251
|
Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study. J Nerv Ment Dis 2015; 203:786-91. [PMID: 26348589 DOI: 10.1097/nmd.0000000000000368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p < 0.05, AlphaSim corrected). The ReHo index of the left insula showed a positive correlation with the Mini-Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting.
Collapse
|
252
|
Bharath RD, Munivenkatappa A, Gohel S, Panda R, Saini J, Rajeswaran J, Shukla D, Bhagavatula ID, Biswal BB. Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front Hum Neurosci 2015; 9:513. [PMID: 26441610 PMCID: PMC4585122 DOI: 10.3389/fnhum.2015.00513] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI). Twenty-five subjects with mild head injury were longitudinally evaluated within 36 h, 3 and 6 months using resting state functional connectivity (RSFC). Region of interest (ROI) based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p < 0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within 3 months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Within this diffuse decreased connectivity in the first 3 months, there were also few regions with increased connections. This hyper connectivity involved the salience network and default mode network within 36 h, and lingual, inferior frontal and fronto-parietal networks at 3 months. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3 and 6 months after injury. Hyper connectivity of several networks supported normal recovery in the first 6 months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.
Collapse
Affiliation(s)
- Rose D. Bharath
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Ashok Munivenkatappa
- Department of Clinical Neurosciences, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Suril Gohel
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| | - Rajanikant Panda
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jamuna Rajeswaran
- Neuropsychology Unit, Department of Clinical Psychology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Indira D. Bhagavatula
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| |
Collapse
|
253
|
Mayer AR, Ling JM, Dodd AB, Gasparovic C, Klimaj SD, Meier TB. A Longitudinal Assessment of Structural and Chemical Alterations in Mixed Martial Arts Fighters. J Neurotrauma 2015; 32:1759-67. [PMID: 26096140 DOI: 10.1089/neu.2014.3833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that temporally proximal acute concussions and repetitive subconcussive head injuries may lead to long-term neurological deficits. However, the underlying mechanisms of injury and their relative time-scales are not well documented in human injury models. The current study therefore investigated whether biomarkers of brain chemistry (magnetic resonance [MR] spectroscopy: N-acetylaspartate [NAA], combined glutamate and glutamine [Glx], total creatine [Cre], choline compounds [Cho], and myo-inositol [mI]) and structure (cortical thickness, white matter [WM]/subcortical volume) differed between mixed martial artists (MMA; n = 13) and matched healthy controls (HC) without a history of contact sport participation (HC; n = 14). A subset of participants (MMA = 9; HC = 10) returned for follow-up visits, with MMA (n = 3) with clinician-documented acute concussions also scanned serially. As expected, MMA self-reported a higher incidence of previous concussions and significantly more cognitive symptoms during prior concussion recovery. Fighters also exhibited reduced memory and processing speed relative to controls on neuropsychological testing coupled with cortical thinning in the left posterior cingulate gyrus and right occipital cortex at baseline assessment. Over a 1-year follow-up period, MMA experienced a significant decrease in both WM volume and NAA concentration, as well as relative thinning in the left middle and superior frontal gyri. These longitudinal changes did not correlate with self-reported metrics of injury (i.e., fight diary). In contrast, HC did not exhibit significant longitudinal changes over a 4-month follow-up period (p > 0.05). Collectively, current results provide preliminary evidence of progressive changes in brain chemistry and structure over a relatively short time period in individuals with high exposure to repetitive head hits. These findings require replication in independent samples.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Neurology Department, School of Medicine, University of New Mexico , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Charles Gasparovic
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Timothy B Meier
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
254
|
Naeser MA, Hamblin MR. Traumatic Brain Injury: A Major Medical Problem That Could Be Treated Using Transcranial, Red/Near-Infrared LED Photobiomodulation. Photomed Laser Surg 2015; 33:443-6. [PMID: 26280257 DOI: 10.1089/pho.2015.3986] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Margaret A Naeser
- 1 VA Boston Healthcare System , Boston, Massachusetts.,2 Department of Neurology, Boston University School of Medicine , Boston, Massachusetts
| | - Michael R Hamblin
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital , Boston, Massachusetts.,4 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,5 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| |
Collapse
|
255
|
Lopez-Larson MP, Rogowska J, Yurgelun-Todd D. Aberrant orbitofrontal connectivity in marijuana smoking adolescents. Dev Cogn Neurosci 2015; 16:54-62. [PMID: 26296778 PMCID: PMC4691408 DOI: 10.1016/j.dcn.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/09/2022] Open
Abstract
Increased OFC functional connectivity was observed in heavy MJ users compared to HC. Greater MJ use correlated with increased OFC functional connectivity in MJ users. Motor impulsivity correlated with increased OFC functional connectivity in MJ users.
Introduction Orbitofrontal (OFC) circuits have been implicated in the pathophysiology of substance use disorders. The current study examined OFC functional connectivity differences in marijuana-using adolescents (MJ) and non-using healthy controls (HC). Methods Functional magnetic resonance imaging (fMRI) resting-state data were obtained on a 3 T MRI scanner on 31 HC and 43 heavy MJ smokers. Image analyses were performed between groups (MJ, HC) for the left and right OFC separately. Regression analyses between OFC functional connectivity and lifetime MJ use, age of first MJ use and impulsivity also were performed. Results Increased OFC functional connectivity to frontal and motor regions was observed in heavy MJ users compared to HC. Earlier age of first MJ use was associated with increased functional connectivity of the right OFC to motor regions. High lifetime MJ use was associated with increased OFC functional connectivity to posterior brain regions in MJ youth. Discussion Findings indicate atypical OFC functional connectivity patterns in attentional/executive, motor and reward networks in adolescents with heavy MJ use. These anomalies may be related to suboptimal decision making capacities and increased impulsivity. Results also suggest different OFC connectivity patterns may be present in adolescents with early onset of MJ use and high lifetime exposure to MJ.
Collapse
Affiliation(s)
- Melissa Patricia Lopez-Larson
- The Brain Institute, University of Utah, Salt Lake City, UT, USA; University of Utah Medical School, Salt Lake City, UT, USA
| | - Jadwiga Rogowska
- The Brain Institute, University of Utah, Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- The Brain Institute, University of Utah, Salt Lake City, UT, USA; University of Utah Medical School, Salt Lake City, UT, USA; VISN 19 MIRREC, Salt Lake City, UT, USA.
| |
Collapse
|
256
|
Bodanapally UK, Sours C, Zhuo J, Shanmuganathan K. Imaging of Traumatic Brain Injury. Radiol Clin North Am 2015; 53:695-715, viii. [PMID: 26046506 DOI: 10.1016/j.rcl.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Chandler Sours
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Kathirkamanathan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
257
|
Sours C, Zhuo J, Roys S, Shanmuganathan K, Gullapalli RP. Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients. PLoS One 2015; 10:e0134019. [PMID: 26241476 PMCID: PMC4524606 DOI: 10.1371/journal.pone.0134019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is often occult to conventional imaging techniques. However, there is growing evidence that mTBI patients who lack evidence of structural intracranial injury may develop post-concussive syndrome (PCS). We investigated longitudinal alterations in resting state functional connectivity (rs-FC) in brain networks in a population of 28 patients compared to 28 matched control participants. Rs-FC and cerebral blood flow (CBF) within the nodes of the Default Mode Network (DMN) and Task Positive Network (TPN) were assessed at three time points including acute, sub-acute, and chronic stages following mTBI. Participants received the Automated Neuropsychological Assessment Metrics (ANAM) to assess cognitive performance. Main findings indicate that despite normalized cognitive performance, chronic mTBI patients demonstrate increased rs-FC between the DMN and regions associated with the salience network (SN) and TPN compared to the control populations, as well as reduced strength of rs-FC within the DMN at the acute stage of injury. In addition, chronic mTBI patients demonstrate an imbalance in the ratio of CBF between nodes of the DMN and TPN. Furthermore, preliminary exploratory analysis suggests that compared to those without chronic PCS, patients with chronic PCS reveal an imbalance in the ratio of CBF between the DMN nodes and TPN nodes across multiple stages of recovery. Findings suggest that the altered network perfusion with the associated changes in rs-FC may be a possible predictor of which mTBI patients will develop chronic PCS.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Roys
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathirkamanthan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rao P. Gullapalli
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
258
|
Morey RA, Lancaster SC, Haswell CC. Trauma re-experiencing symptoms modulate topology of intrinsic functional networks. Biol Psychiatry 2015; 78:156-8. [PMID: 26143974 PMCID: PMC4498271 DOI: 10.1016/j.biopsych.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences , Duke University, Durham, North Carolina.; Duke-UNC Brain Imaging and Analysis Center, Duke University Durham, North Carolina.; Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina..
| | - Sarah C Lancaster
- Duke-UNC Brain Imaging and Analysis Center, Duke University Durham, North Carolina.; Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| | - Courtney C Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University Durham, North Carolina.; Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
259
|
|
260
|
Fu Y, Ma Z, Hamilton C, Liang Z, Hou X, Ma X, Hu X, He Q, Deng W, Wang Y, Zhao L, Meng H, Li T, Zhang N. Genetic influences on resting-state functional networks: A twin study. Hum Brain Mapp 2015; 36:3959-72. [PMID: 26147340 DOI: 10.1002/hbm.22890] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023] Open
Abstract
Alterations in resting-state networks (RSNs) are often associated with psychiatric and neurologic disorders. Given this critical linkage, it has been hypothesized that RSNs can potentially be used as endophenotypes for brain diseases. To validate this notion, a critical step is to show that RSNs exhibit heritability. However, the investigation of the genetic basis of RSNs has only been attempted in the default-mode network at the region-of-interest level, while the genetic control on other RSNs has not been determined yet. Here, we examined the genetic and environmental influences on eight well-characterized RSNs using a twin design. Resting-state functional magnetic resonance imaging data in 56 pairs of twins were collected. The genetic and environmental effects on each RSN were estimated by fitting the functional connectivity covariance of each voxel in the RSN to the classic ACE twin model. The data showed that although environmental effects accounted for the majority of variance in wide-spread areas, there were specific brain sites that showed significant genetic control for individual RSNs. These results suggest that part of the human brain functional connectome is shaped by genomic constraints. Importantly, this information can be useful for bridging genetic analysis and network-level assessment of brain disorders.
Collapse
Affiliation(s)
- Yixiao Fu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Ma
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania
| | - Christina Hamilton
- The Neuroscience Program, The Huck Institutes of Life Sciences, The Pennsylvania State University, Pennsylvania
| | - Zhifeng Liang
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania
| | - Xiao Hou
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xingshun Ma
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaomei Hu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingcheng Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huaqing Meng
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania.,The Neuroscience Program, The Huck Institutes of Life Sciences, The Pennsylvania State University, Pennsylvania
| |
Collapse
|
261
|
Hånell A, Greer JE, Jacobs KM. Increased Network Excitability Due to Altered Synaptic Inputs to Neocortical Layer V Intact and Axotomized Pyramidal Neurons after Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1590-8. [PMID: 25789412 DOI: 10.1089/neu.2014.3592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can produce long lasting cognitive dysfunction. There is typically no cell death and only diffuse structural injury after mTBI. Thus, functional changes in intact neurons may contribute to symptoms. We have previously shown altered intrinsic properties of axotomized and intact neurons within 2 d after a central fluid percussion injury in mice expressing yellow fluorescent protein (YFP) that allow identification of axonal state prior to recording. Here, whole-cell patch clamp recordings were used to examine synaptic properties of YFP(+) layer V pyramidal neurons. An increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was recorded from axotomized neurons at 1 d and intact neurons at 2 d after injury, likely reflecting an increased number of afferents. This also was reflected in the increased amplitude of the EPSC evoked by local extracellular stimulation for all neurons from injured cortex and increased likelihood of producing an action potential for intact cells. Field potentials recorded in superficial layers after online deep layer stimulation contained a single negative peak in controls but multiple negative peaks in injured tissue. The amplitude of this evoked negativity was significantly larger than controls over a series of stimulus intensities at both the 1 d and 2 d survival times. Interictal-like spikes never occurred in the field potential recordings from controls but were observed in 20-80% of stimulus presentations in injured cortex. Together, these results suggest an overall increase in network excitability and the production of particularly powerful (intact) neurons that have both increased intrinsic and synaptic excitability.
Collapse
Affiliation(s)
- Anders Hånell
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - John E Greer
- 2 Department of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia
| | - Kimberle M Jacobs
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
262
|
Sours C, Chen H, Roys S, Zhuo J, Varshney A, Gullapalli RP. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients. Brain Connect 2015; 5:442-50. [PMID: 25808612 DOI: 10.1089/brain.2014.0333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS-]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125-0.250 Hz, SF2: 0.060-0.125 Hz, SF3: 0.030-0.060 Hz, SF4: 0.015-0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS-), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS- patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS- group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities.
Collapse
Affiliation(s)
- Chandler Sours
- 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,2 Magnetic Resonance Research Center (MRRC) , Baltimore, Maryland
| | - Haoxing Chen
- 3 University of Maryland School of Medicine , Baltimore, Maryland
| | - Steven Roys
- 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,2 Magnetic Resonance Research Center (MRRC) , Baltimore, Maryland
| | - Jiachen Zhuo
- 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,2 Magnetic Resonance Research Center (MRRC) , Baltimore, Maryland
| | - Amitabh Varshney
- 4 Department of Computer Science, Institute for Advanced Computer Studies, University of Maryland College Park , College Park, Maryland
| | - Rao P Gullapalli
- 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,2 Magnetic Resonance Research Center (MRRC) , Baltimore, Maryland
| |
Collapse
|
263
|
Dean PJA, Sato JR, Vieira G, McNamara A, Sterr A. Long-term structural changes after mTBI and their relation to post-concussion symptoms. Brain Inj 2015; 29:1211-1218. [PMID: 26067623 DOI: 10.3109/02699052.2015.1035334] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To investigate sustained structural changes in the long-term (>1 year) after mild traumatic brain injury (mTBI) and their relationship to ongoing post-concussion syndrome (PCS). RESEARCH DESIGN Morphological and structural connectivity magnetic resonance imaging (MRI) data were acquired from 16 participants with mTBI and nine participants without previous head injury. MAIN OUTCOMES AND RESULTS Participants with mTBI had less prefrontal grey matter and lower fractional anisotropy (FA) in the anterior corona radiata and internal capsule. Furthermore, PCS severity was associated with less parietal lobe grey matter and lower FA in the corpus callosum. CONCLUSIONS There is evidence for both white and grey matter damage in participants with mTBI over 1 year after injury. Furthermore, these structural changes are greater in those that report more PCS symptoms, suggesting a neurophysiological basis for these persistent symptoms.
Collapse
Affiliation(s)
- Philip J A Dean
- a Department of Psychology , University of Surrey , Guildford , UK
| | - Joao Ricardo Sato
- b Center of Mathematics, Computation and Cognition, Universidade Federal do ABC , São Paulo , Brazil , and.,c NIF/LIM44, Departamento de Radiologia da Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Gilson Vieira
- c NIF/LIM44, Departamento de Radiologia da Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Adam McNamara
- a Department of Psychology , University of Surrey , Guildford , UK
| | - Annette Sterr
- a Department of Psychology , University of Surrey , Guildford , UK
| |
Collapse
|
264
|
Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model. Sci Rep 2015; 5:11178. [PMID: 26058556 PMCID: PMC4461921 DOI: 10.1038/srep11178] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/19/2015] [Indexed: 12/04/2022] Open
Abstract
Single and repeated sports-related mild traumatic brain injury (mTBI), also referred to as concussion, can result in chronic post-concussive syndrome (PCS), neuropsychological and cognitive deficits, or chronic traumatic encephalopathy (CTE). However PCS is often difficult to diagnose using routine clinical, neuroimaging or laboratory evaluations, while CTE currently only can be definitively diagnosed postmortem. We sought to develop an animal model to simulate human repetitive concussive head injury for systematic study. In this study, mice received single or multiple head impacts by a stereotaxic impact device with a custom-made rubber tip-fitted impactor. Dynamic changes in MRI, neurobiochemical markers (Tau hyperphosphorylation and glia activation in brain tissues) and neurobehavioral functions such as anxiety, depression, motor function and cognitive function at various acute/subacute (1-7 day post-injury) and chronic (14-60 days post-injury) time points were examined. To explore the potential biomarkers of rCHI, serum levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau) were also monitored at various time points. Our results show temporal dynamics of MRI consistent with structural perturbation in the acute phase and neurobiochemical changes (P-Tau and GFAP induction) in the subacute and chronic phase as well as development of chronic neurobehavioral changes, which resemble those observed in mTBI patients.
Collapse
|
265
|
Visser-Keizer AC, Hogenkamp A, Westerhof-Evers HJ, Egberink IJ, Spikman JM. Dutch Multifactor Fatigue Scale: A New Scale to Measure the Different Aspects of Fatigue After Acquired Brain Injury. Arch Phys Med Rehabil 2015; 96:1056-63. [DOI: 10.1016/j.apmr.2014.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
266
|
Arenivas A, Diaz-Arrastia R, Spence J, Cullum CM, Krishnan K, Bosworth C, Culver C, Kennard B, Marquez de la Plata C. Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav 2015; 8:407-19. [PMID: 22847713 DOI: 10.1007/s11682-012-9191-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The default mode network (DMN) is a reliably elicited functional neural network with potential clinical implications. Its discriminant and prognostic utility following traumatic axonal injury (TAI) have not been previously investigated. The present study used three approaches to analyze DMN functional connectedness, including a whole-brain analysis [A1], network-specific analysis [A2], and between-node (edge) analysis [A3]. The purpose was to identify the utility of each method in distinguishing between healthy and brain-injured individuals, and determine whether observed differences have clinical significance. Resting-state fMRI was acquired from 25 patients with TAI and 17 healthy controls. Patients were scanned 6-11 months post-injury, and functional and neurocognitive outcomes were assessed the same day. Using all three approaches, TAI subjects revealed significantly weaker functional connectivity (FC) than controls, and binary logistic regressions demonstrated all three approaches have discriminant value. Clinical outcomes were not correlated with FC using any approach. Results suggest that compromise to the functional connectedness of the DMN after TAI can be identified using resting-state FC; however, the degree of functional compromise to this network, as measured in this study, may not have clinical implications in chronic TAI.
Collapse
Affiliation(s)
- Ana Arenivas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
List J, Ott S, Bukowski M, Lindenberg R, Flöel A. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults. Front Hum Neurosci 2015; 9:228. [PMID: 26052275 PMCID: PMC4440350 DOI: 10.3389/fnhum.2015.00228] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials.
Collapse
Affiliation(s)
- Jonathan List
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Stefanie Ott
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Martin Bukowski
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Robert Lindenberg
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany ; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Charité Universitätsmedizin Berlin Berlin, Germany ; Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin Berlin, Germany ; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
268
|
Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period. PLoS One 2015; 10:e0126110. [PMID: 25962067 PMCID: PMC4427352 DOI: 10.1371/journal.pone.0126110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/29/2015] [Indexed: 11/19/2022] Open
Abstract
Functional neuroimaging studies in mild traumatic brain injury (mTBI) have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI) and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures) within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma). The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject’s reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D.) hours after injury (time 1). At follow up (8.7, + 1.2 S.D., days after injury, time 2), 18 of mTBI subjects (64%) reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects compared to controls. Increases in activation were greater in those mTBI subjects without cognitive recovery. As workload increased in mTBI subjects, activation increased in cortical regions in the right hemisphere. In summary, we found neuroimaging evidence for working memory deficits during the first week following mild traumatic brain injury. Subjects with persistent cognitive symptoms after mTBI had increased requirement for posterior cingulate activation to complete memory tasks at 1 week following a brain injury. These results provide insight into functional activation patterns during initial recovery from mTBI and expose the regional activation networks that may be involved in working memory deficits.
Collapse
|
269
|
Lim YW, Meyer NP, Shah AS, Budde MD, Stemper BD, Olsen CM. Voluntary Alcohol Intake following Blast Exposure in a Rat Model of Mild Traumatic Brain Injury. PLoS One 2015; 10:e0125130. [PMID: 25910266 PMCID: PMC4409117 DOI: 10.1371/journal.pone.0125130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Alcoholism is a frequent comorbidity following mild traumatic brain injury (mTBI), even in patients without a previous history of alcohol dependence. Despite this correlational relationship, the extent to which the neurological effects of mTBI contribute to the development of alcoholism is unknown. In this study, we used a rodent blast exposure model to investigate the relationship between mTBI and voluntary alcohol drinking in alcohol naïve rats. We have previously demonstrated in Sprague Dawley rats that blast exposure leads to microstructural abnormalities in the medial prefrontal cortex (mPFC) and other brain regions that progress from four to thirty days. The mPFC is a brain region implicated in alcoholism and drug addiction, although the impact of mTBI on drug reward and addiction using controlled models remains largely unexplored. Alcohol naïve Sprague Dawley rats were subjected to a blast model of mTBI (or sham conditions) and then tested in several common measures of voluntary alcohol intake. In a seven-week intermittent two-bottle choice alcohol drinking test, sham and blast exposed rats had comparable levels of alcohol intake. In a short access test session at the conclusion of the two-bottle test, blast rats fell into a bimodal distribution, and among high intake rats, blast treated animals had significantly elevated intake compared to shams. We found no effect of blast when rats were tested for an alcohol deprivation effect or compulsive drinking in a quinine adulteration test. Throughout the experiment, alcohol drinking was modest in both groups, consistent with other studies using Sprague Dawley rats. In conclusion, blast exposure had a minimal impact on overall alcohol intake in Sprague Dawley rats, although intake was increased in a subpopulation of blast animals in a short access session following intermittent access exposure.
Collapse
Affiliation(s)
- Yi Wei Lim
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nathan P. Meyer
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Matthew D. Budde
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Brian D. Stemper
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States of America
| | - Christopher M. Olsen
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
270
|
Diwakar M, Harrington DL, Maruta J, Ghajar J, El-Gabalawy F, Muzzatti L, Corbetta M, Huang MX, Lee RR. Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. NEUROIMAGE-CLINICAL 2015; 8:210-23. [PMID: 26106545 PMCID: PMC4473731 DOI: 10.1016/j.nicl.2015.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/18/2023]
Abstract
A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are adequately sensitive in detecting mild head injuries. MRI and CT are typically negative in mTBI patients with persistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration. Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI patients, especially when tracking an occluded target. This finding suggests deficient internal anticipatory control in mTBI, the neural underpinnings of which are poorly understood. The present study investigated the neuronal bases for deficient anticipatory control during visual tracking in 25 chronic mTBI patients with persistent PCS symptoms and 25 healthy control subjects. The task was performed while undergoing magnetoencephalography (MEG), which allowed us to examine whether neural dysfunction associated with anticipatory control deficits was due to altered alpha, beta, and/or gamma activity. Neuropsychological examinations characterized cognition in both groups. During MEG recordings, subjects tracked a predictably moving target that was either continuously visible or randomly occluded (gap condition). MEG source-imaging analyses tested for group differences in alpha, beta, and gamma frequency bands. The results showed executive functioning, information processing speed, and verbal memory deficits in the mTBI group. Visual tracking was impaired in the mTBI group only in the gap condition. Patients showed greater error than controls before and during target occlusion, and were slower to resynchronize with the target when it reappeared. Impaired tracking concurred with abnormal beta activity, which was suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate and frontal–temporal areas. Regional beta-amplitude demonstrated high classification accuracy (92%) compared to eye-tracking (65%) and neuropsychological variables (80%). These findings show that deficient internal anticipatory control in mTBI is associated with altered beta activity, which is remarkably sensitive given the heterogeneity of injuries. Neuropsychological test performance was impaired in mTBI patients. Visual tracking was impaired in the gap task, where targets were randomly occluded. Impaired visual tracking concurred with abnormal MEG beta activity. Beta was suppressed in parietal and enhanced in caudate and frontal–temporal areas. Regional MEG beta-amplitude demonstrated high classification accuracy (92%).
Collapse
Affiliation(s)
- Mithun Diwakar
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Deborah L Harrington
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jun Maruta
- Brain Trauma Foundation, New York, NY, USA
| | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, USA ; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Fady El-Gabalawy
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Laura Muzzatti
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Roland R Lee
- Department of Radiology, University of California, San Diego, San Diego, CA, USA ; Radiology and Research Services, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
271
|
Dodd AB, Epstein K, Ling JM, Mayer AR. Diffusion tensor imaging findings in semi-acute mild traumatic brain injury. J Neurotrauma 2015; 31:1235-48. [PMID: 24779720 DOI: 10.1089/neu.2014.3337] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 10 years have seen a rapid increase in the use of diffusion tensor imaging to identify biomarkers of traumatic brain injury (TBI). Although the literature generally indicates decreased anisotropic diffusion at more chronic injury periods and in more severe injuries, considerable debate remains regarding the direction (i.e., increased or decreased) of anisotropic diffusion in the acute to semi-acute phase (here defined as less than 3 months post-injury) of mild TBI (mTBI). A systematic review of the literature was therefore performed to (1) determine the prevalence of different anisotropic diffusion findings (increased, decreased, bidirectional, or null) during the semi-acute injury phase of mTBI and to (2) identify clinical (e.g., age of injury, post-injury scan time, etc.) and experimental factors (e.g., number of unique directions, field strength) that may influence these findings. Results from the literature review indicated 31 articles with independent samples of semi-acute mTBI patients, with 13 studies reporting decreased anisotropic diffusion, 11 reporting increased diffusion, 2 reporting bidirectional findings, and 5 reporting null findings. Chi-squared analyses indicated that the total number of diffusion-weighted (DW) images was significantly associated with findings of either increased (DW ≥ 30) versus decreased (DW ≤ 25) anisotropic diffusion. Other clinical and experimental factors were not statistically significant for direction of anisotropic diffusion, but these results may have been limited by the relatively small number of studies within each domain (e.g., pediatric studies). In summary, current results indicate roughly equivalent number of studies reporting increased versus decreased anisotropic diffusion during semi-acute mTBI, with the number of unique diffusion images being statistically associated with the direction of findings.
Collapse
Affiliation(s)
- Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | |
Collapse
|
272
|
Chong CD, Schwedt TJ. White Matter Damage and Brain Network Alterations in Concussed Patients: A Review of Recent Diffusion Tensor Imaging and Resting-State Functional Connectivity Data. Curr Pain Headache Rep 2015; 19:485. [DOI: 10.1007/s11916-015-0485-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
273
|
Arnemann KL, Chen AJW, Novakovic-Agopian T, Gratton C, Nomura EM, D'Esposito M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology 2015; 84:1568-74. [PMID: 25788557 DOI: 10.1212/wnl.0000000000001476] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury. METHODS Patients with acquired brain injury (n = 11) participated in 5 weeks of cognitive training and a comparison condition (brief education) in a crossover intervention study design. We quantified the measure of functional brain network organization, modularity, from functional connectivity networks during a state of tonic attention regulation measured during fMRI scanning before the intervention conditions. We examined the relationship of baseline modularity with pre- to posttraining changes in neuropsychological measures of attention and executive control. RESULTS The modularity of brain network organization at baseline predicted improvement in attention and executive function after cognitive training, but not after the comparison intervention. Individuals with higher baseline modularity exhibited greater improvements with cognitive training, suggesting that a more modular baseline network state may contribute to greater adaptation in response to cognitive training. CONCLUSIONS Brain network properties such as modularity provide valuable information for understanding mechanisms that influence rehabilitation of cognitive function after brain injury, and may contribute to the discovery of clinically relevant biomarkers that could guide rehabilitation efforts.
Collapse
Affiliation(s)
- Katelyn L Arnemann
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA.
| | - Anthony J-W Chen
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA
| | - Tatjana Novakovic-Agopian
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA
| | - Caterina Gratton
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA
| | - Emi M Nomura
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA
| | - Mark D'Esposito
- From the Veterans Administration Northern California Health Care System (K.L.A., A.J.-W.C., T.N.-A., M.D.), Martinez; Helen Wills Neuroscience Institute and Department of Psychology (K.L.A., A.J.-W.C., C.G., E.M.N., M.D.), University of California, Berkeley; Department of Neurology (A.J.-W.C., T.N.-A., M.D.), University of California, San Francisco; Veterans Administration Medical Center (A.J.-W.C., T.N.-A.), San Francisco; and California Pacific Medical Center (T.N.-A.), San Francisco, CA
| |
Collapse
|
274
|
Mayer AR, Ling JM, Allen EA, Klimaj SD, Yeo RA, Hanlon FM. Static and Dynamic Intrinsic Connectivity following Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1046-55. [PMID: 25318005 DOI: 10.1089/neu.2014.3542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common neurological disorder and is typically characterized by temporally limited cognitive impairment and emotional symptoms. Previous examinations of intrinsic resting state networks in mTBI have primarily focused on abnormalities in static functional connectivity, and deficits in dynamic functional connectivity have yet to be explored in this population. Resting-state data was collected on 48 semi-acute (mean = 14 days post-injury) mTBI patients and 48 matched healthy controls. A high-dimensional independent component analysis (N = 100) was utilized to parcellate intrinsic connectivity networks (ICN), with a priori hypotheses focusing on the default-mode network (DMN) and sub-cortical structures. Dynamic connectivity was characterized using a sliding window approach over 126 temporal epochs, with standard deviation serving as the primary outcome measure. Finally, distribution-corrected z-scores (DisCo-Z) were calculated to investigate changes in connectivity in a spatially invariant manner on a per-subject basis. Following appropriate correction for multiple comparisons, no significant group differences were evident on measures of static or dynamic connectivity within a priori ICN. Reduced (HC > mTBI patients) static connectivity was observed in the DMN at uncorrected (p < 0.005) thresholds. Finally, a trend (p = 0.07) for decreased dynamic connectivity in patients across all ICN was observed during spatially invariant analyses (DisCo-Z). In the semi-acute phase of recovery, mTBI was not reliably associated with abnormalities in static or dynamic functional connectivity within the DMN or sub-cortical structures.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico.,2 Department of Neurology, University of New Mexico School of Medicine , Albuquerque, New Mexico.,3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Josef M Ling
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Elena A Allen
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Stefan D Klimaj
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | - Ronald A Yeo
- 3 Department of Psychology, University of New Mexico , Albuquerque, New Mexico
| | - Faith M Hanlon
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| |
Collapse
|
275
|
Iraji A, Benson RR, Welch RD, O'Neil BJ, Woodard JL, Ayaz SI, Kulek A, Mika V, Medado P, Soltanian-Zadeh H, Liu T, Haacke EM, Kou Z. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses. J Neurotrauma 2015; 32:1031-45. [PMID: 25285363 DOI: 10.1089/neu.2014.3610] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting.
Collapse
Affiliation(s)
- Armin Iraji
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | | | - Robert D Welch
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Brian J O'Neil
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - John L Woodard
- 4 Department of Psychology, Wayne State University , Detroit, Michigan
| | - Syed Imran Ayaz
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Andrew Kulek
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Valerie Mika
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Patrick Medado
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | | | - Tianming Liu
- 6 Department of Computer Science, University of Georgia , Athens, Georgia
| | - E Mark Haacke
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,7 Department of Radiology, Wayne State University , Detroit, Michigan
| | - Zhifeng Kou
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,7 Department of Radiology, Wayne State University , Detroit, Michigan
| |
Collapse
|
276
|
Nathan DE, Oakes TR, Yeh PH, French LM, Harper JF, Liu W, Wolfowitz RD, Wang BQ, Graner JL, Riedy G. Exploring Variations in Functional Connectivity of the Resting State Default Mode Network in Mild Traumatic Brain Injury. Brain Connect 2015; 5:102-14. [DOI: 10.1089/brain.2014.0273] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dominic E. Nathan
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Uniformed Services University of The Health Sciences, Bethesda, Maryland
- Walter Reed National Military Medical Center, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Terrence R. Oakes
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Ping Hong Yeh
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Louis M. French
- Walter Reed National Military Medical Center, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Rockville, Maryland
| | - Jamie F. Harper
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Wei Liu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Rachel D. Wolfowitz
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Uniformed Services University of The Health Sciences, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Bin Quan Wang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - John L. Graner
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gerard Riedy
- National Capital Neuroimaging Consortium, Bethesda, Maryland
- Uniformed Services University of The Health Sciences, Bethesda, Maryland
- Department of Neuroimaging, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Rockville, Maryland
| |
Collapse
|
277
|
Romero K, Lobaugh NJ, Black SE, Ehrlich L, Feinstein A. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Res 2015; 231:15-24. [PMID: 25466236 DOI: 10.1016/j.pscychresns.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis.
Collapse
Affiliation(s)
- Kristoffer Romero
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5.
| | - Nancy J Lobaugh
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Sandra E Black
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5; L.C. Campbell Cognitive Neurology Research Unit, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5; Heart and Stroke Foundation Centre for Stroke Recovery, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | - Lisa Ehrlich
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | - Anthony Feinstein
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| |
Collapse
|
278
|
Functional connectivity among brain networks in continuous feedback of finger force. Neuroscience 2015; 289:134-43. [PMID: 25595972 DOI: 10.1016/j.neuroscience.2014.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022]
Abstract
Motor feedback usually engages distinct sensory and cognitive processes based on different feedback conditions, e.g., the real and sham feedbacks. It was thought that these processes may rely on the functional connectivity among the brain networks. However, it remains unclear whether there is a difference in the network connectivity between the two feedback conditions. To address this issue, we carried out a functional magnetic resonance imaging (fMRI) study by employing a new paradigm, i.e., continuous feedback (8min) of finger force. Using independent component analysis and functional connectivity analysis, we found that as compared with the sham feedback, the real feedback recruited stronger negative connectivity between the executive network (EN) and the posterior default mode network (pDMN). More intriguingly, the left frontal parietal network (lFPN) exhibits positive connectivity with the pDMN in the real feedback while in the sham feedback, the lFPN shows connectivity with the EN. These results suggest that the connectivity among EN, pDMN, lFPN could differ depending on the real and sham feedbacks, and the lFPN may balance the competition between the pDMN and EN, thus supporting the sensory and cognitive processes of the motor feedback.
Collapse
|
279
|
Vergara VM, Damaraju E, Mayer AB, Miller R, Cetin MS, Calhoun V. The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:5432-5435. [PMID: 26737520 DOI: 10.1109/embc.2015.7319620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Traumatic brain injury (TBI) can adversely affect a person's thinking, memory, personality and behavior. For this reason new and better biomarkers are being investigated. Resting state functional network connectivity (rsFNC) derived from functional magnetic resonance (fMRI) imaging is emerging as a possible biomarker. One of the main concerns with this technique is the appropriateness of methods used to correct for subject movement. In this work we used 50 mild TBI patients and matched healthy controls to explore the outcomes obtained from different fMRI data preprocessing. Results suggest that correction for motion variance before spatial smoothing is the best alternative. Following this preprocessing option a significant group difference was found between cerebellum and supplementary motor area/paracentral lobule. In this case the mTBI group exhibits an increase in rsFNC.
Collapse
|
280
|
Abstract
Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at autopsy; however, promising efforts to develop imaging, spinal fluid, and peripheral blood biomarkers are underway to diagnose and monitor the course of disease in living subjects.
Collapse
Affiliation(s)
- Ann C Mckee
- VA Boston HealthCare System; Center for the Study of Traumatic Encephalopathy, Alzheimer's Disease Center, and Departments of Neurology and Pathology, Boston University School of Medicine, Boston, MA, USA.
| | - Daniel H Daneshvar
- VA Boston HealthCare System; Center for the Study of Traumatic Encephalopathy, Alzheimer's Disease Center, and Departments of Neurology and Pathology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
281
|
Irimia A, Van Horn JD. Functional neuroimaging of traumatic brain injury: advances and clinical utility. Neuropsychiatr Dis Treat 2015; 11:2355-65. [PMID: 26396520 PMCID: PMC4576900 DOI: 10.2147/ndt.s79174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Functional deficits due to traumatic brain injury (TBI) can have significant and enduring consequences upon patients' life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques - especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography - for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI.
Collapse
Affiliation(s)
- Andrei Irimia
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Darrell Van Horn
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
282
|
Risen SR, Barber AD, Mostofsky SH, Suskauer SJ. Altered functional connectivity in children with mild to moderate TBI relates to motor control. J Pediatr Rehabil Med 2015; 8:309-19. [PMID: 26684071 PMCID: PMC4861163 DOI: 10.3233/prm-150349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Functionally relevant alterations in resting state fMRI (rs-fMRI) connectivity have been identified in adults with traumatic brain injury (TBI). We evaluated rs-fMRI connectivity in children with TBI and explored the relationship between altered connectivity and measures of neurological function. METHODS Rs-fMRI was obtained in 14 children after TBI and 14 controls matched for age, sex, and handedness. Whole-brain connectivity was evaluated separately for the default mode network (DMN) and dorsal attention network (DAN); Between-group contrasts identified regions with altered connectivity between TBI and control cohorts. In children with TBI, the relationships between regions of altered connectivity and performance on relevant functional measures were examined. RESULTS Compared to controls, children with TBI showed significantly greater connectivity between DMN and right dorsal premotor cortex (RdPM) and between DAN and bilateral sensorimotor cortex (SM1). In children with TBI, greater DMN-RdPM connectivity was associated with worse motor performance whereas greater DAN-LSM1 connectivity was associated with better motor performance; furthermore, DMN-RdPM and DAN-LSM1 connectivity were negatively correlated. CONCLUSION Rs-fMRI reveals significant altered connectivity in children with TBI compared to controls. After TBI in children, patterns of altered connectivity appear divergent, with increased DMN-motor network connectivity associated with worse motor control whereas increased DAN-motor network connectivity appears compensatory.
Collapse
Affiliation(s)
- S R Risen
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A D Barber
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - S J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
283
|
Dean PJA, Sato JR, Vieira G, McNamara A, Sterr A. Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome. Brain Behav 2015; 5:45-61. [PMID: 25722949 PMCID: PMC4321394 DOI: 10.1002/brb3.292] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Persistent postconcussion syndrome (PCS) occurs in around 5-10% of individuals after mild traumatic brain injury (mTBI), but research into the underlying biology of these ongoing symptoms is limited and inconsistent. One reason for this could be the heterogeneity inherent to mTBI, with individualized injury mechanisms and psychological factors. A multimodal imaging study may be able to characterize the injury better. AIM To look at the relationship between functional (fMRI), structural (diffusion tensor imaging), and metabolic (magnetic resonance spectroscopy) data in the same participants in the long term (>1 year) after injury. It was hypothesized that only those mTBI participants with persistent PCS would show functional changes, and that these changes would be related to reduced structural integrity and altered metabolite concentrations. METHODS Functional changes associated with persistent PCS after mTBI (>1 year postinjury) were investigated in participants with and without PCS (both n = 8) and non-head injured participants (n = 9) during performance of working memory and attention/processing speed tasks. Correlation analyses were performed to look at the relationship between the functional data and structural and metabolic alterations in the same participants. RESULTS There were no behavioral differences between the groups, but participants with greater PCS symptoms exhibited greater activation in attention-related areas (anterior cingulate), along with reduced activation in temporal, default mode network, and working memory areas (left prefrontal) as cognitive load was increased from the easiest to the most difficult task. Functional changes in these areas correlated with reduced structural integrity in corpus callosum and anterior white matter, and reduced creatine concentration in right dorsolateral prefrontal cortex. CONCLUSION These data suggest that the top-down attentional regulation and deactivation of task-irrelevant areas may be compensating for the reduction in working memory capacity and variation in white matter transmission caused by the structural and metabolic changes after injury. This may in turn be contributing to secondary PCS symptoms such as fatigue and headache. Further research is required using multimodal data to investigate the mechanisms of injury after mTBI, but also to aid individualized diagnosis and prognosis.
Collapse
Affiliation(s)
| | - Joao R Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABCSão Paulo, Brazil
- NIF/LIM44, Departamento de Radiologia da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| | - Gilson Vieira
- NIF/LIM44, Departamento de Radiologia da Faculdade de Medicina da Universidade de São PauloSão Paulo, Brazil
| | - Adam McNamara
- School of Psychology, University Of SurreyGuildford, UK
| | - Annette Sterr
- School of Psychology, University Of SurreyGuildford, UK
| |
Collapse
|
284
|
Zhu DC, Covassin T, Nogle S, Doyle S, Russell D, Pearson RL, Monroe J, Liszewski CM, DeMarco JK, Kaufman DI. A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. J Neurotrauma 2014; 32:327-41. [PMID: 25116397 DOI: 10.1089/neu.2014.3413] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Current diagnosis and monitoring of sports-related concussion rely on clinical signs and symptoms, and balance, vestibular, and neuropsychological examinations. Conventional brain imaging often does not reveal abnormalities. We sought to assess if the longitudinal change of functional and structural connectivity of the default-mode network (DMN) can serve as a potential biomarker. Eight concussed Division I collegiate football student-athletes in season (one participated twice) and 11 control subjects participated in this study. ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing) was administered over the course of recovery. High-resolution three dimensional T1-weighted, T2*-weighted diffusion-tensor images and resting-state functional magnetic resonance imaging (rs-fMRI) scans were collected from each subject within 24 h, 7±1 d and 30±1 d after concussion. Both network based and whole-brain based functional correlation analyses on DMN were performed. ImPACT findings demonstrated significant cognitive impairment across multiple categories and a significant increase of symptom severity on Day 1 following a concussion but full recovery by 6.0±2.4 d. While the structural connectivity within DMN and gross anatomy appeared unchanged, a significantly reduced functional connectivity within DMN from Day 1 to Day 7 was found in the concussed group in this small pilot study. This reduction was seen in eight of our nine concussion cases. Compared with the control group, there appears a general trend of increased DMN functional connectivity on Day 1, a significant drop on Day 7, and partial recovery on Day 30. The results of this pilot study suggest that the functional connectivity of DMN measured with longitudinal rs-fMRI can serve as a potential biomarker to monitor the dynamically changing brain function after sports-related concussion, even in patients who have shown clinical improvement.
Collapse
Affiliation(s)
- David C Zhu
- 1 Department of Radiology, Michigan State University , East Lansing, Michigan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci Biobehav Rev 2014; 49:8-18. [PMID: 25434880 DOI: 10.1016/j.neubiorev.2014.11.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
Functional magnetic resonance imaging (fMRI) offers great promise for elucidating the neuropathology associated with a single or repetitive mild traumatic brain injury (mTBI). The current review discusses the physiological underpinnings of the blood-oxygen level dependent response and how trauma affects the signal. Methodological challenges associated with fMRI data analyses are considered next, followed by a review of current mTBI findings. The majority of evoked studies have examined working memory and attentional functioning, with results suggesting a complex relationship between cognitive load/attentional demand and neuronal activation. Researchers have more recently investigated how brain trauma affects functional connectivity, and the benefits/drawbacks of evoked and functional connectivity studies are also discussed. The review concludes by discussing the major clinical challenges associated with fMRI studies of brain-injured patients, including patient heterogeneity and variations in scan-time post-injury. We conclude that the fMRI signal represents a complex filter through which researchers can measure the physiological correlates of concussive symptoms, an important goal for the burgeoning field of mTBI research.
Collapse
|
286
|
Borich M, Babul AN, Yuan PH, Boyd L, Virji-Babul N. Alterations in resting-state brain networks in concussed adolescent athletes. J Neurotrauma 2014; 32:265-71. [PMID: 25010041 DOI: 10.1089/neu.2013.3269] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion in adolescents is a major public health issue; however, little is known about the underlying changes in functional brain connectivity. We evaluated connectivity of resting-state brain networks to determine whether alterations in specific networks distinguish adolescents with sports-related concussion from a group of healthy, active control adolescents. Twelve adolescents with a clinical diagnosis of subacute concussion and ten healthy adolescents matched for age, gender, and physical activity completed functional magnetic resonance imaging (fMRI) scanning. Functional connectivity of resting-state brain networks was evaluated in both groups using probabilistic independent component analysis (ICA). Altered functional connectivity was found within three resting-state networks in adolescents with concussion. Specifically, we noted: a) alterations within the default mode network; b) increased connectivity in the right frontal pole in the executive function network; and c) increased connectivity in the left frontal operculum cortex associated with the ventral attention network. This preliminary report shows that whole-brain functional connectivity is altered in networks related to cognition and attention in adolescents in the subacute phase following sports-related concussion. This first report in adolescents should be used to inform future studies in larger cohorts of adolescents with sports-related concussion. Increased knowledge of these changes may lead to improvements in clinical management and help to develop rehabilitation programs.
Collapse
Affiliation(s)
- Michael Borich
- 1 Department of Physical Therapy, University of British Columbia , Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
287
|
Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, Lv J, Han J, Guo L, Liu T. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage 2014; 102 Pt 1:184-91. [PMID: 24103849 PMCID: PMC4012015 DOI: 10.1016/j.neuroimage.2013.09.071] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/20/2013] [Accepted: 09/27/2013] [Indexed: 01/20/2023] Open
Abstract
The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain's white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come.
Collapse
Affiliation(s)
- Dajiang Zhu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science, The University of Georgia, Athens, GA, USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science, The University of Georgia, Athens, GA, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science, The University of Georgia, Athens, GA, USA
| | - Ning Yang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Jinglei Lv
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science, The University of Georgia, Athens, GA, USA; BioImaging Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
288
|
Robinson ME, Lindemer ER, Fonda JR, Milberg WP, McGlinchey RE, Salat DH. Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. Hum Brain Mapp 2014; 36:911-22. [PMID: 25366378 DOI: 10.1002/hbm.22675] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Although there is emerging data on the effects of blast-related concussion (or mTBI) on cognition, the effects of blast exposure itself on the brain have only recently been explored. Toward this end, we examine functional connectivity to the posterior cingulate cortex, a primary region within the default mode network (DMN), in a cohort of 134 Iraq and Afghanistan Veterans characterized for a range of common military-associated comorbidities. Exposure to a blast at close range (<10 meters) was associated with decreased connectivity of bilateral primary somatosensory and motor cortices, and these changes were not different from those seen in participants with blast-related mTBI. These results remained significant when clinical factors such as sleep quality, chronic pain, or post traumatic stress disorder were included in the statistical model. In contrast, differences in functional connectivity based on concussion history and blast exposures at greater distances were not apparent. Despite the limitations of a study of this nature (e.g., assessments long removed from injury, self-reported blast history), these data demonstrate that blast exposure per se, which is prevalent among those who served in Iraq and Afghanistan, may be an important consideration in Veterans' health. It further offers a clinical guideline for determining which blasts (namely, those within 10 meters) are likely to lead to long-term health concerns and may be more accurate than using concussion symptoms alone.
Collapse
Affiliation(s)
- Meghan E Robinson
- Neuroimaging Research for Veterans Center (NeRVe), VA Boston Healthcare System, Boston, Massachusetts; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
289
|
Shu IW, Onton JA, O'Connell RM, Simmons AN, Matthews SC. Combat veterans with comorbid PTSD and mild TBI exhibit a greater inhibitory processing ERP from the dorsal anterior cingulate cortex. Psychiatry Res 2014; 224:58-66. [PMID: 25150386 DOI: 10.1016/j.pscychresns.2014.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 05/10/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings.
Collapse
Affiliation(s)
- I-Wei Shu
- VISN-22 Mental Illness, Research, Education and Clinical Center, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States; Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States.
| | - Julie A Onton
- Naval Health Research Center, 140 Sylvester Road, Department162, San Diego, CA 92106, United States; Institute for Neural Computation, University of California San Diego, 9500 Gilman Drive, #0523, La Jolla, CA 92093, United States
| | - Ryan M O'Connell
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, #9116A, La Jolla, CA 92037, United States
| | - Alan N Simmons
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States; Veterans Affairs San Diego Healthcare System Center of Excellence for Stress and Mental Health, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States
| | - Scott C Matthews
- VISN-22 Mental Illness, Research, Education and Clinical Center, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States; Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, #9116A, La Jolla, CA 92037, United States; Veterans Affairs San Diego Healthcare System Center of Excellence for Stress and Mental Health, 3350 La Jolla Village Drive, #116A, San Diego, CA 92161, United States
| |
Collapse
|
290
|
Titus DJ, Furones C, Atkins CM, Dietrich WD. Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Exp Neurol 2014; 263:254-62. [PMID: 25447938 DOI: 10.1016/j.expneurol.2014.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 02/04/2023]
Abstract
Mild elevations in core temperature can occur in individuals involved in strenuous activities that are risky for potentially sustaining a mild traumatic brain injury (mTBI) or concussion. Recently, we have discovered that mild elevations in brain temperature can significantly aggravate the histopathological consequences of mTBI. However, whether this exacerbation of brain pathology translates into behavioral deficits is unknown. Therefore, we investigated the behavioral consequences of elevating brain temperature to mildly hyperthermic levels prior to mTBI. Adult male Sprague Dawley rats underwent mild fluid-percussion brain injury or sham surgery while normothermic (37 °C) or hyperthermic (39 °C) and were allowed to recover for 7 days. Animals were then assessed for cognition using the water maze and cue and contextual fear conditioning. We found that mTBI alone at normothermia had no effect on long-term cognitive measures whereas mTBI animals that were hyperthermic for 15 min prior to and for 4h after brain injury were significantly impaired on long-term retention for both the water maze and fear conditioning. In contrast, hyperthermic mTBI animals cooled within 15 min to normothermia demonstrated no significant long-term cognitive deficits. Mild TBI irrespective of temperature manipulations resulted in significant short-term working memory deficits. Cortical atrophy and contusions were detected in all mTBI treatment groups and contusion volume was significantly less in hyperthermic mTBI animals that were cooled as compared to hyperthermic mTBI animals that remained hyperthermic. These results indicate that brain temperature is an important variable for mTBI outcome and that mildly elevated temperatures at the time of injury result in persistent cognitive deficits. Importantly, cooling to normothermia after mTBI prevents the development of long-term cognitive deficits caused by hyperthermia. Reducing temperature to normothermic levels soon after mTBI represents a rational approach to potentially mitigate the long-term consequences of mTBI.
Collapse
Affiliation(s)
- David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
291
|
Abbas K, Shenk TE, Poole VN, Breedlove EL, Leverenz LJ, Nauman EA, Talavage TM, Robinson ME. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect 2014; 5:91-101. [PMID: 25242171 DOI: 10.1089/brain.2014.0279] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.
Collapse
Affiliation(s)
- Kausar Abbas
- 1 School of Electrical and Computer Engineering, Purdue University , West Lafayette, Indiana
| | | | | | | | | | | | | | | |
Collapse
|
292
|
Johnson B, Neuberger T, Gay M, Hallett M, Slobounov S. Effects of subconcussive head trauma on the default mode network of the brain. J Neurotrauma 2014; 31:1907-13. [PMID: 25010992 DOI: 10.1089/neu.2014.3415] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although they are less severe than a full blown concussive episodes, subconcussive impacts happen much more frequently and current research has suggested this form of head trauma may have an accumulative effect and lead to neurological impairment later in life. To investigate the acute effects that subconcussive head trauma may have on the default mode network of the brain resting-state, functional magnetic resonance was performed. Twenty-four current collegiate rugby players were recruited and all subjects underwent initial scanning 24 h prior to a scheduled full contact game to provide a baseline. Follow-up scanning of the rugby players occurred within 24 h following that game to assess acute effects from subconcussive head trauma. Differences between pre-game and post-game scans showed both increased connectivity from the left supramarginal gyrus to bilateral orbitofrontal cortex and decreased connectivity from the retrosplenial cortex and dorsal posterior cingulate cortex. To assess whether or not a history of previous concussion may lead to a differential response following subconcussive impacts, subjects were further divided into two subgroups based upon history of previous concussion. Individuals with a prior history of concussion exhibited only decreased functional connectivity following exposure to subconcussive head trauma, while those with no history showed increased connectivity. Even acute exposure to subconcussive head trauma demonstrates the ability to alter functional connectivity and there is possible evidence of a differential response in the brain for those with and without a history of concussion.
Collapse
Affiliation(s)
- Brian Johnson
- 1 Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| | | | | | | | | |
Collapse
|
293
|
Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex. Proc Natl Acad Sci U S A 2014; 111:E4677-86. [PMID: 25313035 DOI: 10.1073/pnas.1410800111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spontaneous low-frequency oscillations (LFOs) of blood-oxygen-level-dependent (BOLD) signals are used to map brain functional connectivity with functional MRI, but their source is not well understood. Here we used optical imaging to assess whether LFOs from vascular signals covary with oscillatory intracellular calcium (Ca(2+)i) and with local field potentials in the rat's somatosensory cortex. We observed that the frequency of Ca(2+)i oscillations in tissue (∼0.07 Hz) was similar to the LFOs of deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) in both large blood vessels and capillaries. The HbR and HbO2 fluctuations within tissue correlated with Ca(2+)i oscillations with a lag time of ∼5-6 s. The Ca(2+)i and hemoglobin oscillations were insensitive to hypercapnia. In contrast, cerebral-blood-flow velocity (CBFv) in arteries and veins fluctuated at a higher frequency (∼0.12 Hz) and was sensitive to hypercapnia. However, in parenchymal tissue, CBFv oscillated with peaks at both ∼0.06 Hz and ∼0.12 Hz. Although the higher-frequency CBFv oscillation (∼0.12 Hz) was decreased by hypercapnia, its lower-frequency component (∼0.06 Hz) was not. The sensitivity of the higher CBFV oscillations to hypercapnia, which triggers blood vessel vasodilation, suggests its dependence on vascular effects that are distinct from the LFOs detected in HbR, HbO2, Ca(2+)i, and the lower-frequency tissue CBFv, which were insensitive to hypercapnia. Hemodynamic LFOs correlated both with Ca(2+)i and neuronal firing (local field potentials), indicating that they directly reflect neuronal activity (perhaps also glial). These findings show that HbR fluctuations (basis of BOLD oscillations) are linked to oscillatory cellular activity and detectable throughout the vascular tree (arteries, capillaries, and veins).
Collapse
|
294
|
Liang Z, Liu X, Zhang N. Dynamic resting state functional connectivity in awake and anesthetized rodents. Neuroimage 2014; 104:89-99. [PMID: 25315787 DOI: 10.1016/j.neuroimage.2014.10.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/27/2014] [Accepted: 10/04/2014] [Indexed: 01/01/2023] Open
Abstract
Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.
Collapse
Affiliation(s)
- Zhifeng Liang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiao Liu
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
295
|
Eavani H, Satterthwaite TD, Filipovych R, Gur RE, Gur RC, Davatzikos C. Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI. Neuroimage 2014; 105:286-99. [PMID: 25284301 DOI: 10.1016/j.neuroimage.2014.09.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022] Open
Abstract
The human brain processes information via multiple distributed networks. An accurate model of the brain's functional connectome is critical for understanding both normal brain function as well as the dysfunction present in neuropsychiatric illnesses. Current methodologies that attempt to discover the organization of the functional connectome typically assume spatial or temporal separation of the underlying networks. This assumption deviates from an intuitive understanding of brain function, which is that of multiple, inter-dependent spatially overlapping brain networks that efficiently integrate information pertinent to diverse brain functions. It is now increasingly evident that neural systems use parsimonious formations and functional representations to efficiently process information while minimizing redundancy. Hence we exploit recent advances in the mathematics of sparse modeling to develop a methodological framework aiming to understand complex resting-state fMRI connectivity data. By favoring networks that explain the data via a relatively small number of participating brain regions, we obtain a parsimonious representation of brain function in terms of multiple "Sparse Connectivity Patterns" (SCPs), such that differential presence of these SCPs explains inter-subject variability. In this manner the sparsity-based framework can effectively capture the heterogeneity of functional activity patterns across individuals while potentially highlighting multiple sub-populations within the data that display similar patterns. Our results from simulated as well as real resting state fMRI data show that SCPs are accurate and reproducible between sub-samples as well as across datasets. These findings substantiate existing knowledge of intrinsic functional connectivity and provide novel insights into the functional organization of the human brain.
Collapse
Affiliation(s)
- Harini Eavani
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA.
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA; Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania, USA
| | - Roman Filipovych
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania, USA
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, USA
| |
Collapse
|
296
|
|
297
|
Karr JE, Areshenkoff CN, Duggan EC, Garcia-Barrera MA. Blast-Related Mild Traumatic Brain Injury: A Bayesian Random-Effects Meta-Analysis on the Cognitive Outcomes of Concussion among Military Personnel. Neuropsychol Rev 2014; 24:428-44. [DOI: 10.1007/s11065-014-9271-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
|
298
|
Abstract
The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation.
Collapse
Affiliation(s)
- Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA ; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Armin Iraji
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
299
|
McDonough IM, Nashiro K. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Front Hum Neurosci 2014; 8:409. [PMID: 24959130 PMCID: PMC4051265 DOI: 10.3389/fnhum.2014.00409] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 12/01/2022] Open
Abstract
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity.
Collapse
Affiliation(s)
- Ian M McDonough
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX, USA
| | - Kaoru Nashiro
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas, TX, USA
| |
Collapse
|
300
|
Mez J, Stern RA, McKee AC. Chronic traumatic encephalopathy: where are we and where are we going? Curr Neurol Neurosci Rep 2014; 13:407. [PMID: 24136455 DOI: 10.1007/s11910-013-0407-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE, previously called punch drunk and dementia pugilistica) has a rich history in the medical literature in association with boxing, but has only recently been recognized with other contact sports, such as football and ice hockey, as well as with military blast injuries. CTE is thought to be a neurodegenerative disease associated with repeated concussive and subconcussive blows to the head. There is characteristic gross and microscopic pathology found in the brain, including frontal and temporal atrophy, axonal degeneration, and hyperphosphorylated tau and TAR DNA-binding protein 43 pathology. Clinically, there are characteristic progressive deficits in cognition (memory, executive dysfunction), behavior (explosivity, aggression), mood (depression, suicidality), and motor function (parkinsonism), which correlate with the anatomic distribution of brain pathology. While CTE shares clinical and neuropathological traits with other neurodegenerative diseases, the clinical syndrome and the neuropathology as a whole are distinct from other neurodegenerative diseases. Here we review the CTE literature to date. We also draw on the literature from mild traumatic brain injury and other neurodegenerative dementias, particularly when these studies provide guidance for future CTE research. We conclude by suggesting seven essential areas for future CTE research.
Collapse
Affiliation(s)
- Jesse Mez
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, 72 E. Concord Street, Suite 7800, Boston, MA, 02118, USA,
| | | | | |
Collapse
|