251
|
Assessment of Microsatellite Instability from Next-Generation Sequencing Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:75-100. [DOI: 10.1007/978-3-030-91836-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
252
|
Powles T, Yuen KC, Gillessen S, Kadel EE, Rathkopf D, Matsubara N, Drake CG, Fizazi K, Piulats JM, Wysocki PJ, Buchschacher GL, Alekseev B, Mellado B, Karaszewska B, Doss JF, Rasuo G, Datye A, Mariathasan S, Williams P, Sweeney CJ. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat Med 2022; 28:144-153. [PMID: 35013615 PMCID: PMC9406237 DOI: 10.1038/s41591-021-01600-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023]
Abstract
Early clinical data indicate that some patients with castration-resistant prostate cancer may benefit from program death ligand-1 (PD-L1) inhibition, especially with enzalutamide. The IMbassador250 trial (no. NCT03016312) enrolled 759 men with metastatic castration-resistant prostate cancer whose disease progressed on abiraterone. The addition of atezolizumab to enzalutamide in an open-label randomized trial did not meet the primary endpoint of improved overall survival in unselected patients (stratified hazard ratio 1.12, 95% confidence interval (0.91, 1.37), P = 0.28), despite an acceptable safety profile. In archival tumor samples, prostate tumors showed comparatively low expression of key immune biomarkers. DNA damage-response alterations, phosphatase and tensin homolog status and PD-L1 expression levels were similar between hormone-sensitive and castration-resistant prostate cancers. In planned biomarker analysis, longer progression-free survival was seen with atezolizumab in patients with high PD-L1 IC2/3, CD8 expression and established immune gene signatures. Exploratory analysis linked progression-free survival in the atezolizumab arm with immune genes such as CXCL9 and TAP1, together with other potentially relevant biomarkers including phosphatase and tensin homolog alterations. Together these data indicate that the expected biology associated with response to immune checkpoint inhibitors is present in prostate cancer, albeit in fewer patients. Careful patient selection may be required for immune checkpoint inhibitors to identify subgroups of patients who may benefit from this treatment approach.
Collapse
Affiliation(s)
- Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK,Corresponding authors: Professor Thomas Powles MBBS MRCP MD, Director of Barts Cancer Centre; Queen Mary University of London, Centre for Experimental Cancer Medicine, Barts Cancer Institute, Old Anatomy Building Charterhouse Square, London EC1M 6BQ, UK
- Tel: +44 (0)20 7882 8498
- ; Professor Christopher J Sweeney, MBBS, Dana-Farber Cancer Institute, Boston, MA
- Tel: 617-632-1914
| | | | - Silke Gillessen
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Lugano, Switzerland
| | | | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Karim Fizazi
- Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | | | - Gary L. Buchschacher
- Kaiser Permanente Southern California, Los Angeles Medical Center, Los Angeles, CA, USA
| | | | - Begoña Mellado
- Medical Oncology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic i Provincial, Barcelona, University of Barcelona, Spain
| | | | | | | | - Asim Datye
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | - Christopher J. Sweeney
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Corresponding authors: Professor Thomas Powles MBBS MRCP MD, Director of Barts Cancer Centre; Queen Mary University of London, Centre for Experimental Cancer Medicine, Barts Cancer Institute, Old Anatomy Building Charterhouse Square, London EC1M 6BQ, UK
- Tel: +44 (0)20 7882 8498
- ; Professor Christopher J Sweeney, MBBS, Dana-Farber Cancer Institute, Boston, MA
- Tel: 617-632-1914
| |
Collapse
|
253
|
Validity of a two-antibody testing algorithm for mismatch repair deficiency testing in cancer; a systematic literature review and meta-analysis. Mod Pathol 2022; 35:1775-1783. [PMID: 36104536 PMCID: PMC9708570 DOI: 10.1038/s41379-022-01149-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
Reflex mismatch repair immunohistochemistry (MMR IHC) testing for MLH1, PMS2, MSH2 and MSH6 is used to screen for Lynch syndrome. Recently MMR-deficiency (MMRd) has been approved as a pan-cancer predictive biomarker for checkpoint inhibitor therapy, leading to a vast increase in the use of MMR IHC in clinical practice. We explored whether immunohistochemical staining with PMS2 and MSH6 can be used as a reliable substitute. This two-antibody testing algorithm has the benefit of saving tissue, cutting costs and saving time. PubMed, Embase and Cochrane library were systematically searched for articles reporting on MMR IHC. The weighed percentage of cases with isolated MLH1 or MSH2 loss or combined MLH1/MSH2 loss alone was analyzed using a random effects model meta-analysis in R. The search yielded 1704 unique citations, of which 131 studies were included, describing 9014 patients. A weighed percentage of 1.1% (95% CI 0.53-18.87, I = 87%) of cases with isolated MLH1 or MSH2 loss or combined MLH1/MSH2 loss alone was observed. In the six articles with the main aim of investigating the two-antibody testing algorithm all MMRd cases were detected with the two-antibody testing algorithm, there were no cases with isolated MLH1 or MSH2 loss or combined MLH1/MSH2 loss alone. This high detection rate of MMRd of the two-antibody testing algorithm supports its use in clinical practice by specialized pathologists. Staining of all four antibodies should remain the standard in cases with equivocal results of the two-antibody testing algorithm. Finally, educational sessions in which staining pattern pitfalls are discussed will continue to be important.
Collapse
|
254
|
Immunotherapy for Metastatic Prostate Cancer. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
255
|
Mollica V, Marchetti A, Rosellini M, Nuvola G, Rizzo A, Santoni M, Cimadamore A, Montironi R, Massari F. An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. Int J Mol Sci 2021; 22:ijms222413519. [PMID: 34948314 PMCID: PMC8708596 DOI: 10.3390/ijms222413519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is still one of the main causes of cancer-related death in the male population, regardless of the advancements in the treatment scenario. The genetic knowledge on prostate cancer is widely increasing, allowing researchers to identify novel promising molecular targets and treatment approaches. Genomic profiling has evidenced that DNA damage repair genes’ alterations are quite frequent in metastatic, castration resistant prostate cancer and specific therapies can interfere with this pathway, showing promising activity in this setting. Microsatellite instability is gaining attention as it seems to represent a predictive factor of the response to immunotherapy. Furthermore, the PTEN-PI3K-AKT pathway is another possible treatment target being investigated. In this review, we explore the current knowledge on these frequent genomic alterations of metastatic prostate cancer, their possible therapeutic repercussions and the promising future treatments under evaluation.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy
- Correspondence:
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, 60100 Ancona, Italy;
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy; (V.M.); (A.M.); (M.R.); (G.N.); (A.R.); (F.M.)
| |
Collapse
|
256
|
Dai Y, Muaibati M, Xie W, Abasi A, Li K, Tong Q, Zhang T, Meng Y, Zhuang L, Huang X. PD-1/PD-L1 Inhibitors Monotherapy for the Treatment of Endometrial Cancer: Meta-Analysis and Systematic Review. Cancer Invest 2021; 40:293-309. [PMID: 34825855 DOI: 10.1080/07357907.2021.2012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The efficacy of programmed cell death protein 1(PD-1)/Programmed cell death 1 ligand 1 (PD-L1) inhibitors for endometrial cancer remain controversial, and guidelines are inconsistent on which are preferred therapies for advanced disease, or who develop metastases and recurrence. Therefore, we aimed to estimate the efficacy and safety of PD-1/PD-L1 inhibitors in endometrial cancer on a more complete database by adding multiple randomized trials. METHODS A systematic and comprehensive search was carried out in PD-1/PD-L1 inhibitors monotherapy. RESULTS The ORR of PD-1/PDL-1 inhibitors was 29%, and subgroup analysis showed that the pooled ORR of the proficient mismatch repair (pMMR) group was 4% and which was 45% of the deficient mismatch repair (dMMR) group. The DCR of PD-1/PD-L1 inhibitors was 48%, through subgroup analysis, we found that the DCR of the pMMR group was 21% and which was 58% of the dMMR group. The proportion of patients occurring overall adverse events was 65% and grade three or higher adverse events was 14%. The proficient mismatch repair (pMMR) group and the deficient mismatch repair (dMMR) group showed different results. CONCLUSION PD-1/PD-L1 inhibitors had shown little success in the pMMR population and better efficacy in the dMMR population.
Collapse
Affiliation(s)
- Yun Dai
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Munawaer Muaibati
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Abuduyilimu Abasi
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Li
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tong
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Meng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
257
|
Zhao Q, Cheng Y, Xiong Y. LTF Regulates the Immune Microenvironment of Prostate Cancer Through JAK/STAT3 Pathway. Front Oncol 2021; 11:692117. [PMID: 34868909 PMCID: PMC8635998 DOI: 10.3389/fonc.2021.692117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background The study of the immune microenvironment in prostate cancer (PRAD) has brought new opportunities for the current traditional treatment regimens. Therefore, our goal is to develop a universal immunodiagnostic marker to improve patient survival. Methods Bioinformatics analysis: We collected 591 samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts and evaluated the abundance and distribution of immune cell members in the PRAD expression profile matrix in the mixed cell population by CIBERSORT, ESTIMATE, single-sample gene set enrichment analysis (ssGSEA), and other methods. The target genes related to PRAD immune microenvironment and tumor mutation load were obtained by overlap analysis and verified by pan-cancer analysis. Cell experiment: The cell transfection scheme was designed, and the experiment was divided into three groups: overexpressing lactoferrin (LTF) group, empty plasmid group, and control group. After obtaining cells in each group, the gene and protein expression levels of LTF and signal transduction of signal transducer and activator of transcription 3 (STAT3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the above three groups were detected by real-time PCR and Western blot, respectively. Finally, the level of GM-CSF secretion in the three groups was detected by ELISA. Results Macrophages, resting mast cells, and plasma cells play an important role in PRAD immune microenvironment. In addition, high tumor mutation load [tumor mutational burden (TMB)] was positively correlated with lymph node metastasis in patients with PRAD. As the core gene of the PRAD immune microenvironment, the low expression of LTF in PRAD promotes the occurrence of immunodeficiency, PRAD, and the enrichment of the Janus kinase (JAK)/STAT3 signal pathway. Through cell experiments, it was found that the content of LTF mRNA and protein increased significantly, while the content of STAT3 and GM-CSF mRNA and protein decreased significantly in the overexpressed LTF group. The level of GM-CSF in the supernatant of cell culture was significantly decreased in the overexpression group of LTF. Conclusion The core gene we proposed is one of the most promising biomarkers to improve the overall survival rate of PRAD and provides an important theoretical basis for the study of the mechanism of the LTF-mediated JAK/STAT3 pathway in PRAD.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yingying Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Ying Xiong
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
258
|
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Gandhi J, Tafuni A, Melli B. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J Pers Med 2021; 11:1312. [PMID: 34945784 PMCID: PMC8709072 DOI: 10.3390/jpm11121312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is an accessible, non-invasive diagnostic tool for advanced prostate cancer (PC) patients, potentially representing a real-time monitoring test for tumor evolution and response to treatment through the analysis of circulating tumor cells (CTCs) and exosomes. We performed a systematic literature review (PRISMA guidelines) to describe the current knowledge about PD-L1 expression in liquid biopsies of PC patients: 101/159 (64%) cases revealed a variable number of PD-L1+ CTCs. Outcome correlations should be investigated in larger series. Nuclear PD-L1 expression by CTCs was occasionally associated with worse prognosis. Treatment (abiraterone, enzalutamide, radiotherapy, checkpoint-inhibitors) influenced PD-L1+ CTC levels. Discordance in PD-L1 status was detected between primary vs. metastatic PC tissue biopsies and CTCs vs. corresponding tumor tissues. PD-L1 is also released by PC cells through soluble exosomes, which could inhibit the T cell function, causing immune evasion. PD-L1+ PC-CTC monitoring and genomic profiling may better characterize the ongoing aggressive PC forms compared to PD-L1 evaluation on primary tumor biopsies/prostatectomy specimens (sometimes sampled a long time before recurrence/progression). Myeloid-derived suppressor cells and dendritic cells (DCs), which may have immune-suppressive effects in tumor microenvironment, have been found in PC patients circulation, sometimes expressing PD-L1. Occasionally, their levels correlated to clinical outcome. Enzalutamide-progressing castration-resistant PC patients revealed increased PD-1+ T cells and circulating PD-L1/2+ DCs.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
259
|
Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat Rev Urol 2021; 18:739-762. [PMID: 34526701 DOI: 10.1038/s41585-021-00514-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Patients with high-risk prostate cancer treated with curative intent are at an increased risk of biochemical recurrence, metastatic progression and cancer-related death compared with patients treated for low-risk or intermediate-risk disease. Thus, these patients often need multimodal therapy to achieve complete disease control. Over the past two decades, multiple studies on the use of neoadjuvant treatment have been performed using conventional androgen deprivation therapy, which comprises luteinizing hormone-releasing hormone agonists or antagonists and/or first-line anti-androgens. However, despite results from these studies demonstrating a reduction in positive surgical margins and tumour volume, no benefit has been observed in hard oncological end points, such as cancer-related death. The introduction of potent androgen receptor signalling inhibitors (ARSIs), such as abiraterone, apalutamide, enzalutamide and darolutamide, has led to a renewed interest in using neoadjuvant hormonal treatment in high-risk prostate cancer. The addition of ARSIs to androgen deprivation therapy has demonstrated substantial survival benefits in the metastatic castration-resistant, non-metastatic castration-resistant and metastatic hormone-sensitive settings. Intuitively, a similar survival effect can be expected when applying ARSIs as a neoadjuvant strategy in high-risk prostate cancer. Most studies on neoadjuvant ARSIs use a pathological end point as a surrogate for long-term oncological outcome. However, no consensus yet exists regarding the ideal definition of pathological response following neoadjuvant hormonal therapy and pathologists might encounter difficulties in determining pathological response in hormonally treated prostate specimens. The neoadjuvant setting also provides opportunities to gain insight into resistance mechanisms against neoadjuvant hormonal therapy and, consequently, to guide personalized therapy.
Collapse
|
260
|
Abstract
PURPOSE OF REVIEW Recent advances in our understanding of prostate cancer genetics have transformed the field. However, challenges in implementation and clinical application remain. The aim of this review is to discuss recent noteworthy publications in prostate cancer germline testing, genetically informed treatment, and polygenetic risk. RECENT FINDINGS The recent U.S. Food and Drug Administration approval of two poly adenosine diphosphate-ribose inhibitors (olaparib and rucaparib) for the treatment of men with metastatic castration-resistant prostate cancer with mutations in DNA damage repair genes and updates to the National Cancer Center Network testing guidelines that expand the eligibility criteria for germline and somatic genetic testing in men with prostate cancer provide an opportunity for a larger portion of the prostate cancer population to access genetic testing and targeted therapies. Due to this, clinicians have needed to rapidly adapt their clinical workflows. Further, the field has renewed efforts to evaluate polygenetic risk profiles to better understand the complex genetic landscape beyond single genes. SUMMARY This review highlights advances in the understanding of prostate cancer genetics, and areas that remain less well defined. Collaboration between multidisciplinary team members is necessary to move this field forward and provide quality, optimal care.
Collapse
|
261
|
Benafif S, Ni Raghallaigh H, McHugh J, Eeles R. Genetics of prostate cancer and its utility in treatment and screening. ADVANCES IN GENETICS 2021; 108:147-199. [PMID: 34844712 DOI: 10.1016/bs.adgen.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prostate cancer heritability is attributed to a combination of rare, moderate to highly penetrant genetic variants as well as commonly occurring variants conferring modest risks [single nucleotide polymorphisms (SNPs)]. Some of the former type of variants (e.g., BRCA2 mutations) predispose particularly to aggressive prostate cancer and confer poorer prognoses compared to men who do not carry mutations. Molecularly targeted treatments such as PARP inhibitors have improved outcomes in men carrying somatic and/or germline DNA repair gene mutations. Ongoing clinical trials are exploring other molecular targeted approaches based on prostate cancer somatic alterations. Genome wide association studies have identified >250 loci that associate with prostate cancer risk. Multi-ancestry analyses have identified shared as well as population specific risk SNPs. Prostate cancer risk SNPs can be used to estimate a polygenic risk score (PRS) to determine an individual's genetic risk of prostate cancer. The odds ratio of prostate cancer development in men whose PRS lies in the top 1% of the risk profile ranges from 9 to 11. Ongoing studies are investigating the utility of a prostate cancer PRS to target population screening to those at highest risk. With the advent of personalized medicine and development of DNA sequencing technologies, access to clinical genetic testing is increasing, and oncology guidelines from bodies such as NCCN and ESMO have been updated to provide criteria for germline testing of "at risk" healthy men as well as those with prostate cancer. Both germline and somatic prostate cancer research have significantly evolved in the past decade and will lead to further development of precision medicine approaches to prostate cancer treatment as well as potentially developing precision population screening models.
Collapse
Affiliation(s)
- S Benafif
- The Institute of Cancer Research, London, United Kingdom.
| | | | - J McHugh
- The Institute of Cancer Research, London, United Kingdom
| | - R Eeles
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
262
|
Olave MC, Graham RP. Mismatch repair deficiency: The what, how and why it is important. Genes Chromosomes Cancer 2021; 61:314-321. [PMID: 34837268 DOI: 10.1002/gcc.23015] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
The mismatch repair system is a major pathway that functions in the maintenance of genomic integrity. It is involved in mitotic and meiotic recombination, apoptosis, immunoglobulin gene rearrangement, somatic hypermutation, and other processes. Deficiencies in mismatch repair give rise to hypermutability and the phenomenon called microsatellite instability. Detection of deficient mismatch repair function or microsatellite instability is used diagnostically, predictively, and prognostically. Specifically, deficient mismatch repair function is used for screening of Lynch syndrome, determining patients who are likely to respond to immune checkpoint inhibition, and to contributes to an understanding of which cancer patients may pursue a more aggressive clinical course. Microsatellite instability can be evaluated directly by polymerase chain reaction (PCR) or indirectly by assessment of mismatch repair protein expression using immunohistochemistry (IHC), and mismatch repair function using next-generation sequencing assays which evaluates homopolymer indels. In this article, we provide a concise practical review on mismatch repair deficiency (MMR-d)/microsatellite instability (MSI), focusing on clinical testing, different testing methods, interpretation of findings, the predictive, and prognostic utility of MSI.
Collapse
Affiliation(s)
- Maria C Olave
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
263
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Nicoli D, Farnetti E, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 5: Epigenetic Regulation of PD-L1. Int J Mol Sci 2021; 22:12314. [PMID: 34830196 PMCID: PMC8619683 DOI: 10.3390/ijms222212314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations (including DNA methylation or miRNAs) influence oncogene/oncosuppressor gene expression without changing the DNA sequence. Prostate cancer (PC) displays a complex genetic and epigenetic regulation of cell-growth pathways and tumor progression. We performed a systematic literature review (following PRISMA guidelines) focused on the epigenetic regulation of PD-L1 expression in PC. In PC cell lines, CpG island methylation of the CD274 promoter negatively regulated PD-L1 expression. Histone modifiers also influence the PD-L1 transcription rate: the deletion or silencing of the histone modifiers MLL3/MML1 can positively regulate PD-L1 expression. Epigenetic drugs (EDs) may be promising in reprogramming tumor cells, reversing epigenetic modifications, and cancer immune evasion. EDs promoting a chromatin-inactive transcriptional state (such as bromodomain or p300/CBP inhibitors) downregulated PD-L1, while EDs favoring a chromatin-active state (i.e., histone deacetylase inhibitors) increased PD-L1 expression. miRNAs can regulate PD-L1 at a post-transcriptional level. miR-195/miR-16 were negatively associated with PD-L1 expression and positively correlated to longer biochemical recurrence-free survival; they also enhanced the radiotherapy efficacy in PC cell lines. miR-197 and miR-200a-c positively correlated to PD-L1 mRNA levels and inversely correlated to the methylation of PD-L1 promoter in a large series. miR-570, miR-34a and miR-513 may also be involved in epigenetic regulation.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
264
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021; 22:12330. [PMID: 34830209 PMCID: PMC8618001 DOI: 10.3390/ijms222212330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) includes immune (T, B, NK, dendritic), stromal, mesenchymal, endothelial, adipocytic cells, extracellular matrix, and cytokines/chemokines/soluble factors regulating various intracellular signaling pathways (ISP) in tumor cells. TME influences the survival/progression of prostate cancer (PC), enabling tumor cell immune-evasion also through the activation of the PD-1/PD-L1 axis. We have performed a systematic literature review according to the PRISMA guidelines, to investigate how the PD-1/PD-L1 pathway is influenced by TME and ISPs. Tumor immune-escape mechanisms include suppression/exhaustion of tumor infiltrating cytotoxic T lymphocytes, inhibition of tumor suppressive NK cells, increase in immune-suppressive immune cells (regulatory T, M2 macrophagic, myeloid-derived suppressor, dendritic, stromal, and adipocytic cells). IFN-γ (the most investigated factor), TGF-β, TNF-α, IL-6, IL-17, IL-15, IL-27, complement factor C5a, and other soluble molecules secreted by TME components (and sometimes increased in patients' serum), as well as and hypoxia, influenced the regulation of PD-L1. Experimental studies using human and mouse PC cell lines (derived from either androgen-sensitive or androgen-resistant tumors) revealed that the intracellular ERK/MEK, Akt-mTOR, NF-kB, WNT and JAK/STAT pathways were involved in PD-L1 upregulation in PC. Blocking the PD-1/PD-L1 signaling by using immunotherapy drugs can prevent tumor immune-escape, increasing the anti-tumor activity of immune cells.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Centre, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Valerio Copelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
265
|
Achard V, Putora PM, Omlin A, Zilli T, Fischer S. Metastatic Prostate Cancer: Treatment Options. Oncology 2021; 100:48-59. [PMID: 34781285 DOI: 10.1159/000519861] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Metastatic prostate cancer (PCa) is associated with considerable diminished overall survival (OS). Standard treatment for metastatic PCa has long been androgen deprivation therapy alone, with patients initially responding to this treatment and then progressing to a castration-resistant phase. SUMMARY The advent of novel therapeutic agents has changed this paradigm, with high-level evidence that upfront combination therapy with either docetaxel or new hormonal agents results in improved OS for patients with metastatic hormone-sensitive PCa. In the absence of a comprehensive clinical trial investigating the comparative efficacy and safety of all agents, clinicians are responsible for choosing the most appropriate therapy in close coordination with patients. Furthermore, the same therapeutic agents are also efficient in the castration-resistant phase, leading to the issue of the best therapeutic sequence. Finally, along with systemic therapy and molecular imaging advancements, radiotherapy was investigated in the oligometastatic setting, whether it is to treat the primary tumour or metastases. Key Messages: In this complex landscape, where providers have multiple effective therapeutic options to treat metastatic PCa patients, priority must be given to determine which treatment combination and sequence is best suited to a particular patient, given his comorbidities and preferences.
Collapse
Affiliation(s)
- Vérane Achard
- Department of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Aurelius Omlin
- Department of Medical Oncology and Haematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Thomas Zilli
- Department of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Stefanie Fischer
- Department of Medical Oncology and Haematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
266
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Athanazio D, Gandhi J, Cavazza A, Santandrea G, Tafuni A, Zanelli M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 1: Focus on Immunohistochemical Results with Discussion of Pre-Analytical and Interpretation Variables. Cells 2021; 10:3166. [PMID: 34831389 PMCID: PMC8625301 DOI: 10.3390/cells10113166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy targeting the PD-1-PD-L1 axis yielded good results in treating different immunologically ''hot'' tumors. A phase II study revealed good therapeutic activity of pembrolizumab in selected prostatic carcinoma (PC)-patients. We performed a systematic literature review (PRISMA guidelines), which analyzes the immunohistochemical expression of PD-L1 in human PC samples and highlights the pre-analytical and interpretation variables. Interestingly, 29% acinar PCs, 7% ductal PCs, and 46% neuroendocrine carcinomas/tumors were PD-L1+ on immunohistochemistry. Different scoring methods or cut-off criteria were applied on variable specimen-types, evaluating tumors showing different clinic-pathologic features. The positivity rate of different PD-L1 antibody clones in tumor cells ranged from 3% (SP142) to 50% (ABM4E54), excluding the single case tested for RM-320. The most tested clone was E1L3N, followed by 22C3 (most used for pembrolizumab eligibility), SP263, SP142, and 28-8, which gave the positivity rates of 35%, 11-41% (depending on different scoring systems), 6%, 3%, and 15%, respectively. Other clones were tested in <200 cases. The PD-L1 positivity rate was usually higher in tumors than benign tissues. It was higher in non-tissue microarray specimens (41-50% vs. 15%), as PC cells frequently showed heterogenous or focal PD-L1-staining. PD-L1 was expressed by immune or stromal cells in 12% and 69% cases, respectively. Tumor heterogeneity, inter-institutional preanalytics, and inter-observer interpretation variability may account for result biases.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | | | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| |
Collapse
|
267
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models). Int J Mol Sci 2021; 22:12297. [PMID: 34830179 PMCID: PMC8618402 DOI: 10.3390/ijms222212297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic literature review (PRISMA guidelines) to delineate the landscape of pre-clinical studies (including cell lines and mouse models) that tested treatments with effects on PD-L1 signaling in PC. NF-kB, MEK, JAK, or STAT inhibitors on human/mouse, primary/metastatic PC-cell lines variably down-modulated PD-L1-expression, reducing chemoresistance and tumor cell migration. If PC-cells were co-cultured with NK, CD8+ T-cells or CAR-T cells, the immune cell cytotoxicity increased when PD-L1 was downregulated (opposite effects for PD-L1 upregulation). In mouse models, radiotherapy, CDK4/6-inhibitors, and RB deletion induced PD-L1-upregulation, causing PC-immune-evasion. Epigenetic drugs may reduce PD-L1 expression. In some PC experimental models, blocking only the PD-1/PD-L1 pathway had limited efficacy in reducing the tumor growth. Anti-tumor effects could be increased by combining the PD-1/PD-L1 blockade with other approaches (inhibitors of tyrosine kinase, PI3K/mTOR or JAK/STAT3 pathways, p300/CBP; anti-RANKL and/or anti-CTLA-4 antibodies; cytokines; nitroxoline; DNA/cell vaccines; radiotherapy/Radium-223).
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
268
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Zanelli M, Bonasoni MP, De Marco L, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Gelli MC, Tafuni A, Ragazzi M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 2: Clinic-Pathologic Correlations. Cells 2021; 10:3165. [PMID: 34831388 PMCID: PMC8618408 DOI: 10.3390/cells10113165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Many studies have investigated the potential prognostic and predictive role of PD-L1 in prostatic carcinoma (PC). We performed a systematic literature review (PRISMA guidelines) to critically evaluate human tissue-based studies (immunohistochemistry, molecular analysis, etc.), experimental research (cell lines, mouse models), and clinical trials. Despite some controversial results and study limitations, PD-L1 expression by tumor cells may be related to clinic-pathologic features of adverse outcome, including advanced tumor stage (high pT, presence of lymph node, and distant metastases), positivity of surgical margins, high Grade Group, and castration resistance. Different PD-L1 positivity rates may be observed in matched primary PCs and various metastatic sites of the same patients. Over-fixation, type/duration of decalcification, and PD-L1 antibody clone may influence the immunohistochemical analysis of PD-L1 on bone metastases. PD-L1 seemed expressed more frequently by castration-resistant PCs (49%) as compared to hormone-sensitive PCs (17%). Some series found that PD-L1 positivity was associated with decreased time to castration resistance. Treatment with ipilimumab, cyclophosphamide/GVAX/degarelix, or degarelix alone may increase PD-L1 expression. Correlation of PD-L1 positivity with overall survival and outcomes related to tumor recurrence were rarely investigated; the few analyzed series produced conflicting results and sometimes showed limitations. Further studies are required. The testing and scoring of PD-L1 should be standardized.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Maria Carolina Gelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| |
Collapse
|
269
|
Sun BL. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment. Prostate 2021; 81:1125-1134. [PMID: 34435699 DOI: 10.1002/pros.24213] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer is the second most common cause of cancer-related death in men in the United States and the fifth worldwide. Most prostate cancer arises as an androgen-dependent tumor but eventually progresses into castration-resistance prostate cancer, incurable by the current androgen deprivation therapy and chemotherapy. The development of immunotherapy in cancer treatment has brought an exciting era of antiprostate cancer therapy through antitumor immune responses. Prostate cancer is recognized as a poorly immunogenic tissue with immunological ignorance showing low levels of antigen-presenting process and cytotoxic T-cell activation, high levels of immune checkpoint molecules and immunosuppressive cytokines/chemokines, and recruitment of immunosuppressive cells. Immunotherapies for prostate cancer have been developed to activate the innate and adaptive immune responses, such as vaccines and adoptive CAR-T cells, or to inhibit immunosuppressive molecules, such as immune checkpoint inhibitors or antibodies. The U.S Food and Drug Administration has approved Sipuleucel-T for the treatment of asymptomatic or minimally symptomatic metastatic castrate-resistant prostate cancer (mCRPC) and immune checkpoint inhibitor pembrolizumab for the treatment of all solid tumors, including prostate cancer, with impaired mismatch repair genes/microsatellite instability; however, the current clinical outcomes still need to be improved. As various immunosuppressive mechanisms coexist and cross-interact within the tumor microenvironment, different immunotherapy approaches may have to be combined and selected in a highly personalized way. It is hoped that this rapidly evolving field of immunotherapy will achieve successful treatment for mCRPC and will be applied to a wider range of prostate cancer patients.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, Banner-University Medical Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
270
|
Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 checkpoint blockade enhances adoptive immunotherapy by human Vγ2Vδ2 T cells against human prostate cancer. Oncoimmunology 2021; 10:1989789. [PMID: 34712512 PMCID: PMC8547840 DOI: 10.1080/2162402x.2021.1989789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Vγ2Vδ2 (also termed Vγ9Vδ2) T cells play important roles in microbial and tumor immunity by monitoring foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis. Accumulation of isoprenoid metabolites after bisphosphonate treatment allows Vγ2Vδ2 T cells to recognize and kill tumors independently of their MHC expression or burden of non-synonymous mutations. Clinical trials with more than 400 patients show that adoptive immunotherapy with Vγ2Vδ2 T cells has few side effects but has resulted in only a few partial and complete remissions. Here, we have tested Vγ2Vδ2 T cells for expression of inhibitory receptors and determined whether adding PD-1 checkpoint blockade to adoptively transferred Vγ2Vδ2 T cells enhances immunity to human PC-3 prostate tumors in an NSG mouse model. We find that Vγ2Vδ2 T cells express PD-1, CTLA-4, LAG-3, and TIM-3 inhibitory receptors during the 14-day ex vivo expansion period, and PD-1, LAG-3, and TIM-3 upon subsequent stimulation by pamidronate-treated tumor cells. Expression of PD-L1 on PC-3 prostate cancer cells was increased by co-culture with activated Vγ2Vδ2 T cells. Importantly, anti-PD-1 mAb treatment enhanced Vγ2Vδ2 T cell immunity to PC-3 tumors in immunodeficient NSG mice, reducing tumor volume nearly to zero after 5 weeks. These results demonstrate that PD-1 checkpoint blockade can enhance the effectiveness of adoptive immunotherapy with human γδ T cells in treating prostate tumors in a preclinical model.
Collapse
Affiliation(s)
- Mohanad H Nada
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq.,Department of Medical and Health Sciences, The American University of Iraq, Sulaimani, Sulaymaniah, Iraq
| | - Hong Wang
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Auter J Hussein
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Salah Al-Din Directorate of Health, Ministry of Health, Iraq
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki Japan
| | - Craig T Morita
- Department of Veterans Affairs, Iowa City Veterans Health Care System, Iowa City, IA, USA.,Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology,University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
271
|
Yamada Y, Beltran H. The treatment landscape of metastatic prostate cancer. Cancer Lett 2021; 519:20-29. [PMID: 34153403 PMCID: PMC8403655 DOI: 10.1016/j.canlet.2021.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
The treatment landscape of metastatic prostate cancer has evolved significantly over the past two decades. Several landmark phase 3 trials led to new drug approvals and rapid changes in therapy options for patients, including drugs with distinct mechanisms of action (e.g., hormonal, chemotherapy, radionuclide, immunotherapy, and targeted therapies). Therapies initially developed in later stages of the disease (metastatic castration resistant prostate cancer) have started to move earlier in the prostate cancer continuum, with new standards of care for metastatic hormone naive prostate cancer and non-metastatic castration resistant prostate cancer. Overall, patients are living longer with a better quality of life. However, despite these significant advances, prostate cancer remains a leading cause of cancer death globally. Disease heterogeneity and the emergence of therapy resistance remain significant barriers, and the identification and application of molecular biomarkers to guide the choice and sequencing of systemic agents are still in early stages. Here we discuss the current treatment landscape of metastatic prostate cancer, clinical challenges, and the emerging role of molecular biomarkers for targeting biologic subsets of advanced disease and co-targeting heterogenous resistance patterns.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
272
|
Labadie BW, Balar AV, Luke JJ. Immune Checkpoint Inhibitors for Genitourinary Cancers: Treatment Indications, Investigational Approaches and Biomarkers. Cancers (Basel) 2021; 13:5415. [PMID: 34771578 PMCID: PMC8582522 DOI: 10.3390/cancers13215415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers of the genitourinary (GU) tract are common malignancies in both men and women and are a major source of morbidity and mortality. Immune checkpoint inhibitors (ICI) targeting CTLA-4, PD-1 or PD-L1 have provided clinical benefit, particularly in renal cell and urothelial carcinoma, and have been incorporated into standard of care treatment in both localized and metastatic settings. However, a large fraction of patients do not derive benefit. Identification of patient and tumor-derived factors which associate with response have led to insights into mechanisms of response and resistance to ICI. Herein, we review current approvals and clinical development of ICI in GU malignancies and discuss exploratory biomarkers which aid in personalized treatment selection.
Collapse
Affiliation(s)
- Brian W. Labadie
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Arjun V. Balar
- Perlmutter Cancer Center, NYU Langone Health and New York University, New York, NY 10016, USA;
| | - Jason J. Luke
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
273
|
Rocha ML, Schmid KW, Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma - systematic review and discussion of current therapeutic options. Contemp Oncol (Pozn) 2021; 25:213-223. [PMID: 34729042 PMCID: PMC8547184 DOI: 10.5114/wo.2021.110052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Anaplastic thyroid carcinoma is a rare, rapidly progressing, highly aggressive thyroid malignancy. Responses to immune checkpoint inhibitors in mismatch repair-deficient/microsatellite instability-high tumours of other locations have shown promising results, and with the extended approval of the PD-1 receptor inhibitor pembrolizumab by the Food and Drug Administration, also anaplastic thyroid cancer (ATC) requires analysis for microsatellite instability (MSI) status. MATERIAL AND METHODS Systematic research for relevant literature was conducted in different databases. Prevalence, detection methods, and the potential prognostic/predictive value of MSI in view of the available targeted therapies were of special focus. RESULTS Selected citations revealed the prevalence of MSI in 7.4%, with mutations in the MSH2 gene (33%) being the most frequent, followed by MSH6 (25%) and MLH1 (16.7%) occurring in the following combinations: MLH1-MSH2 (8.3%), MSH2-MSH6 (8.3%), and MLH3-MSH5 (8.3%). No mutations in the PMS2 gene were reported. Sixty-six co-mutations in 9 cases were found, with TP53 (88.9%), NF1 (44.4 %), ATM (33.3%), and RB1 (33.3%) being the most frequent. No RAS mutations were noted. Survival ranged between 2.8 and 48 months, and patient age varied between 49 and 84 years. There are insufficient and heterogenous data concerning the predictive or prognostic value of mismatch repair-deficient/microsatellite instability status. CONCLUSIONS Tumour molecular profiling is fundamental in ATC for predictive, prognostic, as well as therapeutic reasons, and analysis of MSI status is strongly suggested because a small subgroup show the MSI signature and might profit from recently approved targeted therapies.
Collapse
Affiliation(s)
- Maria Linda Rocha
- Institute of Pathology Königs Wusterhausen, Königs Wusterhausen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Piotr Czapiewski
- Institute of Pathology, Dessau Medical Centre, Dessau, Germany
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
274
|
Myint ZW, Allison DB, Ellis CS. A Case Report of Metastatic Castration-Resistant Prostate Cancer Harboring a PTEN Loss. Front Oncol 2021; 11:731002. [PMID: 34631559 PMCID: PMC8495426 DOI: 10.3389/fonc.2021.731002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The treatment landscape of metastatic castration-resistant prostate cancer (mCRPC) has dramatically improved over the last decade; however, patients with visceral metastases are still faced with poor outcomes. Phosphatase and tensin homolog (PTEN) loss is observed in 40%–60% of mCRPC patients and is also associated with a poor prognosis. Several PI3K/AKT/mTOR pathway inhibitors have been studied, with disappointing anti-tumor activity. Here, we present a case of a patient with heavily treated mCRPC who had a modest tumor response to concurrent carboplatin, abiraterone acetate/prednisone, and liver-directed radiation therapy. We discuss the potential rationale supporting the use of this combination therapy and its safety in mCRPC. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, we suggest that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population of patients with pre-treated mCRPC and PTEN loss.
Collapse
Affiliation(s)
- Zin W Myint
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Urology, University of Kentucky, Lexington, KY, United States.,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Carleton S Ellis
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacy, University of Kentucky, Lexington KY, United States
| |
Collapse
|
275
|
Li G, Li Y, Wang J, Gao X, Zhong Q, He L, Li C, Liu M, Liu Y, Ma M, Wang H, Wang X, Zhu H. Guidelines for radiotherapy of prostate cancer (2020 edition). PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gaofeng Li
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Yexiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC) Beijing P. R. China
| | - Junjie Wang
- Department of Radiation Oncology Peking University Third Hospital Beijing P. R. China
| | - Xianshu Gao
- Department of Radiation Oncology Peking University First Hospital Beijing P. R. China
| | - Qiuzi Zhong
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Liru He
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Chunmei Li
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Yueping Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC) Beijing P. R. China
| | - Mingwei Ma
- Department of Radiation Oncology Peking University First Hospital Beijing P. R. China
| | - Hao Wang
- Department of Radiation Oncology Peking University Third Hospital Beijing P. R. China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Hui Zhu
- Department of Nuclear Medicine Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| |
Collapse
|
276
|
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol 2021; 14:160. [PMID: 34620200 PMCID: PMC8499512 DOI: 10.1186/s13045-021-01166-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
In this era of precision medicine, with the help of biomarkers, immunotherapy has significantly improved prognosis of many patients with malignant tumor. Deficient mismatch repair (dMMR)/microsatellite instability (MSI) status is used as a biomarker in clinical practice to predict favorable response to immunotherapy and prognosis. MSI is an important characteristic which facilitates mutation and improves the likelihood of a favorable response to immunotherapy. However, many patients with dMMR/MSI still respond poorly to immunotherapies, which partly results from intratumor heterogeneity propelled by dMMR/MSI. In this review, we discuss how dMMR/MSI facilitates mutations in tumor cells and generates intratumor heterogeneity, especially through type II interferon (IFN-γ) signaling and tumor-infiltrating lymphocytes (TILs). We discuss the mechanism of immunotherapy from the perspective of dMMR/MSI, molecular pathways and TILs, and we discuss how intratumor heterogeneity hinders the therapeutic effect of immunotherapy. Finally, we summarize present techniques and strategies to look at the tumor as a whole to design personalized regimes and achieve favorable prognosis.
Collapse
Affiliation(s)
- Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
277
|
Sena LA, Denmeade SR, Antonarakis ES. Targeting the spectrum of immune checkpoints in prostate cancer. Expert Rev Clin Pharmacol 2021; 14:1253-1266. [PMID: 34263692 PMCID: PMC8484035 DOI: 10.1080/17512433.2021.1949287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Introduction: The proven efficacy of the cellular vaccine sipuleucel-T in 2010 led to optimism about immunotherapeutic approaches for the treatment of prostate cancer. Some surmised that prostate cancer might be an ideal target for immune-mediated killing given that the prostate is not an essential organ and expresses unique proteins including prostate-specific antigen, prostate-specific membrane antigen, and prostatic acid phosphatase that could be targeted without side effects. Subsequently, antibodies that inhibit the T cell checkpoints PD1 and CTLA4 were shown to stimulate antitumor immune responses, leading to tumor regression in several cancer types. These therapies have since been tested in several studies as treatments for prostate cancer, but appear to have limited efficacy in molecularly unselected patients.Areas covered: In this review, we discuss these studies and evaluate features of prostate cancer and its host environment that may render it generally resistant to CTLA4 and PD1 blockade. We provide an overview of alternate immune checkpoints that may hold greater significance in this disease.Expert opinion: Combination therapies to target multiple layers of alternate immune checkpoints may be required for an effective immune response to prostate cancer. We discuss combination therapies currently being investigated.
Collapse
Affiliation(s)
- Laura A. Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
278
|
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet 2021; 398:1075-1090. [PMID: 34370973 DOI: 10.1016/s0140-6736(21)00950-8] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
The management of prostate cancer continues to evolve rapidly, with substantial advances being made in understanding the genomic landscape and biology underpinning both primary and metastatic prostate cancer. Similarly, the emergence of more sensitive imaging methods has improved diagnostic and staging accuracy and refined surveillance strategies. These advances have introduced personalised therapeutics to clinical practice, with treatments targeting genomic alterations in DNA repair pathways now clinically validated. An important shift in the therapeutic framework for metastatic disease has taken place, with metastatic-directed therapies being evaluated for oligometastatic disease, aggressive management of the primary lesion shown to benefit patients with low-volume metastatic disease, and with several novel androgen pathway inhibitors significantly improving survival when used as a first-line therapy for metastatic disease. Research into the molecular characterisation of localised, recurrent, and progressive disease will undoubtedly have an impact on clinical management. Similarly, emerging research into novel therapeutics, such as targeted radioisotopes and immunotherapy, holds much promise for improving the lives of patients with prostate cancer.
Collapse
Affiliation(s)
- Shahneen Sandhu
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | | - Edmund Chiong
- Department of Urology and Department of Surgery, National University of Singapore, Singapore
| | | | - Robert G Bristow
- Manchester Cancer Research Centre and University of Manchester, Manchester, UK
| | - Scott G Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
279
|
Henríquez I, Roach M, Morgan TM, Bossi A, Gómez JA, Abuchaibe O, Couñago F. Current and Emerging Therapies for Metastatic Castration-Resistant Prostate Cancer (mCRPC). Biomedicines 2021; 9:1247. [PMID: 34572433 PMCID: PMC8468423 DOI: 10.3390/biomedicines9091247] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) encompasses a heterogeneous wide range of molecular tumor behavior and a high risk of progression. Early detection and treatment are therefore crucial in these patients. Treatment has improved drastically in recent years and many novel therapeutic agents are currently under investigation. However, due to the rapidly changing therapeutic landscape in mCRPC, it is difficult for clinicians to keep up to date with the latest innovations in this area. In the present narrative review, we discuss the current and emerging therapies for mCRPC as well as the clinical and molecular factors that can help predict which patients are most likely to benefit from these novel agents.
Collapse
Affiliation(s)
- Iván Henríquez
- Department of Radiation Oncology, Hospital Universitario Sant Joan, 43204 Reus, Spain;
| | - Mack Roach
- UCSF Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, San Francisco, CA 94143, USA;
| | - Todd M. Morgan
- Rogel Cancer Center, Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alberto Bossi
- Prostate Brachytherapy Unit, Department of Radiation Oncology, Genito Urinary Oncology, Goustave Roussy, 94805 Paris, France;
| | - Junior A. Gómez
- Department of Radiation Oncology, Hospital Universitario Sant Joan, 43204 Reus, Spain;
| | - Oscar Abuchaibe
- Virgilio Galvis Ramirez Cancer Centre, Department of Radiation Oncology, Bucaramanga 681004, Colombia;
| | - Felipe Couñago
- Department of Radiation Oncology, Clinical Department, Faculty of Biomedicine, Hospital Universitario Quirónsalud Madrid, Hospital La Luz, Universidad Europea, 28223 Madrid, Spain;
| |
Collapse
|
280
|
Sensitive detection of microsatellite instability in tissues and liquid biopsies: Recent developments and updates. Comput Struct Biotechnol J 2021; 19:4931-4940. [PMID: 34527197 PMCID: PMC8433064 DOI: 10.1016/j.csbj.2021.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Microsatellite instability (MSI), a phenotype displayed as deletions/insertions of repetitive genomic sequences, has drawn great attention due to its application in cancer including diagnosis, prognosis and immunotherapy response prediction. Several methods have been developed for the detection of MSI, facilitating the MSI classification of cancer patients. In view of recent interest in minimally-invasive detection of MSI via liquid biopsy samples, which requires methods with high sensitivity to identify small fractions of altered DNA in the presence of large amount of wild type copies, sensitive MSI detection approaches are emerging. Here we review the available MSI detection methods and their detection limits and focus on recently developed next-generation-sequencing based approaches and bioinformatics algorithms available for MSI analysis in various cancer types.
Collapse
|
281
|
Cattrini C, España R, Mennitto A, Bersanelli M, Castro E, Olmos D, Lorente D, Gennari A. Optimal Sequencing and Predictive Biomarkers in Patients with Advanced Prostate Cancer. Cancers (Basel) 2021; 13:4522. [PMID: 34572748 PMCID: PMC8467385 DOI: 10.3390/cancers13184522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment landscape of advanced prostate cancer has completely changed during the last decades. Chemotherapy (docetaxel, cabazitaxel), androgen-receptor signaling inhibitors (ARSi) (abiraterone acetate, enzalutamide), and radium-223 have revolutionized the management of metastatic castration-resistant prostate cancer (mCRPC). Lutetium-177-PSMA-617 is also going to become another treatment option for these patients. In addition, docetaxel, abiraterone acetate, apalutamide, enzalutamide, and radiotherapy to primary tumor have demonstrated the ability to significantly prolong the survival of patients with metastatic hormone-sensitive prostate cancer (mHSPC). Finally, apalutamide, enzalutamide, and darolutamide have recently provided impactful data in patients with nonmetastatic castration-resistant disease (nmCRPC). However, which is the best treatment sequence for patients with advanced prostate cancer? This comprehensive review aims at discussing the available literature data to identify the optimal sequencing approaches in patients with prostate cancer at different disease stages. Our work also highlights the potential impact of predictive biomarkers in treatment sequencing and exploring the role of specific agents (i.e., olaparib, rucaparib, talazoparib, niraparib, and ipatasertib) in biomarker-selected populations of patients with prostate cancer (i.e., those harboring alterations in DNA damage and response genes or PTEN).
Collapse
Affiliation(s)
- Carlo Cattrini
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Rodrigo España
- Urology Unit, Hospital Regional de Málaga, University of Malaga, 29910 Málaga, Spain;
| | - Alessia Mennitto
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - Melissa Bersanelli
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain;
- Medical Oncology, UGCI, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, 29010 Málaga, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga, 29010 Málaga, Spain
| | - David Lorente
- Medical Oncology, Hospital Provincial de Castellón, 12002 Castellón de la Plana, Spain
| | - Alessandra Gennari
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| |
Collapse
|
282
|
Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J Cell Physiol 2021; 237:346-372. [PMID: 34498289 DOI: 10.1002/jcp.30575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.
Collapse
Affiliation(s)
- Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
283
|
Ge S, Hua X, Chen J, Xiao H, Zhang L, Zhou J, Liang C, Tai S. Identification of a Costimulatory Molecule-Related Signature for Predicting Prognostic Risk in Prostate Cancer. Front Genet 2021; 12:666300. [PMID: 34484286 PMCID: PMC8415313 DOI: 10.3389/fgene.2021.666300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Costimulatory molecules have been proven to enhance antitumor immune responses, but their roles in prostate cancer (PCa) remain unexplored. In this study, we aimed to explore the gene expression profiles of costimulatory molecule genes in PCa and construct a prognostic signature to improve treatment decision making and clinical outcomes. Five prognosis-related costimulatory molecule genes (RELT, TNFRSF25, EDA2R, TNFSF18, and TNFSF10) were identified, and a prognostic signature was constructed based on these five genes. This signature was an independent prognostic factor according to multivariate Cox regression analysis; it could stratify PCa patients into two subgroups with different prognoses and was highly associated with clinical features. The prognostic significance of the signature was well validated in four different independent external datasets. Moreover, patients identified as high risk based on our prognostic signature exhibited a high mutation frequency, a high level of immune cell infiltration and an immunosuppressive microenvironment. Therefore, our signature could provide clinicians with prognosis predictions and help guide treatment for PCa patients.
Collapse
Affiliation(s)
- Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| |
Collapse
|
284
|
Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, dos Reis RB, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021; 22:9550. [PMID: 34502458 PMCID: PMC8431051 DOI: 10.3390/ijms22179550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.
Collapse
Affiliation(s)
- Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - William Lautert-Dutra
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
285
|
Sayegh N, Swami U, Agarwal N. Recent Advances in the Management of Metastatic Prostate Cancer. JCO Oncol Pract 2021; 18:45-55. [PMID: 34473525 DOI: 10.1200/op.21.00206] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Management of metastatic prostate cancer has undergone a revolution over the past decade with the introduction of several novel agents and repurposing of others. Several clinical trials reported improved outcomes with the intensification of androgen deprivation therapy by the addition of docetaxel chemotherapy or novel hormonal agents (abiraterone, enzalutamide, or apalutamide) in the metastatic castration-sensitive state. Relugolix has been recently approved as the first oral gonadotropin-releasing hormone receptor antagonist agent with a superior cardiovascular side-effect profile, and serum testosterone suppression compared with a gonadotropin-releasing hormone agonist, leuprolide. Poly-ADP ribose polymerase inhibitors (olaparib and rucaparib) have demonstrated significant clinical benefit for patients harboring deleterious mutations in genes belonging to the homologous recombination repair pathway and have received Food and Drug Administration approval. Recently, lutetium-177-prostate-specific membrane antigen-617 with standard of care treatment has shown to improve overall survival in men with advanced-stage prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer. These recent approvals, successes, and the ongoing investigation of multiple novel agents are expected to continue to dramatically improve survival outcomes of men with metastatic prostate cancer in the coming years.
Collapse
Affiliation(s)
- Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
286
|
|
287
|
Qiao Y, Choi JE, Tien JC, Simko SA, Rajendiran T, Vo JN, Delekta AD, Wang L, Xiao L, Hodge NB, Desai P, Mendoza S, Juckette K, Xu A, Soni T, Su F, Wang R, Cao X, Yu J, Kryczek I, Wang XM, Wang X, Siddiqui J, Wang Z, Bernard A, Fernandez-Salas E, Navone NM, Ellison SJ, Ding K, Eskelinen EL, Heath EI, Klionsky DJ, Zou W, Chinnaiyan AM. Autophagy Inhibition by Targeting PIKfyve Potentiates Response to Immune Checkpoint Blockade in Prostate Cancer. NATURE CANCER 2021; 2:978-993. [PMID: 34738088 PMCID: PMC8562569 DOI: 10.1038/s43018-021-00237-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-tyrosine kinase inhibitors (MTKIs) have thus far had limited success in the treatment of castration-resistant prostate cancer (CRPC). Here, we report a phase I-cleared orally bioavailable MTKI, ESK981, with a novel autophagy inhibitory property that decreased tumor growth in diverse preclinical models of CRPC. The anti-tumor activity of ESK981 was maximized in immunocompetent tumor environments where it upregulated CXCL10 expression through the interferon gamma pathway and promoted functional T cell infiltration, which resulted in enhanced therapeutic response to immune checkpoint blockade. Mechanistically, we identify the lipid kinase PIKfyve as the direct target of ESK981. PIKfyve-knockdown recapitulated ESK981's anti-tumor activity and enhanced the therapeutic benefit of immune checkpoint blockade. Our study reveals that targeting PIKfyve via ESK981 turns tumors from cold into hot through inhibition of autophagy, which may prime the tumor immune microenvironment in advanced prostate cancer patients and be an effective treatment strategy alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jae Eun Choi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,School of Medicine, University of California, San Diego, California 92093, USA
| | - Jean C. Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Stephanie A. Simko
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thekkelnaycke Rajendiran
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan 48109, USA
| | - Josh N. Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Andrew D. Delekta
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathan B. Hodge
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Parth Desai
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sergio Mendoza
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan 48109, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhen Wang
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Amélie Bernard
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200; Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, 33000 Bordeaux, France.,Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ester Fernandez-Salas
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephanie J. Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ke Ding
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | | | - Elisabeth I. Heath
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Correspondence to: Arul M. Chinnaiyan, Michigan Center for Translational Pathology, Rogel Cancer Center, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA. Phone: 734-615-4062; Fax: 734-615-4498;
| |
Collapse
|
288
|
Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:697-717. [PMID: 33820953 PMCID: PMC8384622 DOI: 10.1038/s41391-021-00340-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advanced prostate cancer remains one of the most common and deadly cancers, despite advances in treatment options. Immunotherapy has provided little benefit to a majority of patients, largely due to the immunosuppressive tumor microenvironment that gives rise to inherently "cold tumors". In this review, we discuss the immunopathology of the prostate tumor microenvironment, strategies for treating prostate cancer with immunotherapies, and a perspective on potential approaches to enhancing the efficacy of immunotherapies. METHODS Databases, including PubMed, Google Scholar, and Cochrane, were searched for articles relevant to the immunology of prostate cancer. We discuss the impact of different types of treatments on the immune system, and potential mechanisms through which prostate cancer evades the immune system. RESULTS The tumor microenvironment associated with prostate cancer is highly immunosuppressive due to (1) the function of regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells (MDSCs), (2) the cytokine milieu secreted by tumor stromal cells and fibroblasts, and (3) the production of adenosine via prostatic acid phosphatase. Both adenosine and tumor growth factor beta (TGF-beta) serve as potent immunosuppressive molecules that could also represent potential therapeutic targets. While there have been many immunotherapy trials in prostate cancer, the majority of these trials have targeted a single immunosuppressive mechanism resulting in limited clinical efficacy. Future approaches will require the integration of improved patient selection as well as use of combination therapies to address multiple mechanisms of resistance. CONCLUSION Prostate cancer inherently gives rise to multiple immunosuppressive mechanisms that have been difficult to overcome with any one immunotherapeutic approach. Enhancing the clinical activity of immunotherapies will require strategic combinations of multiple therapies to address the emerging mechanisms of tumor immune resistance.
Collapse
Affiliation(s)
- Jacob Stultz
- Division of Hematology/Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
289
|
Sagaram S, Rao A. Rapidly evolving treatment paradigm and considerations for sequencing therapies in metastatic prostate cancer-a narrative review. Transl Androl Urol 2021; 10:3188-3198. [PMID: 34430421 PMCID: PMC8350255 DOI: 10.21037/tau-20-1383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The treatment landscape of metastatic prostate cancer (mPCa) has evolved considerably over the past 15 years with approvals of targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi) in castration-resistant [metastatic castration-resistant prostate cancer (mCRPC)] setting and novel antiandrogens and docetaxel in hormone-sensitive [metastatic hormone-sensitive prostate cancer (mHSPC)] setting. A number of promising clinical trials are now evaluating therapeutic combinations rooted in an improving understanding of tumor biology. Despite a plethora of effective treatment options, decisions regarding choice of therapy remain challenging due to the lack of head-to-head trials and a substantial overlap in selection criteria used in these trials. We summarize the data from key trials that led to approval of commonly used mPCa therapies and provides an easy-to-use clinical decision-making framework that incorporates patient-specific and disease-specific factors to aid selection of the optimal therapy. We outline the evolving use-cases for biomarker-guided treatment selection and our approach to incorporating these therapies in clinical practice. Finally, we highlight the rapidly growing pipeline of therapies that are in advanced stages of clinical development, such as combinations of novel antiandrogen and PARPi, vascular endothelial growth factor (VEGF) inhibitor and immunotherapy, as well as prostate specific membrane antigen (PSMA)-targeted therapies, many of which are poised to transform the landscape in the coming decade.
Collapse
Affiliation(s)
- Smitha Sagaram
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Arpit Rao
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
290
|
PROMISE: a real-world clinical-genomic database to address knowledge gaps in prostate cancer. Prostate Cancer Prostatic Dis 2021; 25:388-396. [PMID: 34363009 PMCID: PMC9385488 DOI: 10.1038/s41391-021-00433-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 07/21/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE Prostate cancer is a heterogeneous disease with variable clinical outcomes. Despite numerous recent approvals of novel therapies, castration-resistant prostate cancer remains lethal. A "real-world" clinical-genomic database is urgently needed to enhance our characterization of advanced prostate cancer and further enable precision oncology. METHODS The Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) is a consortium whose aims are to establish a repository of de-identified clinical and genomic patient data that are linked to patient outcomes. The consortium structure includes a (1) bio-informatics committee to standardize genomic data and provide quality control, (2) biostatistics committee to independently perform statistical analyses, (3) executive committee to review and select proposals of relevant questions for the consortium to address, (4) diversity/inclusion committee to address important clinical questions pertaining to racial disparities, and (5) patient advocacy committee to understand patient perspectives to improve patients' quality of care. RESULTS The PROMISE consortium was formed by 16 academic institutions in early 2020 and a secure RedCap database was created. The first patient record was entered into the database in April 2020 and over 1000 records have been entered as of early 2021. Data entry is proceeding as planned with the goal to have over 2500 patient records by the end of 2021. CONCLUSIONS The PROMISE consortium provides a powerful clinical-genomic platform to interrogate and address data gaps that have arisen with increased genomic testing in the clinical management of prostate cancer. The dataset incorporates data from patient populations that are often underrepresented in clinical trials, generates new hypotheses to direct further research, and addresses important clinical questions that are otherwise difficult to investigate in prospective studies.
Collapse
|
291
|
Abstract
Technological innovation and rapid reduction in sequencing costs have enabled the genomic profiling of hundreds of cancer-associated genes as a component of routine cancer care. Tumour genomic profiling can refine cancer subtype classification, identify which patients are most likely to benefit from systemic therapies and screen for germline variants that influence heritable cancer risk. Here, we discuss ongoing efforts to enhance the clinical utility of tumour genomic profiling by integrating tumour and germline analyses, characterizing allelic context and identifying mutational signatures that influence therapy response. We also discuss the potential clinical utility of more comprehensive whole-genome and whole-transcriptome sequencing and ultra-sensitive cell-free DNA profiling platforms, which allow for minimally invasive, serial analyses of tumour-derived DNA in blood.
Collapse
Affiliation(s)
- Debyani Chakravarty
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
292
|
Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021. [PMID: 34440647 DOI: 10.3390/cells1008187828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
|
293
|
Malapelle U, Parente P, Pepe F, De Luca C, Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli F, Bellevicine C, Vigliar E, Iaccarino A, Covelli C, Balistreri M, Clemente C, Perrone G, Danza A, Scaramuzzi F, Fassan M, Troncone G, Graziano P. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021; 10:1878. [PMID: 34440647 PMCID: PMC8391221 DOI: 10.3390/cells10081878] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Floriana Conticelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Mariangela Balistreri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Celeste Clemente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Giovanni Perrone
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Angela Danza
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Fabio Scaramuzzi
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| |
Collapse
|
294
|
Considine B, Adeniran A, Hurwitz ME. Current Understanding and Management of Intraductal Carcinoma of the Prostate. Curr Oncol Rep 2021; 23:110. [PMID: 34272624 DOI: 10.1007/s11912-021-01090-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW This review will discuss current understanding and management approaches of Intraductal carcinoma of the prostate (IDC-P). IDC-P is a histological finding characterized by neoplastic cells that expand but do not invade prostate ducts. RECENT FINDINGS The presence of IDC-P on a prostate biopsy is almost always associated with an invasive disease component and is independently associated with worse clinical outcomes in both early and late disease. These tumors are enriched for mutations in homologous DNA recombination repair (HRR) leading to high genomic instability. Multiparametric MRI with targeted biopsy may aid in diagnosis. Given the poor clinical outcomes associated with this histologic entity, its presence in biopsies should warrant consideration of aggressive management.
Collapse
Affiliation(s)
- Bryden Considine
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA
| | - Adebowale Adeniran
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA
| | - Michael E Hurwitz
- Yale Comprehensive Cancer Center, 333 Cedar St, New Haven, CT, 06510, USA.
| |
Collapse
|
295
|
Kwon JTW, Bryant RJ, Parkes EE. The tumor microenvironment and immune responses in prostate cancer patients. Endocr Relat Cancer 2021; 28:T95-T107. [PMID: 34128831 PMCID: PMC8345898 DOI: 10.1530/erc-21-0149] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022]
Abstract
The landscape of cancer treatment has been transformed over the past decade by the success of immune-targeting therapies. However, despite sipuleucel-T being the first-ever approved vaccine for cancer and the first immunotherapy licensed for prostate cancer in 2010, immunotherapy has since seen limited success in the treatment of prostate cancer. The tumour microenvironment of prostate cancer presents particular barriers for immunotherapy. Moreover, prostate cancer is distinguished by being one of only two solid tumours where increased T cell-infiltration correlates with a poorer, rather than improved, outlook. Here, we discuss the specific aspects of the prostate cancer microenvironment that converge to create a challenging microenvironment, including myeloid-derived immune cells and cancer-associated fibroblasts. By exploring the immune microenvironment of defined molecular subgroups of prostate cancer, we propose an immunogenomic subtyping approach to single-agent and combination immune-targeting strategies that could lead to improved outcomes in prostate cancer treatment.
Collapse
Affiliation(s)
- J T W Kwon
- Department of Oncology, University of Oxford, Oxford, UK
| | - R J Bryant
- Department of Oncology, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - E E Parkes
- Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
296
|
Technical and biological constraints on ctDNA-based genotyping. Trends Cancer 2021; 7:995-1009. [PMID: 34219051 DOI: 10.1016/j.trecan.2021.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) enables real-time genomic profiling of cancer without the need for tissue biopsy. ctDNA-based technology is seeing rapid uptake in clinical practice due to the potential to inform patient management from diagnosis to advanced disease. In metastatic disease, ctDNA can identify somatic mutations, copy-number variants (CNVs), and structural rearrangements that are predictive of therapy response. However, the ctDNA fraction (ctDNA%) is unpredictable and confounds variant detection strategies, undermining confidence in liquid biopsy results. Assay design also influences which types of genomic alterations are identifiable. Here, we describe the relationships between ctDNA%, methodology, and sensitivity-specificity for major classes of genomic alterations in prostate cancer. We provide recommendations to navigate the technical complexities that constrain the detection of clinically relevant genomic alterations in ctDNA.
Collapse
|
297
|
Henriques V, Wenzel M, Demes MC, Köllermann J. [Metastatic castration-resistant prostate cancer]. DER PATHOLOGE 2021; 42:431-441. [PMID: 34170384 DOI: 10.1007/s00292-021-00956-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is considered as the final stage of the disease with limited therapeutic options to date. In this article, we review recent histopathologic and molecular pathologic findings that may expand our understanding of the disease and may lay, or have already laid the groundwork for the development of novel and individualized therapies. These include the detection of pathogenic mutations in the DNA repair genes BRCA1/2, androgen receptor splice variant 7 (AR-V7), deletion of the tumor suppressor gene PTEN, and evidence of neuroendocrine prostate cancer (t-NEPC) arising under antiandrogenic therapy. The theoretical and diagnostic basis behind the increasing relevance of pathology for therapeutic guidance in this stage of disease are presented.
Collapse
Affiliation(s)
- Vanessa Henriques
- Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland.
| | - Mike Wenzel
- Klinik für Urologie, Universitätsklinikum Frankfurt, Frankfurt, Deutschland.,Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montreal Health Center, Quebec, Montreal, Kanada
| | - Melanie-Christin Demes
- Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland
| | - Jens Köllermann
- Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland
| |
Collapse
|
298
|
Calagua C, Ficial M, Jansen CS, Hirz T, Del Balzo L, Wilkinson S, Lake R, Ku AT, Voznesensky O, Sykes DB, Saylor PJ, Ye H, Signoretti S, Kissick H, Sowalsky AG, Balk SP, Einstein DJ. A Subset of Localized Prostate Cancer Displays an Immunogenic Phenotype Associated with Losses of Key Tumor Suppressor Genes. Clin Cancer Res 2021; 27:4836-4847. [PMID: 34168052 DOI: 10.1158/1078-0432.ccr-21-0121] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE A subset of primary prostate cancer expresses programmed death-ligand 1 (PD-L1), but whether they have a unique tumor immune microenvironment or genomic features is unclear. EXPERIMENTAL DESIGN We selected PD-L1-positive high-grade and/or high-risk primary prostate cancer, characterized tumor-infiltrating lymphocytes with multiplex immunofluorescence, and identified genomic alterations in immunogenic and nonimmunogenic tumor foci. RESULTS One quarter of aggressive localized prostate cancer cases (29/115) had tumor PD-L1 expression more than 5%. This correlated with increased density of CD8+ T cells, a large fraction coexpressing PD-1, versus absent PD-1 expression on sparse CD8 T cells in unselected cases. Most CD8+PD-1+ cells did not express terminal exhaustion markers (TIM3 or LAG3), while a subset expressed TCF1. Consistent with these CD8+PD-1+TCF1+ cells being progenitors, they were found in antigen-presenting cell niches in close proximity to MHC-II+ cells. CD8 T-cell density in immunogenic prostate cancer and renal cell carcinoma (RCC) was nearly identical. Shallow RB1 and BRCA2 losses, and deep deletions of CHD1, were prevalent, the latter being strongly associated with a dendritic cell gene set in The Cancer Genome Atlas. Tumor mutation burden was variable; neither high microsatellite instability nor CDK12 alterations were present. CONCLUSIONS A subset of localized prostate cancer is immunogenic, manifested by PD-L1 expression and CD8+ T-cell content comparable with RCC. The CD8+ T cells include effector cells and exhausted progenitor cells, which may be expanded by immune checkpoint inhibitors (ICI). Genomic losses of RB1, BRCA2, and CHD1 may be drivers of this phenotype. These findings indicate that immunotherapies may be effective in biomarker-selected subpopulations of patients with localized prostate cancer.
Collapse
Affiliation(s)
- Carla Calagua
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Miriam Ficial
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Luke Del Balzo
- Department of Urology, Emory University, Atlanta, Georgia
| | | | - Ross Lake
- National Cancer Institute, Bethesda, Maryland
| | - Anson T Ku
- National Cancer Institute, Bethesda, Maryland
| | - Olga Voznesensky
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David B Sykes
- Harvard Medical School, Boston, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Philip J Saylor
- Harvard Medical School, Boston, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Huihui Ye
- Department of Pathology, University of California, Los Angeles, Los Angeles, California
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haydn Kissick
- Department of Urology, Emory University, Atlanta, Georgia
| | | | - Steven P Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| | - David J Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
299
|
Sena LA, Salles DC, Engle EL, Zhu Q, Tukachinsky H, Lotan TL, Antonarakis ES. Mismatch repair-deficient prostate cancer with parenchymal brain metastases treated with immune checkpoint blockade. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006094. [PMID: 34140335 PMCID: PMC8327884 DOI: 10.1101/mcs.a006094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Parenchymal brain metastases from prostate cancer are unusual and are associated with poor prognosis. Given the rarity of this entity, little is known about its molecular and histologic characteristics. Here we describe a patient with metastatic castration-resistant, mismatch repair-deficient (dMMR) prostate cancer with parenchymal brain metastases. Analysis of a brain metastasis revealed MLH1 loss consistent with dMMR, yet few tumor-infiltrating lymphocytes (TILs). He was treated with immune checkpoint blockade (ICB) and exhibited an extra-central nervous system (CNS) systemic response but CNS progression. Subsequent assessment of a brain metastasis following ICB treatment surprisingly showed increased TIL density and depletion of macrophages, suggestive of an enhanced antitumor immune response. Post-treatment tumoral DNA sequencing did not reveal acquired mutations that might confer resistance to ICB. This is the first description of ICB therapy for a patient with prostate cancer with parenchymal brain metastases, with pre- and post-treatment immunogenomic analyses.
Collapse
Affiliation(s)
- Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniela C Salles
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Elizabeth L Engle
- The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Qingfeng Zhu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Tamara L Lotan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Emmanuel S Antonarakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
300
|
Hyatt C, McDougall C, Miller-Samuel S, Russo J. Genetic Counseling for Men with Prostate Cancer. Urol Clin North Am 2021; 48:323-337. [PMID: 34210488 DOI: 10.1016/j.ucl.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Germline genetic testing is becoming more prevalent in urology clinics because of precision medicine for prostate cancer treatment. Genetic testing results can also influence cancer screening discussions for patients and/or their families. An important part of germline genetic testing is genetic counseling. This article provides an overview of the historical aspects of genetic counseling, discusses the components needed to provide proper genetic counseling, summarizes genes related to hereditary prostate cancer risk, and reviews genetic privacy and genetic discrimination concerns related to germline genetic testing.
Collapse
Affiliation(s)
- Colette Hyatt
- Familial Cancer Program, The University of Vermont Medical Center, Main Campus, East Pavilion, Level 2, 111 Colchester Avenue, Burlington, VT 05401, USA.
| | - Carey McDougall
- Sidney Kimmel Cancer Center, Clinical Cancer Genetics, 1100 Walnut Street, Suite 602, Philadelphia, PA 19107, USA
| | - Susan Miller-Samuel
- Sidney Kimmel Cancer Center, Clinical Cancer Genetics, 1100 Walnut Street, Suite 602, Philadelphia, PA 19107, USA
| | - Jessica Russo
- Sidney Kimmel Cancer Center, Clinical Cancer Genetics, 1100 Walnut Street, Suite 602, Philadelphia, PA 19107, USA
| |
Collapse
|