201
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
202
|
Tyagi S, Shukla A, Ram H, Panwar A, Kumar R, Tripathi R. In silico investigations of the multi‐targeted antiviral potential of small molecule phytochemicals of
Nelumbo nucifera
Gaertn. seed extracts against SARS‐CoV‐2 for therapeutics of COVID‐19. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Saya Tyagi
- Department of Bioscience and Biotechnology Banasthali Vidyapith Banasthali Rajasthan India
| | - Anuradha Shukla
- Department of Bioscience and Biotechnology Banasthali Vidyapith Banasthali Rajasthan India
| | - Heera Ram
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Anil Panwar
- Department of Bioinformatics and Computational Biology CCS Haryana Agricultural University Hisar Haryana India
| | - Roshan Kumar
- Department of Zoology Magadh University Bodh Gaya Bihar India
| | - Rashmi Tripathi
- Department of Bioscience and Biotechnology Banasthali Vidyapith Banasthali Rajasthan India
| |
Collapse
|
203
|
Traditional Herbal Remedies in the Management of Metabolic Disorders in Ethiopia: A Systematic Review of Ethnobotanical Studies and Pharmacological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1413038. [PMID: 36686979 PMCID: PMC9851791 DOI: 10.1155/2023/1413038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Background MetS are common throughout the world, including Ethiopia. These have traditionally been treated using medicinal plants, particularly in rural areas where they are freely accessible. This systematic review tried to investigate the treatment of MetS with Ethiopian medicinal herbs and made recommendations for more validation research. A careful analysis of the literature was also conducted on the therapeutic effects of these and other Ethiopian medicinal plants with hepatoprotective and antihypertensive activities. Methods The relevant keywords "Ethnomedicinal + hypertension," "Ethnopharmacological + hypertension," "Ethnomedicinal + hepatitis, jaundices, and liver disease," "Ethnopharmacological + hepatic disorder," and "Ethnomedicinal + weight loss" were used to search for relevant articles in the major electronic scientific databases, including PubMed, Science Direct, Web of Science, and Google Scholar. The search strategy included all articles with descriptions that were accessible until April 30, 2022. The study's subjects, methods, or year of publication were no restrictions in the search. The outcomes were compiled using descriptive statistics. Results Fifty-four (54) studies were examined in the review that satisfied the inclusion and exclusion criteria for the treatment of MetS in Ethiopia. The most often used ethnobotanical plant species for the treatment of hypertension and hepatic disorders were Moringa stenopetala and Croton macrostachyus. Both hepatic and hypertensive disorders were treated more frequently with leaves (52% and 39%, respectively) than with roots (20% and 13%, respectively). Some intriguing studies came from an ethnobotanical investigation into medicinal herbs' hepatoprotective and antihypertensive properties. The most often investigated medicinal plant for its antihypertensive effects is Moringa stenopetala. Conclusion The study revealed that Ethiopians often use anti-MetS herbal remedies. We advocate the experimental validation of the commonly used medicinal plants with the identification of active compounds and the development of effective alternative drugs for the treatment of MetS.
Collapse
|
204
|
Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers (Basel) 2023; 15:polym15020396. [PMID: 36679276 PMCID: PMC9864592 DOI: 10.3390/polym15020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Chitosan is the deacetylated form of chitin regarded as one of the most abundant polymers and due to its properties, both chitosan alone or in combination with bioactive substances for the production of biodegradable films and coatings is gaining attention in terms of applications in the food industry. To enhance the antimicrobial and antioxidant properties of chitosan, a vast variety of plant extracts have been incorporated to meet consumer demands for more environmentally friendly and synthetic preservative-free foods. This review provides knowledge about the antioxidant and antibacterial properties of chitosan films and coatings enriched with natural extracts as well as their applications in various food products and the effects they had on them. In a nutshell, it has been demonstrated that chitosan can act as a coating or packaging material with excellent antimicrobial and antioxidant properties in addition to its biodegradability, biocompatibility, and non-toxicity. However, further research should be carried out to widen the applications of bioactive chitosan coatings to more foods and industries as well was their industrial scale-up, thus helping to minimize the use of plastic materials.
Collapse
|
205
|
Alhawarri MB, Dianita R, Rawa MSA, Nogawa T, Wahab HA. Potential Anti-Cholinesterase Activity of Bioactive Compounds Extracted from Cassia grandis L.f. and Cassia timoriensis DC. PLANTS (BASEL, SWITZERLAND) 2023; 12:344. [PMID: 36679057 PMCID: PMC9862305 DOI: 10.3390/plants12020344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors remain the primary therapeutic drug that can alleviate Alzheimer's disease's (AD) symptoms. Several Cassia species have been shown to exert significant anti-AChE activity, which can be an alternative remedy for AD. Cassia timoriensis and Cassia grandis are potential plants with anti-AChE activity, but their phytochemical investigation is yet to be further conducted. The aims of this study were to identify the phytoconstituents of C. timoriensis and C. grandis and evaluate their inhibitory activity against AChE and butyrylcholinesterase (BChE). Two compounds were isolated for the first time from C. timoriensis: arachidyl arachidate (1) and luteolin (2). Five compounds were identified from C. grandis: β-sitosterol (3), stigmasterol (4), cinnamic acid (5), 4-hydroxycinnamic acid (6), and hydroxymethylfurfural (7). Compound 2 showed significant inhibition towards AChE (IC50: 20.47 ± 1.10 µM) and BChE (IC50: 46.15 ± 2.20 µM), followed by 5 (IC50: 40.5 ± 1.28 and 373.1 ± 16.4 µM) and 6 (IC50: 43.4 ± 0.61 and 409.17 ± 14.80 µM) against AChE and BChE, respectively. The other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that 2 showed good binding affinity towards TcAChE (PDB ID: 1W6R) and HsBChE (PDB ID: 4BDS). It formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS, 2.04 Å), along with hydrophobic interactions with the anionic site and PAS (TRP84 and TYR121, respectively). Additionally, 2 formed three H-bonds with the binding site residues: one bond with catalytic triad, HIS438 at distance 2.05 Å, and the other two H-bonds with GLY115 and GLU197 at distances of 2.74 Å and 2.19 Å, respectively. The evidence of molecular interactions of 2 may justify the relevance of C. timoriensis as a cholinesterase inhibitor, having more promising activity than C. grandis.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Roza Dianita
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Mira Syahfriena Amir Rawa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
206
|
Ramli I, Posadino AM, Zerizer S, Spissu Y, Barberis A, Djeghim H, Azara E, Bensouici C, Kabouche Z, Rebbas K, D'hallewin G, Sechi LA, Pintus G. Low concentrations of Ambrosia maritima L. phenolic extract protect endothelial cells from oxidative cell death induced by H 2O 2 and sera from Crohn's disease patients. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115722. [PMID: 36115603 DOI: 10.1016/j.jep.2022.115722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A rising resort to herbal therapies in Crohn's disease (CD) alternative treatments has been recently observed due to their remarkable natural efficiency. In this context, the weed plant Ambrosia maritima L., traditionally known as Hachich el Aouinet in Algeria and as Damsissa in Egypt and Sudan, is widely used in North African folk medicine to treat infections, inflammatory diseases, gastrointestinal and urinary tract disturbances, rheumatic pain, respiratory problems, diabetes, hypertension and cancer. AIM OF THE STUDY To assess an Ambrosia maritima L. phenolic extract for its phenolic profile composition, its potential antioxidant activity in vitro, and its cytoprotective effect on cultured primary human endothelial cells (ECs) stressed with H2O2 and sera from CD patients. MATERIALS AND METHODS Phenolic compound extraction was performed with a low-temperature method. Extract chemical profile was attained by HPLC-DAD/ESI-MS. The extract in vitro antioxidant activity was assessed using several methods including cupric ion reducing power, DPPH radical scavenging assay, O-Phenanthroline free radical reducing activity, ABTS cation radical decolourisation assay, Galvinoxyl free radicals scavenging assay. Intracellular reactive oxygen species levels were evaluated in human endothelial cells by H2DCFDA, while cell viability was assessed by MTT. RESULTS The phenolic compounds extraction showed a yield of 17.66% with three di-caffeoylquinic acid isomers detected for the first time in Ambrosia maritima L. Using different analytical methods, a significant in vitro antioxidant activity was reported for the Ambrosia maritima L. extract, with an IC50 value of 14.33 ± 3.86 μg/mL for the Galvinoxyl antioxidant activity method. Challenged with ECs the Ambrosia maritima L. extract showed a biphasic dose-dependent effect on H2O2-treated cells, cytoprotective and antioxidant at low doses, and cytotoxic and prooxidant at high doses, respectively. Viability and ROS levels data also demonstrated a prooxidant and cytotoxic effect of CD sera on cultured ECs. Interestingly, 10 μg/mL of Ambrosia maritima L. extract was able to counteract both CD sera-induced oxidative stress and ECs death. CONCLUSION Our data indicated Ambrosia maritima L. as a source of bioactive phenolics potentially employable as a natural alternative for CD treatment.
Collapse
Affiliation(s)
- Iman Ramli
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria.
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Sakina Zerizer
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Ylenia Spissu
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Antonio Barberis
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Hanane Djeghim
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Emanuela Azara
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 07100, Sassari, Italy
| | - Chawki Bensouici
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Zahia Kabouche
- Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Université des Frères Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Khellaf Rebbas
- University of Mohamed Boudiaf, M'sila, Algeria; Laboratory of Agro-Biotechnology and Nutrition in Arid and Semi-Arid Zones Team, University of Ibn Khaldoun, Tiaret, Algeria
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Azienda Ospedaliera Universitaria, Uitità Complessa di Microbiologia e Virologia, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, And Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
207
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
208
|
Nyalo P, Omwenga G, Ngugi M. Quantitative Phytochemical Profile and In Vitro Antioxidant Properties of Ethyl Acetate Extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen). J Evid Based Integr Med 2023; 28:2515690X231165096. [PMID: 36945829 PMCID: PMC10034282 DOI: 10.1177/2515690x231165096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Overproduction of free radicals in excess of antioxidants leads to oxidative stress which can cause harm to the body. Conventional antioxidants have drawbacks and are believed to be carcinogenic. The present study seeked to confirm folklore use and validate the antioxidant potentials of Grewia tembensis and Xerophyta spekei which have been widely used in the Mbeere community as medicinal plants. Antioxidant properties were determined through scavenging effects of diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide radicals as well as iron chelating effects. The data obtained was assayed in comparison to the standards (Ascorbic acid and EDTA). Ascorbic acid had a significantly greater DPPH radical scavenging property with an inhibitory concentration (IC50) value of 20.54 ± 2.24 µg/mL in comparison to the plant extracts, which had IC50 values of 33.00 ± 1.47 µg/mL, 69.66 ± 1.01 µg/mL and 86.88 ± 2.64 µg/mL for X. spekei, G. tembensis leaf and G. tembensis stem bark extracts, respectively. EDTA demonstrated a significantly greater iron chelating effect having a significantly lesser IC50 value of 25.05 ± 0.79 µg/mL as opposed to 43.56 ± 0.46 µg/mL, 89.78 ± 0.55 µg/mL, and 120.70 ± 0.71 µg/mL for X. spekei, G. tembensis leaf, and G. tembensis stem bark extracts respectively. Additionally, ascorbic acid also exhibited stronger hydrogen peroxide radical scavenging effect than the studied extracts. Generally, X. spekei extract had higher antioxidant activities as compared to both the leaf and stem bark extracts of G. tembensis. The phytochemical screening demonstrated the presence of secondary metabolites associated with antioxidant properties. The present study therefore, recommends ethno medicinal and therapeutic use of G. tembensis and X. spekei in the treatment and management of oxidative stress related infections.
Collapse
Affiliation(s)
- Paul Nyalo
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
- Medical Laboratory Department, Penda Health (K) Ltd, Nairobi, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, 107864Kenyatta University, Nairobi, Kenya
| |
Collapse
|
209
|
Alsukaibi AKD, Alenezi KM, Haque A, Ahmad I, Saeed M, Verma M, Ansari IA, Hsieh MF. Chemical, biological and in silico assessment of date ( P. dactylifera L.) fruits grown in Ha'il region. Front Chem 2023; 11:1138057. [PMID: 36936534 PMCID: PMC10022733 DOI: 10.3389/fchem.2023.1138057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Dates palm (Phoenix dactylifera L.) fruits are among the most widely used fruits in the Middle East and African nations. Numerous researchers confirmed the presence of phytochemicals in P. dactylifera L. fruit and its by-products with broad-ranging biological activities. Objectives: In the present work, phytochemical and biological assessments of two different cultivars of date fruit (Shishi M1 and Majdool M2 grown in the Ha'il region of Saudi Arabia) have been carried out. Methods: Date fruits were extracted and analyzed by gas chromatography-mass spectrometry (GS-MS),liquid chromatography-mass spectrometry (LC-MS) and Fourier-transform infrared spectroscopy (FT-IR)techniques. The lyophilized methanolic extracts were analyzed for their in-vitro antiproliferative andcytotoxicity against colon cancer (HCT116) cell line. To identify the possible constituents responsible for the bioactivity, in-silico molecular docking and molecular dynamics (MD) simulation studies were carried out. Results: Both cultivars exhibited in-vitro anticancer activity (IC50 = 591.3 μg/mL and 449.9 μg/mL for M1 and M2, respectively) against colon cancer HCT-116 cells. The computational analysis results indicated procyanidin B2 and luteolin-7-O-rutinoside as the active constituents. Conclusion: Based on these results, we conclude that these cultivars could be a valuable source for developing health promoter phytochemicals, leading to the development of the Ha'il region, Saudi Arabia.
Collapse
Affiliation(s)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Ha’il, Hail, Saudi Arabia
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Hail, Saudi Arabia
| | - Mahima Verma
- Department of Biosciences, Integral University, Lucknow, India
| | | | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- *Correspondence: Khalaf M. Alenezi, ; Ashanul Haque, ; Ming-Fa Hsieh,
| |
Collapse
|
210
|
Crotalaria medicaginea Lamk.: an unexplored source of anticancer, antimicrobial and antioxidant agents. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
211
|
Popoola JO, Ojuederie OB, Aworunse OS, Adelekan A, Oyelakin AS, Oyesola OL, Akinduti PA, Dahunsi SO, Adegboyega TT, Oranusi SU, Ayilara MS, Omonhinmin CA. Nutritional, functional, and bioactive properties of african underutilized legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1105364. [PMID: 37123863 PMCID: PMC10141332 DOI: 10.3389/fpls.2023.1105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Globally, legumes are vital constituents of diet and perform critical roles in maintaining well-being owing to the dense nutritional contents and functional properties of their seeds. While much emphasis has been placed on the major grain legumes over the years, the neglected and underutilized legumes (NULs) are gaining significant recognition as probable crops to alleviate malnutrition and give a boost to food security in Africa. Consumption of these underutilized legumes has been associated with several health-promoting benefits and can be utilized as functional foods due to their rich dietary fibers, vitamins, polyunsaturated fatty acids (PUFAs), proteins/essential amino acids, micro-nutrients, and bioactive compounds. Despite the plethora of nutritional benefits, the underutilized legumes have not received much research attention compared to common mainstream grain legumes, thus hindering their adoption and utilization. Consequently, research efforts geared toward improvement, utilization, and incorporation into mainstream agriculture in Africa are more convincing than ever. This work reviews some selected NULs of Africa (Adzuki beans (Vigna angularis), African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranea), Jack bean (Canavalia ensiformis), Kidney bean (Phaseolus vulgaris), Lima bean (Phaseolus lunatus), Marama bean (Tylosema esculentum), Mung bean, (Vigna radiata), Rice bean (Vigna Umbellata), and Winged bean (Psophocarpus tetragonolobus)), and their nutritional, and functional properties. Furthermore, we highlight the prospects and current challenges associated with the utilization of the NULs and discusses the strategies to facilitate their exploitation as not only sources of vital nutrients, but also their integration for the development of cheap and accessible functional foods.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Pure and Applied Biology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | - Omena B. Ojuederie
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | | | - Aminat Adelekan
- Department of Chemical and Food Sciences, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun, Nigeria
| | - Abiodun S. Oyelakin
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olusola Luke Oyesola
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Paul A. Akinduti
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, United States
| | - Taofeek T. Adegboyega
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Kaduna, Nigeria
| | - Solomon U. Oranusi
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Modupe S. Ayilara
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Conrad A. Omonhinmin
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| |
Collapse
|
212
|
Adhikari P, Agnihotri V, Suman SK, Pandey A. Deciphering the Antimicrobial Potential of Taxus wallichiana Zucc: Identification and Characterization Using Bioassay-Guided Fractionation. Chem Biodivers 2023; 20:e202200572. [PMID: 36574478 DOI: 10.1002/cbdv.202200572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Taxus wallichiana Zucc. is a high valued medicinal plant and has been mainly studied for its anti-cancer properties. However, research on its other important biological activities, such as its antimicrobial potential, still needs attention. The focus of the present study is to investigate the antimicrobial activity of secondary metabolites of T. wallichiana needles against 3 different groups of microorganisms, i. e., bacteria, actinobacteria, and fungi. Bioactive compounds from T. wallichiana needles were separated through column chromatography, and, TLC-bioautography. Mobile phases were optimized using Snyder's selectivity triangle. Antimicrobial spots were fractionated and compounds were identified by gas chromatography-mass spectroscopy (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). Functional groups were characterized using Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) was used to identify the molecular structures. GC/MS and LC/MS data analysis confirm the presence of fatty acids (arachidic acid, behenic acid, palmitic acid, and stearic acid), vitamins (nicotinamide), and alkaloids (cinchonine, timolol), aminobenzamides (procainamide), carbocyclic sugar (myoinositol), and alkane hydrocarbon (hexadecane), having antimicrobial activity in the needles of T. wallichiana. To the best of our knowledge, this is the first report on the isolation and characterization of antimicrobial compounds from the needles of Taxus wallichiana (Himalayan yew). The data obtained from the present study will be supportive to the new drug discoveries in modern medicine with various combinations of medicinal plant's active constituents that can be used for curing many diseases.
Collapse
Affiliation(s)
- Priyanka Adhikari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India
| | - Vasudha Agnihotri
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India
| | - Sunil Kumar Suman
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, Uttarakhand, India
| | - Anita Pandey
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.,Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| |
Collapse
|
213
|
Zeleke YG, Atnafie SA, Aragaw TJ. Anti-Diabetic Activities of Hydro-Methanolic Crude Extract and Solvent Fractions of Heteromorpha arborescens (Apiaceae) Leaves in Mice. J Exp Pharmacol 2023; 15:107-121. [PMID: 36925618 PMCID: PMC10013569 DOI: 10.2147/jep.s392742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Background Heteromorpha arborescens has been used to treat diabetes traditionally. There was no in vivo study to support the claim. This study aimed to confirm anti-diabetic activity of 80% methanol in water extract and solvent fractions of H. arborescens leaves in mice. Methods H. arborescens leaves were macerated and extracted in 80% methanol in water. Hydro-methanol extract of H. arborescens leaves were tested in mice models. Overnight fasted mice were randomly divided into five groups for normoglycemic and glucose-loaded models as a negative control, positive control, and three tested groups, whereas, in streptozotocin-induced diabetic models, the mice were grouped into six groups each comprised six mice: diabetic negative control and normal negative control groups treated with 10 mL/kg distilled water, diabetic positive control group treated with Glibenclamide 5 mg/kg and three diabetic tested groups treated with extract at 100, 200, and 400 mg/kg doses. A one-way ANOVA was performed to analyze the data, and the post hoc Tukey's test was utilized for multiple comparisons. The P-value <0.05 was considered statistically significant. Results Hydro-methanol extract of H. arborescens leaves at 400 mg/kg in normoglycemic mice significantly lowered blood glucose levels (BGLs) (P< 0.01). Mice with oral glucose-loaded test lowered BGLs at dosages of 200 mg/kg (P < 0.05) and 400 mg/kg (P < 0.01) respectively. Single-dose of ethyl acetate, n-hexane fractions and hydro-methanol extract at 100 mg/kg, 400 mg/kg and 200 mg/kg reduced BGLs (P < 0.05, P < 0.001, and P < 0.01) respectively. BGL drops in diabetic mice given daily repeated doses of 200 mg/kg of hydro-methanol extract and 400 mg/kg of ethyl acetate fraction (P < 0.001). Diabetic mice gained weight at a 400 mg/kg hydro-methanol extract and ethyl acetate fraction (P < 0.05 and P < 0.01) respectively. Hydro-methanol extract and ethyl acetate fraction and at 200 mg/kg decreased total cholesterol, triglycerides, and low-density lipoprotein and increased high-density lipoprotein (P < 0.001). Conclusion 80% methanol in water extract and solvent fractions of H. arborescens leaves showed anti-diabetic effects and significantly reduced hyperlipidemia in diabetics, this study supported the traditional usage of H. arborescens for treating diabetes; however, species variation could also limit such a straightforward extrapolation of the findings of this study in humans.
Collapse
Affiliation(s)
- Yeshiwas Guadie Zeleke
- College of Medicine and Health Sciences Comprehensive Specialized Hospital, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tezera Jemere Aragaw
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
214
|
Moeen M, Nouren S, Zaib M, Bibi I, Kausar A, Sultan M. Green synthesis, characterization and sorption efficiency of MnO 2 nanoparticles and MnO 2@waste eggshell nanocomposite. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2139483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariya Moeen
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Shazia Nouren
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Maria Zaib
- Department of Chemistry, University of Jhang, Jhang, Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abida Kausar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Misbah Sultan
- Center for Applied Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
215
|
Abate TA, Belay AN. Assessment of antibacterial and antioxidant activity of aqueous crude flower, leaf, and bark extracts of Ethiopian Hibiscus rosa-sinensis Linn: geographical effects and Co 2Res 2 /Glassy carbon electrode. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Temesgen Assefa Abate
- Department of Chemistry, College of Natural Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Alebel Nibret Belay
- Department of Chemistry, College of Natural Science, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
216
|
Dobros N, Zawada KD, Paradowska K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2022; 28:molecules28010256. [PMID: 36615453 PMCID: PMC9821988 DOI: 10.3390/molecules28010256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Lavender is a valuable medicinal plant belonging to the Lamiaceae family. Currently 39 species are known, but only Lavandula angustifolia is a pharmacopoeial raw material. Lavender has a long history of medicinal use and mainly exhibits antioxidant, anti-inflammatory, sedative, antidepressant, spasmolytic, anticholinesterases, antifungal and antibacterial properties. Used internally, it relieves symptoms of mental stress and insomnia and supports digestion. Topical use of lavender in aromatherapy, neuralgia and antiseptics is also known. The constant interest in lavender, and in particular in Lavandula angustifolia, in the field of medicine and pharmacy is evidenced by the growing number of publications. In view of so many studies, it seems important to review traditional and modern extraction techniques that determine the chemical composition responsible for the antioxidant and anti-inflammatory effects of various extracts from the species of the Lavandula genus.
Collapse
|
217
|
Gevrenova R, Zengin G, Sinan KI, Zheleva-Dimitrova D, Balabanova V, Kolmayer M, Voynikov Y, Joubert O. An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary). PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010022. [PMID: 36616151 PMCID: PMC9824382 DOI: 10.3390/plants12010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol−aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties.
Collapse
Affiliation(s)
- Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya 42250, Turkey
| | | | | | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Maxime Kolmayer
- Institut Jean Lamour, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7198, Université de Lorraine, F-54000 Nancy, France
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Olivier Joubert
- Institut Jean Lamour, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7198, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
218
|
New insights into the antibacterial mode of action of quercetin against uropathogen Serratia marcescens in-vivo and in-vitro. Sci Rep 2022; 12:21912. [PMID: 36536034 PMCID: PMC9763402 DOI: 10.1038/s41598-022-26621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
In the course of a quest for therapeutic agents inhibiting uropathogens, the rise and universal blowout of antibiotic-resistant organisms is a wide problem. To overcome this matter, exploration of alternative antimicrobials is necessary. The antimicrobial potential of quercetin has been widely described against some pathogenic microorganisms, but to the best of our knowledge, no report exists against the pathogenicity of uropathogenic Serratia marcescens. Hence, the present study focused on the antibacterial mechanism of action of quercetin, a flavonoid against the uropathogen Serratia marcescens. Quercetin was evaluated for its anti-QS activity, and the attained outcomes showed that quercetin inhibited QS-mediated virulence factors such as biofilm formation, exopolysaccharides, swarming motility and prodigiosin in Serratia marcescens. The proposed mechanism of action of quercetin greatly influences cell metabolism and extracellular polysaccharide synthesis and damages the cell membrane, as revealed through global metabolome profiling. In vivo experiments revealed that treatment with quercetin prolonged the life expectancy of infected Caenorhabditis elegans and reduced the colonization of Serratia marcescens. Hence, the current study reveals the use of quercetin as a probable substitute for traditional antibiotics in the treatment of uropathogen infections driven by biofilms.
Collapse
|
219
|
Wijesinghe VN, Choo WS. Antimicrobial betalains. J Appl Microbiol 2022; 133:3347-3367. [PMID: 36036373 PMCID: PMC9826318 DOI: 10.1111/jam.15798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Betalains are nitrogen-containing plant pigments that can be red-violet (betacyanins) or yellow-orange (betaxanthins), currently employed as natural colourants in the food and cosmetic sectors. Betalains exhibit antimicrobial activity against a broad spectrum of microbes including multidrug-resistant bacteria, as well as single-species and dual-species biofilm-producing bacteria, which is highly significant given the current antimicrobial resistance issue reported by The World Health Organization. Research demonstrating antiviral activity against dengue virus, in silico studies including SARS-CoV-2, and anti-fungal effects of betalains highlight the diversity of their antimicrobial properties. Though limited in vivo studies have been conducted, antimalarial and anti-infective activities of betacyanin have been observed in living infection models. Cellular mechanisms of antimicrobial activity of betalains are yet unknown; however existing research has laid the framework for a potentially novel antimicrobial agent. This review covers an overview of betalains as antimicrobial agents and discussions to fully exploit their potential as therapeutic agents to treat infectious diseases.
Collapse
Affiliation(s)
| | - Wee Sim Choo
- School of ScienceMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
220
|
Ogino M, Yamada K, Sato H, Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
221
|
Akter M, Parvin MS, Hasan MM, Rahman MAA, Islam ME. Anti-tumor and antioxidant activity of kaempferol-3-O-alpha-L-rhamnoside (Afzelin) isolated from Pithecellobium dulce leaves. BMC Complement Med Ther 2022; 22:169. [PMID: 35733130 PMCID: PMC9219166 DOI: 10.1186/s12906-022-03633-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pithecellobium dulce (Roxb.), an evergreen medium-sized, spiny tree which have vast nutritional values and widely used in ayurvedic medicines and home remedies. The plant has also been a rich source of biologically active compounds. The present study was designed to isolate pure compound from ethyl acetate fraction of methanol extract of leaves and to know the efficacy as antioxidant as well as its anti-tumor activity on Ehrlich ascites carcinoma cell (EAC). Methods The leaves were extracted with methanol and fractionated with different solvents. The isolation of the compound was carried out by column chromatography from ethyl acetate fraction (EAF) and structure was revealed by 1H-NMR and 13C NMR. The antioxidant activity was investigated by the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals as well as the inhibition of oxidative damage of pUC19 plasmid DNA, hemolysis and lipid peroxidation induced by a water-soluble free radical initiator 2,2’-azo (2-asmidinopropane) dihydrochloride (AAPH) in human erythrocytes. In vivo anti-tumor activity of the compound was also evaluated by determining the viable tumor cell count, hematological profiles of experimental mice along with observing morphological changes of EAC cells by fluorescence microscope. Results The isolated compound kaempferol-3-O-alpha-L-rhamnoside effectively inhibited AAPH induced oxidation in DNA and human erythrocyte model and lipid per oxidation as well as a stronger DPPH radical scavenging activity. In anti-tumor assay, at a dose of 50 mg/kg body weight exhibit about 70.89 ± 6.62% EAC cell growth inhibition, whereas standard anticancer drug vincristine showed 77.84 ± 6.69% growth inhibition. Conclusion The compound may have a great importance as a therapeutic agent in preventing oxidative damage of biomolecules and therapeutic use in chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03633-x.
Collapse
|
222
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Sherif AE, Ashkan MF, Alrahimi J, Abdullah Motwali E, Imran Tousif M, Abbas Khan M, Hussain M, Umair M, Ghalloo BA, Korma SA. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
223
|
Rummun N, Payne B, Blom van Staden A, Twilley D, Houghton B, Horrocks P, Li WW, Lall N, Bahorun T, Neergheen VS. Pluripharmacological potential of Mascarene endemic plant leaf extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
224
|
Jaipal N, Ram H, Charan J, Dixit A, Singh G, Singh BP, Kumar A, Panwar A. HMG‐CoA reductase inhibition medicated hypocholesterolemic and antiatherosclerotic potential of phytoconstituents of an aqueous pod extract of
Prosopis cineraria
(L.) Druce: In silico, in vitro, and in vivo studies. EFOOD 2022. [DOI: 10.1002/efd2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Noopur Jaipal
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Heera Ram
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Jaykaran Charan
- Department of Pharmacology All India Institute of Medical Sciences Jodhpur Rajasthan India
| | | | - Garima Singh
- Department of Botany Pachhunga University College Aizawl Mizoram India
| | - Bhim P. Singh
- Department of Agriculture & Environmental Sciences (AES) National Institute of Food Technology Entrepreneurship & Management (NIFTEM) Sonepat Haryana India
| | - Ashok Kumar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| | - Anil Panwar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| |
Collapse
|
225
|
Hasim H, Mantik YA, Husnawati H, Priosoeryanto BP, Puspita R. Antiproliferative Potency of God’s Crown Fruit (Phaleria macrocarpa) Extract Against Breast Cancer Cell. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a sickness caused by abnormal cell growth in the breast. Mahkota Dewa fruit or god’s crown fruit products (Phaleria macrocarpa) contain flavonoids, alkaloids, polyphenols, and tannins associated with active compounds. This work directs to influence the potency of P. macrocarpa fruit as an antiproliferative agent against breast cancer cells (MCF-7 cells). The antiproliferative potency of P. macrocarpa fruit was proved by extracting and fractionating P. macrocarpa fruit using maceration. The cytotoxicity of extracts and fractions was determined using Brine Shrimp Lethality Test (BSLT). The antiproliferative potency against MCF-7 cells was tested using the hemacytometer approach. This work demonstrates the crude ethanol extract, n-hexane fraction, ethyl acetate fraction, and water fraction. The LC50 values in crude ethanol extract, n-hexane fraction, ethyl acetate fraction, and water fraction were 13.72 ppm, 147.55 ppm, 405.81 ppm, and 149. 07 ppm severally. Phaleria macrocarpa fruit has shown antiproliferation potency against MCF-7 cells. The maximum part of crude ethanol extract antiproliferative potency (56 ppm) effectively suppressed MCF-7 cell growth by 70. 9% while doxorubicin (100 ppm) by 46. 92%. This work confirms that crude ethanol extract of P. macrocarpa fruit interacts synergistically as an antiproliferative compound against MCF-7 cells.
Collapse
|
226
|
Riskianto R, Windi M, Karnelasatri K, Aruan M. Antioxidant Activity of 96% Ethanol Extract of Pepaya Jepang Leaves (Cnidoscolus aconitifolius (Mill.) I. M. Johnst) Using DPPH Method (1,1-diphenyl-2-picrylhydrazyl). BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Free radicals in the human body can be helped neutralized by natural antioxidants derived from plants. Pepaya Jepang (Cnidoscolus aconitifolius (Mill.) I.M.Johnst) contains antioxidant compounds such as flavonoids and polyphenols. This study examined the antioxidant activity of 96% ethanol extract of C. aconitifolius leaves. Maceration of C. aconitifolius leaves using 96% ethanol solvent, phytochemical screening, and antioxidant activity assay was carried out with 1,1-Diphenyl-2-Picryl Hydrazil (DPPH) on 96% ethanol extract of C. aconitifolius. Extraction obtained a yield of 16.1834%, and phytochemical screening on the 96% ethanol extract of C. aconitifolius contained flavonoids, tannins, saponins, phenols, alkaloids, and steroids. The antioxidant activity assay on 96% ethanol extract of C. aconitifolius had an IC50 value of 145.3855 ppm and an IC50 value of vitamin C of 7.0806 ppm. The Antioxidant Activity Index (AAI) of 96% ethanol extract of C. aconitifolius was 0.4127, and the AAI of vitamin C was 8.4739. Based on the results obtained, although in a weak classification, a 96% ethanol extract of C. aconitifolius leaves has antioxidant activity.
Collapse
|
227
|
Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds. Sci Rep 2022; 12:20609. [PMID: 36446937 PMCID: PMC9708685 DOI: 10.1038/s41598-022-25030-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
In the study the cold-pressed, natural (unfiltered, unrefined) vegetable oils: hemp and milk thistle seed oils were tested for their chemical composition and antioxidant properties. The physico-chemical parameters, content of saturated and unsaturated fatty acids were determined. Solid phase extraction and simple extraction with the use of methanol, ethanol, 80% methanol, 80% ethanol were used to obtain the extracts for the analysis of antioxidant activity and phenolic compounds in oils. The composition of phenolic compounds was studied by means of high-performance liquid chromatography (HPLC-DAD) and spectrophotometric test with the Folin-Ciocalteu reagent. The antioxidant property of extracts was established by means of the following methods: with the DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical, ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical, FRAP (ferric ion reducing antioxidant parameter) and CUPRAC (cupric-reducing antioxidant capacity). Moreover the influence of chlorogenic acid on the inhibition of lipid peroxidation process in the hemp and milk thistle seed oils was also investigated. The tested oils showed different antioxidant properties which was related to the their different chemical composition. The main phenolic compounds present in hemp seed oil were vanillic, ferulic and p-coumaric acids, (-)epicatechin, catechin, kaempferol and procyanidin B2, whereas in milk thistle seed oil-catechins, procyanidin B2, procyanidin C1, p-coumaric acid, phloridzin, quercetin, protocatechuic acid, kaempferol, and syringic acid. The methanolic extracts of hemp and milk thistle seed oils showed the highest antiradical activity, whereas the ethanolic extracts revealed the best reducing properties. The obtained antioxidant parameters for hemp seed oil were: the IC50 = 3.433 ± 0.017 v/v (DPPH test), the percent of ABTS•+ inhibition = 93.301 ± 1.099%, FRAP value = 1063.883 ± 39.225 µmol Fe2+, CUPRAC value = 420.471 ± 1.765 µmol of Trolox. Whereas the antioxidant parameters for milk thistle seed oil were: the IC50 = 5.280 ± 0.584 v/v (DPPH test), 79.59 ± 3.763% (ABTS test), 2891.08 ± 270.044 µmol Fe2+ (FRAP test), 255.48 ± 26.169 µmol of Trolox (CUPRAC assay). Chlorogenic acid effectively inhibited the lipid peroxidation process in hemp and milk thistle seed oils.
Collapse
|
228
|
Elucidating the antifungal activity and mechanism of action of bioactive phytochemicals against fungal dermatitis isolates. Arch Dermatol Res 2022; 315:1129-1141. [DOI: 10.1007/s00403-022-02475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
229
|
Rashid MM, Rahman MA, Islam MS, Hossen MA, Ahmed AMA, Afroze M, Habib AH, Mansoury MMS, Alharbi HF, Algheshairy RM, Alelwani W, Alnajeebi AM, Tangpong J, Saha S, Qadhi A, Azhar W. Natural Compounds of Lasia spinosa (L.) Stem Potentiate Antidiabetic Actions by Regulating Diabetes and Diabetes-Related Biochemical and Cellular Indexes. Pharmaceuticals (Basel) 2022; 15:ph15121466. [PMID: 36558918 PMCID: PMC9781412 DOI: 10.3390/ph15121466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Natural biometabolites of plants have been reported to be useful in chronic diseases including diabetes and associated complications. This research is aimed to investigate how the biometabolites of Lasia spinosa methanol stem (MEXLS) extract ameliorative diabetes and diabetes-related complications. MEXLS was examined for in vitro antioxidant and in vivo antidiabetic effects in a streptozotocin-induced diabetes model, and its chemical profiling was done by gas chromatography-mass spectrometry analysis. The results were verified by histopathological examination and in silico ligand-receptor interaction of characterized natural biometabolites with antidiabetic receptor proteins AMPK (PDB ID: 4CFH); PPARγ (PDB ID: 3G9E); and mammalian α-amylase center (PDB ID: 1PPI). The MEXLS was found to show a remarkable α-amylase inhibition (47.45%), strong antioxidant action, and significant (p < 0.05) decrease in blood glucose level, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein (LDL), urea, uric acid, creatinine, total cholesterol, triglyceride (TG), liver glycogen, creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase in serum insulin, glucose tolerance, and high-density lipoprotein (HDL). Rat’s pancreas and kidney tissues were found to be partially recovered in histopathological analyses. Methyl α-d-galactopyranoside displayed the highest binding affinity with AMPK (docking score, −5.764), PPARγ (docking score, −5.218), and 1PPI (docking score, −5.615) receptors. Data suggest that the MEXLS may be an exciting source to potentiate antidiabetic activities affirming a cell-line study.
Collapse
Affiliation(s)
- Md. Mamunur Rashid
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: ; Tel.: +88-031-2606001-10 (ext. 4334); Fax: +88-031-726310
| | - Md. Shahidul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - A. M. Abu Ahmed
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dr. Qudrat-e-Khuda Road (Laboratory Road), Dhanmondi, Dhaka 1205, Bangladesh
| | - Alaa H. Habib
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal M. S. Mansoury
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hend F. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Wedad Azhar
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| |
Collapse
|
230
|
Yarmolinsky L, Budovsky A, Khalfin B, Yarmolinsky L, Ben-Shabat S. Medicinal Properties of Anchusa strigosa and Its Active Compounds. Molecules 2022; 27:molecules27238239. [PMID: 36500332 PMCID: PMC9741094 DOI: 10.3390/molecules27238239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Anchusa strigosa is a widespread weed in Greece, Syria, Turkey, Lebanon, Israel, Jordan, and Iran. The purpose of this study was to identify the phytochemicals of Anchusa strigose and estimate the pro-wound healing (pro-WH) and antimicrobial activities of its active compounds. An identification of volatile compounds was performed by GC/MS analysis; HPLC, LC-ESI-MS, and MALDI-TOF-MS were also applied. Our results demonstrate that two specific combinations of compounds from A. strigosa extract significantly enhanced WH (p < 0.001). Several flavonoids of the plant extract, including quercetin 3-O-rutinoside, kaempferol, kaempferol 3-O-β-rhamnopyranosyl(1→6)-β-glucopyranoside, and kaempferol 3-O-α-rhamnopyranosyl(1→6)-β-galactopyranoside, were effective against drug-resistant microorganisms. In addition, all the above-mentioned compounds had antibiofilm activity against Escherichia coli and Salmonella enteritidis.
Collapse
Affiliation(s)
| | - Arie Budovsky
- Research & Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel
| | - Boris Khalfin
- Eastern R&D Center, Kiryat Arba 9010000, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: ; Tel.: +972-54-599-1056
| |
Collapse
|
231
|
Evaluation of Antioxidant, Antimicrobial, and Cytotoxic Activities and Correlation with Phytoconstituents in Some Medicinal Plants of Nepal. J CHEM-NY 2022. [DOI: 10.1155/2022/4725801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Traditional herbal medicines have been consumed in Nepal and other parts of the eastern hemisphere since ancient times. Many of these plants reportedly have been effective against ailments as well. This study aims to analyze the phytochemical constituents from the extracts of ten such plants and evaluate their antimicrobial, cytotoxicity, and antioxidant properties. In addition, the study aims to study the correlation of cytotoxicity and antioxidant activities with the total phenolic, flavonoid, and tannin contents. The plants investigated were Oroxylum indicum, Kalanchoe pinnata, Phragmites vallatoria, Ehretia acuminata, Cirsium wallichii, Ampelocissus tomentosa, Dichrocephala integrifolia, Boenninghausenia albiflora, Cynoglossum zeylanicum, and Clerodendrum serratum. Phytochemical analyses were performed to evaluate secondary metabolites, such as glycosides, flavonoids, terpenoids, saponins, alkaloids, and fats. The total phenolic contents of the extracts ranged from 14.94 to 229.89 mg GAE/g, the total flavonoid contents varied from 66.67 to 900 mg QE/g, and the total tannin contents were 42 to 168 mg GAE/g. The results of the antioxidant studies showed that the highest antioxidant activity was exhibited by the extract of A. tomentosa (IC50 = 7.89 µg/mL) followed by E. acuminata (IC50 = 24.82 µg/mL) and C. serratum (IC50 = 32.91 µg/mL). The extracts from P. vallatoria and A. tomentosa exhibited substantial antimicrobial activity. The extracts of A. tomentosa and B. albiflora showed lethality against brine shrimp with LC50 values of 33.11 µg/mL.
Collapse
|
232
|
Javaid A, Jalalah M, Safdar R, Khaliq Z, Qadir MB, Zulfiqar S, Ahmad A, Satti AN, Ali A, Faisal M, Alsareii SA, Harraz FA. Ginger Loaded Polyethylene Oxide Electrospun Nanomembrane: Rheological and Antimicrobial Attributes. MEMBRANES 2022; 12:membranes12111148. [PMID: 36422140 PMCID: PMC9696929 DOI: 10.3390/membranes12111148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 05/29/2023]
Abstract
Synthetic antibiotics have captured the market in recent years, but the side effects of these products are life-threatening. In recent times, researchers have focused their research on natural-based products such as natural herbal oils, which are eco-friendly, biocompatible, biodegradable, and antibacterial. In this study, polyethylene oxide (PEO) and aqueous ginger extract (GE) were electrospun to produce novel antibacterial nanomembrane sheets as a function of PEO and GE concentrations. A GE average particle size of 91.16 nm was achieved with an extensive filtration process, inferring their incorporation in the PEO nanofibres. The presence of the GE was confirmed by Fourier transform infrared spectroscopy (FTIR) through peaks of phenol and aromatic groups. The viscoelastic properties of PEO/GE solutions were analysed in terms of PEO and GE concentrations. Increasing PEO and GE concentrations increased the solution's viscosity. The dynamic viscosity of 3% was not changed with increasing shear rate, indicating Newtonian fluid behaviour. The dynamic viscosity of 4 and 5 wt% PEO/GE solutions containing 10% GE increased exponentially compared to 3 wt%. In addition, the shear thinning behaviour was observed over a frequency range of 0.05 to 100 rad/s. Scanning Electron Microscopy (SEM) analysis also specified an increase in the nanofibre's diameter with increasing PEO concentration, while SEM images displayed smooth morphology with beadless nanofibres at different PEO/GE concentrations. In addition, PEO/GE nanomembranes inhibited the growth of Staphylococcus aureus, as presented by qualitative antibacterial results. The extent of PEO/GE nanomembrane's antibacterial activity was further investigated by the agar dilution method, which inhibited the 98.79% Staphylococcus aureus population at 30% GE concentration.
Collapse
Affiliation(s)
- Anum Javaid
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Rimsha Safdar
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Sumra Zulfiqar
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Aamir Naseem Satti
- U.S.-PAKISTAN Center for Advanced Studies in Energy (USPCASE), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Aiman Ali
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - S. A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
233
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
234
|
Mesas C, Quiñonero F, Doello K, Revueltas JL, Perazzoli G, Cabeza L, Prados J, Melguizo C. Active Biomolecules from Vegetable Extracts with Antitumoral Activity against Pancreas Cancer: A Systematic Review (2011-2021). Life (Basel) 2022; 12:1765. [PMID: 36362920 PMCID: PMC9695035 DOI: 10.3390/life12111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
The emergence of resistance to pancreatic cancer (PC) current treatment requires the development of new therapeutic strategies. In this context, bioactive molecules from plant extracts have shown excellent properties to improve classical therapy against this type of tumor. This systematic review aims to collect all the in vitro studies related to the antiproliferative activity of isolated plant molecules that support their applicability in PC. A total of 620 articles published in the last 10 years were identified, although only 28 were finally included to meet the inclusion criteria. Our results reflect the most important biomolecules from natural compounds that induce cell death in PC and their essential mechanism of cell death, including apoptosis, pathways activated by the KRAS mutation and cycle cell arrest, among others. These in vitro studies provide an excellent molecule guide showing applications against PC and that should be tested in vivo and in clinical trials to determine their usefulness to reduce PC incidence and to improve the prognosis of these patients. However, natural compounds are isolated in small amounts, which prevents comprehensive drug screening, being necessary the role of organic synthesis for the total synthesis of natural compounds or for the synthesis of their simplified and bioactive analogs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Kevin Doello
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Medical Oncology Service, Virgen de las Nieves Hospital, 18016 Granada, Spain
| | - José L. Revueltas
- Radiodiagnosis Service, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| |
Collapse
|
235
|
Ganguly R, Verma G, Ingle A, Kumar S, Sarma H, Dutta D, Dutta B, Kunwar A, Ajish K, Bhainsa K, Hassan P, Aswal V. Structural, rheological and therapeutic properties of pluronic F127 hydrogel and beeswax based lavender oil ointment formulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
236
|
Al-Garadi MA, Qaid MM, Alqhtani AH, Pokoo-Aikins A, Al-Mufarrej SI. In vitro phytochemical analysis and antibacterial and antifungal efficacy assessment of ethanolic and aqueous extracts of Rumex nervosus leaves against selected bacteria and fungi. Vet World 2022; 15:2725-2737. [PMID: 36590121 PMCID: PMC9798057 DOI: 10.14202/vetworld.2022.2725-2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim Scientists are interested in identifying natural antibiotic substitutes that are effective against drug-resistant pathogenic microbes and spoilage fungi to counter pathogens and reduce the major public health problem of antibiotic residues in animal products. This study aimed to evaluate the antimicrobial activity of Rumex nervosus leaves (RNLs) as a medicinal herb against four bacterial and two fungal strains using absolute ethanol, 50% ethanol, and aqueous extracts. Materials and Methods The antimicrobial activities of various RNL extracts against selected microbes were evaluated using the disk diffusion antibiotic susceptibility test, minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum fungicidal concentrations, and the poisoned food technique. Results The absolute ethanol RNL extract showed the best bacteriostatic/bactericidal activity against Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus (MIC/MBC: 0.20/0.40, 0.20/0.40, and 0.32/0.65 mg/mL, respectively). The diameter of the zone of inhibition was larger (p < 0.05) for the 100% ethanol RNL extract (8.17 mm) against Salmonella Typhimurium, the 50% ethanol-RNL extract (11.5 mm) against E. coli, and the aqueous RNL extract (14.0 mm) against S. aureus than for any other bacterial isolate. The aqueous RNL extract strongly (p < 0.0001) inhibited the mycelial growth of Aspergillus fumigatus (100%) and Aspergillus niger (81.4%) compared with the control. Conclusion The results of this study suggest that RNL is a promising new natural antimicrobial agent for food preservation. To date, most research on the antimicrobial properties of natural herbs has been conducted in vitro, with few exceptions in vivo and intervention-based research.
Collapse
Affiliation(s)
- Maged A. Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M. Qaid
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulmohsen H. Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anthony Pokoo-Aikins
- US National Poultry Research Center, Toxicology and Mycotoxin Research Unit, USDA, ARS, Athens, Georgia 30605, USA
| | - Saud I. Al-Mufarrej
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
237
|
Sivasubramanian P, Chang JH, Nagendran S, Dong CD, Shkir M, Kumar M. A review on bismuth-based nanocomposites for energy and environmental applications. CHEMOSPHERE 2022; 307:135652. [PMID: 35817189 DOI: 10.1016/j.chemosphere.2022.135652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Bismuth, a heavy metal which is found to be inexpensive and at a reduced cost, is utilized in the synthesis of different nanomaterials with novel structure, remarkable physical and chemical properties, adjustable bandgap, notable efficiency for photothermal conversion. These characteristics have made this element desirable for various applications such as storage and conversion of energy, electronics, sensors, photocatalysis, and other biomedical applications. These review papers are the vital points for the students, this report guides them to the research papers which focus on the impressive development in the area of bismuth and similar nanostructures. The purpose of the present review is to discuss the various synthesis routes of bismuth-based nanomaterials along with green synthesis, different nanostructures of bismuth, their significant properties, diverse applications and directions for the upcoming research. Therefore, with these different tuneable synthesis methods of bismuth-based nanomaterials combined with their novel properties, would elucidate on the future devices based on various nanostructures of bismuth.
Collapse
Affiliation(s)
- PratimaDevi Sivasubramanian
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Santhanalakshmi Nagendran
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia; Department of Chemistry and University Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
238
|
Brás T, Neves LA, Crespo JG, Duarte MF. Advances in sesquiterpene lactones extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
239
|
Extraction of Phytochemicals from Maypole Apple by Subcritical Water. Foods 2022; 11:foods11213453. [DOI: 10.3390/foods11213453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The Maypole apple is a new, promising species of small apples with a prominent flavor and deep red flesh and peel. This study divided Maypole apples into outer flesh, inner flesh, and peel, and used subcritical water at 100–175 °C for 10–30 min to extract various phytochemicals (procyanidin B2 (PB2), 5-caffeoylquinic acid (5CQA), and epicatechin). The obtained Maypole apple extracts and extraction residues in this work were analyzed using a SEM, HPLC, FT-IR, and UV-Vis spectrophotometer. Under different subcritical water extraction conditions, this work found the highest extraction rate: to be PB2 from the peel (4.167 mg/mL), 5CQA (2.296 mg/mL) and epicatechin (1.044 mg/mL) from the inner flesh. In addition, this work regressed the quadratic equations of the specific yield through ANOVA and found that temperature is a more significant affecting factor than extraction time. This aspect of the study suggests that phytochemicals could be obtained from the Maypole apple using the new extraction method of subcritical water.
Collapse
|
240
|
Phytochemical Analysis and Antibacterial Activities of Kyllinga nemoralis Extracts against the Growth of some Pathogenic Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This study aimed to screen the phytochemical contents and investigate antibacterial activities of the aqueous and methanolic extracts of Kyllinga nemoralis. Extraction was done using the whole plant of K. nemoralis except the root. The phytochemical screening was carried out on both aqueous and methanolic extracts of K. nemoralis. The aqueous extract showed the presence of saponin and high amount of steroid, while the methanolic extract showed high amount of terpenoid and steroid. The antibacterial activities of K. nemoralis extracts were tested against five Gram positive bacteria (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Streptococcus pyogenes, and Bacillus thuringiensis) and four Gram negative bacteria (Escherichia coli, Shigella sonnei, Salmonella Typhi and Klebsiella pneumoniae). K. nemoralis extracts were subjected to testing of their antibacterial activities by the disk diffusion method. Furthermore, the minimum inhibitory concentrations of the extracts were determined. The results indicate that the aqueous extract of K. nemoralis exhibits more antibacterial activities than the methanolic extract. The aqueous extract of K. nemoralis showed efficacy against S. aureus and MRSA while the methanolic extract of K. nemoralis was found to exert antibacterial activity against MRSA. The results proved the potency of K. nemoralis extracts as natural antibacterial and supported the potential of use in the medication of the diseases caused by the tested bacteria.
Collapse
|
241
|
HPLC-MS Methodology for R. carthamoides Extract Quality Evaluation: A Simultaneous Determination of Eight Bioactive Compounds. DIVERSITY 2022. [DOI: 10.3390/d14100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Classified as an adaptogen, Maral root (Rhaponticum carthamoides, Leuzea carthamoides) is a herb that has long been used in Siberian as well as Russian alternative medicine. With over 200 substances found, this plant is a great source of bioactive compounds which have significant beneficial effects on human health and physical enhancement. Simultaneous quantification of the eight most therapeutic and abundant substances, i.e., 20-hydroxyecdysone (20-HE), kaempferol, hesperetin, quercetin, chlorogenic acid, N-feruloyl serotonin, cynaropicrin, and tracheloside belonging to various groups, such as ecdysteroids, flavonoids, phenolics, sesquiterpenes, and lignans, was performed for the first time through validated HPLC-MS. The evaluated parameters for method validation showed excellent linearity with R2 higher than 0.996, stability under various environmental factors with % RSD ≤ 2%, and recovery between 97 and 103% for all the studied compounds. Other validation parameters including selectivity, sensitivity, and precision were found to be within the acceptance criteria. The results of the stability studies provide information on the best combination of conditions for sample handling and storage. Generally, for almost every compound, exposure to light and elevated temperature for 96 h led to degradation; nevertheless, the acidic environment was beneficial for most of them.
Collapse
|
242
|
Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
243
|
Kaur M, Gautam A, Guleria P, Singh K, Kumar V. Green synthesis of metal nanoparticles and their environmental applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100390. [DOI: 10.1016/j.coesh.2022.100390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
244
|
Lim WY, Chan EWC, Phan CW, Wong CW. Potent melanogenesis inhibition by friedelin isolated from Hibiscus tiliaceus leaves. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
245
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
246
|
Medicinal plants as potential therapeutic agents for trypanosomosis: a systematic review. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
247
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|
248
|
Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, Li Y, Li M, Guo M, Zhao W, Lou B, Wang L, Lynch I, Rui Y. Green synthesis of metal-based nanoparticles for sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119755. [PMID: 35839973 DOI: 10.1016/j.envpol.2022.119755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/22/2023]
Abstract
The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.
Collapse
Affiliation(s)
- Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; China Agricultural University Professor's Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor's Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
249
|
Comparison of extraction methods for active biomolecules using sub-critical dimethyl ether and n-butane. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSeveral extraction methods are used to isolate natural compounds, and recent approaches utilize subcritical or supercritical extraction media. In this paper we compare extraction methods based on subcritical eluents, dimethyl ether (sC-DME) and n-butane (sC-nB), under mild conditions, using coffee beans and powder as an exemplary raw material. The parameters to be controlled to improve the extraction are considered, and the resulting data discussed. The results obtained display higher selectivity of sC-DME for caffeine (1.9%w/w sC-DME vs. 1.7%w/w sC-nB, on dry extract) and a good yield (0.479 mg/g of caffeine from green coffee beans) compared to, e.g., supercritical carbon dioxide (SC-CO2), which shows 0.32 mg/g of caffeine at higher pressure and temperature (25 MPa, 40 °C). We also discuss some technical implementations for optimizing the use of sub-critical eluents through proper combinations of pressure and temperature. We show that extraction processes based on sub-critical eluents are easy to operate and efficient, and can be easily automated.
Collapse
|
250
|
Moczkowska-Wyrwisz M, Jastrzębska D, Wyrwisz J. Application of New Sources of Bioactive Substances ( Perilla frutescens L. and Tagetes erecta L.) in the Chosen Cookies Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11504. [PMID: 36141786 PMCID: PMC9517677 DOI: 10.3390/ijerph191811504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Today, one of the most important challenges of ensuring the society's health is the prevention of civilization diseases. Most of them are associated with an imbalance between antioxidants and free radicals in the human body. Due to the need to increase the intake of antioxidants, opportunities are being studied to increase their consumption. Therefore, the aim of this study was to evaluate the influence of plant extracts of marigold (Tagetes erecta spp.) (MEx) and perilla (Perilla frutescens L.) (PEx) on selected qualitative properties of muffins. We studied the effects of the extracts in amounts of 1% (1), 3% (3), and 5% (5) on selected muffin characteristics, i.e., crust and crumb color, cooking yield, specific volume, and water activity, and changes in textural properties as well as sensory acceptance analysis. The level of crust lightness (L*) of muffins was lower than that of the control sample only for the samples with the PEx. For the crumb, the muffins with MEx and PEx were darker than the control sample. Fortification of muffins resulted in a concentration-dependent increase in antioxidant capacity. The PEx_3 and PEx_5 samples were rated highest in the sensory acceptance evaluation. The other quality attributes were similar to the control sample, indicating the validity of introducing extracts in the muffin recipe.
Collapse
Affiliation(s)
- Małgorzata Moczkowska-Wyrwisz
- Institute of Human Nutrition Sciences, Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Dominika Jastrzębska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Jarosław Wyrwisz
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|