201
|
Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int J Mol Sci 2021; 22:ijms222312752. [PMID: 34884556 PMCID: PMC8657440 DOI: 10.3390/ijms222312752] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the last few decades, there has been a trend involving the use of nanoscale fillers in a variety of applications. Significant improvements have been achieved in the areas of their preparation and further applications (e.g., in industry, agriculture, and medicine). One of these promising materials is magnesium oxide (MgO), the unique properties of which make it a suitable candidate for use in a wide range of applications. Generally, MgO is a white, hygroscopic solid mineral, and its lattice consists of Mg2+ ions and O2− ions. Nanostructured MgO can be prepared through different chemical (bottom-up approach) or physical (top-down approach) routes. The required resultant properties (e.g., bandgap, crystallite size, and shape) can be achieved depending on the reaction conditions, basic starting materials, or their concentrations. In addition to its unique material properties, MgO is also potentially of interest due to its nontoxicity and environmental friendliness, which allow it to be widely used in medicine and biotechnological applications.
Collapse
Affiliation(s)
- Jaroslav Hornak
- Department of Materials and Technology, Faculty of Electrical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic
| |
Collapse
|
202
|
Mohammed Asik R, Manikkaraja C, Tamil Surya K, Suganthy N, Priya Aarthy A, Mathe D, Sivakumar M, Archunan G, Padmanabhan P, Gulyas B. Anticancer Potential of L-Histidine-Capped Silver Nanoparticles against Human Cervical Cancer Cells (SiHA). NANOMATERIALS 2021; 11:nano11113154. [PMID: 34835918 PMCID: PMC8618575 DOI: 10.3390/nano11113154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of -20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohammed Asik
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Chidhambaram Manikkaraja
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Karuppusamy Tamil Surya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India;
| | - Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur 313001, India;
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
- CROmed Translational Research Centers Ltd., 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | | | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
- Dean-Research, Marudupandiyar College, Thanjavur 613403, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore;
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore;
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| |
Collapse
|
203
|
Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities. Polymers (Basel) 2021; 13:polym13223990. [PMID: 34833288 PMCID: PMC8620293 DOI: 10.3390/polym13223990] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Synthesis of silver nanoparticles–chitosan composite particles sphere (AgNPs-chi-spheres) has been completed and its characterization was fulfilled by UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and zetasizer nano. UV–vis spectroscopy characterization showed that AgNPs-chi-spheres gave optimum absorption at a wavelength of 410 nm. The XRD spectra showed that the structure of AgNPs-chi-spheres were crystalline and spherical. Characterization by SEM showed that AgNPs-chi-spheres, with the addition of 20% of NaOH, resulted in the lowest average particle sizes of 46.91 nm. EDX analysis also showed that AgNPs-chi-spheres, with the addition of a 20% NaOH concentration, produced particles with regular spheres, a smooth and relatively nonporous structure. The analysis using zetasizer nano showed that the zeta potential value and the polydispersity index value of the AgNPs-chi-sphere tended to increase with an increased NaOH concentration. The results of the microbial activity screening showed that the AgNP-chi-Spheres with highest concentration of NaOH, produced the highest inhibition zone diameters against S. aureus, E. coli, and C. albicans, with inhibition zone diameters of 19.5, 18.56, and 12.25 nm, respectively.
Collapse
|
204
|
Valencia-Llano CH, Solano MA, Grande-Tovar CD. Nanocomposites of Chitosan/Graphene Oxide/Titanium Dioxide Nanoparticles/Blackberry Waste Extract as Potential Bone Substitutes. Polymers (Basel) 2021; 13:polym13223877. [PMID: 34833175 PMCID: PMC8618967 DOI: 10.3390/polym13223877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
New technologies based on nanocomposites of biopolymers and nanoparticles inspired by the nature of bone structure have accelerated their application in regenerative medicine, thanks to the introduction of reinforcing properties. Our research incorporated chitosan (CS) covalently crosslinked with glutaraldehyde (GLA) beads with graphene oxide (GO) nanosheets, titanium dioxide nanoparticles (TiO2), and blackberry processing waste extract (BBE) and evaluated them as partial bone substitutes. Skullbone defects in biomodels filled with the scaffolds showed evidence through light microscopy, scanning electron microscopy, histological studies, soft tissue development with hair recovery, and absence of necrotic areas or aggressive infectious response of the immune system after 90 days of implantation. More interestingly, newly formed bone was evidenced by elemental analysis and Masson trichromacy analysis, which demonstrated a possible osteoinductive effect from the beads using the critical size defect experimental design in the biomodels. The results of this research are auspicious for the development of bone substitutes and evidence that the technologies for tissue regeneration, including chitosan nanocomposites, are beneficial for the adhesion and proliferation of bone cells.
Collapse
Affiliation(s)
| | - Moisés A. Solano
- Grupo de Investigación de Fotoquímica y Fotobiología, Facultad de Ciencias, Programa de Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Facultad de Ciencias, Programa de Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
- Correspondence: ; Tel.: +57-5-3599-484
| |
Collapse
|
205
|
Balkrishna A, Kumar A, Arya V, Rohela A, Verma R, Nepovimova E, Krejcar O, Kumar D, Thakur N, Kuca K. Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3155962. [PMID: 34737844 PMCID: PMC8563134 DOI: 10.1155/2021/3155962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
206
|
Sharifiaghdam M, Shaabani E, Asghari F, Faridi‐Majidi R. Chitosan coated metallic nanoparticles with stability, antioxidant, and antibacterial properties: Potential for wound healing application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Asghari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
207
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
208
|
Saberi Riseh R, Skorik YA, Thakur VK, Moradi Pour M, Tamanadar E, Noghabi SS. Encapsulation of Plant Biocontrol Bacteria with Alginate as a Main Polymer Material. Int J Mol Sci 2021; 22:ijms222011165. [PMID: 34681825 PMCID: PMC8538305 DOI: 10.3390/ijms222011165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
One of the most favored trends in modern agriculture is biological control. However, many reports show that survival of biocontrol bacteria is poor in host plants. Providing biocontrol agents with protection by encapsulation within external coatings has therefore become a popular idea. Various techniques, including extrusion, spray drying, and emulsion, have been introduced for encapsulation of biocontrol bacteria. One commonly used biopolymer for this type of microencapsulation is alginate, a biopolymer extracted from seaweed. Recent progress has resulted in the production of alginate-based microcapsules that meet key bacterial encapsulation requirements, including biocompatibility, biodegradability, and support of long-term survival and function. However, more studies are needed regarding the effect of encapsulation on protective bacteria and their targeted release in organic crop production systems. Most importantly, the efficacy of alginate use for the encapsulation of biocontrol bacteria in pest and disease management requires further verification. Achieving a new formulation based on biodegradable polymers can have significant effects on increasing the quantity and quality of agricultural products.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (R.S.R.); (M.M.P.); (E.T.); (S.S.N.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
- Correspondence:
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK;
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Mojde Moradi Pour
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (R.S.R.); (M.M.P.); (E.T.); (S.S.N.)
| | - Elahe Tamanadar
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (R.S.R.); (M.M.P.); (E.T.); (S.S.N.)
| | - Shahnaz Shahidi Noghabi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (R.S.R.); (M.M.P.); (E.T.); (S.S.N.)
| |
Collapse
|
209
|
Abstract
Many important discoveries have been made in the field of nanotechnology in the last 40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety concerns have warranted extensive research of nanotoxicity. This paper offers information about the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. It further summarizes details about parameters that dictate the toxicity of nanoparticles and discusses the general/common mechanisms of their toxicity. This review also focuses on fish exposure to nanoparticles, including the possibility of trophic transport through the food chain. Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and titanium dioxide, is further elaborated on.
Collapse
|
210
|
Ulloa J, Lorusso G, Evangelisti M, Camón A, Barberá J, Serrano JL. Magnetism of Dendrimer-Coated Gold Nanoparticles: A Size and Functionalization Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:20482-20487. [PMID: 35774116 PMCID: PMC9236199 DOI: 10.1021/acs.jpcc.1c04213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 06/15/2023]
Abstract
Highly sensitive magnetometry reveals paramagnetism in dendrimer-coated gold nanoparticles. Different types of such nanoparticles, as a result of (i) functionalizing with two distinct Percec-type dendrons, linked to gold via dodecanethiol groups, and (ii) postsynthesis annealing in a solvent-free environment that further promotes their growth have been prepared. Ultimately, for each of the two functionalization configurations, we obtain highly monodisperse and stable nanoparticles of two different sizes, with spherical shape. These characteristics allow singling out the source of the measured paramagnetic signals as exclusively arising from the undercoordinated gold atoms on the surfaces of the nanoparticles. Bulk gold and the functional groups of the ligands contribute only diamagnetically.
Collapse
Affiliation(s)
- José
A. Ulloa
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, 160-C, Calle Edmundo Larenas 129, 4070371 Concepción, Chile
| | - Giulia Lorusso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
- CNR
- Istituto per la Microelettronica e Microsistemi, Unità di Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | - Marco Evangelisti
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Agustín Camón
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC−Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/
Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Departamento
de Química Orgánica, Universidad
de Zaragoza-CSIC, C/
Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
211
|
Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M. Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Front Cell Dev Biol 2021; 9:696668. [PMID: 34631696 PMCID: PMC8495170 DOI: 10.3389/fcell.2021.696668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials are bestowed with certain inherent physicochemical properties unlike their parent materials, rendering them suitable for the multifaceted needs of state-of-the-art biomedical, and pharmaceutical applications. The log-phase development of nano-science along with improved "bench to beside" conversion carries an enhanced probability of human exposure with numerous nanoparticles. Thus, toxicity assessment of these novel nanoscale materials holds a key to ensuring the safety aspects or else the global biome will certainly face a debacle. The toxicity may span from health hazards due to direct exposure to indirect means through food chain contamination or environmental pollution, even causing genotoxicity. Multiple ways of nanotoxicity evaluation include several in vitro and in vivo methods, with in vitro methods occupying the bulk of the "experimental space." The underlying reason may be multiple, but ethical constraints in in vivo animal experiments are a significant one. Two-dimensional (2D) monoculture is undoubtedly the most exploited in vitro method providing advantages in terms of cost-effectiveness, high throughput, and reproducibility. However, it often fails to mimic a tissue or organ which possesses a defined three-dimensional structure (3D) along with intercellular communication machinery. Instead, microtissues such as spheroids or organoids having a precise 3D architecture and proximate in vivo tissue-like behavior can provide a more realistic evaluation than 2D monocultures. Recent developments in microfluidics and bioreactor-based organoid synthesis have eased the difficulties to prosper nano-toxicological analysis in organoid models surpassing the obstacle of ethical issues. The present review will enlighten applications of organoids in nanotoxicological evaluation, their advantages, and prospects toward securing commonplace nano-interventions.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | | | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Varanasi, India
| |
Collapse
|
212
|
Utilization of Mangifera indica as Substrate to Bioremediate the Toxic Metals and Generate the Bioenergy through a Single-Chamber Microbial Fuel Cell. J CHEM-NY 2021. [DOI: 10.1155/2021/8552701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microbial fuel cells (MFCs) are a sustainable approach for the remediation of metals and the simultaneous production of energy. This paper highlighted the usage of mango extract to produce electricity as an organic source for bacteria and reduce metal ions from wastewater. The observed results were 51 mV in 15 days with 500 Ω of external resistance. The whole operation was carried out at room temperature. The observed current and power density were 28.947 mA/m2 and 0.972 mW/m2, respectively. The internal resistance was 150 Ω, which is lower than external resistance. The remediation performance varied with the metal ions as follows: Pb (II) shows 75%, Cd (II) shows 74.11%, and Cr (III) shows 80.50%. Finally, the detailed working mechanism of the present study, MFC challenges, and future research directions are covered in this paper.
Collapse
|
213
|
Hamidian K, Rigi AH, Najafidoust A, Sarani M, Miri A. Study of photocatalytic activity of green synthesized nickel oxide nanoparticles in the degradation of acid orange 7 dye under visible light. Bioprocess Biosyst Eng 2021; 44:2667-2678. [PMID: 34499235 DOI: 10.1007/s00449-021-02636-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Environmental pollution is one of the most important problems that human beings face. Today, nanotechnology has played an important role in green chemistry and the use of nanoparticles in the removal of environmental pollutants is one of the newest methods of removing pollutants in the world. So, in this study, Nickel oxide nanoparticles (NiO NPs) of this work were successfully synthesized via a green method by the usage of nickel nitrate hexahydrate as the source of metal and Biebersteinia multifida extract as the stabilizing agent throughout different annealing temperatures. The physicochemical properties of the obtained NiO NPs were characterized through the application of scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), ultraviolet visible (UV-vis), and Raman analysis. According to the results of SEM and PXRD, the prepared product contained a satisfying distribution and very fine cubic structure with minimal accumulation. The average crystal size of prepared nanoparticles was obtained 54-58 nm. The energy band gap of synthesized NiO NPs was calculated 3-3.7 using Tauc equation. The photocatalytic performance of NiO NPs was investigated under visible light through the decolourization reaction of acid orange 7 (AO7) dye in aqueous solution. Being composed at 300 °C of annealing temperature, these nanoparticles exhibited excellent adsorption and photocatalytic activity (90.2%) toward AO7 dye. Therefore, it can be indicated that the synthesized NiO NPs demonstrated an excellent dispersion in dye solution, as well as considerable photocatalytic activity.
Collapse
Affiliation(s)
- Khadijeh Hamidian
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amir Hossein Rigi
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Najafidoust
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran.
| | - Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
214
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
215
|
Kainat, Khan MA, Ali F, Faisal S, Rizwan M, Hussain Z, Zaman N, Afsheen Z, Uddin MN, Bibi N. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co 3O 4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci 2021; 28:5157-5167. [PMID: 34466093 PMCID: PMC8381038 DOI: 10.1016/j.sjbs.2021.05.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Herein, we present a green, economic and ecofriendly protocol for synthesis of cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs) for multifaceted biomedical applications. In the study, a simple aqueous leaf extract of Hibiscus rosa sinensis, was employed for the facile one pot synthesis of Co3O4-NPs and MgO-NPs. The well characterized NPs were explored for multiple biomedical applications including bactericidal activity against urinary tract infection (UTI) isolates, leishmaniasis, larvicidal, antidiabetic antioxidant and biocompatibility studies. Our results showed that both the NPs were highly active against multidrug resistant UTI isolates as compared to traditional antibiotics and induced significant zone of inhibition against Proteus Vulgaris, Pseudomonas Aurigenosa and E.coli. The NPs, in particular Co3O4-NPs also showed significant larvicidal activity against the Aedes Aegypti, the mosquitoes involve in the transmission of Dengue fever. Similarly, excellent leishmanicidal activity was also observed against both the promastigote and amastigote forms of the parasite. Furthermore, the particles also exhibited considerable antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Owing to ecofriendly synthesis, non-toxic and biocompatible nature, the Hibiscus rosa sinensis synthesized Co3O4-NPs and MgO-NPs can be exploited as potential candidates for multiple biomedical applications.
Collapse
Affiliation(s)
- Kainat
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Aslam Khan
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhad Ali
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Shah Faisal
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Rizwan
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Zahid Hussain
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Nasib Zaman
- Center for biotechnology and microbiology university of swat, KPK, Pakistan
| | - Zobia Afsheen
- Department of Microbiology and Biotechnology, Abasyn University, Peshawar, KPK, Pakistan
| | | | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, KPK, Pakistan
| |
Collapse
|
216
|
Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Recent progress on Ag/TiO 2 photocatalysts: photocatalytic and bactericidal behaviors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44638-44666. [PMID: 34212334 PMCID: PMC8249049 DOI: 10.1007/s11356-021-14996-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 05/23/2023]
Abstract
For many decades, titanium dioxide (TiO2) semiconductor has been extensively applied in several environmental applications due to its higher photocatalytic performances toward different organic pollutants, pharmaceutical compounds, and bacteria. However, its shortfall response to visible light, and the expeditious recombination rate of the photogenerated electron-hole pairs, hampers its utilization. Doping TiO2 semiconductor with silver nanoparticles is a sound strategy to (1) extend its photocatalytic activity to visible light, (2) prevent the electron/holes pairs recombination due to the formation of the Schottky barrier at the interfaces with TiO2 that act as an electron-trapping center, and (3) enhance its bactericide performances. This review focuses on the recent progress on silver-doped titanium dioxide (Ag/TiO2)-based photocatalysts. It addresses a wide range of Ag/TiO2 synthesis techniques, their physicochemical properties and discusses thoroughly the important role of silver (Ag) nanoparticles in enhancing the removal capacity and antibacterial performances of the Ag/TiO2 photocatalysts.
Collapse
Affiliation(s)
- Hanane Chakhtouna
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanane Benzeid
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
217
|
Toropova YG, Gorshkova MN, Motorina DS, Korolev DV, Skorik YA, Shulmeister GA, Podyacheva EY, Bagrov AY. Influence of Iron Oxide-Based Nanoparticles with Various Shell Modifications on the Generation of Reactive Oxygen Species in Stimulated Human Blood Cells in vitro. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
218
|
Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol Biosci 2021; 21:e2100103. [PMID: 34405955 DOI: 10.1002/mabi.202100103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/31/2021] [Indexed: 12/12/2022]
Abstract
Chronic wound infections have caused an increasing number of deaths and economic burden, which necessitates wound treatment options. Hitherto, the development of functional wound dressings has achieved reasonable progress. Antibacterial agents, growth factors, and miRNAs are incorporated in different wound dressings to treat various types of wounds. As an effective antimicrobial agent and emerging wound healing therapeutic, antimicrobial peptides (AMPs) have attracted significant attention. The present study focuses on the application of AMPs in wound healing and discusses the types, properties and formulation strategies of AMPs used for wound healing. In addition, the clinical trial and the current status of studies on "antimicrobial peptides and wound healing" are elaborated through bibliometrics. Also, the challenges and opportunities for further development and utilization of AMP formulations in wound healing are discussed.
Collapse
Affiliation(s)
- Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Yong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| |
Collapse
|
219
|
Malik A, Alshehri MA, Alamery SF, Khan JM. Impact of metal nanoparticles on the structure and function of metabolic enzymes. Int J Biol Macromol 2021; 188:576-585. [PMID: 34400227 DOI: 10.1016/j.ijbiomac.2021.08.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
The widespread use of nanoparticles raises many serious concerns about the safety and environmental impact of nanoparticles. Therefore, risk assessments of specific nanoparticles in occupational and environmental exposure are essential before their large-scale production and applications, especially in medicine and for usage in household items. In this study, the effects of five different metal nanoparticles on the structure, stability, and function of four metabolic enzymes were evaluated using various biophysical techniques. Our results show that Cu nanoparticles exhibited the most significant adverse effects on the structures, stability, and activities of all the metabolic enzymes. Zn nanoparticles caused moderate adverse effects on these enzymes. The rest of the metal (Al, Fe, and Ni) nanoparticles had a relatively lower impact on the metabolic enzymes. Our data indicated that Cu nanoparticles promote metal-catalyzed disulfide bond formation in these proteins. In summary, some metal nanoparticles can cause adverse effects on the structure, function, and stability of metabolic enzymes. In addition, metal nanoparticles may affect protein homeostasis in the cytosol or extracellular fluids.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | - Salman Freeh Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
220
|
Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs). Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
221
|
Shali R, Neamati A, Tabrizi MH, Etminan A, Ghandehari S, Noghondar MK. Green fabrication of silver nanoparticles mediated by Bistorta officinalis aqueous extract: putative mechanism for apoptosis-inducing properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Reyhaneh Shali
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ayda Etminan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Ghandehari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
222
|
Shemyakin IG, Firstova VV, Fursova NK, Abaev IV, Filippovich SY, Ignatov SG, Dyatlov IA. Next-Generation Antibiotics, Bacteriophage Endolysins, and Nanomaterials for Combating Pathogens. BIOCHEMISTRY (MOSCOW) 2021; 85:1374-1388. [PMID: 33280580 DOI: 10.1134/s0006297920110085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents various strategies to fight causative agents of infectious diseases. Species-specific programmable RNA-containing antibiotics open up new possibilities for creating next-generation of personalized drugs based on microbiome editing and can serve as a new tool for selective elimination of pathogenic bacterial species while keeping intact the rest of microbiota. Another promising approach in combating bacterial infections is genome editing using the CRISPR-Cas systems. Expanding knowledge on the molecular mechanisms of innate immunity has been actively used for developing new antimicrobials. However, obvious risks of using antibiotic adjuvants aimed at activation of the host immune system include development of the autoimmune response with subsequent organ damage. To avoid these risks, it is essential to elucidate action mechanisms of the specific ligands and signal molecules used as components of the hybrid antibiotics. Bacteriophage endolysins are also considered as effective antimicrobials against antibiotic-resistant bacteria, metabolically inactive persisters, and microbial biofilms. Despite significant advances in the design of implants with antibacterial properties, the problem of postoperative infections still remains. Different nanomodifications of the implant surface have been designed to reduce bacterial contamination. Here, we review bactericidal, fungicidal, and immunomodulating properties of compounds used for the implant surface nanomodifications, such as silver, boron nitride nanomaterials, nanofibers, and nanogalvanic materials.
Collapse
Affiliation(s)
- I G Shemyakin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - V V Firstova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I V Abaev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S Yu Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| |
Collapse
|
223
|
Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021; 22:7202. [PMID: 34281254 PMCID: PMC8268496 DOI: 10.3390/ijms22137202] [Citation(s) in RCA: 511] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.
Collapse
Affiliation(s)
- Tamara Bruna
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| | - Francisca Maldonado-Bravo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| |
Collapse
|
224
|
Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J CHEM-NY 2021. [DOI: 10.1155/2021/4570388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new bioelectrochemical approach based on metabolic activities inoculated bacteria, and the microbial fuel cell (MFC) acts as biocatalysts for the natural conversion to energy of organic substrates. Among several factors, the organic substrate is the most critical challenge in MFC, which requires long-term stability. The utilization of unstable organic substrate directly affects the MFC performance, such as low energy generation. Similarly, the interaction and effect of the electrode with organic substrate are well discussed. The electrode-bacterial interaction is also another aspect after organic substrate in order to ensure the MFC performance. The conclusion is based on this literature view; the electrode content is also a significant challenge for MFCs with organic substrates in realistic applications. The current review discusses several commercial aspects of MFCs and their potential prospects. A durable organic substrate with an efficient electron transfer medium (anode electrode) is the modern necessity for this approach.
Collapse
|
225
|
Thermal degradation and kinetics stability studies of oil palm (Elaeis Guineensis) biomass-derived lignin nanoparticle and its application as an emulsifying agent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
226
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
227
|
Yaqoob AA, Ibrahim MNM, Yaakop AS, Ahmad A. Application of microbial fuel cells energized by oil palm trunk sap (OPTS) to remove the toxic metal from synthetic wastewater with generation of electricity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01885-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
228
|
Gheorghe DC, Niculescu AG, Bîrcă AC, Grumezescu AM. Nanoparticles for the Treatment of Inner Ear Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1311. [PMID: 34067544 PMCID: PMC8156593 DOI: 10.3390/nano11051311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The inner ear is sensitive to various infections of viral, bacterial, or fungal origin, which, if left untreated, may lead to hearing loss or progress through the temporal bone and cause intracranial infectious complications. Due to its isolated location, the inner ear is difficult to treat, imposing an acute need for improving current therapeutic approaches. A solution for enhancing antimicrobial treatment performance is the use of nanoparticles. Different inorganic, lipidic, and polymeric-based such particles have been designed, tested, and proven successful in the controlled delivery of medication, improving drug internalization by the targeted cells while reducing the systemic side effects. This paper makes a general presentation of common inner ear infections and therapeutics administration routes, further focusing on newly developed nanoparticle-mediated treatments.
Collapse
Affiliation(s)
- Dan Cristian Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- “M.S. Curie” Clinical Emergency Hospital for Children, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
229
|
Fierascu I, Fierascu RC, Ungureanu C, Draghiceanu OA, Soare LC. Application of Polypodiopsida Class in Nanotechnology-Potential towards Development of More Effective Bioactive Solutions. Antioxidants (Basel) 2021; 10:748. [PMID: 34066800 PMCID: PMC8151343 DOI: 10.3390/antiox10050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
The area of phytosynthesized nanomaterials is rapidly developing, with numerous studies being published yearly. The use of plant extracts is an alternative method to reduce the toxic potential of the nanomaterials and the interest in obtaining phytosynthesized nanoparticles is usually directed towards accessible and common plant species, ferns not being explored to their real potential in this field. The developed nanoparticles could benefit from their superior antimicrobial and antioxidant properties (compared with the nanoparticles obtained by other routes), thus proposing an important alternative against health care-associated and drug-resistant infections, as well as in other types of applications. The present review aims to summarize the explored application of ferns in nanotechnology and related areas, as well as the current bottlenecks and future perspectives, as emerging from the literature data.
Collapse
Affiliation(s)
- Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania;
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Camelia Ungureanu
- Department of General Chemistry, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Oana Alexandra Draghiceanu
- Department of Natural Sciences, University of Pitesti, 1 Targu din Vale Str., 110040 Pitesti, Romania; (O.A.D.); (L.C.S.)
| | - Liliana Cristina Soare
- Department of Natural Sciences, University of Pitesti, 1 Targu din Vale Str., 110040 Pitesti, Romania; (O.A.D.); (L.C.S.)
| |
Collapse
|
230
|
Guanidinium and Phosphonium Scaffolds Loaded with Silver Nanoparticles: Synthesis, Characterization, In Vitro Assessment of the Antibacterial Potential and Toxicity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
231
|
Mannarmannan M, Biswas K. Phytochemical‐Assisted Synthesis of Cuprous Oxide Nanoparticles and Their Antimicrobial Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Krishnendu Biswas
- Chemistry Division School of Advanced Sciences, VIT- Chennai 600 127 Tamilnadu India
| |
Collapse
|
232
|
Chai LX, Fan XX, Zuo YH, Zhang B, Nie GH, Xie N, Xie ZJ, Zhang H. Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
233
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The study of the use of nanotechnology for drug delivery has been extensive. Nanomedical approaches for therapeutics; drug delivery in particular is superior to conventional methods in that it allows for controlled targeted delivery and release, higher stability, extended circulation time, minimal side-effects, and improved pharmacokinetic clearance (of the drug) form the body, to name a few. The magnitude of COVID-19, the current ongoing pandemic has been severe; it has caused widespread the loss of human life. In individuals with severe COVID-19, immune dysregulation and a rampant state of hyperinflammation is observed. This kind of an immunopathological response is detrimental and results in rapid disease progression, development of secondary infections, sepsis and can be fatal. Several studies have pin-pointed the reason for this immune dysregulation; deviations in the signaling pathways involved in the mediation and control of immune responses. In severe COVID-19 patients, many signaling cascades including JAK/STAT, NF-κB, MAPK/ERK, TGF beta, VEGF, and Notch signaling were found to be either upregulated or inactivated. Targeting these aberrant signaling pathways in conjunction with antiviral therapy will effectuate mitigation of the hyperinflammation, hypercytokinemia, and promote faster recovery. The science of the use of nanocarriers as delivery agents to modulate these signaling pathways is not new; it has already been explored for other inflammatory diseases and in particular, cancer therapy. Numerous studies have evaluated the efficacy and potential of nanomedical approaches to modulate these signaling pathways and have been met with positive results. A treatment regime, that includes nanotherapeutics and antiviral therapies will prove effective and holds great promise for the successful treatment of COVID-19. In this article, we review different nanomedical approaches already studied for targeting aberrant signaling pathways, the host immune response to SARS-CoV-2, immunopathology and the dysregulated signaling pathways observed in severe COVID-19 and the current treatment methods in use for targeting signaling cascades in COVID-19. We then conclude by suggesting that the use of nanomedical drug delivery systems for targeting signaling pathways can be extended to effectively target the aberrant signaling pathways in COVID-19 for best treatment results.
Collapse
|
234
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
235
|
Ahmad F, Taj MB, Ramzan M, Ali H, Ali A, Adeel M, Iqbal HMN, Imran M. One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 11:131-141. [DOI: 10.1007/s40097-020-00354-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2024]
|
236
|
Velgosova O, Mudra E, Vojtko M. Preparing, Characterization and Anti-Biofilm Activity of Polymer Fibers Doped by Green Synthesized AgNPs. Polymers (Basel) 2021; 13:polym13040605. [PMID: 33671457 PMCID: PMC7923081 DOI: 10.3390/polym13040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of the work was to prepare polymer matrix composite (PMC) microfibers doped by green synthesized silver nanoparticles (AgNPs). The incorporation of AgNP into the polymer matrix can provide toxic properties to the polymer. Polyvinyl alcohol (PVA) was used as a matrix. AgNPs were synthesized by the green method, where the leaf extract of Rosmarinus officinalis (R. officinalis) was used as a reduction and capping agent. PVA-AgNPs composites were prepared in two ways: the ex situ method (pre-prepared globular AgNPs with a mean diameter of 20 nm were added into polymer matrix) and the in situ method (AgNPs were synthesized in the process of polymer composite preparation; in situ synthesized nanoparticles were a mix of different shapes with a mean diameter of ~100 nm). FTIR (Infrared spectroscopy with Fourier Transformation), UV–vis (Ultraviolet–visible spectroscopy), TEM (Transmission Electron Microscope), EDX (Energy-dispersive X-ray spectroscopy), and SEM (Scanning Electron Microscope) techniques were used for the analysis of nanoparticles and prepared PMCs. Thin layers and microfibers of in situ and ex situ PMCs were prepared. The presence of AgNPs clusters was evident in both PMC thin layers. After electrospinning, the chains of nanoparticles were observed inside the fibers. The distribution of nanoparticles was improved by increasing the AgNPs volume fraction (from 5 vol.% to 20 vol.%). Toxic and antibiofilm activity of AgNPs colloid, pure PVA, and PVA-AgNPs composites against the one-cell green algae Parachlorella kessleri (P. kessleri) was analyzed. AgNPs colloid, as well as PVA-AgNPs composites, showed good toxic and antibiofilm activity, and pure PVA shows no toxic/antibiofilm activity.
Collapse
Affiliation(s)
- Oksana Velgosova
- Institute of Materials and Quality Engineering, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letna 9/A, 04200 Košice, Slovakia
- Correspondence: ; Tel.: +42-15-5602-2533
| | - Erika Mudra
- Division of Ceramic and Non-Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (E.M.); (M.V.)
| | - Marek Vojtko
- Division of Ceramic and Non-Metallic Systems, Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (E.M.); (M.V.)
| |
Collapse
|
237
|
Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam KA, Shende S, Gaikwad S, Ingle AP. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. J Fungi (Basel) 2021; 7:139. [PMID: 33672011 PMCID: PMC7919287 DOI: 10.3390/jof7020139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Shital Bonde
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Joanna Trzcińska-Wencel
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Aniket Gade
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Sudhir Shende
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Tathawade, Pune 411033, India;
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 444104, India;
| |
Collapse
|
238
|
Basavegowda N, Baek KH. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021; 26:912. [PMID: 33572219 PMCID: PMC7915418 DOI: 10.3390/molecules26040912] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host's immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
239
|
Abstract
Four vinyl polymer gels (VPGs) were synthesized by free radical polymerization of divinylbenzene, ethane-1,2-diyl dimethacrylate, and copolymerization of divinylbenzene with styrene, and ethane-1,2-diyl dimethacrylate with methyl methacrylate, as supports for palladium nanoparticles. VPGs obtained from divinylbenzene and from divinylbenzene with styrene had spherical shapes while those obtained from ethane-1,2-diyl dimethacrylate and from ethane-1,2-diyl dimethacrylate with methyl methacrylate did not have any specific shapes. Pd(OAc)2 was impregnated onto VPGs and reduced to form Pd0 nanoparticles within VPGs. The structures of Pd0-loaded VPGs were analyzed by XRD, TEM, and nitrogen gas adsorption. Pd0-loaded VPGs had nanocrystals of Pd0 within and on the surface of the polymeric supports. Pd0/VPGs efficiently catalyzed the oxidation/disproportionation of benzyl alcohol into benzaldehyde/toluene, where activity and selectivity between benzaldehyde and toluene varied, depending on the structure of VPG and the weight percentage loading of Pd0. The catalysts were stable and Pd leaching to liquid phase did not occur. The catalysts were separated and reused for five times without any significant decrease in the catalytic activity.
Collapse
|
240
|
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS, Biswal MR. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. NANOMATERIALS 2021; 11:nano11010173. [PMID: 33445545 PMCID: PMC7828028 DOI: 10.3390/nano11010173] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.
Collapse
Affiliation(s)
- Dawin Khiev
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Zeinab A. Mohamed
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Riddhi Vichare
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Ryan Paulson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Sofia Bhatia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47401, USA;
| | - Nagaraj Kerur
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | | | - Shyam S. Mohapatra
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-8333
| |
Collapse
|
241
|
Synthesis and characterization of silver and copper metal–organic hybrid nanomaterials and their biological application. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04788-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
242
|
Zaheer T, Pal K, Zaheer I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem 2021; 100:237-244. [PMID: 33013180 PMCID: PMC7521878 DOI: 10.1016/j.procbio.2020.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious diseases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research domains for future.
Collapse
Key Words
- CAPN, calcium-phosphate nanoparticles
- CNT, carbon nanotube
- COVID-19, Corona virus disease-2019
- Chi-Alg, chitosan alginate
- HIV, human immune deficiency virus
- HPV, human papilloma virus
- ISCOMS, immune stimulating complexes
- IgA, immunoglobulin A
- Immunity
- MERS, Middle-East respiratory syndrome
- MRSA, methcillin resistant Staphylococcus aureus
- NMVs, nano multilamellar lipid vesicles
- Nanoparticles
- PLGA, poly(lactic-co-glycolic acid)
- PSNP, polystyrene nanoparticles
- Pathogens
- Prevention
- SAPN, Self-Assembling Protein Nanoparticle
- SARS-CoV-1, severe acute respiratory syndrome Coronavirus-1
- VLP, virus like particles
- Vaccine
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Faisalabad 38040, Pakistan
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro RJ, 21941-901, Brazil
- Wuhan University, 8 East Lake South Road, Wuchang 430072, Hubei Province, China
| | - Iqra Zaheer
- Department of Pathology, University of Agriculture, Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
243
|
Cellulose Derived Graphene/Polyaniline Nanocomposite Anode for Energy Generation and Bioremediation of Toxic Metals via Benthic Microbial Fuel Cells. Polymers (Basel) 2020; 13:polym13010135. [PMID: 33396931 PMCID: PMC7795932 DOI: 10.3390/polym13010135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Benthic microbial fuel cells (BMFCs) are considered to be one of the eco-friendly bioelectrochemical cell approaches nowadays. The utilization of waste materials in BMFCs is to generate energy and concurrently bioremediate the toxic metals from synthetic wastewater, which is an ideal approach. The use of novel electrode material and natural organic waste material as substrates can minimize the present challenges of the BMFCs. The present study is focused on cellulosic derived graphene-polyaniline (GO-PANI) composite anode fabrication in order to improve the electron transfer rate. Several electrochemical and physicochemical techniques are used to characterize the performance of anodes in BMFCs. The maximum current density during polarization behavior was found to be 87.71 mA/m2 in the presence of the GO-PANI anode with sweet potato as an organic substrate in BMFCs, while the GO-PANI offered 15.13 mA/m2 current density under the close circuit conditions in the presence of 1000 Ω external resistance. The modified graphene anode showed four times higher performance than the unmodified anode. Similarly, the remediation efficiency of GO-PANI was 65.51% for Cd (II) and 60.33% for Pb (II), which is also higher than the unmodified graphene anode. Furthermore, multiple parameters (pH, temperature, organic substrate) were optimized to validate the efficiency of the fabricated anode in different environmental atmospheres via BMFCs. In order to ensure the practice of BMFCs at industrial level, some present challenges and future perspectives are also considered briefly.
Collapse
|
244
|
Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. Int J Biol Macromol 2020; 167:1499-1507. [PMID: 33212110 DOI: 10.1016/j.ijbiomac.2020.11.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022]
Abstract
Lignin was extracted from oil palm empty fruit bunches under four different conditions. The lignin samples were characterized and employed in the green synthesis of silver nanoparticles. Two-dimensional HSQC NMR analysis showed that lignins extracted under more aggressive conditions (3.5% acid, 60 min) exhibited less signals and thus, presented a more degraded chemical structure. Additionally, those lignins obtained under harsh conditions (3.5% acid, 60 min) exhibited higher antioxidant capacity than those obtained under mild conditions (1.5% acid, 20 min). Formation of lignin-mediated silver nanoparticles was confirmed by color change during their synthesis. The surface plasmon resonance peaks (423-427 nm) in UV-visible spectra also confirmed the synthesis of AgNPs. AgNPs showed spherical shape, polycrystalline nature and average size between 18 and 20 nm. AgNPs, in suspension, presented a negative Zeta potential profile. Lignin was assumed to contribute in the antioxidant capacity exhibited by AgNPs. All AgNPs presented no significant differences on the disk diffusion antimicrobial susceptibility test against E. coli. The minimum inhibitory concentration of HAL3-L AgNPs (62.5 μg·mL-1) was better than other physicochemically produced AgNPs (100 μg·mL-1).
Collapse
|
245
|
Abstract
A potential ability of stem cells (SCs) is to regenerate and repair tissues in the human body by providing great prospects for therapeutic applications in the field of medicine. Currently, SC therapy is used in various conditions like diabetes, neurodegenerative disorders, etc. but faces some limitations like patient biocompatibility and chances of cross-infection. SCs are further modulated with nanoconjugates to overcome such challenges and will offer an advantage in the treatment of COVID-19. This pandemic requires design and development of proper treatment to save the life of human beings. Advancements in SC-based nanoconjugated therapy will open new avenues and create a significant impact in the development of futuristic nanomedicine. It may also emerge as a potential therapy for the management of infection in patients suffering from SARS-CoV-2 and related diseases such as pneumonia and virus-induced lung injuries. Mechanisms of stem cell-based nanoconjugates for inhibition of replication of corona virus. ![]()
Collapse
|
246
|
Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, Yaqoob AA, Mohamad Ibrahim MN. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. MATERIALS 2020; 13:ma13214993. [PMID: 33167607 PMCID: PMC7664203 DOI: 10.3390/ma13214993] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Siti Hamidah Mohd Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi, Malaysia, Kuala Lumpur 54100, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi, Malaysia, Kuala Lumpur 54100, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Waseem A. Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir J&K-192123, India;
| | - Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (A.A.Y.); (M.N.M.I.)
| | | |
Collapse
|
247
|
Sekeri SH, Ibrahim MNM, Umar K, Yaqoob AA, Azmi MN, Hussin MH, Othman MBH, Malik MFIA. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. Int J Biol Macromol 2020; 164:3114-3124. [PMID: 32853611 DOI: 10.1016/j.ijbiomac.2020.08.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/01/2022]
Abstract
A study was carried out to determine the effectiveness of lignin, extracted from oil palm (Elaeis guineensis) biomass as water-in-oil (W/O) emulsifying agent. To achieve this goal, soda lignin (SL) was extracted via soda pulping process and a series of nanosized soda lignin (NSL) were prepared using homogenizer at three different speed i.e. 10,400 rpm (NSL 10), 11,400 rpm (NSL 11) and 12,400 rpm (NSL 12) for one hour. All prepared samples were characterized by FT-IR, UV-Vis spectroscopy, thermogravimetric analysis (TGA), zeta potential analyser, Transmission Electron Microscope (TEM) and Extreme High Resolution Field Emission Scanning Electron Microscope (XHR-FESEM). The result of FTIR showed that there is no prominent change occurred in spectra of all samples while a good stability was reflected by TGA curves. The percentage of creaming index and visual observations of all samples demonstrated that NSL 12 and dosage 2 g (out of 1 g, 1.5 g and 2 g) were found to be the best among all samples. Furthermore, the results of IFT indicate that NSL 12 was proven to be more stable than the commercial product. Therefore, NSL 12 is selected for toxicological studies and was found safe in both, in vitro and in vivo studies.
Collapse
Affiliation(s)
- Siti Hajar Sekeri
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Khalid Umar
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nurul Azmi
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Muhammad Bisyrul Hafi Othman
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | | |
Collapse
|
248
|
Presentato A, Armetta F, Spinella A, Chillura Martino DF, Alduina R, Saladino ML. Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Front Chem 2020; 8:699. [PMID: 32974275 PMCID: PMC7471835 DOI: 10.3389/fchem.2020.00699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and development of a CRS system based on mesoporous silica nanoparticles (MSNs), as a carrier, and loaded with a biocide. MSNs, with a diameter of 55 nm and cylindrical pores of ca. 3-8 nm arranged as parallel arrays concerning the NP diameter, and with 422 m2/g of specific surface area were synthesized by the sol-gel method assisted by oil in water emulsion. Biocide loading and release were carried out in water and monitored by UV-Vis Spectroscopy; in addition, microbiological assay was performed using as control the MCM-41 mesoporous silica loaded with the same biocide. The role of specific supramolecular interaction in regulating the release is discussed. Further, we demonstrated that this innovative formulation was useful in inhibiting the in vitro growth of Kocuria rhizophila, an environmental Gram-positive bacterial strain. Besides, the CRS here prepared reduced the bacterial biomass contaminating a real case study (i.e., stone derived from the Santa Margherita cave located in Sicily, Italy), after several months of treatment thus opening for innovative treatments of deteriorated stone artifacts.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Armetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto Spinella
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Maria Luisa Saladino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
249
|
Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation. Catalysts 2020. [DOI: 10.3390/catal10080819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide variety of pollutants are discharged into water bodies like lakes, rivers, canal, etc. due to the growing world population, industrial development, depletion of water resources, improper disposal of agricultural and native wastes. Water pollution is becoming a severe problem for the whole world from small villages to big cities. The toxic metals and organic dyes pollutants are considered as significant contaminants that cause severe hazards to human beings and aquatic life. The microbial fuel cell (MFC) is the most promising, eco-friendly, and emerging technique. In this technique, microorganisms play an important role in bioremediation of water pollutants simultaneously generating an electric current. In this review, a new approach based on microbial fuel cells for bioremediation of organic dyes and toxic metals has been summarized. This technique offers an alternative with great potential in the field of wastewater treatment. Finally, their applications are discussed to explore the research gaps for future research direction. From a literature survey of more than 170 recent papers, it is evident that MFCs have demonstrated outstanding removal capabilities for various pollutants.
Collapse
|
250
|
Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front Chem 2020; 8:376. [PMID: 32582621 PMCID: PMC7283583 DOI: 10.3389/fchem.2020.00376] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Herein, the role of metal-based nanoparticles (NPs) in biomedical analysis and the treatment of critical deceases been highlighted. In the world of nanotechnology, noble elements such as the gold/silver/palladium (Au/Ag/Pd) NPs are the most promising emerging trend to design bioengineering materials that could to be employed as modern diagnostic tools and devices to combat serious diseases. NPs are considered a powerful and advanced chemical tool to diagnose and to cure critical ailments such as HIV, cancer, and other types of infectious illnesses. The treatment of cancer is the most significant application of nanotechnology which is based on premature tumor detection and analysis of cancer cells through Nano-devices. The fascinating characteristic properties of NPs-such as high surface area, high surface Plasmon resonance, multi-functionalization, highly stable nature, and easy processing-make them more prolific for nanotechnology. In this review article, the multifunctional roles of Au/Ag/Pd NPs in the field of medical science, the physicochemical toxicity dependent properties, and the interaction mechanism is highlighted. Due to the cytotoxicity of Ag/Au/Pd NPs, the conclusion and future remarks emphasize the need for further research to minimize the toxicity of NPs in the bio-medicinal field.
Collapse
Affiliation(s)
- Sundas Bahar Yaqoob
- Department of Zoology, Mirpur University of Science and Technology Mirpur, Mirpur, Pakistan
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Mohammad Rashid
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|