201
|
Webster A. Regenerative medicine and responsible research and innovation: proposals for a responsible acceleration to the clinic. Regen Med 2017; 12:853-864. [DOI: 10.2217/rme-2017-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This paper asks how regenerative medicine can be examined through the ‘responsible research and innovation’ (RRI) approach which has been developed over the past decade. It describes the drivers to the development of RRI, and then argues for the need to understand innovation itself through drawing on social science analysis rooted in science and technology studies. The paper then identifies a number of highly specific challenges faced by the regenerative medicine field and the implications these have for value creation. It offers a number of examples of how a combined RRI/science and technology studies perspective can identify priority areas for policy and concludes by arguing for a ‘responsible acceleration’, more likely to foster readiness at a time when much of the policy domain is pushing for ever-rapid access to cell therapies.
Collapse
Affiliation(s)
- Andrew Webster
- Department of Sociology, SATSU, University of York, York, YO10 5DD, UK
| |
Collapse
|
202
|
Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci 2017; 247:589-609. [PMID: 28754381 DOI: 10.1016/j.cis.2017.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Repairing or replacing damaged human tissues has been the ambitious goal of regenerative medicine for over 25years. One promising approach is the use of hydrated three-dimensional scaffolds, known as hydrogels, which have had good results repairing tissues in pre-clinical trials. Benefiting from breakthrough advances in the field of biology, and more particularly regarding cell/matrix interactions, these hydrogels are now designed to recapitulate some of the fundamental cues of native environments to drive the local tissue regeneration. We highlight the key parameters that are required for the development of smart and biomimetic hydrogels. We also review the wide variety of polymers, crosslinking methods, and manufacturing processes that have been developed over the years. Of particular interest is the emergence of supramolecular chemistries, allowing for the development of highly functional and reversible biohydrogels. Moreover, advances in computer assisted design and three-dimensional printing have revolutionized the production of macroporous hydrogels and allowed for more complex designs than ever before with the opportunity to develop fully reconstituted organs. Today, the field of biohydrogels for regenerative medicine is a prolific area of research with applications for most bodily tissues. On top of these applications, injectable hydrogels and macroporous hydrogels (foams) were found to be the most successful. While commonly associated with cells or biologics as drug delivery systems to increase therapeutic outcomes, they are steadily being used in the emerging fields of organs-on-chip and hydrogel-assisted cell therapy. To highlight these advances, we review some of the recent developments that have been achieved for the regeneration of tissues, focusing on the articular cartilage, bone, cardiac, and neural tissues. These biohydrogels are associated with improved cartilage and bone defects regeneration, reduced left ventricular dilation upon myocardial infarction and display promising results repairing neural lesions. Combining the benefits from each of these areas reviewed above, we envision that an injectable biohydrogel foam loaded with either stem cells or their secretome is the most promising hydrogel solution to trigger tissue regeneration. A paradigm shift is occurring where the combined efforts of fundamental and applied sciences head toward the development of hydrogels restoring tissue functions, serving as drug screening platforms or recreating complex organs.
Collapse
|
203
|
Gardner J, Webster A. Accelerating Innovation in the Creation of Biovalue: The Cell and Gene Therapy Catapult. SCIENCE, TECHNOLOGY & HUMAN VALUES 2017; 42:925-946. [PMID: 28845068 PMCID: PMC5546419 DOI: 10.1177/0162243917702720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The field of regenerative medicine (RM) has considerable therapeutic promise that is proving difficult to realize. As a result, governments have supported the establishment of intermediary agencies to "accelerate" innovation. This article examines in detail one such agency, the United Kingdom's Cell and Gene Therapy Catapult (CGTC). We describe CGTC's role as an accelerator agency and its value narrative, which combines both "health and wealth." Drawing on the notion of sociotechnical imaginaries, we unpack the tensions within this narrative and its instantiation as the CGTC cell therapy infrastructure is built and engages with other agencies, some of which have different priorities and roles to play within the RM field.
Collapse
Affiliation(s)
- John Gardner
- School of Social Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
- John Gardner, School of Social Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia.
| | - Andrew Webster
- Science and Technology Studies Unit, Department of Sociology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
204
|
Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M. Cardiac progenitor cells application in cardiovascular disease. J Cardiovasc Thorac Res 2017; 9:127-132. [PMID: 29118944 PMCID: PMC5670333 DOI: 10.15171/jcvtr.2017.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Stem cells (SCs) have special potency to differentiate into different types of cells, especially cardiomyocytes. In order to demonstrate the therapeutic applications of these cells, various investigations are recently being developed. Cardiac progenitor cells are endogenous cardiac SCs that found to express tyrosine kinase receptors, c-Kit and other stemness features in adult heart, contributing to the regeneration of cardiac tissue after injury. This lineage is able to efficiently trans-differentiate into different cell types such as cardiomyocytes, endothelial cells, and smooth muscle cells. Noticeably, several cardiac progenitor cells have been identified until yet. The therapeutic applications of cardiac SCs have been studied previously, which could introduce a novel therapeutic approach in the treatment of cardiac disorders. The current review enlightens the potency of cardiac progenitor cells features and differentiation capacity, with current applications in cardiovascular field.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Vosoughi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
205
|
Maartens JH, De-Juan-Pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, Hutmacher DW. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opin Biol Ther 2017; 17:1221-1233. [DOI: 10.1080/14712598.2017.1360273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joachim H. Maartens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Elena De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Felix M. Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Antonio Simula
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
| | - Nicolas H. Voelcker
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Simon C. Barry
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- Molecular Immunology, Department of Gastroenterology, Women’s and Children’s Hospital, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, Australia
- ARC Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
206
|
Abstract
OBJECTIVE A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. STUDY DESIGN Translational research. METHODS Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. RESULTS Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. CONCLUSION Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. LEVEL OF EVIDENCE NA. Laryngoscope, 128:153-159, 2018.
Collapse
Affiliation(s)
- Jennifer L Long
- Research Service, Greater Los Angeles VAHS, Los Angeles, California, U.S.A.,Department of Head and Neck Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
207
|
Sekhon UDS, Sen Gupta A. Platelets and Platelet-Inspired Biomaterials Technologies in Wound Healing Applications. ACS Biomater Sci Eng 2017; 4:1176-1192. [DOI: 10.1021/acsbiomaterials.7b00013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ujjal Didar Singh Sekhon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44102, United States
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44102, United States
| |
Collapse
|
208
|
PKC in Regenerative Therapy: New Insights for Old Targets. Pharmaceuticals (Basel) 2017; 10:ph10020046. [PMID: 28524095 PMCID: PMC5490403 DOI: 10.3390/ph10020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults often result in severe clinical complications (i.e., infections and/or amputation) and sometimes lead to patient death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules in wound-healing.
Collapse
|
209
|
Chung L, Maestas DR, Housseau F, Elisseeff JH. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 2017; 114:184-192. [PMID: 28712923 DOI: 10.1016/j.addr.2017.07.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
The compatibility of biomaterials is critical to their structural and biological function in medical applications. The immune system is the first responder to tissue trauma and to a biomaterial implant. The innate immune effector cells, most notably macrophages, play a significant role in the defense against foreign bodies and the formation of a fibrous capsule around synthetic implants. Alternatively, macrophages participate in the pro-regenerative capacity of tissue-derived biological scaffolds. Research is now elucidating the role of the adaptive immune system, and T cells in particular, in directing macrophage response to synthetic and biological materials. Here, we review basic immune cell types and discuss recent research on the role of the immune system in tissue repair and its potential relevance to scaffold design. We will also discuss new emerging immune cell types relevant to biomaterial responses and tissue repair. Finally, prospects for specifically targeting and modulating the immune response to biomaterial scaffolds for enhancing tissue repair and regeneration will be presented.
Collapse
|
210
|
Guan X, Avci-Adali M, Alarçin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J 2017; 12:10.1002/biot.201600394. [PMID: 28220995 PMCID: PMC5503693 DOI: 10.1002/biot.201600394] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.
Collapse
Affiliation(s)
- Xiaofei Guan
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Orthopedic Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, Tuebingen 72076, Germany
| | - Emine Alarçin
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Hao Cheng
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Saheb Kashaf
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxiao Li
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
211
|
Zhang YHP, Sun J, Ma Y. Biomanufacturing: history and perspective. ACTA ACUST UNITED AC 2017; 44:773-784. [PMID: 27837351 DOI: 10.1007/s10295-016-1863-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules—proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.
Collapse
Affiliation(s)
- Yi-Heng Percival Zhang
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
- 0000 0001 0694 4940 grid.438526.e Biological Systems Engineering Department Virginia Tech 304 Seitz Hall 24061 Blacksburg VA USA
| | - Jibin Sun
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| | - Yanhe Ma
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| |
Collapse
|
212
|
Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9831534. [PMID: 28540307 PMCID: PMC5429943 DOI: 10.1155/2017/9831534] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
As the gap between donors and patients in need of an organ transplant continues to widen, research in regenerative medicine seeks to provide alternative strategies for treatment. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the extracellular matrix (ECM) is isolated from its native cells and genetic material in order to produce a natural scaffold. The ECM, which ideally retains its inherent structural, biochemical, and biomechanical cues, can then be recellularized to produce a functional tissue or organ. While decellularization can be accomplished using chemical and enzymatic, physical, or combinative methods, each strategy has both benefits and drawbacks. The focus of this review is to compare the advantages and disadvantages of these methods in terms of their ability to retain desired ECM characteristics for particular tissues and organs. Additionally, a few applications of constructs engineered using decellularized cell sheets, tissues, and whole organs are discussed.
Collapse
|
213
|
Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives. Front Physiol 2017; 8:197. [PMID: 28421002 PMCID: PMC5376595 DOI: 10.3389/fphys.2017.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Yi Qiu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Niu Zhou
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen UniversityGuangzhou, China
| | - Junjun Ding
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianbo Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|
214
|
Corbett MS, Webster A, Hawkins R, Woolacott N. Innovative regenerative medicines in the EU: a better future in evidence? BMC Med 2017; 15:49. [PMID: 28270209 PMCID: PMC5341436 DOI: 10.1186/s12916-017-0818-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a steady stream of headlines suggesting they will transform the future of healthcare, high-tech regenerative medicines have, to date, been quite inaccessible to patients, with only eight having been granted an EU marketing licence in the last 7 years. Here, we outline some of the historical reasons for this paucity of licensed innovative regenerative medicines. We discuss the challenges to be overcome to expedite the development of this complex and rapidly changing area of medicine, together with possible reasons to be more optimistic for the future. DISCUSSION Several factors have contributed to the scarcity of cutting-edge regenerative medicines in clinical practice. These include the great expense and difficulties involved in planning how individual therapies will be developed, manufactured to commercial levels and ultimately successfully delivered to patients. Specific challenges also exist when evaluating the safety, efficacy and cost-effectiveness of these therapies. Furthermore, many treatments are used without a licence from the European Medicines Agency, under "Hospital Exemption" from the EC legislation. For products which are licensed, alternative financing approaches by healthcare providers may be needed, since many therapies will have significant up-front costs but uncertain benefits and harms in the long-term. However, increasing political interest and more flexible mechanisms for licensing and financing of therapies are now evident; these could be key to the future growth and development of regenerative medicine in clinical practice. CONCLUSIONS Recent developments in regulatory processes, coupled with increasing political interest, may offer some hope for improvements to the long and often difficult routes from laboratory to marketplace for leading-edge cell or tissue therapies. Collaboration between publicly-funded researchers and the pharmaceutical industry could be key to the future development of regenerative medicine in clinical practice; such collaborations might also offer a possible antidote to the innovation crisis in the pharmaceutical industry.
Collapse
Affiliation(s)
- Mark S Corbett
- Centre for Reviews and Dissemination, University of York, Heslington, York, YO10 5DD, UK.
| | - Andrew Webster
- Science and Technology Studies Unit, Department of Sociology, University of York, Heslington, York, YO10 5DD, UK
| | - Robert Hawkins
- Medical Oncology, The Christie Hospital and University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nerys Woolacott
- Centre for Reviews and Dissemination, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
215
|
Imaizumi M, Li-Jessen NY, Sato Y, Yang DT, Thibeault SL. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering. Ann Otol Rhinol Laryngol 2017; 126:304-314. [DOI: 10.1177/0003489417691296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Methods: Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Results: Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Conclusions: Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
| | - Yuka Sato
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - David T. Yang
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
216
|
Bickell M, Beilan J, Wallen J, Wiegand L, Carrion R. Advances in Surgical Reconstructive Techniques in the Management of Penile, Urethral, and Scrotal Cancer. Urol Clin North Am 2017; 43:545-559. [PMID: 27717440 DOI: 10.1016/j.ucl.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article reviews the most up-to-date surgical treatment options for the reconstructive management of patients with penile, urethral, and scrotal cancer. Each organ system is examined individually. Techniques and discussion for penile cancer reconstruction include Mohs surgery, glans resurfacing, partial and total glansectomy, and phalloplasty. Included in the penile cancer reconstruction section is the use of penile prosthesis in phalloplasty patients after penectomy, tissue engineering in phallic regeneration, and penile transplantation. Reconstruction following treatment of primary urethral carcinoma and current techniques for scrotal cancer reconstruction using split-thickness skin grafts and flaps are described.
Collapse
Affiliation(s)
- Michael Bickell
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Jonathan Beilan
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Jared Wallen
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Lucas Wiegand
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Rafael Carrion
- Department of Urology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
217
|
Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, Faulds K, Forbes SJ, Campbell CJ. Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2017; 2:12. [PMID: 29302348 PMCID: PMC5665621 DOI: 10.1038/s41536-017-0014-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.
Collapse
Affiliation(s)
- Katherine J. I. Ember
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Marieke A. Hoeve
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Sarah L. McAughtrie
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| | - Mads S. Bergholt
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Benjamin J. Dwyer
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Molly M. Stevens
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Karen Faulds
- 0000000121138138grid.11984.35Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Building, 99 George Street, Glasgow, G1 1RD UK
| | - Stuart J. Forbes
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Colin J. Campbell
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| |
Collapse
|
218
|
Abstract
This review highlights recent advances made using small molecules that promote changes in the fate of cells.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Molecular Cell Biology
- Sungkyunkwan University School of Medicine
- Suwon 16419
- Korea
| | | | - Injae Shin
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology
- Sungkyunkwan University School of Medicine
- Suwon 16419
- Korea
- Department of Health Sciences and Technology
| |
Collapse
|
219
|
Fetal Membranes-Derived Stem Cells Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:235-244. [PMID: 29204836 DOI: 10.1007/978-3-319-69194-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.
Collapse
|
220
|
Vanhaelen Q, Aliper AM, Zhavoronkov A. A comparative review of computational methods for pathway perturbation analysis: dynamical and topological perspectives. MOLECULAR BIOSYSTEMS 2017; 13:1692-1704. [DOI: 10.1039/c7mb00170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells offer great promise within the field of regenerative medicine but despite encouraging results, the large scale use of stem cells for therapeutic applications still faces challenges when it comes to controlling signaling pathway responses with respect to environmental perturbations.
Collapse
Affiliation(s)
- Q. Vanhaelen
- Insilico Medicine Inc
- Johns Hopkins University
- ETC
- USA
| | - A. M. Aliper
- Insilico Medicine Inc
- Johns Hopkins University
- ETC
- USA
| | | |
Collapse
|
221
|
Lu Y, Zhang S, Liu X, Ye S, Zhou X, Huang Q, Ren L. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Adv 2017. [DOI: 10.1039/c7ra01981e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We developed a simple approach to fabricate silk/agarose scaffolds with tunable properties via controlling the gelation degree of silk fibroin.
Collapse
Affiliation(s)
- Yue Lu
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Shupeng Zhang
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xiangyang Liu
- Research Institute for Soft Matter and Biomimetics
- Xiamen University
- Xiamen 361005
- China
- Department of Physics
| | - Shefang Ye
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xi Zhou
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Qiaoling Huang
- Research Institute for Soft Matter and Biomimetics
- Xiamen University
- Xiamen 361005
- China
| | - Lei Ren
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| |
Collapse
|
222
|
Blair NF, Frith TJR, Barbaric I. Regenerative Medicine: Advances from Developmental to Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:225-239. [PMID: 28840560 DOI: 10.1007/978-3-319-60733-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions.
Collapse
Affiliation(s)
- Nicholas F Blair
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thomas J R Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
223
|
Rashidi H, Hay D. Generation and Application of 3DCulture Systems in Human Drug Discovery and Medicine. STEM CELLS IN TOXICOLOGY AND MEDICINE 2016:265-287. [DOI: 10.1002/9781119135449.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
224
|
Bukovsky A. Involvement of blood mononuclear cells in the infertility, age-associated diseases and cancer treatment. World J Stem Cells 2016; 8:399-427. [PMID: 28074124 PMCID: PMC5183987 DOI: 10.4252/wjsc.v8.i12.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/19/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Blood mononuclear cells consist of T cells and monocyte derived cells. Beside immunity, the blood mononuclear cells belong to the complex tissue control system (TCS), where they exhibit morphostatic function by stimulating proliferation of tissue stem cells followed by cellular differentiation, that is stopped after attaining the proper functional stage, which differs among various tissue types. Therefore, the term immune and morphostatic system (IMS) should be implied. The TCS-mediated morphostasis also consists of vascular pericytes controlled by autonomic innervation, which is regulating the quantity of distinct tissues in vivo. Lack of proper differentiation of tissue cells by TCS causes either tissue underdevelopment, e.g., muscular dystrophy, or degenerative functional failures, e.g., type 1 diabetes and age-associated diseases. With the gradual IMS regression after 35 years of age the gonadal infertility develops, followed by a growing incidence of age-associated diseases and cancers. Without restoring an altered TCS function in a degenerative disease, the implantation of tissue-specific stem cells alone by regenerative medicine can not be successful. Transfused young blood could temporarily restore fertility to enable parenthood. The young blood could also temporarily alleviate aging diseases, and this can be extended by substances inducing IMS regeneration, like the honey bee propolis. The local and/or systemic use of honey bee propolis stopped hair and teeth loss, regressed varicose veins, improved altered hearing, and lowered high blood pressure and sugar levels. Complete regression of stage IV ovarian cancer with liver metastases after a simple elaborated immunotherapy is also reported.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Antonin Bukovsky, Laboratory of Reproductive Biology BIOCEV, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
225
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
226
|
Cell Therepy and Regenerative Medicine Glossary. Regen Med 2016; 11:1-142. [PMID: 27915589 DOI: 10.2217/rme-2016-1108s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
227
|
Alarçin E, Guan X, Kashaf SS, Elbaradie K, Yang H, Jang HL, Khademhosseini A. Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine. Regen Med 2016; 11:849-858. [PMID: 27885900 PMCID: PMC5561804 DOI: 10.2217/rme-2016-0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology offers significant potential in regenerative medicine, specifically with the ability to mimic tissue architecture at the nanoscale. In this perspective, we highlight key achievements in the nanotechnology field for successfully mimicking the composition and structure of different tissues, and the development of bio-inspired nanotechnologies and functional nanomaterials to improve tissue regeneration. Numerous nanomaterials fabricated by electrospinning, nanolithography and self-assembly have been successfully applied to regenerate bone, cartilage, muscle, blood vessel, heart and bladder tissue. We also discuss nanotechnology-based regenerative medicine products in the clinic for tissue engineering applications, although so far most of them are focused on bone implants and fillers. We believe that recent advances in nanotechnologies will enable new applications for tissue regeneration in the near future.
Collapse
Affiliation(s)
- Emine Alarçin
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Xiaofei Guan
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sara Saheb Kashaf
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Khairat Elbaradie
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Huazhe Yang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143–701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
228
|
Abstract
The last decade has seen considerable changes in the Regenerative Medicine industry, but unfortunately the hope for numerous treatments that ‘replace or regenerate human cells, tissues or organs to restore or establish normal function’ has not yet emerged. In contrast to this, there have been major advances in the field of cellular immunotherapy though some do not consider these to be Regenerative Medicines. Regulatory changes have in some cases improved the route to a marketing license but they have not been matched by clarification of the complex, national reimbursement processes for cell-based treatments and this has adversely affected a number of leading Regenerative Medicine Companies. The review considers the direction that the industry may go in the future in relation to scientific, manufacturing and clinical strategies which may improve the rate of success of new therapies..
Collapse
Affiliation(s)
- Paul Kemp
- HairClone, 70 Quay St, Manchester, M3 3EJ, UK
| |
Collapse
|
229
|
Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol 2016; 11:2962-2980. [PMID: 27661443 DOI: 10.1021/acschembio.5b00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Collapse
Affiliation(s)
- Ivone M. Martins
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CEB − Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena S. Azevedo
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Institute
of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
230
|
Abstract
The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.
Collapse
Affiliation(s)
- Ashkan Shafiee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; ,
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; ,
| |
Collapse
|
231
|
Simeon-Dubach D, Zeisberger SM, Hoerstrup SP. Quality Assurance in Biobanking for Pre-Clinical Research. Transfus Med Hemother 2016; 43:353-357. [PMID: 27781023 DOI: 10.1159/000448254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/29/2022] Open
Abstract
It is estimated that not less than USD 28 billion are spent each year in the USA alone on irreproducible pre-clinical research, which is not only a fundamental loss of investment and resources but also a strong inhibitor of efficiency for upstream processes regarding the translation towards clinical applications and therapies. The issues and cost of irreproducibility has mainly been published on pre-clinical research. In contrast to pre-clinical research, test material is often being transferred into humans in clinical research. To protect treated human subjects and guarantee a defined quality standard in the field of clinical research, the manufacturing and processing infrastructures have to strictly follow and adhere to certain (inter-)national quality standards. It is assumed and suggested by the authors that by an implementation of certain quality standards within the area of pre-clinical research, billions of USD might be saved and the translation phase of promising pre-clinical results towards clinical applications may substantially be improved. In this review, we discuss how an implementation of a quality assurance (QA) management system might positively improve sample quality and sustainability within pre-clinically focused biobank infrastructures. Biobanks are frequently positioned at the very beginning of the biomedical research value chain, and, since almost every research material has been stored in a biobank during the investigated life cycle, biobanking seems to be of substantial importance from this perspective. The role model of a QA-regulated biobank structure can be found in biobanks within the context of clinical research organizations such as in regenerative medicine clusters.
Collapse
Affiliation(s)
| | - Steffen M Zeisberger
- Wyss Translational Center Zurich, Regenerative Medicine Technologies Platform, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, and Institute of Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
232
|
Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases. Molecules 2016; 21:molecules21091165. [PMID: 27598108 PMCID: PMC6273783 DOI: 10.3390/molecules21091165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer’s disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).
Collapse
|
233
|
Kang YJ. Regenerative Medicine Research: striving to better serve the emerging field. Regen Med Res 2016; 4:E1. [PMID: 27529797 PMCID: PMC5001161 DOI: 10.1051/rmr/160001-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 02/05/2023] Open
Affiliation(s)
- Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan, PR China - Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
234
|
The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration. Stem Cells Int 2016; 2016:4389802. [PMID: 27563312 PMCID: PMC4987465 DOI: 10.1155/2016/4389802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 02/04/2023] Open
Abstract
While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches.
Collapse
|
235
|
Mahla RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016; 2016:6940283. [PMID: 27516776 PMCID: PMC4969512 DOI: 10.1155/2016/6940283] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
236
|
Gu Q, Zhu H, Li J, Li X, Hao J, Wallace GG, Zhou Q. Three-dimensional bioprinting speeds up smart regenerative medicine. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Biological materials can actively participate in the formation of bioactive organs and can even control cell fate to form functional tissues that we name as the smart regenerative medicine (SRM). The SRM requires interdisciplinary efforts to finalize the pre-designed organs. Three-dimensional (3D) printing, as an additive manufacturing technology, has been widely used in various fields due to its high resolution and individuation. In SRM, with the assistance of 3D printing, cells and biomaterials could be precisely positioned to construct complicated tissues. This review summarizes the state of the SRM advances and focuses in particular on the 3D printing application in biofabrication. We further discuss the issues of SRM development and finally propose some approaches for future 3D printing, which involves SRM.
Collapse
Affiliation(s)
- Qi Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | - He Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
237
|
Gurtner GC, Chapman MA. Regenerative Medicine: Charting a New Course in Wound Healing. Adv Wound Care (New Rochelle) 2016; 5:314-328. [PMID: 27366592 PMCID: PMC4900191 DOI: 10.1089/wound.2015.0663] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/13/2015] [Indexed: 12/13/2022] Open
Abstract
Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval.
Collapse
|
238
|
Vladescu A, Padmanabhan SC, Ak Azem F, Braic M, Titorencu I, Birlik I, Morris MA, Braic V. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite. J Mech Behav Biomed Mater 2016; 63:314-325. [PMID: 27450034 DOI: 10.1016/j.jmbbm.2016.06.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 11/27/2022]
Abstract
The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite.
Collapse
Affiliation(s)
- A Vladescu
- National Institute for Optoelectronics (INOE2000), 409 Atomistilor St., Magurele, Romania.
| | - S C Padmanabhan
- Department of Chemistry, University College Cork, College Road, Cork, Ireland; Advanced Materials and BioEngineering Research (AMBER) and School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - F Ak Azem
- Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, Izmir, Turkey
| | - M Braic
- National Institute for Optoelectronics (INOE2000), 409 Atomistilor St., Magurele, Romania
| | - I Titorencu
- Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P. Hasdeu, Bucharest, Romania
| | - I Birlik
- Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, Izmir, Turkey
| | - M A Morris
- Department of Chemistry, University College Cork, College Road, Cork, Ireland; Advanced Materials and BioEngineering Research (AMBER) and School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - V Braic
- National Institute for Optoelectronics (INOE2000), 409 Atomistilor St., Magurele, Romania
| |
Collapse
|
239
|
Azizoglu DB, Cleaver O. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:598-617. [PMID: 27328421 DOI: 10.1002/wdev.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/23/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- D Berfin Azizoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
240
|
A Narrative Review of Pharmacologic and Non-pharmacologic Interventions for Disorders of Consciousness Following Brain Injury in the Pediatric Population. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016; 4:56-70. [PMID: 27280064 DOI: 10.1007/s40141-016-0108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) is the most common cause of long-term disability in the United States. A significant proportion of children who experience a TBI will have moderate or severe injuries, which includes a period of decreased responsiveness. Both pharmacological and non-pharmacological modalities are used for treating disorders of consciousness after TBI in children. However, the evidence supporting the use of potential therapies is relatively scant, even in adults, and overall, there is a paucity of study in pediatrics. The goal of this review is to describe the state of the science for use of pharmacologic and non-pharmacologic interventions for disorders of consciousness in the pediatric population.
Collapse
|
241
|
De Vos J, Bouckenheimer J, Sansac C, Lemaître JM, Assou S. Human induced pluripotent stem cells: A disruptive innovation. Curr Res Transl Med 2016; 64:91-6. [PMID: 27316392 DOI: 10.1016/j.retram.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.
Collapse
Affiliation(s)
- J De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Médecine, 34000 Montpellier, France; Institut de Biologie Computationnelle, 34000 Montpellier, France; CHU Montpellier, SAFE-IPS Reprogramming Platform, Institute of Research in Biotherapy, 34000 Montpellier, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, 34000 Montpellier, France.
| | - J Bouckenheimer
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - C Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - J-M Lemaître
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France
| | - S Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, 34000 Montpellier, France; INSERM, U1183, 34000 Montpellier, France; Université de Montpellier, UFR de Médecine, 34000 Montpellier, France.
| |
Collapse
|
242
|
Gao Y, Lim J, Teoh SH, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem Soc Rev 2016; 44:6306-29. [PMID: 26505058 DOI: 10.1039/c4cs00322e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine, which replaces or regenerates human cells, tissues or organs, to restore or establish normal function, is one of the fastest-evolving interdisciplinary fields in healthcare. Over 200 regenerative medicine products, including cell-based therapies, tissue-engineered biomaterials, scaffolds and implantable devices, have been used in clinical development for diseases such as diabetes and inflammatory and immune diseases. To facilitate the translation of regenerative medicine from research to clinic, nanotechnology, especially magnetic nanoparticles have attracted extensive attention due to their unique optical, electrical, and magnetic properties and specific dimensions. In this review paper, we intend to summarize current advances, challenges, and future opportunities of magnetic nanoparticles for regenerative medicine.
Collapse
|
243
|
Loeblein M, Perry G, Tsang SH, Xiao W, Collard D, Coquet P, Sakai Y, Teo EHT. Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation. Adv Healthc Mater 2016; 5:1177-91. [PMID: 26946189 DOI: 10.1002/adhm.201501026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/18/2016] [Indexed: 01/14/2023]
Abstract
Owing to its high porosity, specific surface area and three-dimensional structure, three-dimensional graphene (3D-C) is a promising scaffold material for tissue engineering, regenerative medicine as well as providing a more biologically relevant platform for living organisms in vivo studies. Recently, its differentiation effects on cells growth and anti-inflammation properties have also been demonstrated. Here, we report a complete study of 3D-C as a fully adequate scaffold for tissue engineering and systematically analyze its biocompatibility and biodegradation mechanism. The metabolic activities of liver cells (HepG2 hepatocarcinoma cells) on 3D-C are studied and our findings show that cell growth on 3D-C has high cell viability (> 90%), low lactate production (reduced by 300%) and its porous structure also provides an excellent oxygenation platform. 3D-C is also biodegradable via a 2-step oxidative biodegradation process by first, disruption of domains and lift off of smaller graphitic particles from the surface of the 3D-C and subsequently, the decomposition of these graphitic flakes. In addition, the speed of the biodegradation can be tuned with pretreatment of O2 plasma.
Collapse
Affiliation(s)
- Manuela Loeblein
- School of Electrical and Electronic Engineering; Nanyang Technological University; Block S1, 50 Nanyang Avenue 639798 Singapore
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
| | - Guillaume Perry
- Laboratory for Integrated Micro-Mechatronic Systems (LIMMS); Centre National de la Recherche Scientifique/Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Siu Hon Tsang
- Temasek Laboratories@NTU; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Wenjin Xiao
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Dominique Collard
- Laboratory for Integrated Micro-Mechatronic Systems (LIMMS); Centre National de la Recherche Scientifique/Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Philippe Coquet
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
- IEMN UMR 8520; Université de Lille 1; Villeneuve D'Ascq Cedex 59652 France
| | - Yasuyuki Sakai
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering; Nanyang Technological University; Block S1, 50 Nanyang Avenue 639798 Singapore
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
244
|
Gardner J, Webster A. The social management of biomedical novelty: Facilitating translation in regenerative medicine. Soc Sci Med 2016; 156:90-7. [DOI: 10.1016/j.socscimed.2016.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022]
|
245
|
Neural Stem Cell Therapy and Rehabilitation in the Central Nervous System: Emerging Partnerships. Phys Ther 2016; 96:734-42. [PMID: 26847015 PMCID: PMC6281018 DOI: 10.2522/ptj.20150063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
The goal of regenerative medicine is to restore function through therapy at levels such as the gene, cell, tissue, or organ. For many disorders, however, regenerative medicine approaches in isolation may not be optimally effective. Rehabilitation is a promising adjunct therapy given the beneficial impact that physical activity and other training modalities can offer. Accordingly, "regenerative rehabilitation" is an emerging concentration of study, with the specific goal of improving positive functional outcomes by enhancing tissue restoration following injury. This article focuses on one emerging example of regenerative rehabilitation-namely, the integration of clinically based protocols with stem cell technologies following central nervous system injury. For the purposes of this review, the state of stem cell technologies for the central nervous system is summarized, and a rationale for a synergistic benefit of carefully orchestrated rehabilitation protocols in conjunction with cellular therapies is provided. An overview of practical steps to increase the involvement of physical therapy in regenerative rehabilitation research also is provided.
Collapse
|
246
|
Marycz K, Śmieszek A, Jeleń M, Chrząstek K, Grzesiak J, Meissner J. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine. Cell Mol Biol Lett 2016; 20:510-33. [PMID: 26110483 DOI: 10.1515/cmble-2015-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.
Collapse
|
247
|
Nicolescu MI. Regenerative Perspective in Modern Dentistry. Dent J (Basel) 2016; 4:dj4020010. [PMID: 29563452 PMCID: PMC5851266 DOI: 10.3390/dj4020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
This review aims to trace the contour lines of regenerative dentistry, to offer an introductory overview on this emerging field to both dental students and practitioners. The crystallized depiction of the concept is a translational approach, connecting dental academics to scientific research and clinical utility. Therefore, this review begins by presenting the general features of regenerative medicine, and then gradually introduces the specific aspects of major dental subdomains, highlighting the progress achieved during the last years by scientific research and, in some cases, which has already been translated into clinical results. The distinct characteristics of stem cells and their microenvironment, together with their diversity in the oral cavity, are put into the context of research and clinical use. Examples of regenerative studies regarding endodontic and periodontal compartments, as well as hard (alveolar bone) and soft (salivary glands) related tissues, are presented to make the reader further acquainted with the topic. Instead of providing a conclusion, we will emphasize the importance for all dental community members, from young students to experienced dentists, of an early awareness rising regarding biomedical research progress in general and regenerative dentistry in particular.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Histology and Cytology Division, Bucharest, 8 Eroilor Sanitari Blvd., RO-050474, Romania.
- Victor Babeș National Institute of Pathology, Radiobiology Laboratory, Bucharest, Romania.
| |
Collapse
|
248
|
Geris L, Guyot Y, Schrooten J, Papantoniou I. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market. Interface Focus 2016; 6:20150105. [PMID: 27051516 PMCID: PMC4759755 DOI: 10.1098/rsfs.2015.0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design.
Collapse
Affiliation(s)
- L Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium; Biomechanics Research Unit, Université de Liège, Chemin des Chevreuils 1 - BAT 52/3, Liège 4000, Belgium; Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300C-PB 2419, Leuven 3001, Belgium
| | - Y Guyot
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium; Biomechanics Research Unit, Université de Liège, Chemin des Chevreuils 1 - BAT 52/3, Liège 4000, Belgium
| | | | - I Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Onderwijs en Navorsing 1 (+8), Herestraat 49-PB813, Leuven 3000, Belgium
| |
Collapse
|
249
|
|
250
|
Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation. Phys Ther 2016; 96:560-9. [PMID: 26637643 PMCID: PMC4817213 DOI: 10.2522/ptj.20150224] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 11/22/2015] [Indexed: 12/22/2022]
Abstract
Achieving functional restoration of diseased or injured tissues is the ultimate goal of both regenerative medicine approaches and physical therapy interventions. Proper integration and healing of the surrogate cells, tissues, or organs introduced using regenerative medicine techniques are often dependent on the co-introduction of therapeutic physical stimuli. Thus, regenerative rehabilitation represents a collaborative approach whereby rehabilitation specialists, basic scientists, physicians, and surgeons work closely to enhance tissue restoration by creating tailored rehabilitation treatments. One of the primary treatment regimens that physical therapists use to promote tissue healing is the introduction of mechanical forces, or mechanotherapies. These mechanotherapies in regenerative rehabilitation activate specific biological responses in musculoskeletal tissues to enhance the integration, healing, and restorative capacity of implanted cells, tissues, or synthetic scaffolds. To become future leaders in the field of regenerative rehabilitation, physical therapists must understand the principles of mechanobiology and how mechanotherapies augment tissue responses. This perspective article provides an overview of mechanotherapy and discusses how mechanical signals are transmitted at the tissue, cellular, and molecular levels. The synergistic effects of physical interventions and pharmacological agents also are discussed. The goals are to highlight the critical importance of mechanical signals on biological tissue healing and to emphasize the need for collaboration within the field of regenerative rehabilitation. As this field continues to emerge, physical therapists are poised to provide a critical contribution by integrating mechanotherapies with regenerative medicine to restore musculoskeletal function.
Collapse
|