201
|
Jain N, Singh Y, Nouri A, Garg U, Pandey M. Assessment of healing capacity of glucose-responsive smart gels on the diabetic wound: A comprehensive review. J Drug Deliv Sci Technol 2024; 93:105403. [DOI: 10.1016/j.jddst.2024.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
202
|
Chen Y, Li Y, Ceng Y, Li C, Li Y, Wang Y, Wang K. Examining the relationship between nutritional status and wound healing in head and neck cancer treatment: A focus on malnutrition and nutrient deficiencies. Int Wound J 2024; 21:e14810. [PMID: 38414357 PMCID: PMC10899863 DOI: 10.1111/iwj.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The research was conducted to examine the correlation between nutritional status and wound healing in individuals who were receiving treatment for head and neck cancer. Specifically, this study sought to identify crucial nutritional factors that influenced both the recovery process and efficacy of the treatment. From February 2022 to September 2023, this cross-sectional study was undertaken involving 300 patients diagnosed with head and neck cancer who were treated at Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. In order to evaluate nutritional status, body mass index (BMI), serum protein levels and dietary intake records were utilized. The assessment of wound healing was conducted using established oncological wound healing scales, photographic documentation and clinical examinations. After treatment, we observed a noteworthy reduction in both BMI (p < 0.05) and serum albumin levels (p < 0.05). There was slightly increased prevalence of head and neck cancer among males (61.0%, p < 0.05). Over the course of 6 months, significant enhancement in wound healing scores was noted, exhibiting overall improvement of 86% in the healing process. An inverse correlation was identified between nutritional status and wound healing efficacy through multivariate analysis. A logistic regression analysis revealed a significant positive correlation (p < 0.05) between elevated levels of serum protein and total lymphocytes and enhanced wound healing. Conversely, negative correlation (p < 0.05) was observed between larger wound size at baseline and healing. The research findings indicated noteworthy association between malnutrition and impaired wound repair among individuals diagnosed with head and neck cancer. The results underscored the significance of integrating nutritional interventions into therapeutic protocol in order to enhance clinical results. This research study provided significant contributions to the knowledge of intricate nature of head and neck cancer management by advocating for multidisciplinary approach that incorporates nutrition as the critical element of patient care and highlighted the importance of ongoing surveillance and customized dietary approaches in order to optimize wound healing and treatment efficacy.
Collapse
Affiliation(s)
- Yajun Chen
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yuying Li
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yaqi Ceng
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Chunlei Li
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yueying Li
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yujie Wang
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Kun Wang
- Department of NutritionTianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| |
Collapse
|
203
|
Liao C, Zhu M, Ding H, Li Y, Sun Q, Li X. Comparing the traditional and emerging therapies for enhancing wound healing in diabetic patients: A pivotal examination. Int Wound J 2024; 21:e14488. [PMID: 37984812 PMCID: PMC10898383 DOI: 10.1111/iwj.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic non-healing ulcers are common among diabetic patients, posing significant therapeutic challenges. This study compared traditional therapies (TT) and emerging therapies (ET) for enhancing diabetic patients' wound healing. A total of 150 diabetic patients with chronic ulcers, ages 30-65, were randomly assigned to one of two groups: TT (n = 75) or ET (n = 75). ET included growth factors, bioengineered skin substitutes, and hyperbaric oxygen therapy, while TT for wound healing predominantly included debridement, saline-moistened dressings, and off-loading techniques. The primary outcome was the percentage of lesions that healed within 12 weeks, which was assessed at intervals. Secondary outcomes included time to wound recovery, pain using Visual Analogue Scale (VAS), and life quality via Wound-QoL questionnaire. By the 12th week, the ET group had a repair rate of 81.33% compared to 57.33% in TT group (p < 0.05). ET exhibited superior pain reduction (VAS score: 4.7 ± 1.6 for ET vs. 6.2 ± 1.4 for TT, p < 0.05) and improved life quality (Wound-QoL score: 61.8 ± 9.1 for ET vs. 44.3 ± 10.3 for TT, p < 0.05). However, there were slightly more cases of cutaneous irritation and hematomas among ET patients. ET have demonstrated significant efficacy in accelerating wound healing in diabetic patients, surpassing traditional methods, with additional advantages in pain management and life quality. Due to the observed minor complications, however, caution is required.
Collapse
Affiliation(s)
- Chunfen Liao
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Mingjie Zhu
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Hongchen Ding
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yanli Li
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Qianshu Sun
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Xueqin Li
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
204
|
Feng K, Tang J, Qiu R, Wang B, Wang J, Hu W. Fabrication of a core-shell nanofibrous wound dressing with an antioxidant effect on skin injury. J Mater Chem B 2024; 12:2384-2393. [PMID: 38349135 DOI: 10.1039/d3tb02911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Oxidative stress is one of the obstacles preventing wound regeneration, especially for chronic wounds. Herein, designing a wound dressing with an anti-oxidant function holds great appeal for enhancing wound regeneration. In this study, a biocompatible and degradable nanofiber with a core-shell structure was fabricated via coaxial electrospinning, in which polycaprolactone (PCL) was applied as the core structure, while the shell was composed of a mixture of silk fibroin (SF) and tocopherol acetate (TA). The electrospun PST nanofibers were proven to have a network structure with significantly enhanced mechanical properties. The PSTs exhibited a diameter distribution with an average of 321 ± 134 nm, and the water contact angle of their surface is 124 ± 2°. The PSTs also exhibited good tissue compatibility, which can promote the adhesion and proliferation of L929 cells. Besides, the dissolution of silk fibroin encourages the release of TA, which could play a synergistic effect and regulate the oxidative stress effect in the damaged area, for it promotes the adhesion and proliferation of skin fibroblasts (L929), reduces the cytotoxicity of hydrogen peroxide to cells, and lowers the level of reactive oxygen species. The animal experiment indicated that the PSTs would promote the reconstruction of skin. These nanofibers are expected to repair skin ulcers related to diabetes.
Collapse
Affiliation(s)
- Kexin Feng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinlan Tang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Ruiyang Qiu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weikang Hu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
205
|
Meyer JA, Silverstein J, Timor-Tritsch IE, Antoine C. The effect of uterine closure technique on cesarean scar niche development after multiple cesarean deliveries. J Perinat Med 2024; 52:150-157. [PMID: 38081042 DOI: 10.1515/jpm-2023-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVES To use saline infusion sonohysterography (SIS) to evaluate the effect of uterine closure technique on niche formation after multiple cesarean deliveries (CDs). METHODS Patients with at least one prior CD were evaluated for niche via SIS. Subgroups of any number repeat CD (>1 prior), lower-order CD (<4 prior), and higher-order CD (≥4 prior) were analyzed, stratifying by hysterotomy closure technique at last cesarean preceding imaging; techniques included Technique A (endometrium-free double-layer closure) and Technique B (single- or double-layer routine endo-myometrial closure). Niche defects were quantified (depth, length, width, and residual myometrial thickness). The primary outcome was clinically significant niche, defined as depth >2 mm. Statistical analysis was performed using chi-square, ANOVA, t-test, Kruskal-Wallis, and multiple logistic regression, with p-values of <0.05 were statistically significant. RESULTS A total of 172 post-cesarean SIS studies were reviewed: 105 after repeat CDs, 131 after lower-order CDs, and 41 after higher-order CDs. Technique A was associated with a shorter interval to imaging and more double-layer closures. Technique B was associated with more clinically significant niches across all subgroups, and these niches were significantly longer and deeper when present. Multiple logistic regression demonstrated a 5.6, 8.1, and 11-fold increased adjusted odds of clinically significant niche following Technique B closure in the repeat CD (p<0.01), lower-order CD (p<0.001), and higher-order CD (p=0.04) groups, respectively. CONCLUSIONS While multiple CDs are known to increase risk for niche defects and their sequelae, hysterotomy closure technique may help to reduce niche development and severity.
Collapse
Affiliation(s)
- Jessica A Meyer
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jenna Silverstein
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ilan E Timor-Tritsch
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Maternal Resources, Hoboken, NJ, USA
| | - Clarel Antoine
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
206
|
Dai J, Shao J, Zhang Y, Hang R, Yao X, Bai L, Hang R. Piezoelectric dressings for advanced wound healing. J Mater Chem B 2024; 12:1973-1990. [PMID: 38305583 DOI: 10.1039/d3tb02492j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The treatment of chronic refractory wounds poses significant challenges and threats to both human society and the economy. Existing research studies demonstrate that electrical stimulation fosters cell proliferation and migration and promotes the production of cytokines that expedites the wound healing process. Presently, clinical settings utilize electrical stimulation devices for wound treatment, but these devices often present issues such as limited portability and the necessity for frequent recharging. A cutting-edge wound dressing employing the piezoelectric effect could transform mechanical energy into electrical energy, thereby providing continuous electrical stimulation and accelerating wound healing, effectively addressing these concerns. This review primarily reviews the selection of piezoelectric materials and their application in wound dressing design, offering a succinct overview of these materials and their underlying mechanisms. This study also provides a perspective on the current limitations of piezoelectric wound dressings and the future development of multifunctional dressings harnessing the piezoelectric effect.
Collapse
Affiliation(s)
- Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jin Shao
- Taikang Bybo Dental, Zhuhai, 519100, China
| | - Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
207
|
Tu J, Jiang F, Fang J, Xu L, Zeng Z, Zhang X, Ba L, Liu H, Lin F. Anticipation and Verification of Dendrobium-Derived Nanovesicles for Skin Wound Healing Targets, Predicated Upon Immune Infiltration and Senescence. Int J Nanomedicine 2024; 19:1629-1644. [PMID: 38406605 PMCID: PMC10893893 DOI: 10.2147/ijn.s438398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Background Dendrobium, with profound botanical importance, reveals a rich composition of bioactive compounds, including polysaccharides, flavonoids, alkaloids, and diverse amino acids, holding promise for skin regeneration. However, the precise mechanism remains elusive. Seeking a potent natural remedy for wound healing, exocyst vesicles were successfully isolated from Dendrobium. Aims of the Study This investigation aimed to employ bioinformatics and in vivo experiments to elucidate target genes of Dendrobium-derived nanovesicles in skin wound healing, focusing on immune infiltration and senescence characteristics. Materials and Methods C57 mice experienced facilitated wound healing through Dendrobium-derived nanovesicles (DDNVs). Bioinformatics analysis and GEO database mining identified crucial genes by intersecting immune-related, senescence-related, and PANoptosis-associated genes. The identified genes underwent in vivo validation. Results DDNVs remarkably accelerated skin wound healing in C57 mice. Bioinformatics analysis revealed abnormal expression patterns of immune-related, senescence-related, and pan-apoptosis-related genes, highlighting an overexpressed IL-1β and downregulated IL-18 in the model group, Exploration of signaling pathways included IL-17, NF-kappa B, NOD-like receptor, and Toll-like receptor pathways. In vivo experiments confirmed DDNVs' efficacy in suppressing IL-1β expression, enhancing wound healing. Conclusion Plant-derived nanovesicles (PDNV) emerged as a natural, reliable, and productive approach to wound healing. DDNVs uptake by mouse skin tissues, labeled with a fluorescent dye, led to enhanced wound healing in C57 mice. Notably, IL-1β overexpression in immune cells and genes played a key role. DDNVs intervention effectively suppressed IL-1β expression, accelerating skin wound tissue repair.
Collapse
Affiliation(s)
- Jin Tu
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Nursing, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Feng Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People’s Republic of China
| | - Jieni Fang
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Luhua Xu
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Zhicong Zeng
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Xuanyue Zhang
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Li Ba
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Hanjiao Liu
- Department of Nursing, Seventh Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
- Department of Nursing, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| | - Fengxia Lin
- Department of Cardiovascular, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518100, People’s Republic of China
| |
Collapse
|
208
|
Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, Xie Z, Xu Y. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct 2024; 15:1737-1757. [PMID: 38284549 DOI: 10.1039/d3fo03503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles that participate in the information transfer of proteins, nucleic acids, and lipids between cells, thereby playing a role in the treatment of diseases and the delivery of nutrients. In recent years, plant-derived EVs (PDEVs) containing bioactive compounds have attracted increasing interest due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDEVs have been used as cargo carriers to achieve various functions through engineering modification techniques. This review focuses on the biogenesis, isolation, and identification of PDEVs. We discuss the surface functionalization of PDEVs to enhance therapeutic efficacy, thereby improving their efficiency as a next-generation drug delivery vehicle and their feasibility to treat diseases across the physiological barriers, while critically analyzing the current challenges and opportunities.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd, Hefei 230088, China
| |
Collapse
|
209
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
210
|
DeLong MR, Wells MW, Chang IA, Vardanian AJ, Harris H. Data Requirement for Animal-Derived Wound Care Devices: Limitations of the 510(k) Regulatory Pathway. J Am Coll Surg 2024; 238:218-224. [PMID: 37796150 DOI: 10.1097/xcs.0000000000000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Device classification and preclinical data requirements for animal-derived wound care products were recently reviewed by the FDA. Given the possible performance differences for these products, we evaluated the FDA data requirements as well as the published literature for all animal-derived wound care products ever cleared through the FDA. STUDY DESIGN The publicly available online database was queried for all animal-derived wound products; premarket data requirements for each product were recorded. A PubMed search was conducted to determine the number of published clinical studies for each product, and manufacturer websites were accessed to obtain the price for each product. RESULTS A total of 132 animal-derived wound products have been cleared by the FDA since the Center for Devices and Radiological Health was established in 1976. Of these, 114 had a publicly available clearance statement online. Preclinical biocompatibility testing was performed in 85 products (74.6%) and referenced in 10 (8.8%). Preclinical animal wound healing testing took place in 17 (14.9%). Only 9 products (7.9%) had clinical safety testing, and no products had clinical effectiveness data. We found no published peer-reviewed clinical data for 97 products (73%). Cost was infrequently available but ranged from $4.79 to $2,178 per unit. CONCLUSIONS Although the current pathway is appropriate for efficiently clearing new wound care products, clinical effectiveness is not included in the regulatory review process. Wound care products are primarily evaluated by the FDA for safety and biocompatibility. Thus, any claims of clinical effectiveness require independent validation, which is often lacking.
Collapse
Affiliation(s)
- Michael R DeLong
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
| | - Michael W Wells
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
- Case Western Reserve University, School of Medicine, Cleveland OH (Wells, Chang)
| | - Irene A Chang
- Case Western Reserve University, School of Medicine, Cleveland OH (Wells, Chang)
| | - Andrew J Vardanian
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
| | - Hobart Harris
- Division of Gastrointestinal Surgery, Department of Surgery, University of California, San Francisco, CA (Harris)
| |
Collapse
|
211
|
Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability 2024; 33:104-115. [PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 03/17/2024]
Abstract
Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
Collapse
Affiliation(s)
- Norshamiza Abu Bakar
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - Nur Fatiha Ghazalli
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| |
Collapse
|
212
|
Shi C, Zhang M. Incidence and Management of Skin Lesions and Minor Wounds in Chronic Obstructive Pulmonary Disease Patients undergoing Advanced Bronchodilator Therapy. Int Wound J 2024; 21:e14668. [PMCID: PMC10834100 DOI: 10.1111/iwj.14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 04/24/2025] Open
Abstract
While triple inhalation therapy is commonly employed in the treatment of chronic obstructive pulmonary disease (COPD), limited knowledge exists regarding its impact on the healing of minor wounds and integrity of the epidermis. This study investigated the impact of combining triple inhalation therapy with double bronchodilators on the aforementioned parameters in patients with stable COPD. A cross‐sectional study was conducted in Changzhou, China, from March 2022 to October 2023, involving 540 patients who had received the diagnosis of stable COPD. Combined therapy participation requirements stipulated a minimum of 6 months of uninterrupted treatment. Dermatological examinations, demographic data and clinical records were utilized to collect information regarding the elasticity, moisture content and duration of wound healing. The research revealed that there were no statistically significant differences in demographic and clinical characteristics between the groups that received triple inhalation alone and triple inhalation in combination with double bronchodilators (p > 0.05). Nevertheless, the combined therapy group demonstrated shorter duration since receiving a diagnosis of COPD (p < 0.05). It is noteworthy to remark that the combined therapy group exhibited significantly higher skin moisture content and shorter interval for wound recovery when compared with the group that only received triple inhalation (p < 0.05). Lung function measurements in combined therapy group indicated enhanced Forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity ratio, as well as a reduction in COPD exacerbations. Nevertheless, no statistically significant distinction in skin elasticity was observed among the groups (p > 0.05). The supplementary application of triple inhalation therapy and double bronchodilators in stable COPD patients not only improved respiratory outcomes but also positively impacted skin health, specifically by promoting wound healing and augmenting moisture levels. These results highlighted the possible benefits of implementing a holistic treatment approach in COPD, suggesting that incorporating these therapies could offer additional advantages to the epidermis.
Collapse
Affiliation(s)
- Caiwen Shi
- Department of Respiratory and Critical Care MedicineThe Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu ProvinceChina
| | - Ming Zhang
- Medical Imaging DepartmentThe Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
213
|
de Menezes Dantas D, Rodrigues Dos Santos Barbosa C, Silva Macêdo N, de Sousa Silveira Z, Rodrigues Bezerra S, Henrique Bezerra A, Lira da Silva JB, Martins da Costa JG, Sarmento Silva TM, Douglas Melo Coutinho H, Assis Bezerra da Cunha F. Chemical Characterization and Biological Activities of Jandaíra Stingless Bee Products (Melipona subnitida, Ducke, 1911): A Brief Review. Chem Biodivers 2024; 21:e202301407. [PMID: 38116922 DOI: 10.1002/cbdv.202301407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Melipona subnitida (Ducke, 1911), a species of stingless bee, popularly known as Jandaíra, has a wide distribution in the Brazilian Northeast region, being an important pollinator of the Caatinga biome. This bee produces products such as honey, geopropolis, pollen (saburá) and wax that are traditionally used for therapeutic purposes and some studies report the biological properties, as well as its chemical composition. This review aimed to select, analyze and gather data published in the literature focusing on the chemical profile and bioactivities described for M. subnitida products. Data collection was carried out through the Capes Journal Portal platform, using the following databases: Web of Science, Scopus, and PubMed. Original articles published in English and Portuguese were included, with no time limitation. The chemical composition of M. subnitida products has been investigated through chromatographic analysis, demonstrating the presence of a variety of phenolic compounds, such as flavonoids and phenylpropanoids, among other classes of secondary metabolites. These products also have several biological activities, including antioxidant, healing, antinociceptive, anti-inflammatory, antidepressant, antidyslipidemic, antiobesity, antifungal, antibacterial and prebiotic. Among the biological activities reported, the antioxidant activity was the most investigated. These data show that products derived from the stingless bee M. subnitida have promising bioactive compounds. This review provides useful information about the bioactivities and chemical profile of Melipona subnitida bee products, and a direction for future research, which should focus on understanding the mechanisms of action associated with the already elucidated pharmacological activities, as well as the bioactive properties of the main isolate's constituents identified in the chemical composition of these products.
Collapse
Affiliation(s)
- Débora de Menezes Dantas
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, Ceará, Brazil
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | - Cristina Rodrigues Dos Santos Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, Ceará, Brazil
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | - Nair Silva Macêdo
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | - Zildene de Sousa Silveira
- Graduate Program in Biological Sciences- PPGCB, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Suieny Rodrigues Bezerra
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, Ceará, Brazil
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | - Antonio Henrique Bezerra
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, Ceará, Brazil
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | - José Bruno Lira da Silva
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| | | | - Tania Maria Sarmento Silva
- Phytochemical Bioprospecting Laboratory, Department of Chemistry, Federal Rural University of Pernambuco - UFRPE, Recife, Pernambuco, Brazil
| | | | - Francisco Assis Bezerra da Cunha
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, Ceará, Brazil
- Biological Chemistry Department, Semi-arid Bioprospecting Laboratory and Alternative Methods, Regional University of Cariri - URCA, Pimenta Campus, Crato, Ceará, Brazil
| |
Collapse
|
214
|
Gao Y, Wang H, Niu X. A hydrogen-bonded curdlan-chitosan/polyvinyl alcohol edible dual functional hydrogel bandage against MRSA promotes wound healing. Int J Biol Macromol 2024; 259:129351. [PMID: 38216019 DOI: 10.1016/j.ijbiomac.2024.129351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
The most prevalent complication arising from skin injuries is bacterial infection, where pathogenic bacteria proliferate significantly at the wound site, leading to subsequent complications like septic shock and sepsis. Although antibiotics presently effectively manage wound infections caused by common bacteria, the escalating prevalence of antibiotic-resistant strains necessitates urgent novel approaches for addressing such infections. Here, we present CS9P1-RA, a dual functional hydrogel dressing, based on polyvinyl alcohol (PVA) matrix crosslinked through hydrogen bonding. CS9P1-RA combines chitosan (CS), a food-derived antibacterial agent, with the natural compound rosmarinic acid (RA) to specifically target skin injuries caused by MRSA. Computational and molecular biology assays illustrate RA's ability to selectively inhibit the activity of Staphylococcus aureus (S. aureus) serine/threonine phosphatase (Stp1), reducing the S. aureus pathogenicity. CS9P1-RA showcases exceptional antibacterial efficacy (MIC = 1 mg/mL) and demonstrates potency in reducing virulence (IC50 = 7.424 μM on Stp1). Notably, it effectively curbs bacterial growth and accelerates wound healing in the mice model, thereby fulfilling the practical requirements for clinical applications. Moreover, the mechanical properties of CS9P1-RA ensure user comfort during treatment. This work introduces a fresh design paradigm for dressing materials, offering a promising solution for treating skin injuries inflicted by antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
215
|
Akhtari N, Ahmadi M, Kiani Doust Vaghe Y, Asadian E, Behzad S, Vatanpour H, Ghorbani-Bidkorpeh F. Natural agents as wound-healing promoters. Inflammopharmacology 2024; 32:101-125. [PMID: 38062178 DOI: 10.1007/s10787-023-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 03/03/2024]
Abstract
The management of acute and chronic wounds resulting from diverse injuries poses a significant challenge to clinical practices and healthcare providers. Wound healing is a complex biological process driven by a natural physiological response. This process involves four distinct phases, namely hemostasis, inflammation, proliferation, and remodeling. Despite numerous investigations on wound healing and wound dressing materials, complications still persist, necessitating more efficacious therapies. Wound-healing materials can be categorized into natural and synthetic groups. The current study aims to provide a comprehensive review of highly active natural animal and herbal agents as wound-healing promoters. To this end, we present an overview of in vitro, in vivo, and clinical studies that led to the discovery of potential therapeutic agents for wound healing. We further elucidated the effects of natural materials on various pharmacological pathways of wound healing. The results of previous investigations suggest that natural agents hold great promise as viable and accessible products for the treatment of diverse wound types.
Collapse
Affiliation(s)
- Negin Akhtari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Kiani Doust Vaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
216
|
Wang L, Qiu L, Li B, Reis RL, Kundu SC, Duan L, Xiao B, Yang X. Tissue adhesives based on chitosan for skin wound healing: Where do we stand in this era? A review. Int J Biol Macromol 2024; 258:129115. [PMID: 38163498 DOI: 10.1016/j.ijbiomac.2023.129115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Chitosan has been commonly used as an adhesive dressing material due to its excellent biocompatibility, degradability, and renewability. Tissue adhesives are outstanding among wound dressings because they can close the wound, absorb excess tissue exudate from the wound site, provide a moist environment, and act as a carrier for loading various bioactive molecules. They have been widely used in both preclinical and clinical treatment of skin wounds. This review summarizes recent research progresses in the application of chitosan and its derivatives for tissue adhesives. We also introduce their biomedical effects on wound adhesion, contamination isolation, antibacterial, immune regulation, and wound healing, and the strategies to achieve these functions when used as wound dressings. Finally, challenges and future perspectives of chitosan-based tissue adhesives are discussed for wound healing.
Collapse
Affiliation(s)
- Lingshuang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Libin Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baoyi Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
217
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
218
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
219
|
Sheybanikashani S, Zandi N, Hosseini D, Lotfi R, Simchi A. A sustainable and self-healable silk fibroin nanocomposite with antibacterial and drug eluting properties for 3D printed wound dressings. J Mater Chem B 2024; 12:784-799. [PMID: 38179665 DOI: 10.1039/d3tb02363j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The development of self-healable and 3D printable hydrogels with decent biocompatibility, mechanical durability, adhesiveness to tissues, and antibacterial activity is of great importance for wound healing applications. In this study, we present a sustainable and environmentally friendly composite hydrogel consisting of silk fibroin (SF), oxidized salep (OS), and kappa carrageenan nanoparticles (NPs) for efficient wound care. The injectable nanocomposite hydrogel is highly stretchable and exhibits strong tissue adhesiveness and self-healing response through Schiff-base cross-linking between OS and SF. The tunable shear-thinning viscoelastic properties of the hydrogel facilitate 3D bioprinting with excellent shape adaptability (97.7 ± 1.1% recovery), enabling the fabrication of complex-shaped constructs. In vitro release kinetics of tetracycline (TC) encapsulated in kappa carrageenan NPs indicate a distinctive Korsmeyer-Peppas profile, including an initial burst release followed by a triphasic pattern controlled by the embedded NPs within the hydrogel matrix. The composite hydrogel shows a remarkable broad-spectrum antibacterial activity with substantial zones of inhibition against S. aureus (34.00 ± 1.00 mm) and E. coli (27.60 ± 2.08 mm) after 24 h of incubation at 37 °C. The addition of TC further enhances the zones of inhibition by approximately 45% for S. aureus and 27% for E. coli. The control group without kappa NP incorporation shows no zone of inhibition, underscoring the critical role of the nanoparticles in imparting antibacterial activity to the hydrogel. Cytocompatibility assays show the high viability of fibroblast (L929) cells (>90%) in vitro. In vivo biocompatibility studies through subcutaneous implantation also do not show malignancy, infection, abscess, necrosis, epidermal or dermal modifications, or inflammation of the wounds after 14 days post-injection. H&E staining shows that the biodegradation of the developed hydrogel facilitates the growth of non-inflammatory cells, leading to the substitution of the injected hydrogel with autologous tissue. The detailed analyses affirm that the multifunctional injectable hydrogel with self-healing and antibacterial properties has high potential for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Sana Sheybanikashani
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Danial Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Roya Lotfi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran, Iran.
- Center for Bioscioence and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, 14588-89694 Tehran, Iran.
| |
Collapse
|
220
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
221
|
Nunes Junior ACL, Sousa LDA, de Barros GM, da Silva LL. Low-laser action analysis associated with Himatanthus drasticus extract in wound healing. Lasers Med Sci 2024; 39:31. [PMID: 38227079 DOI: 10.1007/s10103-024-03985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
The aim of this study was to analyze the healing action of low-intensity laser therapy associated with Himatanthus drasticus in wound healing in mice. The study was experimental, analytical, controlled, randomized, and prospective. Twenty Wistar rats were divided into four groups: control with injury, injury + laser, wound + Himatanthus drasticus, and wound + laser + Himatanthus drasticus. The animals underwent surgical skin wounds on their backs, and different treatments were applied based on the group. The healing process was evaluated histologically through the analysis of collagen fibers, neovascularization, and inflammatory reaction. The results showed that low-intensity laser therapy and Himatanthus drasticus treatment improved the healing process in terms of collagen synthesis, decreased inflammatory cell migration, fibroblast proliferation, neovascularization, wound size reduction, and edema reduction. However, the combination of laser and Himatanthus drasticus did not show significant improvement compared to individual treatments. There were no statistical differences in polymorphonuclear cells between the treatment groups. Low-intensity laser therapy and Himatanthus drasticus have demonstrated positive properties in improving the healing process. Further research is needed to better understand their individual and combined effects. The study contributes to the exploration of alternative wound healing methods and encourages further investigation in this field.
Collapse
Affiliation(s)
| | | | - Gabriel Martins de Barros
- Federal University of Piauí, Teresina, Brazil.
- Health Sciences Center, Federal University of Piauí (UFPI), Avenue Frei Serafim, 2280 - Center (South), Teresina, 64049-550, Brazil.
| | | |
Collapse
|
222
|
Limido E, Weinzierl A, Ampofo E, Harder Y, Menger MD, Laschke MW. Nanofat Accelerates and Improves the Vascularization, Lymphatic Drainage and Healing of Full-Thickness Murine Skin Wounds. Int J Mol Sci 2024; 25:851. [PMID: 38255932 PMCID: PMC10815416 DOI: 10.3390/ijms25020851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The treatment of wounds using the body's own resources is a promising approach to support the physiological regenerative process. To advance this concept, we evaluated the effect of nanofat (NF) on wound healing. For this purpose, full-thickness skin defects were created in dorsal skinfold chambers of wild-type mice. These defects were filled with NF generated from the inguinal subcutaneous adipose tissue of green fluorescent protein (GFP)+ donor mice, which was stabilized using platelet-rich plasma (PRP). Empty wounds and wounds solely filled with PRP served as controls. Wound closure, vascularization and formation of granulation tissue were repeatedly analyzed using stereomicroscopy, intravital fluorescence microscopy, histology and immunohistochemistry over an observation period of 14 days. PRP + NF-treated wounds exhibited accelerated vascularization and wound closure when compared to controls. This was primarily due to the fact that the grafted NF contained a substantial fraction of viable GFP+ vascular and lymph vessel fragments, which interconnected with the GFP- vessels of the host tissue. Moreover, the switch from inflammatory M1- to regenerative M2-polarized macrophages was promoted in PRP + NF-treated wounds. These findings indicate that NF markedly accelerates and improves the wound healing process and, thus, represents a promising autologous product for future wound management.
Collapse
Affiliation(s)
- Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| |
Collapse
|
223
|
Azarian M, Junyusen T, Sutapun W. Biogenic Vaterite Calcium Carbonate-Silver/Poly(Vinyl Alcohol) Film for Wound Dressing. ACS OMEGA 2024; 9:955-969. [PMID: 38222591 PMCID: PMC10785620 DOI: 10.1021/acsomega.3c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Vaterite, a spherical polymorph of CaCO3, shows potential as a carrier for the stable and controlled release of silver nanoparticles (AgNPs), preventing their aggregation or loss of efficacy during application. Furthermore, the embedding of CaCO3-Ag in a poly(vinyl alcohol) (PVA) matrix helps effectively encapsulate and protect the CaCO3-Ag microspheres and provides mechanical stability for better contact with the wound surface. This article focuses on the fabrication of an antimicrobial and biocompatible absorbent film embedded with precipitated biogenic vaterite CaCO3-Ag microspheres. The impact of vaterite CaCO3-Ag on the physical, chemical, nanomechanical, biocompatibility, and antimicrobial properties of the PVA films was investigated. The morphology study revealed a bilayer film structure with an inactive and active surface containing homogeneously distributed vaterite CaCO3-Ag. The X-ray photoelectron spectroscopy (XPS) analysis of the spin-orbit splitting in the Ag 3d5/2 and Ag 3d3/2 peaks indicated the presence of both metallic and ionic states of silver in vaterite CaCO3-Ag prior to its incorporation into the PVA polymer matrix. However, upon embedding in the PVA matrix, a subsequent transformation to solely ionic states was observed. The nanomechanical properties of PVA improved, and the reduced modulus and hardness increased to 14.62 ± 5.23 and 0.64 ± 0.29 GPa, respectively. The films demonstrate a significant activity toward Gram-negative Escherichia coli bacteria. The release of AgNPs was studied in both open and closed systems at pH 6, mimicking the pH environment of the wound, and it demonstrated a dependency on the type of capping agent used for synthesis and loading of AgNPs. The results further revealed the biocompatibility of the prepared films with human dermal fibroblast cells at a concentration of ≤5 mg/mL, making them applicable and functional for wound dressing applications.
Collapse
Affiliation(s)
- Mohammad
Hossein Azarian
- Research
Center for Biocomposite Materials for Medical, Agricultural and Food
Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tiraporn Junyusen
- School
of Agricultural Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wimonlak Sutapun
- Research
Center for Biocomposite Materials for Medical, Agricultural and Food
Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School
of Polymer Engineering, Suranaree University
of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
224
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
225
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Insuasty D, Rodríguez Macias JD, Ordoñez A, Valencia Zapata ME, Mina Hernández JH, Grande-Tovar CD. Evaluation of the Antibacterial, Anti-Cervical Cancer Capacity, and Biocompatibility of Different Graphene Oxides. Molecules 2024; 29:281. [PMID: 38257194 PMCID: PMC10821421 DOI: 10.3390/molecules29020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.
Collapse
Affiliation(s)
- Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Juan David Rodríguez Macias
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Alejandra Ordoñez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
226
|
Irani PS, Ranjbar H, Mehdipour-Rabori R, Torkaman M, Amirsalari S, Alazmani-Noodeh F. The Effect of Aloe vera on the Healing of Diabetic Foot Ulcer: A Randomized, Double-blind Clinical Trial. Curr Drug Discov Technol 2024; 21:56-63. [PMID: 37670716 DOI: 10.2174/1570163820666230904150945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a prevalent complication of diabetes that can result in severe consequences. The cost of treating DFUs is high, and there is a lack of new therapies available in developing countries. This has created a demand for complementary and alternative treatments. The objective of this study was to assess the impact of aloe vera gel on the healing process of diabetic foot ulcers. MATERIALS AND METHODS The study was a double-blind, randomized, controlled clinical trial. The study samples were 66 patients with diabetic foot ulcers who were randomly assigned to two groups (intervention and control). All ulcers in both groups were washed with normal saline and dressed in sterile gauze. The ulcers in the intervention group were covered with a thin layer of Aloe Vera gel before the dressing. The Bates-Jensen Wound Assessment Tool (BWAT) was used on three occasions, including before the intervention period and at the end of each week. Data were analyzed using SPSS 16. RESULTS After three weeks, there was a notable contrast in the recovery pattern of the two groups. The patients who had aloe vera gel added to their dressing showed a more substantial decrease in the mean scores of their BWAT. CONCLUSION These findings are promising and suggest that Aloe vera may be a safe and effective adjunctive treatment for diabetic foot ulcers. However, further research is needed to confirm these results and to investigate the underlying mechanisms of aloe vera's therapeutic effect on diabetic foot ulcers.
Collapse
Affiliation(s)
- Parichehr Sabaghzadeh Irani
- Department of Nursing and Midwifery, Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Ranjbar
- Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mehdipour-Rabori
- Razi Faculty of Nursing and Midwifery, Department of Medical-surgical Nursing, Nursing Research Nursing, Kerman University of Medical Science, Kerman, Iran
| | - Mahya Torkaman
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sudabeh Amirsalari
- Department of Reproductive Health Midwifery, School of Nursing & Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Alazmani-Noodeh
- Critical Care Nursing Department, Faculty of Nursing, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
227
|
Hashemi SS, Najari M, Parvin M, Kalani MM, Assadi M, Seyedian R, Zaeri S. Wound healing effects of dexpanthenol-loaded core/shell electrospun nanofibers: Implication of oxidative stress in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:97-106. [PMID: 38164485 PMCID: PMC10722473 DOI: 10.22038/ijbms.2023.71412.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 01/03/2024]
Abstract
Objectives Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers. Materials and Methods TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured. Results Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. Conclusion Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.
Collapse
Affiliation(s)
- Seyede Sahar Hashemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmoud Najari
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Milad Parvin
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Kalani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
228
|
Prazdnikov EN, Evsyukova ZA. [Role of neodymium laser in surgery: stimulation of postoperative surgical wounds healing. Results of clinical studies]. Khirurgiia (Mosk) 2024:93-104. [PMID: 38634590 DOI: 10.17116/hirurgia202404193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
OBJECTIVE To prove the effectiveness of the low-intensity laser radiation application in the treatment of wounds of different origin. MATERIAL AND METHODS The clinical study involved 110 persons, divided into 55 subjects in both the study and control groups. The patients of the study group were exposed to the long-wave short-pulse neodymium laser immediately and within 35 days after interventions with a skin incision using it, in a way that wound treated with laser received low-level laser therapy. The control group patients' wounds were treated with standard methods by the means of topical drugs corresponding to the clinical manifestations of the wound process in each particular case. The study was carried out in the hospital of the department of maxillofacial and plastic surgery of the dental complex of the «Russian University of Medicine» from 2019 to 2022, and further conservative treatment was conducted in the department of dermatology and cosmetology of the University Hospital of the Medical Graduate School (Institute) of the RSSU. All wounds were classified into three groups for the convenience of systematization and formation of a generalized treatment protocol for postoperative surgical wounds. RESULTS The objectivity and optimality of the chosen by us actions were confirmed in the conducted work. The formed scars were visually assessed on the POSAS scale at the end of the treatment by patients and 4 independent doctors, as well as each scar was visually assessed by four independent doctors and patients. At the end of the study we formed and proposed an algorithm for the treatment of surgical wounds of various origins. The parameters of the Aerolase Neo Light Pod neodymium laser for the treatment of patients with different types of skin wounds were clinically determined. Experimentally proven properties of the Aerolase Neo Light Pod neodymium laser on accelerating the healing process of surgical wounds through photobiomodulation mechanism support their regeneration with the formation of negligible normotrophic scars, as well as reduce the length of patients' treatment in surgical hospitals, as compared to patients receiving standard external drugs.
Collapse
|
229
|
Wang X, Wang Q, Meng L, Tian R, Guo H, Tan Z, Tan Y. Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing. Stem Cell Rev Rep 2024; 20:329-346. [PMID: 37889447 DOI: 10.1007/s12015-023-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are used as therapeutic agents for skin injury therapy, few studies have reported the effects of dosing duration and delivery frequency on wound healing. In addition, before the clinical application of MSCs, it is important to assess whether their usage might influence tumor occurrence. METHODS We described the metabolic patterns of subcutaneous injection of hUC-MSCs using fluorescence tracing and qPCR methods and applied them to the development of drug delivery strategies for promoting wound healing. RESULTS (i) We developed cGMP-compliant hUC-MSC products with critical quality control points for wound healing; (ii) The products did not possess any tumorigenic or tumor-promoting/inhibiting ability in vivo; (iii) Fluorescence tracing and qPCR analyses showed that the subcutaneous application of hUC-MSCs did not result in safety-relevant biodistribution or ectopic migration; (iv) Reinjecting hUC-MSCs after significant consumption significantly improved reepithelialization and dermal regeneration. CONCLUSIONS Our findings provided a reference for controlling the quality of MSC products used for wound healing and highlighted the importance of delivery time and frequency for designing in vivo therapeutic studies.
Collapse
Affiliation(s)
- Xin Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Qiuhong Wang
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Lingjiao Meng
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Ruifeng Tian
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Huizhen Guo
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China
| | - Zengqi Tan
- School of Medicine, Northwest University, Xi'an, China
| | - Yi Tan
- Qilu Cell Therapy Technology Co., Ltd, Gangyuan 6th Road, Licheng District, Ji'nan, Shandong, 250000, People's Republic of China.
- Shandong Yinfeng Life Science Research Institute, Ji'nan, People's Republic of China.
| |
Collapse
|
230
|
Zhao Y, Zhao Y, Xu B, Liu H, Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J Tissue Eng 2024; 15:20417314241253290. [PMID: 38818510 PMCID: PMC11138198 DOI: 10.1177/20417314241253290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Yulan Zhao
- Department of Nephropathy Rheumatology, Guizhou Medical University Affiliated Zhijin Hospital, Zhijin, China
| | - Bing Xu
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
231
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
232
|
Jia S, Wang X, Wang G, Wang X. Mechanism and application of β-adrenoceptor blockers in soft tissue wound healing. Med Res Rev 2024; 44:422-452. [PMID: 37470332 DOI: 10.1002/med.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to β-adrenergic receptors (β-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. β-blockers specifically inhibit β-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, β-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While β-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of β-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of β-blockers in soft tissue wound healing and explore their clinical applications.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xueya Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Guowei Wang
- Department of Stomatology, No. 971 Hospital of the Chinese Navy, Qingdao, Shandong, People's Republic of China
| | - Xiaojing Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
233
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
234
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
235
|
De Francesco F, Ogawa R. From Time to Timer in Wound Healing Through the Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:1-18. [PMID: 38842786 DOI: 10.1007/5584_2024_815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is "Regeneration", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy.
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
236
|
Satapathy T, Kishore Y, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Recent Advancement in Novel Wound Healing Therapies by Using Antimicrobial Peptides Derived from Humans and Amphibians. Curr Protein Pept Sci 2024; 25:587-603. [PMID: 39188211 DOI: 10.2174/0113892037288051240319052435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 08/28/2024]
Abstract
The skin is the biggest organ in the human body. It is the first line of protection against invading pathogens and the starting point for the immune system. The focus of this review is on the use of amphibian-derived peptides and antimicrobial peptides (AMPs) in the treatment of wound healing. When skin is injured, a chain reaction begins that includes inflammation, the formation of new tissue, and remodelling of existing tissue to aid in the healing process. Collaborating with non-immune cells, resident and recruited immune cells in the skin remove foreign invaders and debris, then direct the repair and regeneration of injured host tissues. Restoration of normal structure and function requires the healing of damaged tissues. However, a major issue that slows wound healing is infection. AMPs are just one type of host-defense chemicals that have developed in multicellular animals to regulate the immune response and limit microbial proliferation in response to various types of biological or physical stress. Therefore, peptides isolated from amphibians represent novel therapeutic tools and approaches for regenerating damaged skin. Peptides that speed up the healing process could be used as therapeutic lead molecules in future research into novel drugs. AMPs and amphibian-derived peptides may be endogenous mediators of wound healing and treat non-life-threatening skin and epithelial lesions. Thus, the present article was drafted with to incorporate different peptides used in wound healing, their method of preparation and routes of administration.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Yugal Kishore
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| |
Collapse
|
237
|
Caballero-Borrego M, Coll S, Navarrete P. Effectiveness and tolerance of electrochemotherapy as palliative therapy for patients with head and neck cancer and malignant melanoma and its relation to early skin reaction. Braz J Otorhinolaryngol 2024; 90:101365. [PMID: 38006727 PMCID: PMC10724536 DOI: 10.1016/j.bjorl.2023.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVES To evaluate the efficacy and tolerance after the electrochemotherapy treatment for local therapy of cutaneous and subcutaneous metastases of head-and-neck tumors and malignant melanoma refractory to standard therapies, mainly in neck metastasis of squamous cell carcinoma. And, to evaluate the relation of this response according to the skin reaction (healing with ulcer or dry crust). METHODS prospective pase II, observational clinical study of 56 patients with metastases of head-and-neck squamous cell carcinoma (n=13), papillary thyroid carcinoma (n=4), adenoid cystic carcinoma of parotid gland (n=1) or malignant melanoma (n=37, 5 in head). Patients were treated by electrochemotherapy (application of electrical pulses into the tumor) after the administration of a single intravenous dose of bleomycin. Kaplan-Meier curves were performed. The statistical significance was evaluated using log-rank test; p-value of less than 0.05 was considered as significant. RESULTS Overall clinical response was observed in 47 patients (84%). Local side effects were mild in all the patients. Ten patients (76.9%) with neck metastasis of squamous cell carcinoma had some degree of response, but only in one was complete. Patients even with only partial response had a higher overall survival than patients without response (p= 0.02). Most of the patients with squamous cell carcinoma had diminution of pain and anxiety. Response rate and overall survival was higher in MM patients (86.5%) than in squamous cell cancer patients (76.9%) (p= 0.043). The healing process (dry crust/ulcer) was not associated with the overall survival (p= 0.86). CONCLUSIONS Electrochemotherapy is associated a higher overall survival and diminution of pain and anxiety. Therefore, it is an option as palliative treatment for patients with neck metastasis of squamous cell carcinoma refractory to other therapies or even as a concomitant treatment with newer immunotherapies. The type of healing of the surgical wound could not be associated with a higher rate of response or survival. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Miguel Caballero-Borrego
- Hospital Clínic Barcelona, Department of Otorhinolaryngology, Universitat de Barcelona, Barcelona, Spain.
| | - Sandra Coll
- Hospital Clínic Barcelona, Department of Otorhinolaryngology, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Navarrete
- Universitat de Barcelona, Department of Medicine, Barcelona, Spain
| |
Collapse
|
238
|
Ediz EF, Güneş C, Demirel Kars M, Avcı A. In vitro assessment of Momordica charantia/ Hypericum perforatum oils loaded PCL/Collagen fibers: Novel scaffold for tissue engineering. J Appl Biomater Funct Mater 2024; 22:22808000231221067. [PMID: 38217369 DOI: 10.1177/22808000231221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024] Open
Abstract
The research on tissue engineering applications has been progressing to manufacture ideal tissue scaffold biomaterials. In this study, a double-layered electrospun biofiber scaffold biomaterial including Polycaprolactone (PCL)/Collagen (COL) fibrous inner layer and PCL/ Momordica charantia (MC) and Hypericum perforatum (HP) oils fibrous outer layer was developed to manufacture a functional, novel tissue scaffold with the advantageous mechanical and biological properties. The main approach was to combine the natural perspective using medicinal oils with an engineering point of view to fabricate a potential functional scaffold for tissue engineering. Medicinal plants MC and HP are rich in functional oils and incorporation of them in a tissue scaffold will unveil their potential to augment both new tissue formation and wound healing. In this study, a novel double-layered scaffold prototype was fabricated using electrospinning technique with two PCL fiber layers, first is composed of collagen, and second is composed of oils extracted from medicinal plants. Initially, the composition of plant oils was analyzed. Thereafter the biofiber scaffold layers were fabricated and were evaluated in terms of morphology, physicochemistry, thermal and mechanical features, wettability, in vitro bio-degradability. Double-layered scaffold prototype was further analyzed in terms of in vitro biocompatibility and antibacterial effect. The medicinal oils blend provided antioxidant and antibacterial properties to the novel PCL/Oils layer. The results signify that inner PCL/COL layer exhibited advanced biodegradability of 8.5% compared to PCL and enhanced wettability with 11.7° contact angle. Strength of scaffold prototype was 5.98 N/mm2 thanks to the elastic PCL fibrous matrix. The double-layered functional biofiber scaffold enabled 92% viability after 72 h contact with fibroblast cells and furthermore provided feasible attachment sites for the cells. The functional scaffold prototype's noteworthy mechanical, chemical, and biological features enable it to be suggested as a different novel biomaterial with the potential to be utilized in tissue engineering applications.
Collapse
Affiliation(s)
- Emre Fatih Ediz
- Department of Nanoscience and Nanoengineering, Institute of Science, Necmettin Erbakan University, Konya, Turkey
- Zade & Zade Vital Ibn-i Sina R&D Center, Zade Vital Pharmaceuticals Inc., Konya, Turkey
| | - Cansu Güneş
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
- İzmir Vocational School, Dokuz Eylül University, İzmir, Turkey
| | - Meltem Demirel Kars
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Avcı
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| |
Collapse
|
239
|
Wu N, Li L. A review on wound management strategies in enhanced recovery after craniotomy: An in-depth analysis of their influence on patient recovery and surgical outcomes. Int Wound J 2024; 21:e14595. [PMID: 38272808 PMCID: PMC10789584 DOI: 10.1111/iwj.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Craniotomy, an essential neurosurgical operation, poses distinct difficulties in the realm of post-operative care, specifically with regard to the management of wounds. Efficient wound management is critical in order to optimize the surgical outcomes, reduce complications and facilitate a speedier recovery. The purpose of this comprehensive review was to assess contemporary wound management approaches as they pertain to improved recovery following craniotomy. This was achieved by contrasting conventional methods with more recent and innovative techniques and analysing the effects of these approaches on patient recovery and surgical results. An exhaustive literature search was undertaken, comprising narrative reviews, clinical studies, peer-reviewed articles and expert opinions. The emphasis was on the evolution of wound management strategies and techniques utilized after cranial section, as well as their contributions to patient recovery. The analysis reveals that while conventional wound management methods, including suturing and antiseptics, continue to be essential, innovative strategies such as negative pressure wound therapy, skin adhesives and advanced pain management protocols are becoming increasingly recognized. It has been demonstrated that these novel approaches improve recovery by decreasing the incidence of infections, enhancing patient comfort and producing superior cosmetic results. Nevertheless, obstacles continue to endure, including patient-specific variables, technological and financial considerations and the enduring consequences of recovery. Thus the treatment of wounds during craniotomy recuperation necessitates an integrated strategy that incorporates conventional techniques alongside contemporary advancements. Progress in this domain necessitates the customization of approaches to suit the unique requirements of each patient, the resolution of identified obstacles and an emphasis on ongoing investigation and interdisciplinary cooperation. The ever-changing terrain of wound management approaches underscores the ever-changing character of neurosurgical treatment and the continuous endeavour to enhance patient results following cranial resection.
Collapse
Affiliation(s)
- Nan Wu
- Nursing Department, Sir Run Run Shaw HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| | - Luping Li
- Nursing Department, Sir Run Run Shaw HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| |
Collapse
|
240
|
Waris TS, Shah STA, Mehmood A, Mushtaq A, Zehra M, Zulfiqar S, Andleeb A, Jabbar F, Anjum MA, Anwar Chaudhry A, Rehman IU, Yar M. Chitosan-sodium percarbonate-based hydrogels with sustained oxygen release potential stimulated angiogenesis and accelerated wound healing. J Biomed Mater Res B Appl Biomater 2024; 112:e35344. [PMID: 37942693 DOI: 10.1002/jbm.b.35344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.
Collapse
Affiliation(s)
- Tayyba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | | | - Azra Mehmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Afaq Mushtaq
- Centre for Excellence in Molecular Biology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Mubashra Zehra
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Saima Zulfiqar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Faiza Jabbar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Muhammad Awais Anjum
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
241
|
Pacheco KML, Torres BBM, Sanfelice RC, da Costa MM, Assis L, Marques RB, Filho ALMM, Tim CR, Pavinatto A. Chitosan and chitosan/turmeric-based membranes for wound healing: Production, characterization and application. Int J Biol Macromol 2023; 253:127425. [PMID: 37864933 DOI: 10.1016/j.ijbiomac.2023.127425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
In the present study, chitosan and chitosan/turmeric-based membranes were produced, characterized and applied in in vivo experiments showing the applicability for skin wound repair. Chitosan 1 % (w/v), chitosan + glycerol 30 % (w/w) and chitosan + glycerol 30 % + turmeric 1.5 % (w/w) membranes were produced through the casting technique. Self-sustainable, homogeneous, and flexible membranes were obtained from all materials tested. The FTIR spectra showed the main vibrational bands for materials used in the chemical groups. The membranes containing glycerol are more flexible than those formed with pure chitosan. Membranes formed with glycerol and glycerol/turmeric are more hydrophilic compared to the membranes formed by pure chitosan. The in vivo results showed that the group who received the chi/gly/turmeric membrane had a statistically greater reduction in the injured area, as well as a better healing process in the histological analysis compared to the other experimental groups. The material developed here is from a natural source, low cost and easy to apply and can accelerate the process of repairing skin lesions.
Collapse
Affiliation(s)
- Karoline M L Pacheco
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Bruno B M Torres
- Sao Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Rafaela C Sanfelice
- Science and Technology Institute, Federal University of Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Mardoqueu M da Costa
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Rosemarie Brandim Marques
- Biotechnology and Biodiversity Research Center, State University of Piaui, 64002-150 Teresina, PI, Brazil
| | | | - Carla R Tim
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil.
| |
Collapse
|
242
|
Farhangniya M, Mohamadi Farsani F, Salehi N, Samadikuchaksaraei A. Integrated Bioinformatic Analysis of Differentially Expressed Genes Associated with Wound Healing. CELL JOURNAL 2023; 25:874-882. [PMID: 38192258 PMCID: PMC10777322 DOI: 10.22074/cellj.2023.2007217.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Wound healing is a complex process involving the coordinated interaction of various genes and molecular pathways. The study aimed to uncover novel therapeutic targets, biomarkers and candidate genes for drug development to improve successful wound repair interventions. Materials and Methods: This study is a network-meta analysis study. Nine wound healing microarray datasets obtained from the Gene Expression Omnibus (GEO) database were used for this study. Differentially expressed genes (DEGs) were described using the Limma package and shared genes were used as input for weighted gene co-expression network analysis. The Gene Ontology analysis was performed using the EnrichR web server, and construction of a protein-protein interaction (PPI) network was achieved by the STRING and Cytoscape. Results: A total of 424 DEGs were determined. A co-expression network was constructed using 7692 shared genes between nine data sets, resulting in the identification of seven modules. Among these modules, those with the top 20 genes of up and down-regulation were selected. The top down-regulated genes, including TJP1, SEC61A1, PLEK, ATP5B, PDIA6, PIK3R1, SRGN, SDC2, and RBBP7, and the top up-regulated genes including RPS27A, EEF1A1, HNRNPA1, CTNNB1, POLR2A, CFL1, CSNk1E, HSPD1, FN1, and AURKB, which can potentially serve as therapeutic targets were identified. The KEGG pathway analysis found that the majority of the genes are enriched in the "Wnt signaling pathway". Conclusion: In our study of nine wound healing microarray datasets, we identified DEGs and co-expressed modules using WGCNA. These genes are involved in important cellular processes such as transcription, translation, and posttranslational modifications. We found nine down-regulated genes and ten up-regulated genes, which could serve as potential therapeutic targets for further experimental validation. Targeting pathways related to protein synthesis and cell adhesion and migration may enhance wound healing, but additional experimental validation is needed to confirm the effectiveness and safety of targeted interventions.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Najmeh Salehi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
243
|
Jurek JM, Neymann V. The role of the ImmunatuRNA® complex in promoting skin immunity and its regenerative abilities: Implications for antiaging skincare. J Cosmet Dermatol 2023. [PMID: 38146634 DOI: 10.1111/jocd.16131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Recent advancements in cosmetic science have ushered in a new era of skincare strategies, with a focus on utilizing natural bioactive ingredients to enhance skin health and combat premature aging. The skin, as the largest organ of human body, provides as a vital protective barrier against external hazards such as environmental pollutions, toxins, and radiation. However, intrinsic and extrinsic factors, including various types of radiation, reduced air quality, and increased exposure to pollutants, lead to an imbalance in the skin's immune system, significantly reducing the skin's ability to regenerate and accelerating skin aging. Therefore, there is an emerging need to develop innovative skincare strategies that could support the skin's immune capacity by strengthening antioxidant protection, skin regeneration, and repair. Plant-derived compounds, along with naturally sourced ingredients, show promise in accelerating wound healing, especially when incorporated into cosmetic formulation. ImmunatuRNA® stands as a prime example of a biologically active complex, uniquely comprising yeast-derived RNA, marine exopolysaccharides, and natural hyaluronic acid, that exhibits high antioxidant activity and exerts beneficial modulatory effects on skin microbiota, thereby positively influencing skin immunity. METHODOLOGY The main aim of this study was to investigate the potential of the ImmunatuRNA® complex in promoting skin regeneration and reducing signs of skin aging, both through the use of in vitro human skin cultures and the evaluation of clinical trials in healthy volunteers. RESULTS The results of conducted experimental studies have shown that the ImmunatuRNA® complex demonstrated significant positive effects on the immunity and repair capabilities of the skin, characterized by increased fibroblast proliferation, enhanced glycosaminoglycan synthesis, and reduced oxidative stress. Furthermore, use of the complex also significantly accelerated wound healing following mechanically-induced damage in the keratinocytes, demonstrated as reduction in wound margins measurement, new cell production, and an increase in regeneration speed. In addition, conduced clinical study on healthy human volunteers with various skin types confirmed that use of cosmetic products that incorporate the ImmunatuRNA® complex within the formulation can visibly improve skin condition, appearance, and general health, achieved by increased skin hydration and elasticity, reduced wrinkles, and enhanced skin firmness. CONCLUSIONS This study confirms the usefulness of the ImmunatuRNA® complex in the innovative antiaging cosmetic products that can be suitable for all skin types, including sensitive skin. The inclusion of naturally sourced bioactives, as those found in ImmunatuRNA® complex, represents a promising advancement in holistic natural skincare that consumers appreciate. The active ingredients of the complex support the skin's immunity, fostering its repair and protecting against oxidative damage, thus maintaining skin homeostasis and promoting its regenerative capacity. Further research is necessary to explore the long-term effects of ImmunatuRNA® complex on skin health and its potential applications in innovative skincare formulations.
Collapse
Affiliation(s)
- Joanna Michalina Jurek
- VRFD SA, Lugano, Switzerland
- Division of Rheumatology, Vall d'Hebron Research Institute, Mediterranea Research Building, Barcelona, Spain
| | | |
Collapse
|
244
|
Purohit SS, Biswal A, Mohapatra P, Mishra L, Mishra M, Biswal SB, Swain SK. In Vivo Wound Healing in Drosophila melanogaster and Mouse Models: Synergistic Effect of Bovine Serum Albumin and Graphene Quantum Dots. ACS APPLIED BIO MATERIALS 2023; 6:5531-5540. [PMID: 38038266 DOI: 10.1021/acsabm.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Bovine serum albumin (BSA)-based biomaterials have garnered significant attention for their remarkable potential in wound healing, primarily due to their effective biological actions in addressing the skin inflammation phase and mitigating hypoalbuminemia. Motivated by these attributes, a nanocomposite hydrogel is developed by blending BSA with poly(vinyl alcohol) (PVA), complemented by the incorporation of graphene quantum dot (GQD). The FTIR study establishes a hydrogen-bonding interaction between the -NH2 groups of BSA and the -OH group of PVA. Microscopic investigations establish that the dispersion of GQDs with an average size of 22.5 nm results in smoothening of the surface of the nanocomposite. The nanocomposite hydrogel reveals excellent swelling attributes of about 920% in a period of 6 h due to its optimum cross-linking condition. Furthermore, the hydrogel exhibits a water vapor transmission rate of 8.45 mg cm-2 h-1, akin to the transmission rate of wounded skin. The PVA/BSA@GQD nanocomposite's antibacterial efficacy is evaluated against Morganella morganii bacteria, showing 99% killing, while its cytotoxicity assay against HeLa cells exhibited a minimum cell viability of 76% at a 20 μM concentration, which is ideal for a wound dressing material. In vivo wound healing investigations are conducted on Drosophila, showcasing a 100% wound surface closure within 4 h. This outcome is further substantiated through in vivo studies involving mice, where complete re-epithelialization is achieved within a span of 13 days. The combined results establish the PVA/BSA@GQD nanocomposite as a potential wound dressing material.
Collapse
Affiliation(s)
- Shuvendu Shuvankar Purohit
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha,, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha,, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha,, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sashi Bhusan Biswal
- Department of Pharmacology, Veer Surendra Sai Institute of Medical Science and Research, Burla, Sambalpur 768017, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha,, India
| |
Collapse
|
245
|
Qiao B, Wang J, Qiao L, Maleki A, Liang Y, Guo B. ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds. Regen Biomater 2023; 11:rbad110. [PMID: 38173767 PMCID: PMC10761208 DOI: 10.1093/rb/rbad110] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS-responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid-grafted 3-amino phenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form Cur-encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and Cur and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel-treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.
Collapse
Affiliation(s)
- Bowen Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China
| |
Collapse
|
246
|
Zhong Y, Ma H, Lu Y, Cao L, Cheng YY, Tang X, Sun H, Song K. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds. Tissue Cell 2023; 85:102213. [PMID: 37666183 DOI: 10.1016/j.tice.2023.102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Diabetic foot ulcers are one of the most serious of the numerous complications of diabetes mellitus, causing great physical trauma and financial stress to patients, and accelerating wound healing in diabetic patients remains one of the major clinical challenges. Exosomes from adipose-derived stem cells can directly and indirectly promote wound healing. However, due to the low retention rate of exosomes in the wound, exosome treatment is difficult to achieve the expected effect. Therefore, it is of great significance to synthesize a composite scaffold that can stably load exosomes and has antibacterial properties. In this study, fresh pig skin was decellularized to obtain decellularized matrix (dECM). Secondly, quaternized chitosan (Qcs) was modified with quaternary ammonium salt to make it soluble in water after quaternization. Finally, Gel-dECM-Qcs (GDQ) bioink was prepared by adding acellular matrix and quaternized chitosan with temperature sensitive gelatin (Gel) as carrier. Tissue engineered composite scaffolds were then prepared by extrusion 3D printing technology. Subsequently, the physicochemical properties, biocompatibility and antimicrobial capacity of the composite scaffolds were determined, and the data showed that the composite scaffolds had good mechanical properties, biocompatibility and antimicrobial capacity, and the maximum stress of the composite scaffolds was 1.16 ± 0.05 MPa, the composite scaffolds were able to proliferate and adhered to the L929 cells, and the kill rates of composite scaffolds against E. coli and S. aureus after incubation for 24 h were 93.24 ± 1.22 % and 97.34 ± 0.23 %, respectively. Overall, the GDQ composite scaffolds have good mechanical properties adapted to skin bending, its good biocompatibility can promote the growth and migration of fibroblasts, reshape injured tissues, accelerate the wound healing, and excellent antimicrobial ability can inhibit the growth of E. coli and S. aureus, reducing the impact of bacterial infections on wounds. Moreover, the composite scaffolds have the potential to be used as exosom-loaded hydrogel dressings, which provides a basis for the subsequent research on the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Yiming Zhong
- Dalian Medical University, Dalian, Liaoning, 116011, China; Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xin Tang
- Dalian Medical University, Dalian, Liaoning, 116011, China; Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
247
|
Lee S, Lee SM, Lee SH, Choi WK, Park SJ, Kim DY, Oh SW, Oh J, Cho JY, Lee J, Chien PN, Nam SY, Heo CY, Lee YS, Kwak EA, Chung WJ. In situ photo-crosslinkable hyaluronic acid-based hydrogel embedded with GHK peptide nanofibers for bioactive wound healing. Acta Biomater 2023; 172:159-174. [PMID: 37832839 DOI: 10.1016/j.actbio.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A versatile hydrogel was developed for enhancing bioactive wound healing by introducing the amphiphilic GHK peptide (GHK-C16) into a photo-crosslinkable tyramine-modified hyaluronic acid (HA-Ty). GHK-C16 self-assembled into GHK nanofibers (GHK NF) in HA-Ty solution, which underwent in situ gelation after the wound area was filled with precursor solution. Blue light irradiation (460-490 nm), with riboflavin phosphate as a photoinitiator, was used to trigger crosslinking, which enhanced the stability of the highly degradable hyaluronic acid and enabled sustained release of the nanostructured GHK derivatives. The hydrogels provided a microenvironment that promoted the proliferation of dermal fibroblasts and the activation of cytokines, leading to reduced inflammation and increased collagen expression during wound healing. The complexation of Cu2+ into GHK nanofibers resulted in superior wound healing capabilities compared with non-lipidated GHK peptide with a comparable level of growth factor (EGF). Additionally, nanostructured Cu-GHK improved angiogenesis through vascular endothelial growth factor (VEGF) activation, which exerted a synergistic therapeutic effect. Furthermore, in vivo wound healing experiments revealed that the Cu-GHK NF/HA-Ty hydrogel accelerated wound healing through densely packed remodeled collagen in the dermis and promoting the growth of denser fibroblasts. HA-Ty hydrogels incorporating GHK NF also possessed improved mechanical properties and a faster wound healing rate, making them suitable for advanced bioactive wound healing applications. STATEMENT OF SIGNIFICANCE: By combining photo-crosslinkable tyramine-modified hyaluronic acid with self-assembled Cu-GHK-C16 peptide nanofibers (Cu-GHK NF), the Cu-GHK NF/HA-Ty hydrogel offers remarkable advantages over conventional non-structured Cu-GHK for wound healing. It enhances cell proliferation, migration, and collagen remodeling-critical factors in tissue regeneration. The incorporation of GHK nanofibers complexed with copper ions imparts potent anti-inflammatory effects, promoting cytokine activation and angiogenesis during wound healing. The Cu-GHK NF/hydrogel's unique properties, including in situ photo-crosslinking, ensure high customization and potency in tissue regeneration, providing a cost-effective alternative to growth factors. In vivo experiments further validate its efficacy, demonstrating significant wound closure, collagen remodeling, and increased fibroblast density. Overall, the Cu-GHK NF/HA-Ty hydrogel represents an advanced therapeutic option for wound healing applications.
Collapse
Affiliation(s)
- Seohui Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Min Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Hyun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong-Ku Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Jun Park
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sae Woong Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Eun-A Kwak
- Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
248
|
Changsan N, Srichana T, Atipairin A, Sawatdee S. Wound healing efficacy of a polymeric spray film solution containing Centella asiatica leaf extract on acute wounds. J Wound Care 2023; 32:S22-S32. [PMID: 38063299 DOI: 10.12968/jowc.2023.32.sup12.s22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To study the clinical efficacy of a polymeric spray film containing Centella asiatica extract to heal acute wounds. METHOD A polymeric spray film solution for wound healing was formulated using Centella asiatica extract, which contained triterpenes, including asiatic acid, madecassic acid, asiaticoside and madecassoside. The stability and physicochemical properties of the formulation were evaluated, and a multicentre, randomised, controlled trial was conducted to assess its clinical wound-healing efficacy. The Pressure Ulcer Scale for Healing (PUSH Tool) score was used to evaluate wound healing on days 0, 3, 5 and 7. RESULTS The cohort consisted of 60 volunteers with clean-contaminated wounds (class 1), randomly assigned to the Control (n=30) and Testing (n=30) groups. The spray product contained asiatic acid, madecassic acid, asiaticoside and madecassoside at 0.20±0.02mg/ml, 0.16±0.01mg/ml, 0.32±0.03mg/ml and 0.10±0.00mg/ml, respectively. The pH value was 5.5±0.01, and the viscosity was 33±4cP. The product was stable for six months when stored at 30±2°C and at 40±2°C, in 75±5% relative humidity. The tested product significantly reduced the total PUSH and exudate scores, indicating that the polymeric spray film solution containing Centella asiatica improved wound healing. The average healing recovery times for the Testing and Control groups were 4.6±1.1 days and 4.87±1.0 days, respectively. CONCLUSION In this study, Centella asiatica extract-containing polymeric spray film solution was beneficial as an acute wound medication, which could shorten healing time with no adverse effects.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathumtani 12000, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| |
Collapse
|
249
|
Oliveira MH, Gushiken LFS, Pellizzon CH, Ferreira FP, Mancera PFA. Mathematical and numerical analyses of cellular, molecular and angiogenic parameters of a rat skin wound healing model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3765. [PMID: 37551732 DOI: 10.1002/cnm.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
The inflammatory phase is an important event in the skin wound healing process. The deposition of granulation tissue in the wound bed and the rebuilding of the vascular network occur as inflammation diminishes. An angiogenic component in the formation of granulation tissue is the secretion of vascular endothelial growth factor, which assists in the chemotaxis, proliferation, and replication of fibroblasts. In this paper, we develop a mathematical model of skin wound healing angiogenic factors based on inflammatory cells (macrophages and neutrophils) and mediators (interleukin 6 and interleukin 10). We highlight the importance of this process in vascular endothelial growth factor release and in the formation of new capillary tips. We used a mathematical model of partial differential equations based on the reaction-diffusion-advection equations. In order to calibrate the parameters, we considered an in vivo model composed by four treatments: hydroalcoholic extract and oil-resin of Copaifera langsdorffii at 10% concentration, collagenase, and Lanette cream. Using the laboratory data for the wound edge, our mathematical model estimated the values of vascular endothelial growth factor concentration, and tips density in the center of the wound with a maximum error of 2.9%, and predicted healing time required for each treatment. The region of viability for the parameters, in the proposed model, was found through numerical simulations from the Interleukin 6 and 10 dysregulation and we obtained that, among the parameters analyzed, the greatest influencer in the dynamics of the system is the one, which represents the production of Interleukin 10 during phagocytosis.
Collapse
Affiliation(s)
- Marta H Oliveira
- Department of Mathematics, Federal University of Uberlândia, Uberlandia, Brazil
- Biometrics Graduate Program, São Paulo State University, São Paulo, Brazil
| | - Lucas F S Gushiken
- Biotechnology Graduate Program, São Paulo State University, São Paulo, Brazil
| | | | | | - Paulo F A Mancera
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
250
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|