251
|
Fortuno C, Pesaran T, Dolinsky J, Yussuf A, McGoldrick K, Tavtigian SV, Goldgar D, Spurdle AB, James PA. An updated quantitative model to classify missense variants in the TP53 gene: A novel multifactorial strategy. Hum Mutat 2021; 42:1351-1361. [PMID: 34273903 DOI: 10.1002/humu.24264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Cristina Fortuno
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Sean V Tavtigian
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
252
|
Tesolin P, Morgan A, Notarangelo M, Ortore RP, Concas MP, Notarangelo A, Girotto G. Non-Syndromic Autosomal Dominant Hearing Loss: The First Italian Family Carrying a Mutation in the NCOA3 Gene. Genes (Basel) 2021; 12:1043. [PMID: 34356059 PMCID: PMC8304864 DOI: 10.3390/genes12071043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hearing loss (HL) is the most frequent sensory disorder, affecting about 1-3 per 1000 live births, with more than half of the cases attributable to genetic causes. Despite the fact that many HL causative genes have already been identified, current genetic tests fail to provide a diagnosis for about 40% of the patients, suggesting that other causes still need to be discovered. Here, we describe a four-generation Italian family affected by autosomal dominant non-syndromic hearing loss (ADNSHL), in which exome sequencing revealed a likely pathogenic variant in NCOA3 (NM_181659.3, c.2909G>C, p.(Gly970Ala)), a gene recently described as a novel candidate for ADNSHL in a Brazilian family. A comparison between the two families highlighted a series of similarities: both the identified variants are missense, localized in exon 15 of the NCOA3 gene and lead to a similar clinical phenotype, with non-syndromic, sensorineural, bilateral, moderate to profound hearing loss, with a variable age of onset. Our findings (i.e., the identification of the second family reported globally with HL caused by a variant in NCOA3) further support the involvement of NCOA3 in the etiopathogenesis of ADNSHL, which should, thus, be considered as a new gene for autosomal dominant non-syndromic hearing loss.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Rocco Pio Ortore
- UOC Otolaryngology, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Maria Pina Concas
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Angelantonio Notarangelo
- UOC Medical Genetics, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| |
Collapse
|
253
|
Frohne A, Koenighofer M, Liu DT, Laccone F, Neesen J, Gstoettner W, Schoefer C, Lucas T, Frei K, Parzefall T. High Prevalence of MYO6 Variants in an Austrian Patient Cohort With Autosomal Dominant Hereditary Hearing Loss. Otol Neurotol 2021; 42:e648-e657. [PMID: 33710140 DOI: 10.1097/mao.0000000000003076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Genetic hearing loss (HL) is often monogenic. Whereas more than half of autosomal recessive (AR) cases in Austria are caused by mutations in a single gene, no disproportionately frequent contributing genetic factor has been identified in cases of autosomal dominant (AD) HL. The genetic characterization of HL continues to improve diagnosis, genetic counseling, and lays a foundation for the development of personalized medicine approaches. METHODS Diagnostic HL panel screening was performed in an Austrian multiplex family with AD HL, and segregation was tested with polymerase chain reaction and Sanger sequencing. In an independent approach, 18 unrelated patients with AD HL were screened for causative variants in all known HL genes to date and segregation was tested if additional family members were available. The pathogenicity of novel variants was assessed based on previous literature and bioinformatic tools such as prediction software and protein modeling. RESULTS In six of the 19 families under study, candidate pathogenic variants were identified in MYO6, including three novel variants (p.Gln441Pro, p.Ser612Tyr, and p.Gln650ValfsTer7). Some patients carried more than one likely pathogenic variant in known deafness genes. CONCLUSION These results suggest a potential high prevalence of MYO6 variants in Austrian cases of AD HL. The presence of multiple rare HL variants in some patients highlights the relevance of considering multiple-hit diagnoses for genetic counseling and targeted therapy design.
Collapse
Affiliation(s)
- Alexandra Frohne
- Department of Otorhinolaryngology, Head and Neck Surgery
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | | | | | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Juergen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Christian Schoefer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery
| | | |
Collapse
|
254
|
Mohseni M, Babanejad M, Booth KT, Jamali P, Jalalvand K, Davarnia B, Ardalani F, Khoshaeen A, Arzhangi S, Ghodratpour F, Beheshtian M, Jahanshad F, Otukesh H, Bahrami F, Seifati SM, Bazazzadegan N, Habibi F, Behravan H, Mirzaei S, Keshavarzi F, Nikzat N, Mehrjoo Z, Thiele H, Nothnagel M, Azaiez H, Smith RJ, Kahrizi K, Najmabadi H. Exome sequencing utility in defining the genetic landscape of hearing loss and novel-gene discovery in Iran. Clin Genet 2021; 100:59-78. [PMID: 33713422 PMCID: PMC8195868 DOI: 10.1111/cge.13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.
Collapse
Affiliation(s)
- Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Organization, Semnan, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fariba Ardalani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hasan Otukesh
- Department of Pediatric Neurology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Habibi
- Genetic Counseling Center of Welfare Organization, Rasht, Guilan, Iran
| | - Hanieh Behravan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sepide Mirzaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- University Hospital Cologne, Cologne, Germany
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
255
|
Kim BJ, Kim YH, Lee S, Han JH, Lee SY, Seong J, Lee DH, Kim B, Park HR, Carandang M, Oh D, Oh SH, Kim JG, Lee S, Choi BY. Otological aspects of NLRP3-related autoinflammatory disorder focusing on the responsiveness to anakinra. Rheumatology (Oxford) 2021; 60:1523-1532. [PMID: 33020839 DOI: 10.1093/rheumatology/keaa511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Gradually progressive sensorineural hearing loss (SNHL) is a prevalent sensory defect. It is generally untreatable, making rehabilitation by hearing aid or cochlear implantation the only option. However, SNHL as one of the symptoms of the hereditary autoinflammatory systemic disease cryopyrin-associated periodic syndrome, or as the only symptom of the cochlea-specific form (DFNA34), was suggested to respond to IL-1 antagonist (anakinra) therapy, which ameliorates NLRP3 variants-induced over-secretion of IL-1β. We analysed genotypic and phenotypic spectrum of cryopyrin-associated periodic syndrome or DFNA34, specifically focusing on the responsiveness of SNHL to anakinra. METHODS Seventeen families diagnosed with either cryopyrin-associated periodic syndrome or DFNA34 were recruited. Genotyping and phenotyping including audiogram, MRI findings, and in vitro IL-1β assay were performed. RESULTS Our cohort had an etiologic homogeneity of 94.1% to NLRP3 variants and a high de novo occurrence (84.6%). We identified the second DNFA34 pedigree worldwide with a novel NLRP3 variant supported by in vitro analysis. Significant improvement of hearing status against the natural course, showing response to anakinra, was identified in three probands, one of whom used to have severe SNHL. Hearing threshold worse than 60 dB at the start of anakinra and cochlear enhancement on brain MRI seemed to be related with poor audiologic prognosis and responsiveness to anakinra therapy despite stabilized systemic symptoms and inflammatory markers. CONCLUSION We propose a constellation of biomarkers comprising NLRP3 genotypes, hearing status at diagnosis, and cochlear radiological findings as prognostic factors of hearing status after anakinra treatment and possibly as sensitive parameters for treatment dosage adjustment.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea, Daejeon, Korea.,Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Ho Kim
- Division of Immunology, Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | | | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jeon Seong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Dong-Han Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Bonggi Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea, Daejeon, Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, East Avenue Medical Center, Metro Manila, Philippines
| | - Dooyi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joong Gon Kim
- Division of Immunology, Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Soyoung Lee
- Division of Immunology, Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
256
|
Tian Y, Xu H, Liu D, Zhang J, Yang Z, Zhang S, Liu H, Li R, Tian Y, Zeng B, Li T, Lin Q, Wang H, Li X, Lu W, Shi Y, Zhang Y, Zhang H, Jiang C, Xu Y, Chen B, Liu J, Tang W. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol Genet Genomic Med 2021; 9:e1734. [PMID: 34170635 PMCID: PMC8404235 DOI: 10.1002/mgg3.1734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background The enlarged vestibular aqueduct (EVA) is the commonest malformation of inner ear accompanied by sensorineural hearing loss in children. Three genes SLC26A4, FOXI1, and KCNJ10 have been associated with EVA, among them SLC26A4 being the most common. Yet, hotspot mutation screening can only diagnose a small number of patients. Methods Thus, in this study, we designed a new molecular diagnosis panel for EVA based on multiplex PCR enrichment and next‐generation sequencing of the exon and flanking regions of SLC26A4. A total of 112 hearing loss families with EVA were enrolled and the pathogenicity of the rare variants detected was interpreted according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results Our results showed that 107/112 (95.54%) families carried SLC26A4 biallelic mutations, 4/112 (3.57%) carried monoallelic variants, and 1/112 (0.89%) had none variant, resulting in a diagnostic rate of 95.54%. A total of 49 different variants were detected in those patients and we classified 30 rare variants as pathogenic/likely pathogenic, of which 13 were not included in the Clinvar database. Conclusion Our diagnostic panel has an increased diagnostic yield with less cost, and the curated list of pathogenic variants in the SLC26A4 gene can be directly used to aid the genetic counseling to patients.
Collapse
Affiliation(s)
- Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanli Zhang
- Henan Province Medical Instrument Testing Institute, Zhengzhou, China
| | | | - Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | | | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Li
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyu Lin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chang Jiang
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ying Xu
- Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Liu
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxue Tang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
257
|
Clinical manifestations and novel pathogenic variants in SOX10 in eight Danish probands with Waardenburg syndrome. Eur J Med Genet 2021; 64:104265. [PMID: 34171448 DOI: 10.1016/j.ejmg.2021.104265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
The SRY-related HMG box gene 10 (SOX10), located on 22q13.1, encodes a member of the SOX family of transcription factors involved in the regulation of embryonic development and in the determination of cell fate and differentiation. SOX10 is one of the six causal genes for Waardenburg syndrome, which is a dominantly inherited auditory-pigmentary disorder characterized by sensorineural hearing impairment and abnormal pigmentation of the hair, skin and iris. Waardenburg syndrome is categorized into four subtypes based on clinical features (WS1-WS4). Here we present eight families (eleven patients) harboring pathogenic variants in SOX10. The patients displayed both allelic and clinical variability: bilateral profound hearing impairment (11/11), malformations of the semicircular canals (5/11), motor skill developmental delay (5/11), pigmentary defects (3/11) and Hirschsprung's disease (3/11) were some of the clinical manifestations observed. The patients demonstrate a spectrum of pathogenic SOX10 variants, of which six were novel (c.267del, c.299_300insA, c.335T >C, c.366_376del, c.1160_1179dup, and exon 3-4 deletion), and two were previously reported (c.336G>A and c.422T>C). Six of the variants occurred de novo whereas two were dominantly inherited. The pathogenic SOX10 variants presented here add novel information to the allelic variability of Waardenburg syndrome and illustrate the considerable clinical heterogeneity.
Collapse
|
258
|
Machine learning-based genetic diagnosis models for hereditary hearing loss by the GJB2, SLC26A4 and MT-RNR1 variants. EBioMedicine 2021; 69:103322. [PMID: 34161886 PMCID: PMC8237285 DOI: 10.1016/j.ebiom.2021.103322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hereditary hearing loss (HHL) is the most common sensory deficit, which highly afflicts humans. With gene sequencing technology development, more variants will be identified and support genetic diagnoses, which is difficult for human experts to diagnose. This study aims to develop a machine learning-based genetic diagnosis model of HHL-related variants of GJB2, SLC26A4 and MT-RNR1. Methods This case-control study included 1898 subjects, among which 1354 were HHL patients and 544 were carriers. Risk assessment models were established based on variants at 144 sites in three genes related to HHL by building six machine learning (ML) models. We compared the ML models with the genetic risk score (GRS) and expert interpretation (EI) to verify the clinical performance. Findings Among the six ML models, the support vector machine (SVM) showed the best performance. For the prediction of HHL-related gene sites in subjects with variants, the area under the receiver operating characteristic (AUC) of the SVM model was 0.803 (0.680–0.814) in the 10-fold stratified cross-validation and 0.751 (0.635–0.779) in external validation. The predicted results were better than both EI and GRS. Furthermore, 11 sites were identified as the smallest feature set that can be accurately predicted. Interpretation The developed SVM model has great potential to be an efficient and effective tool for HHL prediction when high throughput sequencing data are available.
Collapse
|
259
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
260
|
Zhang S, Xu H, Tian Y, Liu D, Hou X, Zeng B, Chen B, Liu H, Li R, Li X, Zuo B, Tang R, Tang W. High Genetic Heterogeneity in Chinese Patients With Waardenburg Syndrome Revealed by Next-Generation Sequencing. Front Genet 2021; 12:643546. [PMID: 34149797 PMCID: PMC8212959 DOI: 10.3389/fgene.2021.643546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Objective This study aimed to explore the genetic causes of probands who were diagnosed with Waardenburg syndrome (WS) or congenital sensorineural hearing loss. Methods A detailed physical and audiological examinations were carried out to make an accurate diagnosis of 14 patients from seven unrelated families. We performed whole-exome sequencing in probands to detect the potential genetic causes and further validated them by Sanger sequencing in the probands and their family members. Results The genetic causes for all 14 patients with WS or congenital sensorineural hearing loss were identified. A total of seven heterozygous variants including c.1459C > T, c.123del, and c.959-409_1173+3402del of PAX3 gene (NM_181459.4), c.198_262del and c.529_556del of SOX10 gene (NM_006941.4), and c.731G > A and c.970dup of MITF gene (NM_000248.3) were found for the first time. Of these mutations, we had confirmed two (c.1459C > T and c.970dup) are de novo by Sanger sequencing of variants in the probands and their parents. Conclusion We revealed a total of seven novel mutations in PAX3, SOX10, and MITF, which underlie the pathogenesis of WS. The clinical and genetic characterization of these families with WS elucidated high heterogeneity in Chinese patients with WS. This study expands the database of PAX3, SOX10, and MITF mutations and improves our understanding of the causes of WS.
Collapse
Affiliation(s)
- Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Hou
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Bei Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ryan Tang
- Johns Hopkins University, Maryland, MD, United States
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
261
|
Hirsch Y, Tangshewinsirikul C, Booth KT, Azaiez H, Yefet D, Quint A, Weiden T, Brownstein Z, Macarov M, Davidov B, Pappas J, Rabin R, Kenna MA, Oza AM, Lafferty K, Amr SS, Rehm HL, Kolbe DL, Frees K, Nishimura C, Luo M, Farra C, Morton CC, Scher SY, Ekstein J, Avraham KB, Smith RJH, Shen J. A synonymous variant in MYO15A enriched in the Ashkenazi Jewish population causes autosomal recessive hearing loss due to abnormal splicing. Eur J Hum Genet 2021; 29:988-997. [PMID: 33398081 PMCID: PMC8187401 DOI: 10.1038/s41431-020-00790-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.
Collapse
Affiliation(s)
- Yoel Hirsch
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Chayada Tangshewinsirikul
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Devorah Yefet
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Adina Quint
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Tzvi Weiden
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Jerusalem, 91506, Israel
| | - Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Macarov
- Department of Genetics and Metabolic Diseases, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Bella Davidov
- Department of Medical Genetics, Rabin Medical Center, Petah Tikva, 49100, Israel
| | - John Pappas
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
| | - Margaret A Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
| | - Andrea M Oza
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
| | - Katherine Lafferty
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Maine Medical Center, Scarborough, ME, 04074, USA
| | - Sami S Amr
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi L Rehm
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Kathy Frees
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Carla Nishimura
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Minjie Luo
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chantal Farra
- Medical Genetics Unit, American University of Beirut Medical Center, AUBMC, 1107 2020, Beirut, Lebanon
| | - Cynthia C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Sholem Y Scher
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention of Jewish Genetic Diseases, Brooklyn, NY, 11211, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Jun Shen
- Harvard Medical School Center for Hereditary Deafness, Boston, MA, 02115, USA.
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, 02139, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
262
|
A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc Natl Acad Sci U S A 2021; 118:2019681118. [PMID: 34050020 PMCID: PMC8179140 DOI: 10.1073/pnas.2019681118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.
Collapse
|
263
|
Specifications of the variant curation guidelines for ITGA2B/ITGB3: ClinGen Platelet Disorder Variant Curation Panel. Blood Adv 2021; 5:414-431. [PMID: 33496739 PMCID: PMC7839359 DOI: 10.1182/bloodadvances.2020003712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Accurate and consistent sequence variant interpretation is critical to the correct diagnosis and appropriate clinical management and counseling of patients with inherited genetic disorders. To minimize discrepancies in variant curation and classification among different clinical laboratories, the American College of Medical Genetics and Genomics (ACMG), along with the Association for Molecular Pathology (AMP), published standards and guidelines for the interpretation of sequence variants in 2015. Because the rules are not universally applicable to different genes or disorders, the Clinical Genome Resource (ClinGen) Platelet Disorder Expert Panel (PD-EP) has been tasked to make ACMG/AMP rule specifications for inherited platelet disorders. ITGA2B and ITGB3, the genes underlying autosomal recessive Glanzmann thrombasthenia (GT), were selected as the pilot genes for specification. Eight types of evidence covering clinical phenotype, functional data, and computational/population data were evaluated in the context of GT by the ClinGen PD-EP. The preliminary specifications were validated with 70 pilot ITGA2B/ITGB3 variants and further refined. In the final adapted criteria, gene- or disease-based specifications were made to 16 rules, including 7 with adjustable strength; no modification was made to 5 rules; and 7 rules were deemed not applicable to GT. Employing the GT-specific ACMG/AMP criteria to the pilot variants resulted in a reduction of variants classified with unknown significance from 29% to 20%. The overall concordance with the initial expert assertions was 71%. These adapted criteria will serve as guidelines for GT-related variant interpretation to increase specificity and consistency across laboratories and allow for better clinical integration of genetic knowledge into patient care.
Collapse
|
264
|
TBC1D24 emerges as an important contributor to progressive postlingual dominant hearing loss. Sci Rep 2021; 11:10300. [PMID: 33986365 PMCID: PMC8119487 DOI: 10.1038/s41598-021-89645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Several TBC1D24 variants are causally involved in the development of profound, prelingual hearing loss (HL) and different epilepsy syndromes inherited in an autosomal recessive manner. Only two TBC1D24 pathogenic variants have been linked with postlingual progressive autosomal dominant HL (ADHL). To determine the role of TBC1D24 in the development of ADHL and to characterize the TBC1D24-related ADHL, clinical exome sequencing or targeted multigene (n = 237) panel were performed for probands (n = 102) from multigenerational ADHL families. In four families, TBC1D24-related HL was found based on the identification of three novel, likely pathogenic (c.553G>A, p.Asp185Asn; c.1460A>T, p. His487Leu or c.1461C>G, p.His487Gln) and one known (c.533C>T, p.Ser178Leu) TBC1D24 variant. Functional consequences of these variants were characterized by analyzing the proposed homology models of the human TBC1D24 protein. Variants not only in the TBC (p.Ser178Leu, p.Asp185Asn) but also in the TLDc domain (p.His487Gln, p.His487Leu) are involved in ADHL development, the latter two mutations probably affecting interactions between the domains. Clinically, progressive HL involving mainly mid and high frequencies was observed in the patients (n = 29). The progression of HL was calculated by constructing age-related typical audiograms. TBC1D24-related ADHL originates from the cochlear component of the auditory system, becomes apparent usually in the second decade of life and accounts for approximately 4% of ADHL cases. Given the high genetic heterogeneity of ADHL, TBC1D24 emerges as an important contributor to this type of HL.
Collapse
|
265
|
Houge G, Laner A, Cirak S, de Leeuw N, Scheffer H, den Dunnen JT. Stepwise ABC system for classification of any type of genetic variant. Eur J Hum Genet 2021; 30:150-159. [PMID: 33981013 PMCID: PMC8821602 DOI: 10.1038/s41431-021-00903-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
The American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) system for variant classification is score based with five classes: benign, likely benign, variant of unknown significance (VUS), likely pathogenic, and pathogenic. Here, we present a variant classification model that can be an add-on or alternative to ACMG classification: A stepwise system that can classify any type of genetic variant (e.g., hypomorphic alleles, imprinted alleles, copy number variants, runs of homozygosity, enhancer variants, and variants related to traits). We call it the ABC system because classification is first functional (A), then clinical (B), and optionally a standard comment that fits the clinical question is selected (C). Both steps A and B have 1–5 grading when knowledge is sufficient, if not, class “zero” is assigned. Functional grading (A) only concerns biological consequences with the stages normal function (1), likely normal function (2), hypothetical functional effect (3), likely functional effect (4), and proven functional effect (5). Clinical grading (B) is genotype–phenotype focused with the stages “right type of gene” (1), risk factor (2), and pathogenic (3–5, depending on penetrance). Both grades are listed for each variant and combined to generate a joint class ranging from A to F. Importantly, the A–F classes are linked to standard comments, reflecting laboratory or national policy. In step A, the VUS class is split into class 0 (true unknown) and class 3 (hypothetical functional effect based on molecular predictions or de novo occurrence), providing a rationale for variant-of-interest reporting when the clinical picture could fit the finding. The system gives clinicians a better guide to variant significance.
Collapse
Affiliation(s)
- Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | | | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Hans Scheffer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics and Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
266
|
Safka Brozkova D, Uhrova Meszarosova A, Lassuthova P, Varga L, Staněk D, Borecká S, Laštůvková J, Čejnová V, Rašková D, Lhota F, Gašperíková D, Seeman P. The Cause of Hereditary Hearing Loss in GJB2 Heterozygotes-A Comprehensive Study of the GJB2/DFNB1 Region. Genes (Basel) 2021; 12:genes12050684. [PMID: 34062854 PMCID: PMC8147375 DOI: 10.3390/genes12050684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Hearing loss is a genetically heterogeneous sensory defect, and the frequent causes are biallelic pathogenic variants in the GJB2 gene. However, patients carrying only one heterozygous pathogenic (monoallelic) GJB2 variant represent a long-lasting diagnostic problem. Interestingly, previous results showed that individuals with a heterozygous pathogenic GJB2 variant are two times more prevalent among those with hearing loss compared to normal-hearing individuals. This excess among patients led us to hypothesize that there could be another pathogenic variant in the GJB2 region/DFNB1 locus. A hitherto undiscovered variant could, in part, explain the cause of hearing loss in patients and would mean reclassifying them as patients with GJB2 biallelic pathogenic variants. In order to detect an unknown causal variant, we examined 28 patients using NGS with probes that continuously cover the 0.4 Mb in the DFNB1 region. An additional 49 patients were examined by WES to uncover only carriers. We did not reveal a second pathogenic variant in the DFNB1 region. However, in 19% of the WES-examined patients, the cause of hearing loss was found to be in genes other than the GJB2. We present evidence to show that a substantial number of patients are carriers of the GJB2 pathogenic variant, albeit only by chance.
Collapse
Affiliation(s)
- Dana Safka Brozkova
- Neurogenetic laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic; (A.U.M.); (P.L.); (D.S.); (P.S.)
- Correspondence:
| | - Anna Uhrova Meszarosova
- Neurogenetic laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic; (A.U.M.); (P.L.); (D.S.); (P.S.)
| | - Petra Lassuthova
- Neurogenetic laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic; (A.U.M.); (P.L.); (D.S.); (P.S.)
| | - Lukáš Varga
- Department of Otorhinolaryngology–Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 85107 Bratislava, Slovakia;
- Diabgene Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (S.B.); (D.G.)
| | - David Staněk
- Neurogenetic laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic; (A.U.M.); (P.L.); (D.S.); (P.S.)
| | - Silvia Borecká
- Diabgene Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (S.B.); (D.G.)
| | - Jana Laštůvková
- Department of Medical Genetics, Masaryk Hospital in Usti nad Labem, Regional Health Corporation, 40011 Ústí nad Labem, Czech Republic; (J.L.); (V.Č.)
| | - Vlasta Čejnová
- Department of Medical Genetics, Masaryk Hospital in Usti nad Labem, Regional Health Corporation, 40011 Ústí nad Labem, Czech Republic; (J.L.); (V.Č.)
| | - Dagmar Rašková
- Centre for Medical Genetics and Reproductive Medicine GENNET, 17000 Prague, Czech Republic; (D.R.); (F.L.)
| | - Filip Lhota
- Centre for Medical Genetics and Reproductive Medicine GENNET, 17000 Prague, Czech Republic; (D.R.); (F.L.)
| | - Daniela Gašperíková
- Diabgene Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (S.B.); (D.G.)
| | - Pavel Seeman
- Neurogenetic laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic; (A.U.M.); (P.L.); (D.S.); (P.S.)
| |
Collapse
|
267
|
Kim BJ, Jeon HW, Jeon W, Han JH, Oh J, Yi N, Kim MY, Kim M, Kim JN, Kim BH, Hyon JY, Kim D, Koo JW, Oh DY, Choi BY. Rising of LOXHD1 as a signature causative gene of down-sloping hearing loss in people in their teens and 20s. J Med Genet 2021; 59:470-480. [PMID: 33753533 DOI: 10.1136/jmedgenet-2020-107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Down-sloping sensorineural hearing loss (SNHL) in people in their teens and 20s hampers efficient learning and communication and in-depth social interactions. Nonetheless, its aetiology remains largely unclear, with the exception of some potential causative genes, none of which stands out especially in people in their teens and 20s. Here, we examined the role and genotype-phenotype correlation of lipoxygenase homology domain 1 (LOXHD1) in down-sloping SNHL through a cohort study. METHODS Based on the Seoul National University Bundang Hospital (SNUBH) genetic deafness cohort, in which the patients show varying degrees of deafness and different onset ages (n=1055), we have established the 'SNUBH Teenager-Young Adult Down-sloping SNHL' cohort (10-35 years old) (n=47), all of whom underwent exome sequencing. Three-dimensional molecular modelling, minigene splicing assay and short tandem repeat marker genotyping were performed, and medical records were reviewed. RESULTS LOXHD1 accounted for 33.3% of all genetically diagnosed cases of down-sloping SNHL (n=18) and 12.8% of cases in the whole down-sloping SNHL cohort (n=47) of young adults. We identified a potential common founder allele, as well as an interesting genotype-phenotype correlation. We also showed that transcript 6 is necessary and probably sufficient for normal hearing. CONCLUSIONS LOXHD1 exceeds other genes in its contribution to down-sloping SNHL in young adults, rising as a signature causative gene, and shows a potential but interesting genotype-phenotype correlation.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea.,Brain Research Institute, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Hyoung Won Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Woosung Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jayoung Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Yi
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea.,Brain Research Institute, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minah Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Justin Namju Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Bo Hye Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea .,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
268
|
de Bruijn SE, Fadaie Z, Cremers FPM, Kremer H, Roosing S. The Impact of Modern Technologies on Molecular Diagnostic Success Rates, with a Focus on Inherited Retinal Dystrophy and Hearing Loss. Int J Mol Sci 2021; 22:2943. [PMID: 33799353 PMCID: PMC7998853 DOI: 10.3390/ijms22062943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
269
|
Wonkam-Tingang E, Schrauwen I, Esoh KK, Bharadwaj T, Nouel-Saied LM, Acharya A, Nasir A, Leal SM, Wonkam A. A novel variant in DMXL2 gene is associated with autosomal dominant non-syndromic hearing impairment (DFNA71) in a Cameroonian family. Exp Biol Med (Maywood) 2021; 246:1524-1532. [PMID: 33715530 DOI: 10.1177/1535370221999746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Approximately half of congenital hearing impairment cases are inherited, with non-syndromic hearing impairment (NSHI) being the most frequent clinical entity of genetic hearing impairment cases. A family from Cameroon with NSHI was investigated by performing exome sequencing using DNA samples obtained from three family members, followed by direct Sanger sequencing in additional family members and controls participants. We identified an autosomal dominantly inherited novel missense variant [NM_001174116.2:c.918G>T; p.(Q306H)] in DMXL2 gene (MIM:612186) that co-segregates with mild to profound non-syndromic sensorineural hearing impairment . The p.(Q306H) variant which substitutes a highly conserved glutamine residue is predicted deleterious by various bioinformatics tools and is absent from several genome databases. This variant was also neither found in 121 apparently healthy controls without a family history of hearing impairment , nor 112 sporadic NSHI cases from Cameroon. There is one previous report of a large Han Chinese NSHI family that segregates a missense variant in DMXL2. The present study provides additional evidence that DMXL2 is involved in hearing impairment etiology, and we suggest DMXL2 should be considered in diagnostic hearing impairment panels.
Collapse
Affiliation(s)
- Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Kevin K Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Suzanne M Leal
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
270
|
Li H, Liu S, Wang S, Zeng Q, Chen Y, Fang T, Zhang Y, Zhou Y, Zhang Y, Wang K, Yan Z, Qiang C, Xu M, Chai X, Yuan Y, Huang M, Zhang H, Xiong Y. Cancer SIGVAR: A semiautomated interpretation tool for germline variants of hereditary cancer-related genes. Hum Mutat 2021; 42:359-372. [PMID: 33565189 DOI: 10.1002/humu.24177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/27/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is one of the most important health issues globally and the accuracy of interpretation of cancer-related variants is critical for the clinical management of hereditary cancer. ClinGen Sequence Variant Interpretation Working Groups have developed many adaptations of American College of Medical Genetics and Genomics and the Association of Molecular Pathologists guidelines to improve the consistency of interpretation. We combined the most recent adaptations to expand the number of the criteria from 28 to 48 and developed a tool called Cancer SIGVAR to help genetic counselors interpret the clinical significance of cancer germline variants. Our tool can accept VCF files as input and realize fully automated interpretation based on 21 criteria and semiautomated interpretation based on 48 criteria. We validated the performance of our tool with the ClinVar and CLINVITAE benchmark databases, achieving an average consistency for pathogenic and benign assessment up to 93.71% and 79.38%, respectively. We compared Cancer SIGVAR with two similar tools, InterVar and PathoMAN, and analyzed the main differences in criteria and implementation. Furthermore, we selected 911 variants from another two in-house benchmark databases, and semiautomated interpretation reached an average classification consistency of 98.35%. Our findings highlight the need to optimize automated interpretation tools based on constantly updated guidelines. Cancer SIGVAR is publicly available at http://cancersigvar.bgi.com/.
Collapse
Affiliation(s)
- Hong Li
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Shuixia Liu
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | | | - Quanlei Zeng
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Yulan Chen
- BGI Genomics, BGI-Shenzhen, ShenZhen, China
| | - Ting Fang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Yi Zhang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Ying Zhou
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Yu Zhang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Kaiyue Wang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Zhangwei Yan
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Cuicui Qiang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | - Meng Xu
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | | | | | - Ming Huang
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| | | | - Yun Xiong
- BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, WuHan, China
| |
Collapse
|
271
|
Missense Variant of Endoplasmic Reticulum Region of WFS1 Gene Causes Autosomal Dominant Hearing Loss without Syndromic Phenotype. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6624744. [PMID: 34258273 PMCID: PMC8260318 DOI: 10.1155/2021/6624744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Objective Genetic variants in the WFS1 gene can cause Wolfram syndrome (WS) or autosomal dominant nonsyndromic low-frequency hearing loss (HL). This study is aimed at investigating the molecular basis of HL in an affected Chinese family and the genotype-phenotype correlation of WFS1 variants. Methods The clinical phenotype of the five-generation Chinese family was characterized using audiological examinations and pedigree analysis. Target exome sequencing of 129 known deafness genes and bioinformatics analysis were performed among six patients and four normal subjects to screen suspected pathogenic variants. We built a complete WFS1 protein model to assess the potential effects of the variant on protein structure. Results A novel heterozygous pathogenic variant NM_006005.3 c.2020G>T (p.Gly674Trp) was identified in the WFS1 gene, located in the C-terminal domain of the wolframin protein. We further showed that HL-related WFS1 missense variants were mainly concentrated in the endoplasmic reticulum (ER) domain. In contrast, WS-related missense variants are randomly distributed throughout the protein. Conclusions In this family, we identified a novel variant p.Gly674Trp of WFS1 as the primary pathogenic variant causing the low-frequency sensorineural HL, enriching the mutational spectrum of the WFS1 gene.
Collapse
|
272
|
Rentas S, Abou Tayoun A. Utility of droplet digital PCR and NGS-based CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn 2021; 21:213-221. [PMID: 33554673 DOI: 10.1080/14737159.2021.1887731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Genetic variants in over 100 genes can cause non-syndromic hearing loss (NSHL). Comprehensive diagnostic testing of these genes requires detecting pathogenic sequence and copy number alterations with economical, scalable and sensitive assays. Here we discuss best practices and effective testing algorithms for hearing-loss-related genes with special emphasis on detection of copy number variants.Areas covered: We review studies that used next-generation sequencing (NGS), chromosomal microarrays, droplet digital PCR (ddPCR), and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of NSHL. We specifically focus on unique and recurrent copy number changes that affect the GJB2 and STRC genes, two of the most common causes of NSHL.Expert opinion: NGS panels and exome sequencing can detect most pathogenic sequence and copy number variants that cause NSHL; however, GJB2 and STRC currently require additional assays to capture all pathogenic copy number variants. Adoption of genome sequencing may simplify diagnostic workflows, but further investigational studies will be required to evaluate its clinical efficacy.
Collapse
Affiliation(s)
- Stefan Rentas
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, UAE.,Department of Genetics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
273
|
Chan SH, Ni Y, Li ST, Teo JX, Ishak NDB, Lim WK, Ngeow J. Spectrum of Germline Mutations Within Fanconi Anemia–Associated Genes Across Populations of Varying Ancestry. JNCI Cancer Spectr 2021; 5:6146409. [DOI: 10.1093/jncics/pkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Fanconi anemia (FA) is a rare genetic disorder associated with hematological disorders and solid tumor predisposition. Owing to phenotypic heterogeneity, some patients remain undetected until adulthood, usually following cancer diagnoses. The uneven prevalence of FA cases with different underlying FA gene mutations worldwide suggests variable genetic distribution across populations. Here, we aim to assess the genetic spectrum of FA-associated genes across populations of varying ancestries and explore potential genotype–phenotype associations in cancer.
Methods
Carrier frequency and variant spectrum of potentially pathogenic germline variants in 17 FA genes (excluding BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, PALB2/FANCN, RAD51C/FANCO) were evaluated in 3523 Singaporeans and 7 populations encompassing Asian, European, African, and admixed ancestries from the Genome Aggregation Database. Germline and somatic variants of 17 FA genes in 7 cancer cohorts from The Cancer Genome Atlas were assessed to explore genotype–phenotype associations.
Results
Germline variants in FANCA were consistently more frequent in all populations. Similar trends in carrier frequency and variant spectrum were detected in Singaporeans and East Asians, both distinct from other ancestry groups, particularly in the lack of recurrent variants. Our exploration of The Cancer Genome Atlas dataset suggested higher germline and somatic mutation burden between FANCA and FANCC with head and neck and lung squamous cell carcinomas as well as FANCI and SLX4/FANCP with uterine cancer, but the analysis was insufficiently powered to detect any statistical significance.
Conclusion
Our findings highlight the diverse genetic spectrum of FA-associated genes across populations of varying ancestries, emphasizing the need to include all known FA-related genes for accurate molecular diagnosis of FA.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Ying Ni
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao-Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Nur Diana Binte Ishak
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
274
|
Further delineation of BCAP31-linked intellectual disability: description of 17 new families with LoF and missense variants. Eur J Hum Genet 2021; 29:1405-1417. [PMID: 33603160 DOI: 10.1038/s41431-021-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
The BCAP31 gene, located at Xq28, encodes BAP31, which plays a role in ER-to-Golgi anterograde transport. To date, BCAP31 pathogenic variants have been reported in 12 male cases from seven families (six loss of function (LoF) and one missense). Patients had severe intellectual disability (ID), dystonia, deafness, and central hypomyelination, delineating a so-called deafness, dystonia and cerebral hypomyelination syndrome (DDCH). Female carriers are mostly asymptomatic but may present with deafness. BCAP31 is flanked by the SLC6A8 and ABCD1 genes. Contiguous deletions of BCAP31 and ABCD1 and/or SLC6A8 have been described in 12 patients. Patients with deletions including BCAP31 and SLC6A8 have the same phenotype as BCAP31 patients. Patients with deletions of BCAP31 and ABCD1 have contiguous ABCD1 and DXS1375E/BCAP31 deletion syndrome (CADDS), and demonstrate a more severe neurological phenotype with cholestatic liver disease and early death. We report 17 novel families, 14 with intragenic BCAP31 variants (LoF and missense) and three with a deletion of BCAP31 and adjacent genes (comprising two CADDS patients, one male and one symptomatic female). Our study confirms the phenotype reported in males with intragenic LoF variants and shows that males with missense variants exhibit a milder phenotype. Most patients with a LoF pathogenic BCAP31 variant have permanent or transient liver enzyme elevation. We further demonstrate that carrier females (n = 10) may have a phenotype comprising LD, ID, and/or deafness. The male with CADDS had a severe neurological phenotype, but no cholestatic liver disease, and the symptomatic female had moderate ID and cholestatic liver disease.
Collapse
|
275
|
Wang J, Xiang J, Chen L, Luo H, Xu X, Li N, Cui C, Xu J, Song N, Peng J, Peng Z. Molecular diagnosis of non-syndromic hearing loss patients using a stepwise approach. Sci Rep 2021; 11:4036. [PMID: 33597575 PMCID: PMC7889619 DOI: 10.1038/s41598-021-83493-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is one of the most common birth disorders in humans, with an estimated prevalence of 1–3 in every 1000 newborns. This study investigates the molecular etiology of a hearing loss cohort using a stepwise strategy to effectively diagnose patients and address the challenges posed by the genetic heterogeneity and variable mutation spectrum of hearing loss. In order to target known pathogenic variants, multiplex PCR plus next-generation sequencing was applied in the first step; patients which did not receive a diagnosis from this were further referred for exome sequencing. A total of 92 unrelated patients with nonsyndromic hearing loss were enrolled in the study. In total, 64% (59/92) of the patients were molecularly diagnosed, 44 of them in the first step by multiplex PCR plus sequencing. Exome sequencing resulted in eleven diagnoses (23%, 11/48) and four probable diagnoses (8%, 4/48) among the 48 patients who were not diagnosed in the first step. The rate of secondary findings from exome sequencing in our cohort was 3% (2/58). This research presents a molecular diagnosis spectrum of 92 non-syndromic hearing loss patients and demonstrates the benefits of using a stepwise diagnostic approach in the genetic testing of nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiale Xiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Lisha Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Hongyu Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiuhua Xu
- Dalian Municipal Women and Children's Medical Center, Dalian, 116037, China
| | - Nan Li
- Dalian Municipal Women and Children's Medical Center, Dalian, 116037, China
| | - Chunming Cui
- Dalian Municipal Women and Children's Medical Center, Dalian, 116037, China
| | - Jingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nana Song
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiguang Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
276
|
Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations. Genes (Basel) 2021; 12:genes12020274. [PMID: 33671976 PMCID: PMC7919343 DOI: 10.3390/genes12020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.
Collapse
|
277
|
Bademci G, Abad C, Cengiz FB, Seyhan S, Incesulu A, Guo S, Fitoz S, Atli EI, Gosstola NC, Demir S, Colbert BM, Seyhan GC, Sineni CJ, Duman D, Gurkan H, Morton CC, Dykxhoorn DM, Walz K, Tekin M. Long-range cis-regulatory elements controlling GDF6 expression are essential for ear development. J Clin Invest 2021; 130:4213-4217. [PMID: 32369452 DOI: 10.1172/jci136951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular mechanisms governing the development of the mammalian cochlea, the hearing organ, remain largely unknown. Through genome sequencing in 3 subjects from 2 families with nonsyndromic cochlear aplasia, we identified homozygous 221-kb and 338-kb deletions in a noncoding region on chromosome 8 with an approximately 200-kb overlapping section. Genomic location of the overlapping deleted region started from approximately 350 kb downstream of GDF6, which codes for growth and differentiation factor 6. Otic lineage cells differentiated from induced pluripotent stem cells derived from an affected individual showed reduced expression of GDF6 compared with control cells. Knockout of Gdf6 in a mouse model resulted in cochlear aplasia, closely resembling the human phenotype. We conclude that GDF6 plays a necessary role in early cochlear development controlled by cis-regulatory elements located within an approximately 500-kb region of the genome in humans and that its disruption leads to deafness due to cochlear aplasia.
Collapse
Affiliation(s)
- Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Filiz B Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Armagan Incesulu
- Department of Otolaryngology, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suat Fitoz
- Department of Diagnostic Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Nicholas C Gosstola
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Brett M Colbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.,Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gozde Cosar Seyhan
- Department of Dermatology, Bakirkoy Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Claire J Sineni
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Duygu Duman
- Department of Audiology, Ankara University School of Medicine, Ankara, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Cynthia C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Manchester Centre for Audiology and Deafness, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.,John T. Macdonald Foundation Department of Human Genetics, and
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.,John T. Macdonald Foundation Department of Human Genetics, and
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.,John T. Macdonald Foundation Department of Human Genetics, and.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
278
|
Vona B, Mazaheri N, Lin SJ, Dunbar LA, Maroofian R, Azaiez H, Booth KT, Vitry S, Rad A, Rüschendorf F, Varshney P, Fowler B, Beetz C, Alagramam KN, Murphy D, Shariati G, Sedaghat A, Houlden H, Petree C, VijayKumar S, Smith RJH, Haaf T, El-Amraoui A, Bowl MR, Varshney GK, Galehdari H. A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Hum Genet 2021; 140:915-931. [PMID: 33496845 PMCID: PMC8099798 DOI: 10.1007/s00439-020-02254-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany. .,Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lucy A Dunbar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy Institut Pasteur, Institut de L'Audition, INSERM-UMRS1120, Sorbonne Université, 63 rue de Charenton, 75012, Paris, France
| | - Aboulfazl Rad
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Franz Rüschendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ben Fowler
- Imaging & Histology Core, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kumar N Alagramam
- Department of Otolaryngology, School of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Neurosciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Murphy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnostics Laboratory, East Mihan Ave, Kianpars, Ahvaz, Iran
| | - Alireza Sedaghat
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shruthi VijayKumar
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy Institut Pasteur, Institut de L'Audition, INSERM-UMRS1120, Sorbonne Université, 63 rue de Charenton, 75012, Paris, France
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK. .,UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
279
|
Souissi A, Ben Said M, Ben Ayed I, Elloumi I, Bouzid A, Mosrati MA, Hasnaoui M, Belcadhi M, Idriss N, Kamoun H, Gharbi N, Gibriel AA, Tlili A, Masmoudi S. Novel pathogenic mutations and further evidence for clinical relevance of genes and variants causing hearing impairment in Tunisian population. J Adv Res 2021; 31:13-24. [PMID: 34194829 PMCID: PMC8240103 DOI: 10.1016/j.jare.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Hearing impairment (HI) is characterized by complex genetic heterogeneity. The evolution of next generation sequencing, including targeted enrichment panels, has revolutionized HI diagnosis. Objectives In this study, we investigated genetic causes in 22 individuals with non-GJB2 HI. Methods We customized a HaloplexHS kit to include 30 genes known to be associated with autosomal recessive nonsyndromic HI (ARNSHI) and Usher syndrome in North Africa. Results In accordance with the ACMG/AMP guidelines, we report 11 pathogenic variants; as follows; five novel variants including three missense (ESRRB-Tyr295Cys, MYO15A-Phe2089Leu and MYO7A-Tyr560Cys) and two nonsense (USH1C-Gln122Ter and CIB2-Arg104Ter) mutations; two previously reported mutations (OTOF-Glu57Ter and PNPT1-Glu475Gly), but first time identified among Tunisian families; and four other identified mutations namely WHRN-Gly808AspfsX11, SLC22A4-Cys113Tyr and two MYO7A compound heterozygous splice site variants that were previously described in Tunisia. Pathogenic variants in WHRN and CIB2 genes, in patients with convincing phenotype ruling out retinitis pigmentosa, provide strong evidence supporting their association with ARNSHI. Moreover, we shed lights on the pathogenic implication of mutations in PNPT1 gene in auditory function providing new evidence for its association with ARNSHI. Lack of segregation of a previously identified causal mutation OTOA-Val603Phe further supports its classification as variant of unknown significance. Our study reports absence of otoacoustic emission in subjects using bilateral hearing aids for several years indicating the importance of screening genetic alteration in OTOF gene for proper management of those patients. Conclusion In conclusion, our findings do not only expand the spectrum of HI mutations in Tunisian patients, but also improve our knowledge about clinical relevance of HI causing genes and variants.
Collapse
Affiliation(s)
- Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mohamed Ali Mosrati
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mehdi Hasnaoui
- Department of Otorhinolaryngology, Taher Sfar University Hospital of Mahdia, Tunisia
| | - Malek Belcadhi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Nabil Idriss
- Department of Otorhinolaryngology, Taher Sfar University Hospital of Mahdia, Tunisia
| | - Hassen Kamoun
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nourhene Gharbi
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Abdullah A. Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy. The British University in Egypt (BUE) Cairo, Egypt
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
- Corresponding author at: Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour road Km 6, BP “1177”, 3018 Sfax, Tunisia.
| |
Collapse
|
280
|
Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment. J Hum Genet 2021; 66:1169-1175. [PMID: 34226616 PMCID: PMC8612923 DOI: 10.1038/s10038-021-00954-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. The genotypic spectrum of SLC12A2 was expanded and the involvement of SLC12A2 in ADNSHI was confirmed. These results also demonstrate the role that SLC12A2 plays in ADNSHI in diverse populations including sub-Saharan Africans.
Collapse
|
281
|
Kamada M, Okuno Y. AIM in Genomic Basis of Medicine: Applications. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
282
|
Amanat S, Gallego-Martinez A, Lopez-Escamez JA. Genetic Inheritance and Its Contribution to Tinnitus. Curr Top Behav Neurosci 2021; 51:29-47. [PMID: 32705497 DOI: 10.1007/7854_2020_155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tinnitus is the abnormal perception of sound that affects more than 15% of adult population around the globe. Severe tinnitus is considered a complex disorder that arises as result of the interaction of genetic and environmental factors, and it is associated with several comorbidities such as hearing loss, anxiety, and insomnia. We begin this review with an introduction to human molecular genetics and the role of genetic variation on the inheritance. There are some genetic reports on tinnitus heritability including concordance studies in twins and adoptees or aggregation in families providing some evidence for familial aggregation in patients with severe tinnitus and high concordance in monozygotic twins with bilateral tinnitus. So, sex differences in familial aggregation and heritability of bilateral tinnitus suggest a potential sexual dimorphism in tinnitus inheritance.Molecular genetic studies have been demonstrated to be a useful tool to understand the role of genetic variation in rare diseases and complex disorders. The reported associations in common variants in neurotrophic factors such as GDNF, BDNF, or potassium channels genes were underpowered, and the lack of replication questions these findings. Although candidate gene approaches have failed in replicating these genetic associations, the development of high throughput sequencing technology and the selection of extreme phenotypes are strategies that will allow the clinicians and researchers to combine genetic information with clinical data to implement a personalized diagnosis and therapy in patients with tinnitus.
Collapse
Affiliation(s)
- Sana Amanat
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain
| | - Jose A Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer, University of Granada, Junta de Andalucía, PTS, Granada, Spain.
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain.
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain.
| |
Collapse
|
283
|
Luo H, Xiao X, Li S, Sun W, Yi Z, Wang P, Zhang Q. Spectrum-frequency and genotype-phenotype analysis of rhodopsin variants. Exp Eye Res 2020; 203:108405. [PMID: 33347869 DOI: 10.1016/j.exer.2020.108405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Mutations in RHO are the most common cause of autosomal dominant retinitis pigmentosa. However, the pathogenicity of many RHO variants is questionable. This study was designed to investigate the genotype-phenotype correlation for RHO variants. These RHO variants were collected from the in-house exome sequencing data of 7092 probands suffering from different types of eye conditions. The variants were classified using bioinformatics tools, family segregation, and clinical phenotypes. The RHO variants were assessed using multiple online tools and a genotype-phenotype analysis based on the data collected from of ours, gnomAD, and published literature. Totally, 52 heterozygous variants of RHO were detected in the 7092 probands. Of these 52, 17 were potentially pathogenic, were present in 35 families, and comprised 15 missense variants, one inframe deletion and one nonsense variant. All the 15 missense variants were predicted to be damaging by five different online tools. The analysis of the clinical data of the patients from the 35 families revealed certain common features, of an early damage to both the rods and the cones, relatively preserved visual acuity in adulthood, and mid-peripheral tapetoretinal degeneration with pigmentation or RPE atrophy. Our data, the data from gnomAD, and the systematic review of the 246 previously reported variants suggest that approximately two-thirds of the rare missense variants and most of the truncated variants involving upstream of K296 are likely benign. This study provides a brief summary of the characteristics of the pathogenic RHO variants. It emphasizes that the systematic evaluation of these variants at the individual-gene level is crucial in the current era of clinical genetic testing even for a well-known gene such as RHO.
Collapse
Affiliation(s)
- Hualei Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
284
|
Roesch S, Bernardinelli E, Wortmann S, Mayr JA, Bader I, Schweighofer-Zwink G, Rasp G, Dossena S. [Molecular and functional testing in case of hereditary hearing loss associated with the SLC26A4 gene]. Laryngorhinootologie 2020; 99:853-862. [PMID: 33307573 DOI: 10.1055/a-1190-4173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Due to development of molecular techniques at hand, the number of genomic sequence variants detected in patient investigations is rising constantly. The number of potentially involved genes in hereditary hearing loss is rising simultaneously.In this overview, current methods for diagnostic workup on a molecular and functional level for variants of the SLC26A4 gene are described. Based on the description of the physiological function of the resulting protein Pendrin, molecular investigations for interpretation of the function are explained. Based on these investigations, the potential clinical consequences of a variant may be predicted more precisely and simplify routine reporting of a proven genotype and a phenotype, at hand. Finally, subsequent clinical investigations necessary, such as perchlorate discharge test, as well as therapeutic options are discussed.
Collapse
Affiliation(s)
- Sebastian Roesch
- Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Emanuele Bernardinelli
- Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
| | - Saskia Wortmann
- Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Johannes A Mayr
- Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Ingrid Bader
- Division für klinische Genetik, Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Gregor Schweighofer-Zwink
- Universitätsklinik für Nuklearmedizin und Endokrinologie der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Gerd Rasp
- Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
| | - Silvia Dossena
- Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
| |
Collapse
|
285
|
Zardadi S, Razmara E, Asgaritarghi G, Jafarinia E, Bitarafan F, Rayat S, Almadani N, Morovvati S, Garshasbi M. Novel homozygous variants in the TMC1 and CDH23 genes cause autosomal recessive nonsyndromic hearing loss. Mol Genet Genomic Med 2020; 8:e1550. [PMID: 33205915 PMCID: PMC7767568 DOI: 10.1002/mgg3.1550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/22/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hereditary hearing loss (HL) is a heterogeneous and most common sensory neural disorder. At least, 76 genes have been reported in association with autosomal recessive nonsyndromic HL (ARNSHL). Herein, we subjected two patients with bilateral sensorineural HL in two distinct consanguineous Iranian families to figure out the underlying genetic factors. Methods Physical and sensorineural examinations were performed on the patients. Imaging also was applied to unveil any abnormalities in anatomical structures of the middle and inner ear. In order to decipher the possible genetic causes of the verified GJB2‐negative samples, the probands were subjected to whole‐exome sequencing and, subsequently, Sanger sequencing was applied for variant confirmation. Results Clinical examinations showed ARNSHL in the patients. After doing whole exome sequencing, two novel variants were identified that were co‐segregating with HL that were absent in 100 ethnically matched controls. In the first family, a novel homozygous variant, NM_138691.2: c.530T>C; p.(lle177Thr), in TMC1 gene co‐segregated with prelingual ARNSHL. In the second family, NM_022124.6: c.2334G>A; p.(Trp778*) was reported as a nonsense variant causing prelingual ARNSHL. Conclusion These findings can, in turn, endorse how TMC1 and CDH23 screening is critical to detecting HL in Iranian patients. Identifying TMC1 and CDH23 pathogenic variants doubtlessly help in the detailed genotypic characterization of HL.
Collapse
Affiliation(s)
- Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Golareh Asgaritarghi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bitarafan
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
286
|
Parzefall T, Frohne A, Koenighofer M, Neesen J, Laccone F, Eckl-Dorna J, Waters JJ, Schreiner M, Amr SS, Ashton E, Schoefer C, Gstœttner W, Frei K, Lucas T. A Novel Variant in the TBC1D24 Lipid-Binding Pocket Causes Autosomal Dominant Hearing Loss: Evidence for a Genotype-Phenotype Correlation. Front Cell Neurosci 2020; 14:585669. [PMID: 33281559 PMCID: PMC7689082 DOI: 10.3389/fncel.2020.585669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Hereditary hearing loss is a disorder with high genetic and allelic heterogeneity. Diagnostic screening of candidate genes commonly yields novel variants of unknown clinical significance. TBC1D24 is a pleiotropic gene associated with recessive DOORS syndrome, epileptic encephalopathy, myoclonic epilepsy, and both recessive and dominant hearing impairment. Genotype-phenotype correlations have not been established to date but could facilitate diagnostic variant assessment and elucidation of pathomechanisms. Methods and Results: Whole-exome and gene panel screening identified a novel (c.919A>C; p.Asn307His) causative variant in TBC1D24 in two unrelated Caucasian families with Autosomal dominant (AD) nonsyndromic late-onset hearing loss. Protein modeling on the Drosophila TBC1D24 ortholog Skywalker crystal structure showed close interhelix proximity (6.8Å) between the highly conserved residue p.Asn307 in α18 and the position of the single known pathogenic dominant variation (p.Ser178Leu) in α11 that causes a form of deafness with similar clinical characteristics. Conclusion: Genetic variants affecting two polar hydrophilic residues in neighboring helices of TBC1D24 cause AD nonsyndromic late-onset hearing loss. The spatial proximity of the affected residues suggests the first genotype-phenotype association in TBC1D24-related disorders. Three conserved residues in α18 contribute to the formation of a functionally relevant cationic phosphoinositide binding pocket that regulates synaptic vesicle trafficking which may be involved in the molecular mechanism of disease.
Collapse
Affiliation(s)
- Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Frohne
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.,Department for Cell and Developmental Biology, Orphan Disease Genetics Group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Koenighofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Juergen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan J Waters
- Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Markus Schreiner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sami Samir Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Emma Ashton
- Rare and Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Christian Schoefer
- Department for Cell and Developmental Biology, Orphan Disease Genetics Group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Gstœttner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Orphan Disease Genetics Group, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
287
|
Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families. Genes (Basel) 2020; 11:genes11111329. [PMID: 33187236 PMCID: PMC7709052 DOI: 10.3390/genes11111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes.
Collapse
|
288
|
Amendola LM, Muenzen K, Biesecker LG, Bowling KM, Cooper GM, Dorschner MO, Driscoll C, Foreman AKM, Golden-Grant K, Greally JM, Hindorff L, Kanavy D, Jobanputra V, Johnston JJ, Kenny EE, McNulty S, Murali P, Ou J, Powell BC, Rehm HL, Rolf B, Roman TS, Van Ziffle J, Guha S, Abhyankar A, Crosslin D, Venner E, Yuan B, Zouk H, Jarvik GP. Variant Classification Concordance using the ACMG-AMP Variant Interpretation Guidelines across Nine Genomic Implementation Research Studies. Am J Hum Genet 2020; 107:932-941. [PMID: 33108757 PMCID: PMC7675005 DOI: 10.1016/j.ajhg.2020.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.
Collapse
Affiliation(s)
- Laura M Amendola
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA.
| | - Kathleen Muenzen
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Kevin M Bowling
- Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Greg M Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Michael O Dorschner
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Catherine Driscoll
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katie Golden-Grant
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| | - John M Greally
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Dona Kanavy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vaidehi Jobanputra
- New York Genome Center, New York, NY 10013, USA; Columbia University Medical Center, New York, NY 10032, USA
| | - Jennifer J Johnston
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shannon McNulty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priyanka Murali
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Jeffrey Ou
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Heidi L Rehm
- Massachusetts General Hospital and the Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Bradley Rolf
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Van Ziffle
- Department of Pathology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Saurav Guha
- New York Genome Center, New York, NY 10013, USA
| | | | - David Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Eric Venner
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics, Houston, TX 77030, USA
| | - Hana Zouk
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School and Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Boston, MA 02139, USA
| | - Gail P Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
289
|
Gallego-Martinez A, Lopez-Escamez JA. Genetic architecture of Meniere’s disease. Hear Res 2020; 397:107872. [DOI: 10.1016/j.heares.2019.107872] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023]
|
290
|
Wonkam-Tingang E, Schrauwen I, Esoh KK, Bharadwaj T, Nouel-Saied LM, Acharya A, Nasir A, Adadey SM, Mowla S, Leal SM, Wonkam A. Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment. Genes (Basel) 2020; 11:genes11111249. [PMID: 33114113 PMCID: PMC7690789 DOI: 10.3390/genes11111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing. We identified novel bi-allelic compound heterozygous pathogenic variants in CLIC5. The variants identified, i.e., the missense [NM_016929.5:c.224T>C; p.(L75P)] and the splicing (NM_016929.5:c.63+1G>A), were validated using Sanger sequencing in all seven available family members and co-segregated with hearing impairment (HI) in the three hearing impaired family members. The three affected individuals were compound heterozygous for both variants, and all unaffected individuals were heterozygous for one of the two variants. Both variants were absent from the genome aggregation database (gnomAD), the Single Nucleotide Polymorphism Database (dbSNP), and the UK10K and Greater Middle East (GME) databases, as well as from 122 apparently healthy controls from Cameroon. We also did not identify these pathogenic variants in 118 unrelated sporadic cases of non-syndromic hearing impairment (NSHI) from Cameroon. In silico analysis showed that the missense variant CLIC5-p.(L75P) substitutes a highly conserved amino acid residue (leucine), and is expected to alter the stability, the structure, and the function of the CLIC5 protein, while the splicing variant CLIC5-(c.63+1G>A) is predicted to disrupt a consensus donor splice site and alter the splicing of the pre-mRNA. This study is the second report, worldwide, to describe CLIC5 involvement in human hearing impairment, and thus confirms CLIC5 as a novel non-syndromic hearing impairment gene that should be included in targeted diagnostic gene panels.
Collapse
Affiliation(s)
- Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Kevin K. Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Liz M. Nouel-Saied
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Anushree Acharya
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea;
| | - Samuel M. Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana
| | - Shaheen Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Suzanne M. Leal
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
- Correspondence: ; Tel.: +27-21-4066-307
| |
Collapse
|
291
|
Buonfiglio P, Bruque CD, Luce L, Giliberto F, Lotersztein V, Menazzi S, Paoli B, Elgoyhen AB, Dalamón V. GJB2 and GJB6 Genetic Variant Curation in an Argentinean Non-Syndromic Hearing-Impaired Cohort. Genes (Basel) 2020; 11:E1233. [PMID: 33096615 PMCID: PMC7589744 DOI: 10.3390/genes11101233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants in GJB2 and GJB6 genes are the most frequent causes of hereditary hearing loss among several deaf populations worldwide. Molecular diagnosis enables proper genetic counseling and medical prognosis to patients. In this study, we present an update of testing results in a cohort of Argentinean non-syndromic hearing-impaired individuals. A total of 48 different sequence variants were detected in genomic DNA from patients referred to our laboratory. They were manually curated and classified based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology ACMG/AMP standards and hearing-loss-gene-specific criteria of the ClinGen Hearing Loss Expert Panel. More than 50% of sequence variants were reclassified from their previous categorization in ClinVar. These results provide an accurately interpreted set of variants to be taken into account by clinicians and the scientific community, and hence, aid the precise genetic counseling to patients.
Collapse
Affiliation(s)
- Paula Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica, ANLIS-Malbrán, C1425 Ciudad Autónoma de Buenos Aires, Argentina;
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas—IBYME/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonela Luce
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina; (L.L.); (F.G.)
- Instituto de Inmunología, Genética y Metabolismo—INIGEM/CONICET, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina; (L.L.); (F.G.)
- Instituto de Inmunología, Genética y Metabolismo—INIGEM/CONICET, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Lotersztein
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, C1426 Ciudad Autónoma de Buenos Aires, Argentina;
| | - Sebastián Menazzi
- Servicio de Genética, Hospital de Clínicas “José de San Martín”, C1120AAR Ciudad Autónoma de Buenos Aires, Argentina;
| | - Bibiana Paoli
- Servicio de Otorrinolaringología Infantil, Hospital de Clínicas “José de San Martín”, C1120AAR Ciudad Autónoma de Buenos Aires, Argentina;
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
| |
Collapse
|
292
|
Brownstein Z, Gulsuner S, Walsh T, Martins FTA, Taiber S, Isakov O, Lee MK, Bordeynik-Cohen M, Birkan M, Chang W, Casadei S, Danial-Farran N, Abu-Rayyan A, Carlson R, Kamal L, Arnþórsson ÁÖ, Sokolov M, Gilony D, Lipschitz N, Frydman M, Davidov B, Macarov M, Sagi M, Vinkler C, Poran H, Sharony R, Samara N, Zvi N, Baris-Feldman H, Singer A, Handzel O, Hertzano R, Ali-Naffaa D, Ruhrman-Shahar N, Madgar O, Sofrin E, Peleg A, Khayat M, Shohat M, Basel-Salmon L, Pras E, Lev D, Wolf M, Steingrimsson E, Shomron N, Kelley MW, Kanaan M, Allon-Shalev S, King MC, Avraham KB. Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene ATOH1. Clin Genet 2020; 98:353-364. [PMID: 33111345 PMCID: PMC8045518 DOI: 10.1111/cge.13817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.
Collapse
Affiliation(s)
- Zippora Brownstein
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Suleyman Gulsuner
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Fábio Tadeu Arrojo Martins
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Isakov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ming K. Lee
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Mor Bordeynik-Cohen
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Maria Birkan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Weise Chang
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Silvia Casadei
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Nada Danial-Farran
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amal Abu-Rayyan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ryan Carlson
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Lara Kamal
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ásgeir Örn Arnþórsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meirav Sokolov
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dror Gilony
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Noga Lipschitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Moshe Frydman
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Bella Davidov
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Michal Macarov
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Sagi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Hana Poran
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Reuven Sharony
- Genetics Institute, Meir Medical Center, Kfar Saba and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Na’ama Zvi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Amihood Singer
- Community Genetics Department, Public Health Services, Ministry of Health, Ramat Gan, Israel
| | - Ophir Handzel
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Doaa Ali-Naffaa
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ory Madgar
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Sofrin
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Amir Peleg
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Morad Khayat
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
| | - Mordechai Shohat
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Institute of Medical Genetics, Maccabi HMO, Rehovot, Israel
| | - Lina Basel-Salmon
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elon Pras
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Dorit Lev
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Michael Wolf
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Moien Kanaan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Stavit Allon-Shalev
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mary-Claire King
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Karen B. Avraham
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
293
|
Roman TS, Crowley SB, Roche MI, Foreman AKM, O'Daniel JM, Seifert BA, Lee K, Brandt A, Gustafson C, DeCristo DM, Strande NT, Ramkissoon L, Milko LV, Owen P, Roy S, Xiong M, Paquin RS, Butterfield RM, Lewis MA, Souris KJ, Bailey DB, Rini C, Booker JK, Powell BC, Weck KE, Powell CM, Berg JS. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am J Hum Genet 2020; 107:596-611. [PMID: 32853555 PMCID: PMC7536575 DOI: 10.1016/j.ajhg.2020.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie B Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myra I Roche
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ann Katherine M Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julianne M O'Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryce A Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Brandt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chelsea Gustafson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniela M DeCristo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natasha T Strande
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura V Milko
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillips Owen
- Renaissance Computing Institute, Chapel Hill, NC 27517, USA
| | - Sayanty Roy
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mai Xiong
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan S Paquin
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Rita M Butterfield
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC 27705, USA
| | - Megan A Lewis
- Center for Communication Science, RTI International, Research Triangle Park, NC 27709, USA
| | - Katherine J Souris
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald B Bailey
- Genomics, Bioinformatics and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Christine Rini
- Feinberg School of Medicine, Department of Medical Social Sciences, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen E Weck
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cynthia M Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
294
|
DiStefano MT, Hughes MY, Patel MJ, Wilcox EH, Oza AM. Expert interpretation of genes and variants in hereditary hearing loss. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background:
Hearing loss (HL) is the most common sensory deficit from birth, with at least 50 % due to an underlying genetic etiology. A genetic evaluation is a recommended component to the medical workup for HL, and a genetic diagnosis can impact medical management and provide prognostic and recurrence risk information. The accuracy of a genetic diagnosis relies on the evidence supporting the gene–disease relationship, as well as the evidence supporting individual variant classifications. As such, the ClinGen Hearing Loss Working Group was formed and tasked with curating genes associated with genetic hearing loss and developing specifications of the ACMG/AMP variant interpretation guidelines with the goal of improving the genetic diagnosis of patients with HL.
Objectives:
To describe the prioritization and expert curation of genes and variants associated with HL performed under the purview of the ClinGen Hearing Loss Gene and Variant Expert Panels (HL GCEP and VCEP).
Materials and methods:
HL genes were taken from clinical testing panels in the Genetic Testing Registry and prioritized based on a nonsyndromic presentation. Variants were taken from ClinVar and those with diverse data types and medically significant conflicts were prioritized to test the specified variant interpretation guidelines and to resolve classification discrepancies, respectively.
Conclusions:
The ClinGen HL GCEP has curated 174 gene–disease pairs. The HL VCEP has submitted 77 variants, including the previously controversial p.Met34Thr and p.Val37Ile variants in GJB2, into ClinVar, as an FDA-recognized database. Collaboration across clinics and laboratories were crucial to these curations and highlight the impact that data sharing can have on patient care.
Collapse
Affiliation(s)
- Marina T. DiStefano
- The Broad Institute of MIT and Harvard , Cambridge , MA , USA
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine , Cambridge , MA , USA
| | | | - Mayher J. Patel
- The Broad Institute of MIT and Harvard , Cambridge , MA , USA
| | - Emma H. Wilcox
- The Broad Institute of MIT and Harvard , Cambridge , MA , USA
| | - Andrea M. Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine , 65 Landsdowne Street Suite 350 , Cambridge , MA , USA
| |
Collapse
|
295
|
Lee SY, Han JH, Carandang M, Kim MY, Kim B, Yi N, Kim J, Kim BJ, Oh DY, Koo JW, Lee JH, Oh SH, Choi BY. Novel genotype-phenotype correlation of functionally characterized LMX1A variants linked to sensorineural hearing loss. Hum Mutat 2020; 41:1877-1883. [PMID: 32840933 DOI: 10.1002/humu.24095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
LMX1A, encoding the LIM homeobox transcription factor, is essential for inner ear development. Despite previous reports of three human LMX1A variants with nonsyndromic hearing loss (NSHL) in the literature, functional characterization of these variants has never been performed. Encouraged by identification of a de novo, heterozygous, missense variant (c.595A > G; p.Arg199Gly) located in the homeodomain of LMX1A in a subject with congenital severe-to-profound deafness through Exome sequencing, we performed luciferase assay to evaluate transcriptional activity of all LMX1A variants reported in the literature including p.Arg199Gly. Resultantly, p.Arg199Gly manifesting the most severe NSHL showed the biggest reduction of transcriptional activity in contrast with moderately reduced activity of p.Cys97Ser and p.Val241Leu associated with less severe progressive NSHL, proposing a genotype-phenotype correlation. Further, our dominant LMX1A variant exerted pathogenic effects via haploinsufficiency rather than dominant-negative effect. Collectively, we provide a potential genotype-phenotype correlation of LMX1A variants as well as the pathogenic mechanism of LMX1A-related NSHL.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, East Avenue Medical Center, Metro Manila, Philippines
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Bonggi Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Nayoung Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jinho Kim
- Clinical Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Korea
| |
Collapse
|
296
|
Oziębło D, Pazik J, Stępniak I, Skarżyński H, Ołdak M. Two Novel Pathogenic Variants Confirm RMND1 Causative Role in Perrault Syndrome with Renal Involvement. Genes (Basel) 2020; 11:E1060. [PMID: 32911714 PMCID: PMC7564844 DOI: 10.3390/genes11091060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
RMND1 (required for meiotic nuclear division 1 homolog) pathogenic variants are known to cause combined oxidative phosphorylation deficiency (COXPD11), a severe multisystem disorder. In one patient, a homozygous RMND1 pathogenic variant, with an established role in COXPD11, was associated with a Perrault-like syndrome. We performed a thorough clinical investigation and applied a targeted multigene hearing loss panel to reveal the cause of hearing loss, ovarian dysfunction (two cardinal features of Perrault syndrome) and chronic kidney disease in two adult female siblings. Two compound heterozygous missense variants, c.583G>A (p.Gly195Arg) and c.818A>C (p.Tyr273Ser), not previously associated with disease, were identified in RMND1 in both patients, and their segregation with disease was confirmed in family members. The patients have no neurological or intellectual impairment, and nephrological evaluation predicts a benign course of kidney disease. Our study presents the mildest, so far reported, RMND1-related phenotype and delivers the first independent confirmation that RMND1 is causally involved in the development of Perrault syndrome with renal involvement. This highlights the importance of including RMND1 to the list of Perrault syndrome causative factors and provides new insight into the clinical manifestation of RMND1 deficiency.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Joanna Pazik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Iwona Stępniak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland;
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (D.O.); (I.S.)
| |
Collapse
|
297
|
ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv 2020; 3:2962-2979. [PMID: 31648317 DOI: 10.1182/bloodadvances.2019000644] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.
Collapse
|
298
|
Zhou K, Huang L, Feng M, Li X, Zhao Y, Liu F, Wei J, Qin D, Lu Q, Shi M, Qu S, Tang F. A novel SLC26A4 splicing mutation identified in two deaf Chinese twin sisters with enlarged vestibular aqueducts. Mol Genet Genomic Med 2020; 8:e1447. [PMID: 32770655 PMCID: PMC7549568 DOI: 10.1002/mgg3.1447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Variants in the SLC26A4 gene are correlated with nonsyndromic hearing loss with an enlarged vestibular aqueduct (EVA). This study aimed to identify the genetic causes in a Chinese family with EVA, and the pathogenicity of the detected variants. Methods We collected blood samples and clinical data from a pair of deaf twin sisters with EVA and their family members. As controls, a group of 500 normal‐hearing people were enrolled in our study. Twenty‐one exons and flanking splice sites of the SLC26A4 gene were screened for pathogenic mutations by polymerase chain reaction and bidirectional Sanger sequencing. Minigene assays were used to verify whether the novel SLC26A4 intronic mutation influenced the normal splicing of mRNA. Results Hearing loss in the twins with EVA was diagnosed using auditory tests and imaging examinations. Two pathogenic mutations, c.919‐2A>G and c.1614+5G>A were detected in SLC26A4, the latter of which has not been reported in the literature. The minigene expression in vitro confirmed that c.1614+5G>A could cause aberrant splicing, resulting in skipping over exon 14. Conclusions On the SLC26A4 gene, c.1614+5G>A is a pathogenic mutation. This finding enriches the mutational spectrum of the SLC26A4 gene and provides a basis for the genetic diagnosis of EVA.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Guangxi Medical University, Nanning, Guangxi, China
| | - Lancheng Huang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Guangxi Medical University, Nanning, Guangxi, China
| | - Menglong Feng
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinlei Li
- Medical Genetics Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Zhao
- Medical Genetics Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Liu
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Danxue Qin
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiutian Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Shi
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fengzhu Tang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
299
|
Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, Bartoli M, Puppo F, Gorokhova S. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat 2020; 41:1797-1810. [PMID: 32668095 DOI: 10.1002/humu.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.
Collapse
Affiliation(s)
- Eugénie Dionnet
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Aurélia Defour
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nathalie Da Silva
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Alexandra Salvi
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nicolas Lévy
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Martin Krahn
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Marc Bartoli
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Francesca Puppo
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Svetlana Gorokhova
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| |
Collapse
|
300
|
Four Novel Variants in POU4F3 Cause Autosomal Dominant Nonsyndromic Hearing Loss. Neural Plast 2020; 2020:6137083. [PMID: 32684921 PMCID: PMC7349627 DOI: 10.1155/2020/6137083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.
Collapse
|