciences institute, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China; Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| | - Fahd M Thokar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002, India
| |
Collapse
|
226
|
A predictive biomarker panel for bone metastases: Liquid biopsy approach. J Bone Oncol 2021; 29:100374. [PMID: 34189028 PMCID: PMC8220227 DOI: 10.1016/j.jbo.2021.100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/12/2023] Open
Abstract
Data mining of published microarray datasets directed us to the identification of a multi gene panel involving of 15 genes that are particular to bone metastases. Serum exosomal markers HSP90AA1, SPP1, IL3, and PTK2 found in the present study might be useful in detecting the early spread of bone metastases leading to better clinical outcomes. This multi-gene panel and their related pathways may assist as promising conclusion predictors using novel approaches of exosome as liquid biopsy and their application in therapeutic targets in breast and lung cancer patients with bone metastases.
Bone metastases is one of the common metastatic site and leading cause of cancer-related mortality in progressive cancer patients. The purpose of the present study is to establish a liquid biopsy based multi-gene classifier and associated signalling pathways for early diagnosis of bone metastases. We used publically available microarray datasets and analysed them in a platform/chip-specific manner using GeneSpring software. Analyses of gene expression datasets identified 15 consistently over-expressed genes with statistical significance. Further, expression profile of same set of 15 genes were compared in breast and lung cancer exosome derived mRNA with (n = 10) and without (n = 10) bone metastases against healthy controls. ROC curve analysis performed individually for all the 15 genes shortlisted the 5 most relevant genes with significant sensitivity and specificity in both cancers. This liquid biopsy-based bone metastases predictor using multi-gene panel is a unique approach with potential clinical applications for effective management of aggressive cancers.
Collapse
|
227
|
Nguyen HQ, Lee D, Kim Y, Bang G, Cho K, Lee YS, Yeon JE, Lubman DM, Kim J. Label-free quantitative proteomic analysis of serum extracellular vesicles differentiating patients of alcoholic and nonalcoholic fatty liver diseases. J Proteomics 2021; 245:104278. [PMID: 34089894 DOI: 10.1016/j.jprot.2021.104278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/28/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are typically asymptomatic and slow-progressing but potentially fatal diseases that are common causes of liver cirrhosis and related complications. Exosomes are nano-sized extracellular vesicles that have been linked to various intercellular communication processes and can carry biological materials reflecting the state and severity of disease. In this study, shotgun proteomic analysis of the protein expression profiles of extracellular vesicles, including exosomes and microvesicles, enriched from human serum samples of 24 patients diagnosed with various fatty liver diseases was performed using liquid chromatography tandem mass spectrometry (LC-MS/MS) followed by protein identification and label-free quantification using the MaxQuant platform. A total of 329 proteins, including 190 previously reported exosome-specific proteins, were identified from four types of liver disease, where significant differences in protein expression were found in apolipoproteins, immunoglobulins, and other previously reported markers of liver disease. Principal component analysis of 61 proteins identified from MaxQuant analysis of the LC-MS/MS data provided a confident differentiation between ALD and NAFLD. SIGNIFICANCE: The current investigation revealed the difference among various types of liver disease using LC-MS/MS of exosomes enriched from human serum samples of 24 patients where the most significantly up-regulation proteins were alpha-2-macroglobulin for alcoholic hepatitis and apolipoprotein C3 for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dabin Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yeoseon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Geul Bang
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Kun Cho
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
228
|
Abstract
PURPOSE OF REVIEW In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers. RECENT FINDINGS Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity. EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evan T Keller
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
229
|
Zhang L, Zeng M, Tang F, Chen J, Cao D, Tang ZN. Circ-PNPT1 contributes to gestational diabetes mellitus (GDM) by regulating the function of trophoblast cells through miR-889-3p/PAK1 axis. Diabetol Metab Syndr 2021; 13:58. [PMID: 34074335 PMCID: PMC8171017 DOI: 10.1186/s13098-021-00678-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy. CircRNA polyribonucleotide nucleotidyltransferase 1 (circ-PNPT1) has been found to be abnormally expressed in GDM patients. However, function and mechanism of circ-PNPT1 in GDM remain largely undefined. METHODS Levels of circ-PNPT1, microRNA (miR)-889-3p and PAK1 (p21 (RAC1) activated kinase 1) were detected using quantitative real-time polymerase chain reaction and Western blot assays. Cell viability, apoptosis, migration and invasion were determined using cell counting kit-8 assay, flow cytometry, transwell and wound healing assays, respectively. The binding interaction between miR-889-3p and circ-PNPT1 or PAK1 was verified using dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Exosomes were obtained from culture media by the use of commercial kits and qualified by transmission electron microscopy (TEM). RESULTS Circ-PNPT1 was highly expressed in the placental tissues of GDM and high glucose (HG)-induced trophoblast cells. Knockdown of circ-PNPT1 reversed HG-induced arrest of trophoblast cell viability, migration, invasion and the promotion of cell apoptosis. Mechanistically, we confirmed circ-PNPT1 could promote the expression of PAK1, the target of miR-889-3p, by directly sponging miR-889-3p, and circ-PNPT1 regulated HG-induced trophoblast cell dysfunction by miR-889-3p/PAK1 axis. Further studies showed circ-PNPT1 was packaged into exosomes and could be internalized by surrounding trophoblast cells. CONCLUSION Circ-PNPT1 promoted HG-induced trophoblast cell biological dysfunction through miR-889-3p/PAK1 axis. Meanwhile, it could be transferred from HG-induced trophoblast cells to surrounding untreated cells via exosomes.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obsterics, Maternal and Child Health Hospital of Hubei Province, No.745 Wulu Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Ming Zeng
- Department of Public Course, Hubei Communication Technical College, Wuhan City, 430079, Hubei, China
| | - Fei Tang
- Department of Obsterics, Maternal and Child Health Hospital of Hubei Province, No.745 Wulu Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Jun Chen
- Department of Obsterics, Maternal and Child Health Hospital of Hubei Province, No.745 Wulu Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Dongmei Cao
- Department of Obsterics, Maternal and Child Health Hospital of Hubei Province, No.745 Wulu Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Ze-Nan Tang
- Department of Obsterics, Maternal and Child Health Hospital of Hubei Province, No.745 Wulu Road, Hongshan District, Wuhan City, 430070, Hubei Province, China.
| |
Collapse
|
230
|
Janockova J, Slovinska L, Harvanova D, Spakova T, Rosocha J. New therapeutic approaches of mesenchymal stem cells-derived exosomes. J Biomed Sci 2021; 28:39. [PMID: 34030679 PMCID: PMC8143902 DOI: 10.1186/s12929-021-00736-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to have a great potential in the treatment of several diseases due to their differentiation and immunomodulatory capabilities and their ability to be easily cultured and manipulated. Recent investigations revealed that their therapeutic effect is largely mediated by the secretion of paracrine factors including exosomes. Exosomes reflect biophysical features of MSCs and are considered more effective than MSCs themselves. Alternative approaches based on MSC-derived exosomes can offer appreciable promise in overcoming the limitations and practical challenges observed in cell-based therapy. Furthermore, MSC-derived exosomes may provide a potent therapeutic strategy for various diseases and are promising candidates for cell-based and cell-free regenerative medicine. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our current knowledge about exosomes: their biogenesis and molecular composition, and how they exert their effects on target cells. Particularly, the therapeutic potential of MSC-derived exosomes in experimental models and recent clinical trials to evaluate their safety and efficacy are summarized in this study. Overall, this paper provides a current overview of exosomes as a new cell-free therapeutic agent.
Collapse
Affiliation(s)
- Jana Janockova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia.
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Timea Spakova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Jan Rosocha
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| |
Collapse
|
231
|
Mahhengam N, Fahem Ghetran Khazaali A, Aravindhan S, Olegovna Zekiy A, Melnikova L, Siahmansouri H. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study. Crit Rev Anal Chem 2021; 52:1863-1877. [PMID: 34024197 DOI: 10.1080/10408347.2021.1922870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many cancer-related deaths are reported annually due to a lack of appropriate diagnosis and treatment strategies. Microfluidic technology, as new creativity has a great impact on automation and miniaturization via handling a small volume of materials and samples (in microliter to femtoliter range) to set up the system. Microfluidic devices not only detect various cancer-diagnostic factors from biological fluids but also can produce proper nanoparticles for drug delivery. With the contribution of microfluidics; multiple treatments for cancer such as chemotherapy, radiation therapy, and gene delivery can be implemented and studied. Hence, Microfluidics can be worth for the cancer field because of its high Throughput, high sensitivity, less material use, and low expense. In this review study, we intend to look at positive microfluidics prospects, features, benefits, and clinical applications.
Collapse
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | | | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Lyubov Melnikova
- Business Analysis Department, Financial University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
232
|
Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, Beheshtkhoo N, Kouhbanani MAJ, Marofi F, Nikoo M, Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12:297. [PMID: 34020704 PMCID: PMC8138094 DOI: 10.1186/s13287-021-02378-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) and their widespread biomedical applications have attracted great consideration from the scientific community around the world. However, reports have shown that the main populations of the transplanted MSCs are trapped in the liver, spleen, and lung upon administration, highlighting the importance of the development of cell-free therapies. Concerning rising evidence suggesting that the beneficial effects of MSC therapy are closely linked to MSC-released components, predominantly MSC-derived exosomes, the development of an MSC-based cell-free approach is of paramount importance. The exosomes are nano-sized (30100nm) lipid bilayer membrane vesicles, which are typically released by MSCs and are found in different body fluids. They include various bioactive molecules, such as messenger RNA (mRNA), microRNAs, proteins, and bioactive lipids, thus showing pronounced therapeutic competence for tissues recovery through the maintenance of their endogenous stem cells, the enhancement of regenerative phenotypic traits, inhibition of apoptosis concomitant with immune modulation, and stimulation of the angiogenesis. Conversely, the specific roles of MSC exosomes in the treatment of various tumors remain challenging. The development and clinical application of novel MSC-based cell-free strategies can be supported by better understanding their mechanisms, classifying the subpopulation of exosomes, enhancing the conditions of cell culture and isolation, and increasing the production of exosomes along with engineering exosomes to deliver drugs and therapeutic molecules to the target sites. In the current review, we deliver a brief overview of MSC-derived exosome biogenesis, composition, and isolation methods and discuss recent investigation regarding the therapeutic potential of MSC exosomes in regenerative medicine accompanied by their double-edged sword role in cancer.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | | | - Judi Januadi Endjun
- Medical Faculty, UPN Veteran, Jakarta, Indonesia.,Gatot Soebroto Indonesia Army Hospital, Jakarta, Indonesia
| | | | | | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
233
|
Zhang S, Liu C, Zou X, Geng X, Zhou X, Fan X, Zhu D, Zhang H, Zhu W. MicroRNA panel in serum reveals novel diagnostic biomarkers for prostate cancer. PeerJ 2021; 9:e11441. [PMID: 34055487 PMCID: PMC8141284 DOI: 10.7717/peerj.11441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose MicroRNAs (miRNAs), which could be stably preserved and detected in serum or plasma, could act as biomarkers in cancer diagnosis. Prostate cancer is the second cancer in males for incidence. This study aimed to establish a miRNA panel in peripheral serum which could act as a non-invasive biomarker helping diagnosing PC. Methods A total of 86 PC patients and 86 normal control serum samples were analyzed through a four-stage experimental process using quantitative real-time polymerase chain reaction. Logistic regression method was used to construct a diagnostic model based on the differentially expressed miRNAs in serum. Receiver operating characteristic curves were constructed to evaluate the diagnostic accuracy. We also compared the 3-miRNA panel with previously reported biomarkers and verified in four public datasets. In addition, the expression characteristics of the identified miRNAs were further explored in tissue and serum exosomes samples. Results We identified a 3-miRNA signature including up-regulated miR-146a-5p, miR-24-3p and miR-93-5p for PC detection. Areas under the receiver operating characteristic curve of the 3-miRNA panel for the training, testing and external validation phase were 0.819, 0.831 and 0.814, respectively. The identified signature has a very stable diagnostic performance in the large cohorts of four public datasets. Compared with previously identified miRNA biomarkers, the 3-miRNA signature in this study has superior performance in diagnosing PC. What’s more, the expression level of miR-93-5p was also elevated in exosomes from PC samples. However, in PC tissues, none of the three miRNAs showed significantly dysregulated expression. Conclusions We established a three-miRNA panel (miR-146a-5p, miR-24-3p and miR-93-5p) in peripheral serum which could act as a non-invasive biomarker helping diagnosing PC.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuan Zou
- Fudan University Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, Shanghai, China
| | - Xiangnan Geng
- Department of Clinical Engineer, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - XingChen Fan
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Huo Zhang
- Department of Oncology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
234
|
Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol 2021; 12:683022. [PMID: 34054875 PMCID: PMC8158941 DOI: 10.3389/fimmu.2021.683022] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the oldest protection strategy that is conserved across all organisms. Although having an unspecific action, it is the first and fastest defense mechanism against pathogens. Development of predominantly the adaptive immune system takes place after birth. However, some key components of the innate immune system evolve during the prenatal period of life, which endows the newborn with the ability to mount an immune response against pathogenic invaders directly after birth. Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary antigens, and microbial metabolites originating from the maternal microbiota are the key players in preparing the neonate’s immunity to the outer world. Birth represents the biggest substantial environmental change in life, where the newborn leaves the protective amniotic sac and is exposed for the first time to a countless variety of microbes. Colonization of all body surfaces commences, including skin, lung, and gastrointestinal tract, leading to the establishment of the commensal microbiota and the maturation of the newborn immune system, and hence lifelong health. Pregnancy, birth, and the consumption of breast milk shape the immune development in coordination with maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota interactions during each developmental stage can have long-term effects on disease susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1 diabetes. In this review, we will give an overview of the recent studies by discussing the multifaceted emergence of the newborn innate immune development in line with the importance of maternal and early life microbiota exposure and breast milk intake.
Collapse
Affiliation(s)
- Cristina Kalbermatter
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sandro Christensen
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
235
|
Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl Stroke Res 2021; 13:171-187. [PMID: 33982152 DOI: 10.1007/s12975-021-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood-brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.
Collapse
|
236
|
Srinivasan A, Sundar IK. Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:127-147. [PMID: 34414402 PMCID: PMC8372030 DOI: 10.20517/evcna.2021.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.
Collapse
Affiliation(s)
- Ashokkumar Srinivasan
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| |
Collapse
|
237
|
Freise C, Querfeld U, Ludwig A, Hamm B, Schnorr J, Taupitz M. Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT-1 expression. J Cell Mol Med 2021; 25:5602-5614. [PMID: 33960650 PMCID: PMC8184672 DOI: 10.1111/jcmm.16572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC). Since chronic kidney disease (CKD) increases the risk for vascular calcifications, we investigated whether EV derived from uraemic milieu‐stimulated EC and derived from uraemic rats impact the osteogenic transdifferentiation/calcification of VSMC. For that purpose, human EC were treated with urea and indoxyl sulphate or left untreated. Experimental uraemia in rats was induced by adenine feeding. ‘Uraemic’ and control EV (EVUR; EVCTRL) were isolated from supernatants and plasma by using an exosome isolation reagent. Rat VSMC were treated with a pro‐calcifying medium (CM) with or without EV supplementation. Gene expressions, miRNA contents and protein expressions were determined by qPCR and Western blots, respectively. Calcifications were determined by colorimetric assays. Delivery of miRNA inhibitors/mimics to EV and siRNA to VSMC was achieved via transfection. EVCTRL and EVUR differed in size and miRNA contents. Contrary to EVCTRL, EC‐ and plasma‐derived EVUR significantly increased the pro‐calcifying effects of CM, including altered gene expressions of osterix, runx2, osteocalcin and SM22α. Further, EVUR enhanced the protein expression of the phosphate transporter PiT‐1 in VSMC and induced a phosphorylation of AKT and ERK. Knock down of PiT‐1 and individual inhibition of AKT and ERK signalling in VSMC blocked the pro‐calcifying effects of EVUR. Similar effects were achieved by inhibition of miR‐221/‐222 and mimicking of miR‐143/‐145 in EVUR. In conclusion, EVUR might represent an additional puzzle piece of the complex pathophysiology of vascular calcifications in CKD.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Querfeld
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antje Ludwig
- Department of Cardiology and Angiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
238
|
Małys MS, Aigner C, Schulz SM, Schachner H, Rees AJ, Kain R. Isolation of Small Extracellular Vesicles from Human Sera. Int J Mol Sci 2021; 22:ijms22094653. [PMID: 33925027 PMCID: PMC8124960 DOI: 10.3390/ijms22094653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Robust, well-characterized methods for purifying small extracellular vesicles (sEV) from blood are needed before their potential as disease biomarkers can be realized. Here, we compared isolation of sEV from serum by differential ultracentrifugation (DUC) and by exclusion chromatography using commercially available Exo-spin™ columns. We show that sEV can be purified by both methods but Exo-spin™ columns contain copious additional particles recorded by nanoparticle tracking analysis, invalidating its use for quantifying yields. DUC samples contained higher concentrations of exosome specific proteins CD9, CD63 and CD81 and electron microscopy confirmed that most particles in DUC preparations were sEV, whereas Exo-spin™ samples also contained copious co-purified plasma lipids. MACSPlex bead analysis identified multiple exosome surface proteins, with stronger signals in DUC samples, enabling detection of 21 of 37, compared to only 10 in Exo-spin™ samples. Nevertheless, the pattern of expression was consistent in both preparations, indicating that lipids do not interfere with bead-based technologies. Thus, both DUC and Exo-spin™ can be used to isolate sEV from human serum and what is most appropriate depends on the subsequent use of sEV. In summary, Exo-spin™ enables isolation of sEV from blood with vesicle populations similar to the ones recovered by DUC, but with lower concentrations.
Collapse
Affiliation(s)
- Małgorzata S. Małys
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
| | - Christof Aigner
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, 1090 Vienna, Austria
| | - Stefan M. Schulz
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
| | - Helga Schachner
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
| | - Andrew J. Rees
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
| | - Renate Kain
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria; (M.S.M.); (C.A.); (S.M.S.); (H.S.); (A.J.R.)
- Correspondence:
| |
Collapse
|
239
|
Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13092053. [PMID: 33922795 PMCID: PMC8122975 DOI: 10.3390/cancers13092053] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Metastasis, the process by which cancer cells escape primary tumor site and colonize distant organs, is responsible for most cancer-related deaths. The tumor microenvironment (TME), comprises different cell types, including immune cells and cancer-associated fibroblasts, as well as structural elements, such as collagen and hyaluronan that constitute the extracellular matrix (ECM). Intratumoral interactions between the cellular and structural components of the TME regulate the aggressiveness, and dissemination of malignant cells and promote immune evasion. At the secondary site, the TME also facilitates escape from dormancy to enhance metastatic tumor outgrowth. Moreover, the ECM applies mechanical forces on tumors that contribute to hypoxia and cancer cell invasiveness whereas also hinders drug delivery and efficacy in both primary and metastatic sites. In this review, we summarize the latest developments regarding the role of the TME in cancer progression and discuss ongoing efforts to remodel the TME to stop metastasis in its tracks. Abstract The tumor microenvironment (TME) regulates essential tumor survival and promotion functions. Interactions between the cellular and structural components of the TME allow cancer cells to become invasive and disseminate from the primary site to distant locations, through a complex and multistep metastatic cascade. Tumor-associated M2-type macrophages have growth-promoting and immunosuppressive functions; mesenchymal cells mass produce exosomes that increase the migratory ability of cancer cells; cancer associated fibroblasts (CAFs) reorganize the surrounding matrix creating migration-guiding tracks for cancer cells. In addition, the tumor extracellular matrix (ECM) exerts determinant roles in disease progression and cancer cell migration and regulates therapeutic responses. The hypoxic conditions generated at the primary tumor force cancer cells to genetically and/or epigenetically adapt in order to survive and metastasize. In the circulation, cancer cells encounter platelets, immune cells, and cytokines in the blood microenvironment that facilitate their survival and transit. This review discusses the roles of different cellular and structural tumor components in regulating the metastatic process, targeting approaches using small molecule inhibitors, nanoparticles, manipulated exosomes, and miRNAs to inhibit tumor invasion as well as current and future strategies to remodel the TME and enhance treatment efficacy to block the detrimental process of metastasis.
Collapse
Affiliation(s)
- Christiana M. Neophytou
- European University Research Center, Nicosia 2404, Cyprus;
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.P.); (T.S.)
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.P.); (T.S.)
| | - Panagiotis Papageorgis
- European University Research Center, Nicosia 2404, Cyprus;
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: ; Tel.: +357-22-713158
| |
Collapse
|
240
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
241
|
Park J, Go EB, Oh JS, Lee JK, Lee SY. Multiple-Cycle Polymeric Extracellular Vesicle Precipitation and Its Evaluation by Targeted Mass Spectrometry. Int J Mol Sci 2021; 22:4311. [PMID: 33919183 PMCID: PMC8122279 DOI: 10.3390/ijms22094311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022] Open
Abstract
The multiple roles of extracellular vesicles (EVs) in pathogenesis have received much attention, as they are valuable as diagnostic and prognostic biomarkers. We employed polymeric EV precipitation to isolate EVs from clinical specimens to overcome the limitations of ultracentrifugation (UC), such as low protein yields, a large volume of specimens used, and time requirements. Multiple-cycle polymeric EV precipitation was applied to enhance the purity of the EV fractions with a small sample volume. Then, the purity was assessed using a multiple reaction monitoring (MRM) panel consisting of alpha-2-macroglobulin (A2M), thrombospondin 1 (THBS 1), galectin 3 binding protein (LGALS3BP), and serum albumin (ALB). For purity evaluation, the EV fractions isolated from blood specimens were subjected to shotgun proteomics and MRM-based targeted proteomics analyses. We demonstrate that the modified method is an easy and convenient method compared with UC. In the shotgun proteomics analysis, the proteome profile of EV fraction contains 89% EV-related proteins by matching with the EVpedia database. In conclusion, we suggest that multiple-cycle polymeric EV precipitation is not only a more effective method for EV isolation for further proteomics-based experiments, but may also be useful for further clinical applications due to the higher EV yield and low sample requirements.
Collapse
Affiliation(s)
- Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Eun-Bi Go
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea; (E.-B.G.); (J.S.O.)
| | - Ji Sun Oh
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea; (E.-B.G.); (J.S.O.)
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Science and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
242
|
Chen YS, Lai CPK, Chen C, Lee GB. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:1475-1483. [PMID: 33730143 DOI: 10.1039/d1lc00093d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-released, membrane-encapsulated extracellular vesicles (EVs) serve as a means of intercellular communication by delivering bioactive cargos including proteins, nucleic acids and lipids. EVs have been widely used for a variety of biomedical applications such as biomarkers for disease diagnosis and drug delivery vehicles for therapy. Herein, this study reports a novel method for label-free, contact-free isolation and recovery of EVs via optically-induced dielectrophoresis (ODEP) on a pneumatically-driven microfluidic platform with minimal human intervention. At an optimal driving frequency of 20 kHz and a voltage of 20 Vpp, an ODEP force from a 75 μm moving light beam was characterized to be 23.5-97.7 fN in 0.2 M sucrose solution. Furthermore, rapid enrichment of EVs with a small volume of only 27 pL in 32 s achieved an increase of 272-fold by dynamically shrinking circular light patterns. Moreover, EVs could be automatically isolated and recovered within 25 min, while achieving a releasing efficiency of 99.8% and a recovery rate of 52.2% by using an integrated microfluidics-based optically-induced EV isolation (OIEV) platform. Given the capacity of label-free, contact-free EV isolation, and automatic, easy-releasing EV recovery, this integrated OIEV platform provides a unique approach for EV-based disease diagnosis and drug delivery applications.
Collapse
Affiliation(s)
- Yi-Sin Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan and Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chihchen Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan. and Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan. and Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
243
|
Zhang J, Nguyen LTH, Hickey R, Walters N, Wang X, Kwak KJ, Lee LJ, Palmer AF, Reátegui E. Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids. Sci Rep 2021; 11:8034. [PMID: 33850163 PMCID: PMC8044115 DOI: 10.1038/s41598-021-86910-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) derived from tumor cells have the potential to provide a much-needed source of non-invasive molecular biomarkers for liquid biopsies. However, current methods for EV isolation have limited specificity towards tumor-derived EVs that limit their clinical use. Here, we present an approach called immunomagnetic sequential ultrafiltration (iSUF) that consists of sequential stages of purification and enrichment of EVs in approximately 2 h. In iSUF, EVs present in different volumes of biofluids (0.5-100 mL) can be significantly enriched (up to 1000 times), with up to 99% removal of contaminating proteins (e.g., albumin). The EV recovery rate by iSUF for cell culture media (CCM), serum, and urine corresponded to 98.0% ± 3.6%, 96.0% ± 2.0% and 94.0% ± 1.9%, respectively (p > 0.05). The final step of iSUF enables the separation of tumor-specific EVs by incorporating immunomagnetic beads to target EV subpopulations. Serum from a cohort of clinical samples from metastatic breast cancer (BC) patients and healthy donors were processed by the iSUF platform and the isolated EVs from patients showed significantly higher expression levels of BC biomarkers (i.e., HER2, CD24, and miR21).
Collapse
Affiliation(s)
- Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Kwang Joo Kwak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
244
|
Maiullari F, Chirivì M, Costantini M, Ferretti AM, Recchia S, Maiullari S, Milan M, Presutti D, Pace V, Raspa M, Scavizzi F, Massetti M, Petrella L, Fanelli M, Rizzi M, Fortunato O, Moretti F, Caradonna E, Bearzi C, Rizzi R. In vivoorganized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication 2021; 13. [PMID: 33434889 DOI: 10.1088/1758-5090/abdacf] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have become a key tool in the biotechnological landscape due to their well-documented ability to mediate intercellular communication. This feature has been explored and is under constant investigation by researchers, who have demonstrated the important role of EVs in several research fields ranging from oncology to immunology and diagnostics to regenerative medicine. Unfortunately, there are still some limitations to overcome before clinical application, including the inability to confine the EVs to strategically defined sites of interest to avoid side effects. In this study, for the first time, EV application is supported by 3D bioprinting technology to develop a new strategy for applying the angiogenic cargo of human umbilical vein endothelial cell-derived EVs in regenerative medicine. EVs, derived from human endothelial cells and grown under different stressed conditions, were collected and used as bioadditives for the formulation of advanced bioinks. Afterin vivosubcutaneous implantation, we demonstrated that the bioprinted 3D structures, loaded with EVs, supported the formation of a new functional vasculaturein situ, consisting of blood-perfused microvessels recapitulating the printed pattern. The results obtained in this study favour the development of new therapeutic approaches for critical clinical conditions, such as the need for prompt revascularization of ischaemic tissues, which represent the fundamental substrate for advanced regenerative medicine applications.
Collapse
Affiliation(s)
- Fabio Maiullari
- Gemelli Molise SpA, Campobasso, Italy.,Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Maila Chirivì
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maria Ferretti
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council of Italy (SCITEC-CNR), Milano, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Silvia Maiullari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Institute of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Milan
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Dario Presutti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Pace
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Disease, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lella Petrella
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Marta Rizzi
- Ufficio Programmazione e Grant Office, National Research Council of Italy (UPGO-CNR), Rome, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy.,IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy.,Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| |
Collapse
|
245
|
Zheng Q, Zhang S, Guo WZ, Li XK. The Unique Immunomodulatory Properties of MSC-Derived Exosomes in Organ Transplantation. Front Immunol 2021; 12:659621. [PMID: 33889158 PMCID: PMC8055852 DOI: 10.3389/fimmu.2021.659621] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methods for suppressing the host immune system over the long term and improving transplantation tolerance remain a primary issue in organ transplantation. Cell therapy is an emerging therapeutic strategy for immunomodulation after transplantation. Mesenchymal stem cells (MSCs) are adult multipotent stem cells with wide differentiation potential and immunosuppressive properties, which are mostly used in regenerative medicine and immunomodulation. In addition, emerging research suggests that MSC-derived exosomes have the same therapeutic effects as MSCs in many diseases, while avoiding many of the risks associated with cell transplantation. Their unique immunomodulatory properties are particularly important in the immune system-overactive graft environment. In this paper, we review the effects of MSC-derived exosomes in the immune regulation mechanism after organ transplantation and graft-versus-host disease (GvHD) from various perspectives, including immunosuppression, influencing factors, anti-inflammatory properties, mediation of tissue repair and regeneration, and the induction of immune tolerance. At present, the great potential of MSC-derived exosomes in immunotherapy has attracted a great deal of attention. Furthermore, we discuss the latest insights on MSC-derived exosomes in organ transplantation and GvHD, especially its commercial production concepts, which aim to provide new strategies for improving the prognosis of organ transplantation patients.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
246
|
Hatano K, Fujita K. Extracellular vesicles in prostate cancer: a narrative review. Transl Androl Urol 2021; 10:1890-1907. [PMID: 33968677 PMCID: PMC8100827 DOI: 10.21037/tau-20-1210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Over the past decade, there has been remarkable progress in prostate cancer biomarker discovery using urine- and blood-based assays. A liquid biopsy is a minimally invasive procedure to investigate the cancer-related molecules in circulating tumor cells (CTCs), cell-free DNA, and extracellular vesicles (EVs). Liquid biopsies have the advantage of detecting heterogeneity as well as acquired resistance in cancer. EVs are cell-derived vesicles enclosed by a lipid bilayer and contain various molecules, such as nucleic acids, proteins, and lipids. In patients with cancer, EVs derived from tumors can be isolated from urine, plasma, and serum. The advances in isolation techniques provide the opportunity to use EVs as biomarkers in the clinic. Emerging evidence suggests that EVs can be useful biomarkers for the diagnosis of prostate cancer, especially high-grade cancer. EVs can also be potent biomarkers for the prediction of disease progression in patients with castration-resistant prostate cancer (CRPC). EVs shed from cancer and stromal cells are involved in the development of tumor microenvironments, enhancing cancer progression, metastasis, and drug resistance. Here, we provide an overview of the use of EVs for the diagnosis of clinically significant prostate cancer as well as for predicting disease progression. We also discuss the biological function of EVs, which regulate cancer progression.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
247
|
Jafari A, Babajani A, Abdollahpour-Alitappeh M, Ahmadi N, Rezaei-Tavirani M. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol 2021; 38:45. [PMID: 33743101 DOI: 10.1007/s12032-021-01491-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular nanovesicles secreted from almost all types of normal and cancer cells. Collective evidence suggests that exosomes participate in cell-cell communication via transmitting their cargo, including nucleic acids, proteins, and metabolites to recipient cells. Tumor-derived exosomes (TEXs) play prominent roles in the regulation of molecular pathways in malignancies. Internalization of exosomes by tumor cells affects cellular pathways and several cancer hallmarks, including reprogramming of stromal cells, modulating immune responses, reconstructing extracellular matrix architecture, or even endowing tumor cells with drug features resistance. The unique biogenesis pathways of exosomes, their composition, low immunogenicity, and nontoxicity, together with their ability to target tumor cells, bring them up as an attractive vesicles for cancer therapy. Thus, understanding the molecular mechanisms of exosomes' participation in tumorigenesis will be critical for the next generation of cancer therapeutics. This review aims to summarize the exosomes' roles in different mechanisms underlying cancer progression for the rational design of tailored strategies against this illness. The present study also highlights the new findings on using these smart vesicles as therapeutic targets and potential biomarkers. Recent advances in exosome biology will open up new, more effective, less invasive, and more individualized clinical applications for treating cancer patients.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
248
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
249
|
Effect of Intranasal Administration of Multipotent Mesenchymal Stromal Cell Exosomes on Memory of Mice in Alzheimer's Disease Model. Bull Exp Biol Med 2021; 170:575-582. [PMID: 33725248 DOI: 10.1007/s10517-021-05109-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/09/2022]
Abstract
We studied the effect of intranasal administration of exosomes obtained by culturing of multipotent mesenchymal stromal cells (MMSC) isolated from the Wharton's jelly of the human umbilical cord on spatial memory of olfactory bulbectomized mice demonstrating the basic signs of a sporadic form of Alzheimer's disease. Intranasal administration of isolated exosomes expressing typical markers CD9, CD63 and CD81 improved spatial memory in bulbectomized animals, which manifested in a significant increase in the number of visits to the target sector and the time spent there in comparison with indifferent sectors. After administration, labeled exosomes were found in the hippocampus and neocortex, the structures playing an important role in learning and memory processes and affected by Alzheimer's disease. The advantages of exosomes in comparison with MMSC are their small size, low immunogenicity, and inability to cause cell transformation together with high therapeutic efficacy.
Collapse
|
250
|
Guo Y, Wang H, Huang L, Ou L, Zhu J, Liu S, Xu X. Small extracellular vesicles-based cell-free strategies for therapy. MedComm (Beijing) 2021; 2:17-26. [PMID: 34766134 PMCID: PMC8491241 DOI: 10.1002/mco2.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) are extracellular nanovesicles that contain bioactive proteins, lipids, RNA, and DNA. A variety of biological process is regulated with sEVs. sEVs are an intercellular messenger regulating recipient cell function and play a role in disease initiation and progression. sEVs derived from certain cells, such as mesenchymal stem cells and immune cells, have the potential for clinical therapy as they possess the characteristics of their parental cells. With better understanding of sEVs biogenesis, their transportation properties, extended circulatory capability, and exceptional biocompatibility, sEVs emerge as a potential therapeutic tool in the clinic. Here, we summarize applications of sEVs-based therapies in different diseases and current knowledge about the strategies in bioengineered sEVs, as well as the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|