2451
|
Hume DA. Macrophages as APC and the dendritic cell myth. THE JOURNAL OF IMMUNOLOGY 2009; 181:5829-35. [PMID: 18941170 DOI: 10.4049/jimmunol.181.9.5829] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
2452
|
Xiong Q, Jiao Y, Hasty KA, Canale ST, Stuart JM, Beamer WG, Deng HW, Baylink D, Gu W. Quantitative trait loci, genes, and polymorphisms that regulate bone mineral density in mouse. Genomics 2009; 93:401-14. [PMID: 19150398 DOI: 10.1016/j.ygeno.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
This is an in silico analysis of data available from genome-wide scans. Through analysis of QTL, genes and polymorphisms that regulate BMD, we identified 82 BMD QTL, 191 BMD-associated (BMDA) genes, and 83 genes containing known BMD-associated polymorphisms (BMDAP). The catalogue of all BMDA/BMDAP genes and relevant literatures are provided. In total, there are substantially more BMDA/BMDAP genes in regions of the genome where QTL have been identified than in non-QTL regions. Among 191 BMDA genes and 83 BMDAP genes, 133 and 58 are localized in QTL regions, respectively. The difference was still noticeable for the chromosome distribution of these genes between QTL and non-QTL regions. These results have allowed us to generate an integrative profile of QTL, genes, polymorphisms that determine BMD. These data could facilitate more rapid and comprehensive identification of causal genes underlying the determination of BMD in mouse and provide new insights into how BMD is regulated in humans.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2453
|
Sepulveda DE, Andrews BA, Asenjo JA, Papoutsakis ET. Comparative transcriptional analysis of embryoid body versus two-dimensional differentiation of murine embryonic stem cells. Tissue Eng Part A 2009; 14:1603-14. [PMID: 18433312 DOI: 10.1089/ten.tea.2007.0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding the process of ex vivo embryonic stem (ES) cell differentiation is important for generating higher yields of desirable cell types or lineages and for understanding fundamental aspects of ES differentiation. We used DNA microarray analysis to investigate the differentiation of mouse ES cells cultured under three differentiation conditions. Embryoid body (EB) formation was compared to differentiation on surfaces coated with either gelatin (GEL) or matrigel (MAT). Based on the transcriptional patterns of a list of literature-based "stemness" genes, ES cell differentiation on the two coated surfaces appeared similar but not identical to EB differentiation. A notable difference was the GEL and MAT upregulation but EB downregulation of nine such stemness genes, which are related to cell adhesion and epithelial differentiation. Further, GEL and MAT differentiation showed higher expression of bone formation-related genes (Spp1, Csf1, Gsn, Bmp8b, Crlf1). Gene ontology analysis shows an increase in the expression of genes related to migration and cell structure in all three conditions. Overall, GEL and MAT conditions resulted in a more similar to each other transcriptional profile than to the EB condition, and such differences are apparently related to higher nutrient and metabolite gradients and limitations in the EB versus the GEL or MAT cultures.
Collapse
Affiliation(s)
- Dario E Sepulveda
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Institute for Cell Dynamics and Biotechnology (ICDB), University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
2454
|
Guenova E, Volz T, Sauer K, Kaesler S, Müller MR, Wölbing F, Chen K, Schwärzler C, Brossart P, Röcken M, Biedermann T. IL-4-mediated fine tuning of IL-12p70 production by human DC. Eur J Immunol 2009; 38:3138-49. [PMID: 18924208 DOI: 10.1002/eji.200838463] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IL-4 is expressed at high levels in allergic diseases and dominates the early phases of multiple acquired immune responses. However, the precise role of IL-4 during early inflammation and its impact on the differentiation of newly recruited DC precursors remains elusive. In order to characterize the impact of IL-4 on the differentiation of human DC, we investigated the role of IL-4 on the differentiation of monocytes into DC. Human DC were differentiated from peripheral blood precursors under either low or high concentrations of IL-4. We analyzed their cytokine profile and capacity to polarize T-cell differentiation. Concentrations of 5 (low) and 50 (high) ng/mL IL-4 induced two distinct types of DC. DC differentiated under low-dose IL-4 (5 ng/mL) produced almost no IL-12p70, and primed naïve CD4+ T cells allowing IL-4 secretion and Th2 induction. In contrast, DC generated under high concentrations of IL-4 (50 ng/mL) produced large amounts of IL-12p70, low IL-10 and primed naïve CD4+ T cells to become Th1 cells. Thus, we demonstrate that the Th2 cell cytokine IL-4 decisively determines the phenotype of ongoing immune responses by orchestrating the functional phenotype of newly immigrating DC precursors.
Collapse
|
2455
|
Tan JKH, O'Neill HC. Concise Review: Dendritic Cell Development in the Context of the Spleen Microenvironment. Stem Cells 2009; 25:2139-45. [PMID: 17525232 DOI: 10.1634/stemcells.2007-0244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dendritic cell (DC) population in spleen comprises a mixture of cells including endogenous DC progenitors, DC precursors migrating in from blood and bone marrow, and DC in different states of differentiation and activation. A role for different microenvironments in supporting the dynamic development of murine DC of different types or lineages is considered here. Recent evidence for production of DC dependent on splenic stromal cells is reviewed in the light of evidence that cell production is dependent on cells comprising an endothelial niche in spleen. The possibility that self-renewing progenitors in spleen give rise to DC with tolerogenic or regulatory rather than immunostimulatory function is considered.
Collapse
Affiliation(s)
- Jonathan K H Tan
- School of Biochemistry & Molecular Biology, The Australian National University, Canberra, Australian Capital Territory, Australia 0200
| | | |
Collapse
|
2456
|
Varol C, Landsman L, Jung S. Probing in vivo origins of mononuclear phagocytes by conditional ablation and reconstitution. Methods Mol Biol 2009; 531:71-87. [PMID: 19347312 DOI: 10.1007/978-1-59745-396-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dendritic cells (DCs) and macrophages (MPhis), collectively termed mononuclear phagocytes (MP), are crucial for homeostatic tissue maintenance as well as the innate and adaptive host defense. These pleiotropic functions are likely to be covered by distinct DC and MPhi subsets, defined by anatomic location and molecular make-up. However, task division within the MP system remains poorly defined. A key to understanding of this issue, which might have important implications for the development of future therapeutic strategies, is the elucidation of the in vivo origins of DCs and MPhis, whose study recently gained striking momentum. Here we present methods to investigate the role of MP progenitors, such as monocytes and MPhi/DC precursors (MDPs), in the replenishment of the peripheral MP system.
Collapse
Affiliation(s)
- Chen Varol
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
2457
|
Ramírez-González MD, Herrera-Enríquez M, Villanueva-Rodríguez LG, Castell-Rodríguez AE. Role of epidermal dendritic cells in drug-induced cutaneous adverse reactions. Handb Exp Pharmacol 2009:137-162. [PMID: 19031025 DOI: 10.1007/978-3-540-71029-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Drug-induced adverse reactions (ADR) include any undesirable pharmacological effect that occurs following drug administration at therapeutic doses. The appearance of ADR significantly limits the use of drugs in as much as their clinical symptoms may range from very mild discomfort such as cutaneous rash, up to very severe, or even fatal tissue necrolysis such as the Stevens Johnson syndrome.One of the most frequently involved organ during ADR is the skin. Drug-induced cutaneous reactions (CDR) incidence is variable but they may appear in 2-3% of ambulatory patients, and it may increase to 10-15% when patients are hospitalized, or even be as high as 60% when co morbidity includes the presence of virus, bacteria, or parasites.Due to the fact that skin is one of the organs most frequently involved in ADR, in this work we analyze and propose a mechanism by which epidermal dendritic cells operating as the sentinels of the skin neuro-immune-endocrine system may contribute to CDR via either immunogenic or tolerogenic immune responses towards drugs, whenever they are administered topic or systemically.
Collapse
Affiliation(s)
- Maria Dolores Ramírez-González
- Department of Pharmacology and Tissue Cells Biology, School of Medicine, National Autonomous University of Mexico, Mexico.
| | | | | | | |
Collapse
|
2458
|
Hunter M, Wang Y, Eubank T, Baran C, Nana-Sinkam P, Marsh C. Survival of monocytes and macrophages and their role in health and disease. Front Biosci (Landmark Ed) 2009; 14:4079-102. [PMID: 19273336 DOI: 10.2741/3514] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are versatile cells involved in health and disease. These cells act as scavengers to rid the body of apoptotic and senescent cells and debris through their phagocytic function. Although this is a primary function of these cells, macrophages play vital roles in inflammation and repair of damaged tissue. Macrophages secrete a large number of cytokines, chemokines and growth factors that recruit and activate a variety of cell types to inflamed tissue compartments. These cells are also critical in cell-mediated immunity and in the resolution of inflammation. Since macrophages, and their precursors, blood monocytes, are important in regulating and resolving inflammation, prolonged cellular survival in tissue compartments could be detrimental. Thus, factors that regulate the fate of monocyte and macrophage survival are important in cellular homeostasis. In this article, we will explore stimuli and the intracellular pathways important in regulating macrophage survival and implication in human disease.
Collapse
Affiliation(s)
- Melissa Hunter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
2459
|
Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009; 84:1-12. [PMID: 19082854 DOI: 10.1007/s00223-008-9196-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/07/2008] [Indexed: 02/06/2023]
Abstract
Human recessive osteopetrosis (ARO) represents a group of diseases in which, due to a defect in osteoclasts, bone resorption is prevented. The deficit could arise either from failure in osteoclast differentiation or from inability to perform resorption by mature, multinucleated, but nonfunctional cells. Historically, osteopetrosis due to both these mechanisms was found in spontaneous and artificially created mouse mutants, but the first five genes identified in human ARO (CA-II, TCIRG1, ClCN7, OSTM1, and PLEKHM1) were all involved in the effector function of mature osteoclasts, being linked to acidification of the cell/bone interface or to intracellular processing of the resorbed material. Differentiation defects in human ARO have only recently been described, following the identification of mutations in both RANKL and RANK, which define a new form of osteoclast-poor ARO, as expected from biochemical, cellular, and animal studies. The molecular dissection of ARO has prognostic and therapeutic implications. RANKL-dependent patients, in particular, represent an interesting subset which could benefit from mesenchymal cell transplant and/or administration of soluble RANKL cytokine.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via Cervi 93, Segrate, Italy.
| | | | | | | | | |
Collapse
|
2460
|
Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL, Butte AJ, Passegué E, Sage J. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 2008; 3:416-28. [PMID: 18940733 DOI: 10.1016/j.stem.2008.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 04/22/2008] [Accepted: 07/16/2008] [Indexed: 12/12/2022]
Abstract
Individual members of the retinoblastoma (Rb) tumor suppressor gene family serve critical roles in the control of cellular proliferation and differentiation, but the extent of their contributions is masked by redundant and compensatory mechanisms. Here we employed a conditional knockout strategy to simultaneously inactivate all three members, Rb, p107, and p130, in adult hematopoietic stem cells (HSCs). Rb family triple knockout (TKO) mice develop a cell-intrinsic myeloproliferation that originates from hyperproliferative early hematopoietic progenitors and is accompanied by increased apoptosis in lymphoid progenitor populations. Loss of quiescence in the TKO HSC pool is associated with an expansion of these mutant stem cells but also with an enhanced mobilization and an impaired reconstitution potential upon transplantation. The presence of a single p107 allele is sufficient to largely rescue these defects. Thus, Rb family members collectively maintain HSC quiescence and the balance between lymphoid and myeloid cell fates in the hematopoietic system.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2461
|
Vandyke K, Dewar AL, Farrugia AN, Fitter S, Bik To L, Hughes TP, Zannettino ACW. Therapeutic concentrations of dasatinib inhibit in vitro osteoclastogenesis. Leukemia 2008; 23:994-7. [DOI: 10.1038/leu.2008.356] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2462
|
Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 2008; 38:2845-54. [PMID: 18958885 DOI: 10.1002/eji.200838192] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation-mediated bone loss is a major feature of various bone diseases including rheumatoid arthritis, osteoarthritis and advanced periodontitis. Enhanced osteoclast development or activity at the inflammation site results in bone resorption. IL-23 is a heterodimeric cytokine belonging to the IL-6/IL-12 family that has been implicated in the pathogenesis of rheumatoid arthritis and demonstrated to play a role in osteoclastogenesis via stimulation of IL-17 production. In this study we investigated whether IL-23 contributes to the regulation of osteoclast differentiation independent of the IL-17 pathway. We show that IL-23 dose-dependently up-regulates receptor activator of NF-kappaB expression in primary murine bone marrow macrophages and RAW264.7 cells and thereby promotes commitment of myeloid precursor cells to receptor activator of NF-kappaB ligand-mediated osteoclastic differentiation. However, IL-23 by itself is insufficient to induce osteoclastogenesis. Increased osteoclastic differentiation of cells was associated with enhanced cathepsin K expression and dentine resorption indicating enhanced formation of functional osteoclasts. IL-17 was not detectable in culture supernatants and when added to cultures, did not promote differentiation of RAW264.7 cells. These results demonstrate that IL-23 can act directly on myeloid precursor cells in addition to indirectly stimulating receptor activator of NF-kappaB ligand production in osteoblasts and explains its potency in driving osteoclast development in inflammation-mediated bone pathology.
Collapse
Affiliation(s)
- Li Chen
- Orthodontic Department, School of Stomatology, Capital Medical University, Beijing, China, and Matrix Biology and Tissue Repair Research Unit, School of Dentistry, Cardiff University, UK
| | | | | | | | | |
Collapse
|
2463
|
Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008; 8:935-47. [PMID: 19029989 DOI: 10.1038/nri2455] [Citation(s) in RCA: 592] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin(+) DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin(+) DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
2464
|
Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A 2008; 105:20764-9. [PMID: 19075223 DOI: 10.1073/pnas.0805133106] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.
Collapse
|
2465
|
Menke J, Hsu MY, Byrne KT, Lucas JA, Rabacal WA, Croker BP, Zong XH, Stanley ER, Kelley VR. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:7367-79. [PMID: 18981160 DOI: 10.4049/jimmunol.181.10.7367] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2466
|
Varol C, Yona S, Jung S. Origins and tissue-context-dependent fates of blood monocytes. Immunol Cell Biol 2008; 87:30-8. [PMID: 19048016 DOI: 10.1038/icb.2008.90] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peripheral blood monocytes play a central role in the mononuclear phagocyte system by providing a critical link between the bone marrow (BM), as major site of adult hematopoiesis, and peripheral, terminally differentiated mononuclear phagocyte populations, as represented macrophages and dendritic cells. Moreover, recent experimental evidence highlights the plasticity of these ephemeral mobile cells and their direct involvement in the establishment and resolution of inflammatory reactions. Here we summarize the recent advance in our understanding of monocyte origins, subset dynamics and monocyte fates. In particular, we will focus on emerging evidence for monocyte recirculation to the BM and discuss its potential implications in health and disease.
Collapse
Affiliation(s)
- Chen Varol
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
2467
|
Perdu B, Van Hul W, Van Wesenbeeck L. Osteopetrosis: from Animal Models to Human Conditions. Clin Rev Bone Miner Metab 2008. [DOI: 10.1007/s12018-008-9021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2468
|
Shi C, Sakuma M, Mooroka T, Liscoe A, Gao H, Croce KJ, Sharma A, Kaplan D, Greaves DR, Wang Y, Simon DI. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 2008; 112:4699-711. [PMID: 18799727 PMCID: PMC2597137 DOI: 10.1182/blood-2008-01-137018] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022] Open
Abstract
Down-regulation of the forkhead transcription factor Foxp1 by integrin engagement controls monocyte differentiation in vitro. To determine whether Foxp1 plays a critical role in monocyte differentiation and macrophage functions in vivo, we generated transgenic mice (macFoxp1tg) overexpressing human FOXP1 in monocyte/macrophage lineage cells using the CD68 promoter. Circulating blood monocytes from macFoxp1tg mice have reduced expression of the receptor for macrophage colony-stimulating factor (c-Fms/M-CSFR), impaired migratory capacity, and diminished accumulation as splenic macrophages. Macrophage functions, including cytokine production, phagocytosis, and respiratory burst were globally impaired in macFoxp1tg compared with wild-type cells. Osteoclastogenesis and bone resorption activity were also attenuated in macFoxp1tg mice. In models of chemical and bacterial peritonitis, macFoxp1tg mice exhibited reduced macrophage accumulation, bacterial clearance, and survival. Enforced overexpression of c-Fms/M-CSFR reversed the cytokine production and phagocytosis defects in macFoxp1tg macrophages, indicating that repression of c-fms/M-CSFR is likely the dominant mechanism responsible for Foxp1 action in monocyte differentiation and macrophage function. Taken together, these observations identify down-regulation of Foxp1 as critical for monocyte differentiation and macrophage functions in vivo.
Collapse
Affiliation(s)
- Can Shi
- Department ofMedicine, Case Cardiovascular Center, Case Western Reserve University School of Medicine, Cleveland, OH 44022, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2469
|
Pettit AR, Chang MK, Hume DA, Raggatt LJ. Osteal macrophages: a new twist on coupling during bone dynamics. Bone 2008; 43:976-82. [PMID: 18835590 DOI: 10.1016/j.bone.2008.08.128] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/18/2008] [Accepted: 08/21/2008] [Indexed: 01/07/2023]
Abstract
Osteoimmunological interactions are central to maintaining bone homeostasis and are key mechanisms in bone pathology. Macrophages are highly adaptable cells with pleiotropic actions. They have important roles in development, homeostasis and both innate and adaptive immunity. Macrophages can have broad ranging effects on bone, particularly in pathologic situations, but they are most commonly considered for their in vitro potential as an osteoclast precursor. We have recently shown that, like most tissues, the endosteum and periosteum contain a population of resident tissue macrophages (OsteoMacs) that impact on the bone formation process and are likely to play important roles in the bone niche. This review discusses the wider impact of macrophages in bone homeostasis and disease and proposes novel roles for OsteoMacs in bone modelling and remodelling.
Collapse
Affiliation(s)
- Allison R Pettit
- The University of Queensland, Institute for Molecular Bioscience, Cooperative Research Centre for Chronic Inflammatory Diseases, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
2470
|
Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci U S A 2008; 105:15541-6. [PMID: 18840695 DOI: 10.1073/pnas.0805354105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hsp90 inhibitors are being evaluated extensively in patients with advanced cancers. However, the impact of Hsp90 inhibition on signaling pathways in normal tissues and the effect that this may have on the antitumor activity of these molecularly targeted drugs have not been rigorously examined. Breast and prostate carcinomas are among those cancers that respond to Hsp90 inhibitors in animal xenograft models and in early studies in patients. Because these cancers frequently metastasize to bone, it is important to determine the impact of Hsp90 inhibitors in the bone environment. In the current study, we show that, in contrast to its activity against prostate cancer cells in vitro and its inhibition of s.c. prostate cancer xenografts, the Hsp90 inhibitor 17-AAG stimulates the intraosseous growth of PC-3M prostate carcinoma cells. This activity is mediated not by a direct effect on the tumor but by Hsp90-dependent stimulation of osteoclast maturation. Hsp90 inhibition transiently activates osteoclast Src kinase and promotes Src-dependent Akt activation. Both kinases are key drivers of osteoclast maturation, and three agents that block osteoclastogenesis, the Src inhibitor dasatinib, the bisphosphonate alendronate, and the osteoclast-specific apoptosis-inducer reveromycin A, markedly reduced 17-AAG-stimulated tumor growth in bone. These data emphasize the importance of understanding the complex role played by Hsp90 in regulating signal transduction pathways in normal tissues as well as in cancer cells, and they demonstrate that drug-dependent modulation of the local tumor environment may profoundly affect the antitumor efficacy of Hsp90-directed therapy.
Collapse
|
2471
|
Abstract
Antigen presenting cells (APCs) are recognized as key initiators of adaptive immunity, particularly to pathogens, by eliciting a rapid and potent immune attack on infected cells. Amongst APCs, dendritic cells (DCs) are specially equipped to initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. To achieve this, they are equipped with highly efficient mechanisms that allow them to detect pathogens, to capture, process and present antigens, and to activate and guide the differentiation of T cells into effector and memory cells. DCs can no longer be considered as a homogeneous cell type performing a single function, but are heterogeneous both in phenotype, function and dependence on inflammatory stimuli for their formation and responsiveness. Recent studies of DC subtypes have highlighted the contrasting roles of different professional APCs in activating divergent arms of the immune response towards pathogens. In this review, we discuss the progress that has been made in dissecting the attributes of different DC subsets that migrate into, or reside permanently, within lymphoid tissues and their putative roles in the induction of the anti-viral immune response.
Collapse
Affiliation(s)
- Gabrielle Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
2472
|
Prostaglandin E(2) enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood 2008; 113:2451-60. [PMID: 19029446 DOI: 10.1182/blood-2008-05-157123] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy of malignant diseases relies on 2 critical parameters: antigen transport from the periphery to draining lymph nodes and efficient priming of primary and stimulation of secondary immune responses. Prostaglandin E(2) (PGE(2)) signaling has been shown to be pivotal for DC migration toward lymph node-derived chemokines in vitro and in vivo. Here, we demonstrate that PGE(2) induced the expression of the costimulatory molecules OX40L, CD70, and 4-1BBL on human DCs. Short triggering by PGE(2) early during DC maturation was sufficient to induce the costimulatory molecules. The expression of the costimulatory molecules was independent of the maturation stimulus but strictly dependent on PGE(2) on both monocyte-derived (Mo) DCs and peripheral blood myeloid (PB) DCs. PGE(2)-matured MoDCs showed enhanced costimulatory capacities resulting in augmented antigen-specific CD4(+) and CD8(+) T-cell proliferation in primary and recall T-cell responses. Blocking OX40/OX40L signaling impaired the enhanced T-cell proliferation induced by PGE(2)-matured MoDCs. Moreover, MoDCs matured in the presence of PGE(2) induced the expression of OX40, OX40L, and CD70 on T cells facilitating T-cell/T-cell interaction that warrant long-lasting costimulation. This newly identified parameter will help to further optimize DC-based immunotherapy.
Collapse
|
2473
|
Edele F, Molenaar R, Gütle D, Dudda JC, Jakob T, Homey B, Mebius R, Hornef M, Martin SF. Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. THE JOURNAL OF IMMUNOLOGY 2008; 181:3745-9. [PMID: 18768825 DOI: 10.4049/jimmunol.181.6.3745] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue-specific homing of effector and memory T cells to skin and small intestine requires the imprinting of specific combinations of adhesion molecules and chemokine receptors by dendritic cells in the draining lymph nodes. In this study, we demonstrate that CD8(+) T cells activated by Ag-pulsed bone marrow-derived dendritic cells were induced to express the small intestine homing receptors alpha(4)beta(7) integrin and chemokine receptor CCR9 in coculture with small intestinal epithelial cells. In contrast, in coculture with dermal fibroblasts the skin-homing receptor E-selectin ligand was induced. Interestingly, the imprinting of gut homing receptors on anti-CD3/anti-CD28 stimulated T cells was induced by soluble factors produced by small intestinal epithelial cells. Retinoic acid was identified as a crucial factor. These findings show that peripheral tissue cells directly produce homing receptor imprinting factors and suggest that dendritic cells can acquire their imprinting potential already in the peripheral tissue of origin.
Collapse
Affiliation(s)
- Fanny Edele
- Allergy Research Group, Department of Dermatology, University Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2474
|
Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci U S A 2008; 105:18267-72. [PMID: 19017797 DOI: 10.1073/pnas.0807762105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 A crystal structure of M-CSF bound to the first 3 domains (D1-D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the beta-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1-D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.
Collapse
|
2475
|
Fehr T, Wang S, Haspot F, Kurtz J, Blaha P, Hogan T, Chittenden M, Wekerle T, Sykes M. Rapid deletional peripheral CD8 T cell tolerance induced by allogeneic bone marrow: role of donor class II MHC and B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:4371-80. [PMID: 18768896 DOI: 10.4049/jimmunol.181.6.4371] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.
Collapse
Affiliation(s)
- Thomas Fehr
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2476
|
E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Mol Cell Biol 2008; 29:414-24. [PMID: 19015245 DOI: 10.1128/mcb.01161-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The E2f3 locus encodes two Rb-binding gene products, E2F3a and E2F3b, which are differentially regulated during the cell cycle and are thought to be critical for cell cycle progression. We targeted the individual inactivation of E2f3a or E2f3b in mice and examined their contributions to cell proliferation and development. Chromatin immunoprecipitation and gene expression experiments using mouse embryo fibroblasts deficient in each isoform showed that E2F3a and E2F3b contribute to G(1)/S-specific gene expression and cell proliferation. Expression of E2f3a or E2f3b was sufficient to support E2F target gene expression and cell proliferation in the absence of other E2F activators, E2f1 and E2f2, suggesting that these isoforms have redundant functions. Consistent with this notion, E2f3a(-/-) and E2f3b(-/-) embryos developed normally, whereas embryos lacking both isoforms (E2f3(-/-)) died in utero. We also find that E2f3a and E2f3b have redundant and nonredundant roles in the context of Rb mutation. Analysis of double-knockout embryos suggests that the ectopic proliferation and apoptosis in Rb(-/-) embryos is mainly mediated by E2f3a in the placenta and nervous system and by both E2f3a and E2f3b in lens fiber cells. Together, we conclude that the contributions of E2F3a and E2F3b in cell proliferation and development are context dependent.
Collapse
|
2477
|
Abstract
Abstract
IL-34 is a newly identified cytokine that binds to the CSF-1 receptor (CSF-1R), promotes monocyte viability, and stimulates macrophage colony formation (Lin et al., 2008). Here we demonstrate that human IL-34 induced tyrosine phosphorylation of the CSF-1R in cells of a mouse MacCsf1r−/−.huCSF-1R macrophage line. MacCsf1r−/−.huCSF-1R cells were obtained by retroviral transduction of the human CSF-1R into cells of the MacCsf1r−/− macrophage line (Yu et al., 2008) derived from bone marrow macrophages isolated from a CSF-1R-deficient mouse. In addition, IL-34 stimulated the downstream signaling of ERK1/2 and the IL-34-induced phosphorylation of ERK1/2 was blocked by a CSF-1R-specific inhibitor. IL-34, in synergy with RANK ligand, promoted formation of tartrate resistant acid phosphatase (TRAP)-positive and multinucleated osteoclasts from monocytes in dose-dependent manner. The activity of IL-34 on osteoclast differentiation was inhibited by the soluble CSF-1R extracellular domain. Therefore, IL-34 functions as a new ligand of CSF-1R and participates in the regulation of osteoclast development.
Collapse
|
2478
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
2479
|
Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. ACTA ACUST UNITED AC 2008; 205:2839-50. [PMID: 18981237 PMCID: PMC2585843 DOI: 10.1084/jem.20081430] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Observations that dendritic cells (DCs) constitutively enter afferent lymphatic vessels in many organs and that DCs in some tissues, such as the lung, turnover rapidly in the steady state have led to the concept that a major fraction of lymph node DCs are derived from migratory DCs that enter the lymph node through upstream afferent lymphatic vessels. We used the lysozyme M–Cre reporter mouse strain to assess the relationship of lymph node and nonlymphoid organ DCs. Our findings challenge the idea that a substantial proportion of lymph node DCs derive from the upstream tissue during homeostasis. Instead, our analysis suggests that nonlymphoid organ DCs comprise a major population of DCs within lymph nodes only after introduction of an inflammatory stimulus.
Collapse
Affiliation(s)
- Claudia Jakubzick
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
2480
|
Abstract
Cells of the mononuclear phagocyte system (MPS) are found in large numbers in every organ of the body, where they contribute to innate and acquired immunity and homeostasis. This review considers the locations of MPS cells, surface markers that distinguish subsets of monocytes and macrophages, the pathways of MPS differentiation, and the growth factors and transcription factors that guide them. Although the number of MPS sub-populations that can be defined is infinite, the features that unite the MPS remain compelling. Those features clearly include antigen-presenting dendritic cells within the MPS and argue against any basis for separating them from macrophages.
Collapse
|
2481
|
Iijima N, Thompson JM, Iwasaki A. Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 2008; 1:451-9. [PMID: 19079212 PMCID: PMC2684461 DOI: 10.1038/mi.2008.57] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) and macrophages are antigen-presenting cells (APCs) that are important in innate immune defense as well as in the generation and regulation of adaptive immunity against a wide array of pathogens. The genitourinary (GU) tract, which serves an important reproductive function, is constantly exposed to numerous agents of sexually transmitted infections (STIs). To combat these STIs, several subsets of DCs and macrophages are strategically localized within the GU tract. In the female genital mucosa, recruitment and function of these APCs are uniquely governed by sex hormones. This review summarizes the latest advances in our understanding of DCs and macrophages in the GU tract with respect to their subsets, lineage, and function. In addition, we discuss the divergent roles of these cells in immune defense against STIs as well as in maternal tolerance to the fetus.
Collapse
Affiliation(s)
- N Iijima
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - JM Thompson
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2482
|
Characteristics and functions of murine cutaneous dendritic cells: a synopsis of recent developments. Mucosal Immunol 2008; 1:470-4. [PMID: 19079214 DOI: 10.1038/mi.2008.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cutaneous accessory cells include dendritic cells (DCs) and macrophages. Heterogeneity, plasticity, and responsiveness to local environmental cues are hallmarks of both types of cells. Until recently, results of studies of cells that had been extracted from tissues or propagated in vitro provided the foundation for most conceptual frameworks. The availability of a variety of spontaneously occurring and genetically engineered mice has facilitated in vivo studies that have provided new insights into the developmental and functional aspects of DCs in skin and other tissues. In several instances, results of these in vivo studies have been very surprising. Existing paradigms have been modified or debunked, and new hypotheses have been generated. We can anticipate that detailed understanding of the biology of individual cutaneous accessory cells and their relationships with each other will continue to accumulate as these types of studies are actively pursued.
Collapse
|
2483
|
Abstract
Dendritic cells (DCs) are a heterogenous population of cells that can be grouped into the conventional DCs (cDCs) and plasmacytoid DCs (pDCs), or interferon-producing cells. pDCs are thought to develop in the bone marrow and migrate to the periphery as mature cells. In contrast, cDC precursors are thought to migrate to the periphery, where they further differentiate into cDCs. In the case of migratory cDCs, these precursors are thought to be monocytes, whereas resident cDCs derive from a different precursor. Recent activity on this subject has shed some light on the precursors that differentiate into resident cDCs and pDCs, but often with conflicting findings. Here, we review some of these findings and discuss some of the outstanding issues in the field.
Collapse
Affiliation(s)
- P Sathe
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | |
Collapse
|
2484
|
Song H, Luo J, Luo W, Weng J, Wang Z, Li B, Li D, Liu M. Inactivation of G-protein-coupled receptor 48 (Gpr48/Lgr4) impairs definitive erythropoiesis at midgestation through down-regulation of the ATF4 signaling pathway. J Biol Chem 2008; 283:36687-97. [PMID: 18955481 DOI: 10.1074/jbc.m800721200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
G-protein-coupled receptors (GPCRs), one of the most versatile groups of cell surface receptors, can recognize specific ligands from neural, hormonal, and paracrine organs and regulate cell growth, proliferation, and differentiation. Gpr48/LGR4 is a recently identified orphan GPCR with unknown functions. To reveal the functions of Gpr48 in vivo, we generated Gpr48-/- mice and found that Gpr48-/- fetuses displayed transient anemia during midgestation and abnormal definitive erythropoiesis. The dramatic decrease of definitive erythroid precursors (Ter119pos population) in Gpr48-/- fetal liver at E13.5 was confirmed by histological analysis and blood smear assays. Real-time PCR analyses showed that in Gpr48-/- mice both adult hemoglobin alpha and beta chains were decreased while embryonic hemoglobin chains (zeta, betaH1, and epsilony) were increased, providing another evidence for the impairment of definitive erythropoiesis. Furthermore, proliferation was suppressed in Gpr48-/- fetal liver with decreased c-Myc and cyclin D1 expression, whereas apoptosis was unaffected. ATF4, a key transcription factor in erythropoiesis, was down-regulated in Gpr48-/- fetal livers during midgestation stage through the cAMP-PKA-CREB pathway, suggesting that Gpr48 regulated definitive erythropoiesis through ATF4-mediated definitive erythropoiesis.
Collapse
Affiliation(s)
- Huiping Song
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
2485
|
Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 2008; 11:143-55. [PMID: 18713151 DOI: 10.1111/j.1601-6343.2008.00423.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Recent studies have demonstrated that low-energy laser irradiation stimulates bone formation in vitro and in vivo. However, very little is known about the effects of laser irradiation on osteoclastogenesis. The receptor activator of the nuclear factor-kB (RANK) / RANK ligand (RANKL) / osteoprotegerin (OPG) system is essential and sufficient for osteoclastogenesis. The present study was designed to examine the effects of low-energy laser irradiation on expressions of RANK, RANKL, and OPG during experimental tooth movement. DESIGN To induce experimental tooth movement in rats, 10 g of orthodontic force was applied to the molars. Next, a Ga-Al-As diode laser was used to irradiate the area around the moved tooth and the amount of tooth movement was measured for 7 days. Immunohistochemical staining with RANK, RANKL, and OPG was performed. Real time PCR was also performed to elucidate the expression of RANK in irradiated rat osteoclast precursor cells in vitro. RESULTS In the irradiation group, the amount of tooth movement was significantly greater than in the non-irradiation group by the end of the experimental period. Cells that showed positive immunoreactions to the primary antibodies of RANKL and RANK were significantly increased in the irradiation group on day 2 and 3, compared with the non-irradiation group. In contrast, the expression of OPG was not changed. Further, RANK expression in osteoclast precursor cells was detected at an early stage (day 2 and 3) in the irradiation group. CONCLUSION These findings suggest that low-energy laser irradiation stimulates the velocity of tooth movement via induction of RANK and RANKL.
Collapse
Affiliation(s)
- S Fujita
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | | | | | | | | |
Collapse
|
2486
|
Abstract
Hematopoiesis consists of a series of lineage decisions controlled by specific gene expression that is regulated by transcription factors and intracellular signaling events in response to environmental cues. Here, we demonstrate that the balance between E-protein transcription factors and their inhibitors, Id proteins, is important for the myeloid-versus-lymphoid fate choice. Using Id1-GFP knockin mice, we show that transcription of the Id1 gene begins to be up-regulated at the granulocyte-macrophage progenitor stage and continues throughout myelopoiesis. Id1 expression is also stimulated by cytokines favoring myeloid differentiation. Forced expression of Id1 in multipotent progenitors promotes myeloid development and suppresses B-cell formation. Conversely, enhancing E-protein activity by expressing a variant of E47 resistant to Id-mediated inhibition prevents the myeloid cell fate while driving B-cell differentiation from lymphoid-primed multipotent progenitors. Together, these results suggest a crucial function for E proteins in the myeloid-versus-lymphoid lineage decision.
Collapse
|
2487
|
Abstract
Dendritic cells (DCs) are critical for adaptive immunity and tolerance. Most DCs are strategically positioned as immune sentinels poised to respond to invading pathogens in tissues throughout the body. Differentiated DCs and their precursors also circulate in blood and can get rapidly recruited to sites of challenge. Within peripheral tissues, DCs collect antigenic material and then traffic to secondary lymphoid organs, where they communicate with lymphocytes to orchestrate adaptive immune responses. Hence, the migration and accurate positioning of DCs is indispensable for immune surveillance. Here, we review the molecular traffic signals that govern the migration of DCs throughout their life cycle.
Collapse
Affiliation(s)
- David Alvarez
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
2488
|
López-Bravo M, Ardavín C. In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity 2008; 29:343-51. [PMID: 18799142 DOI: 10.1016/j.immuni.2008.08.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific defense mechanisms against pathogens are fulfilled by different subsets of nonmucosal conventional dendritic cells (DCs), including migratory Langerhans cells (LCs), dermal DCs, and resident CD8(+) and CD8(-) DCs found in lymphoid organs. Dermal DCs capture antigens in the skin and migrate to lymph nodes, where they can transfer the antigens to CD8(+) DCs and activate CD4(+) T cells. Differential antigen-processing machinery grants CD8(+) DCs a high efficiency in activating CD8(+) T cells through crosspresentation, whereas CD8(-) DCs preferentially trigger CD4(+) T cell responses. Recent findings have revealed the important role played by monocyte-derived DCs (mo-DCs), newly formed during infection, in activating CD4(+) and CD8(+) T cells, regulating immunoglobulin production, and killing pathogens. However, a number of controversial issues regarding the function of different DC subsets during viral, bacterial, and parasitic infections remain to be resolved.
Collapse
Affiliation(s)
- María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | | |
Collapse
|
2489
|
Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, Stewart CL, Foisner R. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008; 10:1341-8. [PMID: 18849980 DOI: 10.1038/ncb1793] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/01/2008] [Indexed: 01/07/2023]
Abstract
Lamina-associated polypeptide (LAP) 2alpha is a chromatin-associated protein that binds A-type lamins. Mutations in both LAP2alpha and A-type lamins are linked to human diseases called laminopathies, but the molecular mechanisms are poorly understood. The A-type lamin-LAP2alpha complex interacts with and regulates retinoblastoma protein (pRb), but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin-LAP2alpha complex with the use of LAP2alpha-deficient mice. We show that LAP2alpha loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model in which LAP2alpha defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.
Collapse
Affiliation(s)
- Nana Naetar
- Max F. Perutz Laboratories, Medical University of Vienna and University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2490
|
Mildner A, Djukic M, Garbe D, Wellmer A, Kuziel WA, Mack M, Nau R, Prinz M. Ly-6G+CCR2- myeloid cells rather than Ly-6ChighCCR2+ monocytes are required for the control of bacterial infection in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2008; 181:2713-22. [PMID: 18684962 DOI: 10.4049/jimmunol.181.4.2713] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myeloid cell recruitment is a characteristic feature of bacterial meningitis. However, the cellular mechanisms important for the control of Streptococcus pneumoniae infection remain largely undefined. Previous pharmacological or genetic studies broadly depleted many myeloid cell types within the meninges, which did not allow defining the function of specific myeloid subsets. Herein we show that besides CD11b(+)Ly-6G(+)CCR2(-) granulocytes, also CD11b(+)Ly-6C(high)CCR2(+) but not Ly-6C(low)CCR2(-) monocytes were recruited in high numbers to the brain as early as 12 h after bacterial challenge. Surprisingly, CD11b(+)Ly-6C(high)CCR2(+) inflammatory monocytes modulated local CXCL2 and IL-1beta production within the meninges but did not provide protection against bacterial infection. Consistent with these results, CCR2 deficiency strongly impaired monocyte recruitment to the infected brains but was redundant for disease pathogenesis. In contrast, specific depletion of polymorphonuclear granulocytes caused elevated local bacterial titer within the brains, led to an aggravated clinical course, and enhanced mortality. These findings demonstrate that Ly-6C(high)CCR2(+) inflammatory monocytes play a redundant role for the host defense during bacterial meningitis and that predominantly CD11b(+)Ly-6G(+)CCR2(-) myeloid cells are involved in the restriction of the extracellular bacteria.
Collapse
Affiliation(s)
- Alexander Mildner
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2491
|
Macleod KF. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat Rev Cancer 2008; 8:769-81. [PMID: 18800074 PMCID: PMC2989879 DOI: 10.1038/nrc2504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism.
Collapse
Affiliation(s)
- Kay F Macleod
- Ben May Department for Cancer Research, Committee on Cancer Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
2492
|
Griffiths KL, O’Neill HC. Dendritic cells as immune regulators: the mouse model. J Cell Mol Med 2008; 12:1909-14. [PMID: 18544050 PMCID: PMC4506159 DOI: 10.1111/j.1582-4934.2008.00378.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 05/08/2008] [Indexed: 01/10/2023] Open
Abstract
Dendritic cells (DC) are central to the immune system because of their role in antigen presentation leading to either tolerance or immunity among cells of the adaptive immune response. It is becoming increasingly evident that DC show extensive plasticity in terms of their origin and function, giving rise to a number of subsets represented differentially in all lymphoid organs. This article considers the tolerogenic capacity of murine DC and draws a distinction between DC that induce tolerance in the immature state and immunity in an inflammatory context, and those that act as regulatory cells inducing immunosuppression in the presence of inflammation.
Collapse
Affiliation(s)
- KL Griffiths
- School of Biochemistry & Molecular Biology, College of Science, Australian National UniversityCanberra ACT, Australia
| | - HC O’Neill
- School of Biochemistry & Molecular Biology, College of Science, Australian National UniversityCanberra ACT, Australia
| |
Collapse
|
2493
|
Xie R, Kuijpers-Jagtman AM, Maltha JC. Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol Scand 2008; 66:314-20. [PMID: 18720051 DOI: 10.1080/00016350802317488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The origin of osteoclasts responsible for bone resorption during orthodontic tooth movement is not yet clear. Their precursors may reside within the periodontal ligament (PDL) or could be recruited from the circulation or the bone marrow. The aim of this study was to investigate the spatial and sequential distribution of osteoclast precursors during experimental tooth movement by using three differentiation markers: receptor for macrophage colony stimulating factor (c-Fms), receptor activator of nuclear factor-kappaB (RANK), and calcitonin receptor (CTR). MATERIAL AND METHODS Six-week-old Wistar rats were used. Elastic bands were inserted between the upper 1st and 2nd molars for 1, 2, 3, and 6 days. Immunohistochemical staining for c-Fms, RANK, or CTR was performed on parasagittal sections and positive cells were counted. RESULTS Before force application, many c-Fms+ and a few RANK+ precursors were present in the bone marrow. No c-Fms+ osteoclast precursors were observed in the PDL. After force application, the number of RANK+ but not c-Fms+ precursors increased rapidly in the PDL. In bone marrow, the number of c-Fms+ and RANK+ precursors also increased rapidly, as did multinuclear c-Fms+, RANK+, and CTR+ cells. Subsequently, the number of c-Fms+, RANK+, and CTR+ multinuclear cells in the PDL increased. After 6 days, the expression profiles tended to return to baseline levels. CONCLUSION Osteoclast precursors differentiate within the bone marrow and then migrate into the PDL during early tooth movement.
Collapse
|
2494
|
Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S. Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS One 2008; 3:e3271. [PMID: 18813341 PMCID: PMC2533393 DOI: 10.1371/journal.pone.0003271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/01/2008] [Indexed: 12/30/2022] Open
Abstract
Langerhans cells (LC) represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFbeta. In vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFbeta. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFbeta family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFbeta. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFbeta, responsible for LC differentiation during inflammatory/autoimmune conditions.
Collapse
Affiliation(s)
- Tiziana Musso
- Department of Public Health and Microbiology, University of Torino, Turin, Italy
| | - Sara Scutera
- Department of Public Health and Microbiology, University of Torino, Turin, Italy
| | - William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Roberta Daniele
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
- Deparment of Dermatology, University of Verona, Verona, Italy
| | - Michele Fornaro
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Carlotta Castagnoli
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Daniela Alotto
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Maria Ravanini
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Irene Cambieri
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Laura Salogni
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
| | - Angela Rita Elia
- Medicine and Experimental Oncology, and Clinical and Biological Sciences, University of Torino, Center for Experimental Research and Medical Studies (CERMS), S. Giovanni Battista Hospital, Turin, Italy
| | - Mirella Giovarelli
- Medicine and Experimental Oncology, and Clinical and Biological Sciences, University of Torino, Center for Experimental Research and Medical Studies (CERMS), S. Giovanni Battista Hospital, Turin, Italy
| | - Fabio Facchetti
- Department of Pathology, University of Brescia, Brescia, Italy
| | | | - Silvano Sozzani
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
2495
|
Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, Koyano K. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. ACTA ACUST UNITED AC 2008; 107:336-42. [PMID: 18801677 DOI: 10.1016/j.tripleo.2008.07.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 06/28/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We investigated whether the local administration of simvastatin affected both the cellular events and the bone formation at surgically created bone defects in rat. STUDY DESIGN Simvastatin (or a vehicle) was injected into a rat bony defect for 3 consecutive days from the day of surgery. Five or ten days after the injection, new bone tissue was collected, and the gene expressions of bone-related proteins were examined. For the histomorphometry, new bone area was measured. RESULTS At day 5, the statin group demonstrated significantly larger new bone area. The number of tartrate-resistant acid phosphatase-positive multinucleated cells in the statin group was less than in the control group. In the statin group, the expressions of both alkaline phosphatase and bone morphogenetic protein 2 mRNA significantly increased. In contrast, the expression of cathepsin K was significantly suppressed in the statin group. Although the levels of both RANK and osteoprotegerin were not affected by statin, the expression of RANKL was depressed. At day 10, there were no significant differences among the groups in either histomorphometric or reverse-transcription polymerase chain reaction analyses. CONCLUSION New bone area increased under the influence of simvastatin; however, the effect did not continue when the administration was terminated. Osteoclast suppression may be the consequence of RANKL depression.
Collapse
Affiliation(s)
- Yasunori Ayukawa
- Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
2496
|
Walkley CR, Sankaran VG, Orkin SH. Rb and hematopoiesis: stem cells to anemia. Cell Div 2008; 3:13. [PMID: 18775080 PMCID: PMC2562376 DOI: 10.1186/1747-1028-3-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
The retinoblastoma protein, Rb, was one of the first tumor suppressor genes identified as a result of the familial syndrome retinoblastoma. In the period since its identification and cloning a large number of studies have described its role in various cellular processes. The application of conditional somatic mutation with lineage and temporally controlled gene deletion strategies, thus circumventing the lethality associated with germ-line deletion of Rb, have allowed for a reanalysis of the in vivo role of Rb. In the hematopoietic system, such approaches have led to new insights into stem cell biology and the role of the microenvironment in regulating hematopoietic stem cell fate. They have also clarified the role that Rb plays during erythropoiesis and defined a novel mechanism linking mitochondrial function to terminal cell cycle withdrawal. These studies have shed light on the in vivo role of Rb in the regulation of hematopoiesis and also prompt further analysis of the role that Rb plays in both the regulation of hematopoietic stem cells and the terminal differentiation of their progeny.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,St. Vincent's Institute, Department of Medicine at St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
2497
|
Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJC. Ly6c+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. ACTA ACUST UNITED AC 2008; 205:2319-37. [PMID: 18779347 PMCID: PMC2556789 DOI: 10.1084/jem.20080421] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a lethal West Nile virus (WNV) model, central nervous system infection triggered a threefold increase in CD45int/CD11b+/CD11c− microglia at days 6–7 postinfection (p.i.). Few microglia were proliferating, suggesting that the increased numbers were derived from a migratory precursor cell. Depletion of “circulating” (Gr1−(Ly6Clo)CX3CR1+) and “inflammatory” (Gr1hi/Ly6Chi/CCR2+) classical monocytes during infection abrogated the increase in microglia. C57BL/6 chimeras reconstituted with cFMS–enhanced green fluorescent protein (EGFP) bone marrow (BM) showed large numbers of peripherally derived (GFP+) microglia expressing GR1+(Ly6C+) at day 7 p.i., suggesting that the inflammatory monocyte is a microglial precursor. This was confirmed by adoptive transfer of labeled BM (Ly6Chi/CD115+) or circulating inflammatory monocytes that trafficked to the WNV-infected brain and expressed a microglial phenotype. CCL2 is a chemokine that is highly expressed during WNV infection and important in inflammatory monocyte trafficking. Neutralization of CCL2 not only reduced the number of GFP+ microglia in the brain during WNV infection but prolonged the life of infected animals. Therefore, CCL2-dependent inflammatory monocyte migration is critical for increases in microglia during WNV infection and may also play a pathogenic role during WNV encephalitis.
Collapse
Affiliation(s)
- Daniel R Getts
- The Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2498
|
Abstract
Erythroblastic islands, the specialized niches in which erythroid precursors proliferate, differentiate, and enucleate, were first described 50 years ago by analysis of transmission electron micrographs of bone marrow. These hematopoietic subcompartments are composed of erythroblasts surrounding a central macrophage. A hiatus of several decades followed, during which the importance of erythroblastic islands remained unrecognized as erythroid progenitors were shown to possess an autonomous differentiation program with a capacity to complete terminal differentiation in vitro in the presence of erythropoietin but without macrophages. However, as the extent of proliferation, differentiation, and enucleation efficiency documented in vivo could not be recapitulated in vitro, a resurgence of interest in erythroid niches has emerged. We now have an increased molecular understanding of processes operating within erythroid niches, including cell-cell and cell-extracellular matrix adhesion, positive and negative regulatory feedback, and central macrophage function. These features of erythroblast islands represent important contributors to normal erythroid development, as well as altered erythropoiesis found in such diverse diseases as anemia of inflammation and chronic disease, myelodysplasia, thalassemia, and malarial anemia. Coupling of historical, current, and future insights will be essential to understand the tightly regulated production of red cells both in steady state and stress erythropoiesis.
Collapse
|
2499
|
Melcher M, Unger B, Schmidt U, Rajantie IA, Alitalo K, Ellmeier W. Essential roles for the Tec family kinases Tec and Btk in M-CSF receptor signaling pathways that regulate macrophage survival. THE JOURNAL OF IMMUNOLOGY 2008; 180:8048-56. [PMID: 18523268 DOI: 10.4049/jimmunol.180.12.8048] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tec family kinases have important roles in lymphocytes; however, little is known about their function in monocytes/macrophages. In this study we report that Tec family kinases are essential for M-CSF (M-CSF)-induced signaling pathways that regulate macrophage survival. Compared with wild-type bone marrow-derived macrophage (BMM) cultures, Tec(-/-)Btk(-/-) BMM cultures displayed increased cell death that correlated with a severe drop in macrophage numbers. In addition, macrophages deficient in either Tec or Btk showed expression and activation of caspase-11. Elucidation of M-CSF receptor (M-CSFR) signaling pathways revealed that the total tyrosine phosphorylation pattern upon M-CSF stimulation was altered in Tec(-/-)Btk(-/-) macrophages despite normal expression and phosphorylation of the M-CSFR. Further, Tec and Btk are required for proper expression of the GM-CSF receptor alpha (GM-CSFRalpha) chain in macrophages but not dendritic cells, implicating Tec family kinases in the lineage-specific regulation of GM-CSFRalpha expression. Taken together, our study shows that Tec and Btk regulate M-CSFR signaling-induced macrophage survival and provides a novel link between Tec family kinases and the regulation of caspase-11 and GM-CSFRalpha expression.
Collapse
Affiliation(s)
- Martin Melcher
- Institute of Immunology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
2500
|
Ovchinnikov DA. Macrophages in the embryo and beyond: Much more than just giant phagocytes. Genesis 2008; 46:447-62. [DOI: 10.1002/dvg.20417] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|