251
|
Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry 2013; 18:1077-89. [PMID: 23711981 PMCID: PMC4163749 DOI: 10.1038/mp.2013.71] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/08/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.
Collapse
|
252
|
Pax6-Dependent Cortical Glutamatergic Neuronal Differentiation Regulates Autism-Like Behavior in Prenatally Valproic Acid-Exposed Rat Offspring. Mol Neurobiol 2013; 49:512-28. [DOI: 10.1007/s12035-013-8535-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
|
253
|
Truong DT, Bonet A, Rendall AR, Rosen GD, Fitch RH. A behavioral evaluation of sex differences in a mouse model of severe neuronal migration disorder. PLoS One 2013; 8:e73144. [PMID: 24039873 PMCID: PMC3767742 DOI: 10.1371/journal.pone.0073144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023] Open
Abstract
Disruption of neuronal migration in humans is associated with a wide range of behavioral and cognitive outcomes including severe intellectual disability, language impairment, and social dysfunction. Furthermore, malformations of cortical development have been observed in a number of neurodevelopmental disorders (e.g. autism and dyslexia), where boys are much more commonly diagnosed than girls (estimates around 4 to 1). The use of rodent models provides an excellent means to examine how sex may modulate behavioral outcomes in the presence of comparable abnormal neuroanatomical presentations. Initially characterized by Rosen et al. 2012, the BXD29- Tlr4lps−2J/J mouse mutant exhibits a highly penetrant neuroanatomical phenotype that consists of bilateral midline subcortical nodular heterotopia with partial callosal agenesis. In the current study, we confirm our initial findings of a severe impairment in rapid auditory processing in affected male mice. We also report that BXD29- Tlr4lps−2J/J (mutant) female mice show no sparing of rapid auditory processing, and in fact show deficits similar to mutant males. Interestingly, female BXD29- Tlr4lps−2J/J mice do display superiority in Morris water maze performance as compared to wild type females, an affect not seen in mutant males. Finally, we report new evidence that BXD29- Tlr4lps−2J/J mice, in general, show evidence of hyper-social behaviors. In closing, the use of the BXD29- Tlr4lps−2J/J strain of mice – with its strong behavioral and neuroanatomical phenotype – may be highly useful in characterizing sex independent versus dependent mechanisms that interact with neural reorganization, as well as clinically relevant abnormal behavior resulting from aberrant neuronal migration.
Collapse
Affiliation(s)
- Dongnhu T. Truong
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| | - Ashley Bonet
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amanda R. Rendall
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, Connecticut, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Roslyn H. Fitch
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
254
|
Ageta-Ishihara N, Yamakado H, Morita T, Hattori S, Takao K, Miyakawa T, Takahashi R, Kinoshita M. Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson's disease, causes behavioral alterations but not neurodegeneration in mice. Mol Brain 2013; 6:35. [PMID: 23938054 PMCID: PMC3751304 DOI: 10.1186/1756-6606-6-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022] Open
Abstract
Background In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins; SEPT4/CDCrel-2 which coaggregates with α-synuclein as Lewy bodies in Parkinson’s disease, and its closest homolog SEPT5/CDCrel-1/PNUTL1 whose overload with viral vector can rapidly eliminate dopamine neurons in rats. However, chronic effects of pan-neural overload of septins have never been examined in mammals. To address this, we established a line of transgenic mice that express the largest gene product SEPT454kDa via the prion promoter in the entire brain. Results Histological examination and biochemical quantification of SEPT4-associated proteins including α-synuclein and the dopamine transporter in the nigrostriatal dopamine neurons found no significant difference between Sept4Tg/+ and wild-type littermates. Thus, the hypothetical pathogenicity by the chronic overload of SEPT4 alone, if any, is insufficient to trigger neurodegenerative process in the mouse brain. Intriguingly, however, a systematic battery of behavioral tests revealed unexpected abnormalities in Sept4Tg/+ mice that include consistent attenuation of voluntary activities in distinct behavioral paradigms and altered social behaviors. Conclusions Together, these data indicate that septin dysregulations commonly found in postmortem human brains with Parkinson’s disease, schizophrenia and bipolar disorders may be responsible for a subset of behavioral abnormalities in the patients.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Jew CP, Wu CS, Sun H, Zhu J, Huang JY, Yu D, Justice NJ, Lu HC. mGluR5 ablation in cortical glutamatergic neurons increases novelty-induced locomotion. PLoS One 2013; 8:e70415. [PMID: 23940572 PMCID: PMC3734292 DOI: 10.1371/journal.pone.0070415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/23/2013] [Indexed: 01/05/2023] Open
Abstract
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.
Collapse
Affiliation(s)
- Chris P. Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jui-Yen Huang
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinghui Yu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas J. Justice
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
256
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
257
|
GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes. PLoS One 2013; 8:e69883. [PMID: 23922840 PMCID: PMC3726734 DOI: 10.1371/journal.pone.0069883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1) knockout (KO) mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A) receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.
Collapse
|
258
|
Bailey AR, Hou H, Song M, Obregon DF, Portis S, Barger S, Shytle D, Stock S, Mori T, Sanberg PG, Murphy T, Tan J. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα. Glia 2013; 61:1556-69. [PMID: 23840007 PMCID: PMC3729742 DOI: 10.1002/glia.22544] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 01/13/2023]
Abstract
Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment.
Collapse
Affiliation(s)
- Antoinette R Bailey
- Department of Psychiatry and Neurosciences, Rashid Laboratory for Developmental Neurobiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, Van de Water J, Amaral DG. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 2013; 3:e278. [PMID: 23838889 PMCID: PMC3731783 DOI: 10.1038/tp.2013.47] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/08/2013] [Indexed: 11/24/2022] Open
Abstract
Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.
Collapse
Affiliation(s)
- M D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci 2013; 33:5275-84. [PMID: 23516292 DOI: 10.1523/jneurosci.3200-12.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated "two-enclosure homecage test" devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. A conventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation.
Collapse
|
261
|
Abstract
Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jacqueline N Crawley
- Robert Chason Chair in Translational Research, M.I.N.D. Institute Professor of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
262
|
Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 2013; 96:62-70. [PMID: 23685206 DOI: 10.1016/j.brainresbull.2013.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022]
Abstract
The genetically inbred BTBR T+ Itpr3tf/J (BTBR) mouse is a proposed model of autism spectrum disorders (ASDs). Similar to several syndromic forms of ASDs, mTOR activity may be enhanced in this mouse strain as a result of increased Ras signaling. Recently, D-cycloserine, a partial glycineB site agonist that targets the NMDA receptor, was shown to improve the sociability of the Balb/c mouse strain, another proposed genetically inbred model of ASDs. NMDA receptor activation is an important regulator of mTOR signaling activity. Given the ability of D-cycloserine to improve the sociability of the Balb/c mouse strain and the regulatory role of the NMDA receptor in mTOR signaling, we wondered if D-cycloserine would improve the impaired sociability of the BTBR mouse strain. D-Cycloserine (320 mg/kg, ip) improved measures of sociability in a standard sociability paradigm and spontaneous grooming that emerged during social interaction with an ICR stimulus mouse in the BTBR strain; however, similar effects were observed in the Swiss Webster comparator strain, raising questions about their strain-selectivity. Importantly, the profile of D-cycloserine's effects on both measures of sociability and stereotypies is consistent with that of a desired medication for ASDs; specifically, a desired medication would not improve sociability at the expense of worsening stereotypic behaviors or vice versa.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | |
Collapse
|
263
|
Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res 2013; 249:124-32. [PMID: 23643692 DOI: 10.1016/j.bbr.2013.04.043] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders.
Collapse
Affiliation(s)
- D M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, Ireland
| | | | | | | | | |
Collapse
|
264
|
Yadav R, Hillman BG, Gupta SC, Suryavanshi P, Bhatt JM, Pavuluri R, Stairs DJ, Dravid SM. Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning. PLoS One 2013; 8:e60785. [PMID: 23560106 PMCID: PMC3616134 DOI: 10.1371/journal.pone.0060785] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system.
Collapse
Affiliation(s)
- Roopali Yadav
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Brandon G. Hillman
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Subhash C. Gupta
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Pratyush Suryavanshi
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Jay M. Bhatt
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Ratnamala Pavuluri
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Dustin J. Stairs
- Department of Psychology, Creighton University, Omaha, Nebraska, United States of America
| | - Shashank M. Dravid
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
265
|
Roullet FI, Lai JKY, Foster JA. In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol 2013; 36:47-56. [PMID: 23395807 DOI: 10.1016/j.ntt.2013.01.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 01/16/2023]
Abstract
Valproic acid (VPA) is both an anti-convulsant and a mood stabilizer. Clinical studies over the past 40 years have shown that exposure to VPA in utero is associated with birth defects, cognitive deficits, and increased risk of autism. Two recent FDA warnings related to use of VPA in pregnancy emphasize the need to reevaluate its use clinically during child-bearing years. The emerging clinical evidence showing a link between VPA exposure and both cognitive function and risk of autism brings to the forefront the importance of understanding how VPA exposure influences neurodevelopment. In the past 10 years, animal studies have investigated anatomical, behavioral, molecular, and physiological outcomes related to in utero VPA exposure. Behavioral studies show that VPA exposure in both rats and mice leads to autistic-like behaviors in the offspring, including social behavior deficits, increased repetitive behaviors, and deficits in communication. Based on this work VPA maternal challenge in rodents has been proposed as an animal model to study autism. This model has both face and construct validity; however, like all animal models there are limitations to its translation to the clinical setting. Here we provide a review of clinical studies that examined pregnancy outcomes of VPA use as well as the related animal studies.
Collapse
Affiliation(s)
- Florence I Roullet
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada.
| | | | | |
Collapse
|
266
|
Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, Jeon SJ, dela Pena IC, Han SH, Cheong JH, Ryu JH, Shin CY. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 2013; 124:832-43. [DOI: 10.1111/jnc.12147] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ki Chan Kim
- Department of Pharmacology; College of Pharmacy; Seoul National University; Seoul Korea
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
| | - Pitna Kim
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
- School of Medicine; Konkuk University; Seoul Korea
| | - Hyo Sang Go
- Department of Pharmacology; College of Pharmacy; Seoul National University; Seoul Korea
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
| | - Chang Soon Choi
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
- School of Medicine; Konkuk University; Seoul Korea
| | - Jin Hee Park
- School of Medicine; Konkuk University; Seoul Korea
| | - Hee Jin Kim
- Department of Pharmacy; Sahmyook University; Seoul Korea
| | - Se Jin Jeon
- Department of Psychiatry; School of Medicine; University of California; Los Angeles California USA
| | | | - Seol-Heui Han
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
- School of Medicine; Konkuk University; Seoul Korea
| | | | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science; College of Pharmacy; Kyung Hee University; Seoul Korea
| | - Chan Young Shin
- Center for Neuroscience Research; SMART Institute of Advanced Biomedical Sciences; Konkuk University; Seoul Korea
- School of Medicine; Konkuk University; Seoul Korea
| |
Collapse
|
267
|
Oddi D, Crusio WE, D'Amato FR, Pietropaolo S. Monogenic mouse models of social dysfunction: implications for autism. Behav Brain Res 2013; 251:75-84. [PMID: 23327738 DOI: 10.1016/j.bbr.2013.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/14/2012] [Accepted: 01/05/2013] [Indexed: 12/21/2022]
Abstract
Autism is a pervasive disorder characterized by a complex symptomatology, based principally on social dysfunction. The disorder has a highly complex, largely genetic etiology, involving an impressive variety of genes, the precise contributions of which still remain to be determined. For this reason, a reductionist approach to the study of autism has been proposed, employing monogenic animal models of social dysfunction, either by targeting a candidate gene, or by mimicking a single-gene disorder characterized by autistic symptoms. In the present review, we discuss this monogenic approach by comparing examples of each strategy: the mu opioid receptor knock-out (KO) mouse line, which targets the opioid system (known to be involved in the control of social behaviors); and the Fmr1-KO mouse, a model for Fragile X syndrome (a neurodevelopmental syndrome that includes autistic symptoms). The autistic-relevant behavioral phenotypes of the mu-opioid and Fmr1-KO mouse lines are described here, summarizing previous work by our research group and others, but also providing novel experimental evidence. Relevant factors influencing the validity of the two models, such as sex differences and age at testing, are also addressed, permitting an extensive evaluation of the advantages and limits of monogenic mouse models for autism.
Collapse
Affiliation(s)
- D Oddi
- CNR, Cell Biology and Neurobiology Institute, Rome, Italy; IRCCS, Santa Lucia Foundation, Rome, Italy
| | | | | | | |
Collapse
|
268
|
Lopatina O, Inzhutova A, Salmina AB, Higashida H. The roles of oxytocin and CD38 in social or parental behaviors. Front Neurosci 2013; 6:182. [PMID: 23335873 PMCID: PMC3542479 DOI: 10.3389/fnins.2012.00182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/01/2012] [Indexed: 12/17/2022] Open
Abstract
The nine amino acid peptide oxytocin (OXT) has been directly associated with different types of behavioral reactions. The formation and maintenance of social relationships in youth and middle age are important components of human mental health. A deficit in healthy behavioral formation leads to social isolation and limitation of well-being. Mice are social animals and are therefore useful for investigating the neurobiological mechanisms of cognitive process control, including the development of social relationships and social skills. Studies in mice may broaden our understanding of the human condition. The multifunctional protein CD38/ADP-ribosyl cyclase is highly expressed in the brain, plays an important role in central OXT release, and regulates social memory. In this review article, we discuss the mechanisms of social behavior affected by the dysregulation of brain OXT function as a consequence of a lack of CD38. OXT bound to OXT receptors initiates autoregulatory positive feedback of OXT release in the hypothalamus and posterior pituitary. OXT bio-behavioral positive feedback is usually implicated in female reproductive systems, but can also be observed in social behavior. Exogenous stimuli (OXT treatment in vitro, OXT intravenous or intraventricular administration, and nasal OXT delivery) initiate activation of OXT neurons via PKC-CD38/ADP-ribosyl cyclase cascades and result in the modulation of social behavior in humans and mice. Based on these findings, we reviewed the functions of OXT and its properties with respect to the development of therapies for human social behavior impairments in psychological diseases. In addition, preliminary studies of continuous nasal OXT administration on subjects with autism spectrum disorders are described.
Collapse
Affiliation(s)
- Olga Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | | | | | | |
Collapse
|
269
|
Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 2013; 216:99-112. [PMID: 23225872 PMCID: PMC3515034 DOI: 10.1242/jeb.074716] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
We examine the role of the protozoan Toxoplasma gondii as a manipulatory parasite and question what role study of infections in its natural intermediate rodent hosts and other secondary hosts, including humans, may elucidate in terms of the epidemiology, evolution and clinical applications of infection. In particular, we focus on the potential association between T. gondii and schizophrenia. We introduce the novel term 'T. gondii-rat manipulation-schizophrenia model' and propose how future behavioural research on this model should be performed from a biological, clinical and ethically appropriate perspective.
Collapse
Affiliation(s)
- Joanne P. Webster
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Maya Kaushik
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College Faculty of Medicine, London, W2 1PG, UK
| | - Greg C. Bristow
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Glenn A. McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
270
|
Khroyan TV, Zhang J, Yang L, Zou B, Xie J, Pascual C, Malik A, Xie J, Zaveri NT, Vazquez J, Polgar W, Toll L, Fang J, Xie X. Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™. Clin Exp Pharmacol Physiol 2012; 39:614-22. [PMID: 22540540 DOI: 10.1111/j.1440-1681.2012.05719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening.
Collapse
|
271
|
Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One 2012; 7:e48975. [PMID: 23139830 PMCID: PMC3490915 DOI: 10.1371/journal.pone.0048975] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023] Open
Abstract
Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.
Collapse
Affiliation(s)
- Michael J. Kane
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mariana Angoa-Peréz
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Denise I. Briggs
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Catherine E. Sykes
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dina M. Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Donald M. Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
272
|
Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem Toxicol 2012; 51:288-96. [PMID: 23104247 DOI: 10.1016/j.fct.2012.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/20/2012] [Accepted: 10/12/2012] [Indexed: 12/26/2022]
Abstract
Ginseng is one of the most widely used medicinal plants, which belongs to the genus Panax. Compared to uncured white ginseng, red ginseng has been generally regarded to produce superior pharmacological effects with lesser side/adverse effects, which made it popular in a variety of formulation from tea to oriental medicine. Using the prenatal valproic acid (VPA)-injection model of autism spectrum disorder (ASD) in rats, which produces social impairrment and altered seizure susceptibility as in human ASD patients as well as mild neural tube defects like crooked tail phenotype, we examined whether chronic administration of red ginseng extract may rescue the social impairment and crooked tail phenotype in prenatally VPA-exposed rat offspring. VPA-induced impairment in social interactions tested using sociability and social preference paradigms as well as crooked tail phenotypes were significantly improved by administration of Korean red ginseng (KRG) in a dose dependent manner. Rat offspring prenatally exposed to VPA showed higher sensitivity to electric shock seizure and increased locomotor activity in open-field test. KRG treatment reversed abnormal locomotor activity and sensitivity to electric shock to control level. These results suggest that KRG may modulate neurobehavioral and structural organization of nervous system adversely affected by prenatal exposure to VPA.
Collapse
|
273
|
Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Baba A, Hashimoto H, Miyakawa T. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci 2012; 6:58. [PMID: 23060763 PMCID: PMC3462416 DOI: 10.3389/fnbeh.2012.00058] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/22/2012] [Indexed: 12/05/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC(1)). Recent studies reveal that genetic variants of the PACAP and PAC(1) genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory.
Collapse
Affiliation(s)
- Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
| | - Keizo Takao
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| | - Koichi Tanda
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of MedicineKyoto, Kyoto, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Akemichi Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of MedicineSuita, Osaka, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| |
Collapse
|
274
|
Fairless AH, Katz JM, Vijayvargiya N, Dow HC, Kreibich AS, Berrettini WH, Abel T, Brodkin ES. Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice. Behav Brain Res 2012; 237:338-47. [PMID: 22982070 DOI: 10.1016/j.bbr.2012.08.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 01/24/2023]
Abstract
BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ∼30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism.
Collapse
Affiliation(s)
- Andrew H Fairless
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | |
Collapse
|
275
|
MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:19260. [PMID: 23990817 PMCID: PMC3747729 DOI: 10.3402/mehd.v23i0.19260] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental agents that can trigger ASDs or ASD-related behaviors and deserve further exploration in basic science, agriculture, and clinical medicine.
Collapse
Affiliation(s)
- Derrick F. MacFabe
- Director: The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, Lawson Research Institute, University of Western Ontario, London, ON, Canada, N6A 5C2
| |
Collapse
|
276
|
Ricceri L, De Filippis B, Laviola G. Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology 2012; 68:106-15. [PMID: 22940001 DOI: 10.1016/j.neuropharm.2012.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/24/2022]
Abstract
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Dept. Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy
| | | | | |
Collapse
|
277
|
Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay. Behav Brain Res 2012; 233:405-14. [DOI: 10.1016/j.bbr.2012.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 12/14/2022]
|
278
|
Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012; 4:21. [PMID: 22958282 PMCID: PMC3445833 DOI: 10.1186/1866-1955-4-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022] Open
Abstract
The autism spectrum disorders (ASDs) arise from a diverse array of genetic and environmental origins that disrupt the typical developmental trajectory of neural connectivity and synaptogenesis. ASDs are marked by dysfunctional social behavior and cognition, among other deficits. Greater understanding of the biological substrates of typical social behavior in animal models will further our understanding of the etiology of ASDs. Despite the precision and tractability of molecular genetics models of ASDs in rodents, these organisms lack the complexity of human social behavior, thus limiting their impact on understanding ASDs to basic mechanisms. Non-human primates (NHPs) provide an attractive, complementary model for ASDs, due in part to the complexity and dynamics of social structures, reliance on vision for social signaling, and deep homology in brain circuitry mediating social behavior and reward. This knowledge is based on a rich literature, compiled over 50 years of observing primate behavior in the wild, which, in the case of rhesus macaques, is complemented by a large body of research characterizing neuronal activity during cognitive behavior. Several recent developments in this field are directly relevant to ASDs, including how the brain represents the perceptual features of social stimuli, how social information influences attention processes in the brain, and how the value of social interaction is computed. Because the symptoms of ASDs may represent extreme manifestations of traits that vary in intensity within the general population, we will additionally discuss ways in which nonhuman primates also show variation in social behavior and reward sensitivity. In cases where variation in species-typical behavior is analogous to similar variations in human behavior, we believe that study of the neural circuitry underlying this variation will provide important insights into the systems-level mechanisms contributing to ASD pathology.
Collapse
|
279
|
Autism spectrum disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
280
|
Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 2012; 32:5880-90. [PMID: 22539849 DOI: 10.1523/jneurosci.5462-11.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis persists throughout life in restricted brain regions in mammals and is affected by various physiological and pathological conditions. The tumor suppressor gene Pten is involved in adult neurogenesis and is mutated in a subset of autism patients with macrocephaly; however, the link between the role of PTEN in adult neurogenesis and the etiology of autism has not been studied before. Moreover, the role of hippocampus, one of the brain regions where adult neurogenesis occurs, in development of autism is not clear. Here, we show that ablating Pten in adult neural stem cells in the subgranular zone of hippocampal dentate gyrus results in higher proliferation rate and accelerated differentiation of the stem/progenitor cells, leading to depletion of the neural stem cell pool and increased differentiation toward the astrocytic lineage at later stages. Pten-deleted stem/progenitor cells develop into hypertrophied neurons with abnormal polarity. Additionally, Pten mutant mice have macrocephaly and exhibit impairment in social interactions and seizure activity. Our data reveal a novel function for PTEN in adult hippocampal neurogenesis and indicate a role in the pathogenesis of abnormal social behaviors.
Collapse
|
281
|
Bohlen MO, Bailoo JD, Jordan RL, Wahlsten D. Hippocampal commissure defects in crosses of four inbred mouse strains with absent corpus callosum. GENES BRAIN AND BEHAVIOR 2012; 11:757-66. [PMID: 22537318 DOI: 10.1111/j.1601-183x.2012.00802.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is known that four common inbred mouse strains show defects of the forebrain commissures. The BALB/cJ strain has a low frequency of abnormally small corpus callosum, whereas the 129 strains have many animals with deficient corpus callosum. The I/LnJ and BTBR T+ tf/J strains never have a corpus callosum, whereas half of I/LnJ and almost all BTBR show severely reduced size of the hippocampal commissure. Certain F1 hybrid crosses among these strains are known to be less severely abnormal than the inbred parents, suggesting that the parent strains have different genetic causes of commissure defects. In this study, all hybrid crosses among the four strains were investigated. The BTBR × I/Ln hybrid expressed almost no defects of the hippocampal commissure, unlike its inbred parent strains. Numerous three-way crosses among the four strains yielded many mice with no corpus callosum and severely reduced hippocampal commissure, which shows that the phenotypic defect can result from several different combinations of genetic alleles. The F2 and F3 hybrid crosses of BTBR and I/LnJ had almost 100% absence of the corpus callosum but about 50% frequency of deficient hippocampal commissure. The four-way hybrid cross among all four abnormal strains involved highly fertile parents and yielded a very wide phenotypic range of defects from almost no hippocampal commissure to totally normal forebrain commissures. The F2 and F3 crosses as well as the four-way cross provide excellent material for studies of genetic linkage and behavioral consequences of commissure defects.
Collapse
Affiliation(s)
- M O Bohlen
- Department of Psychology, University of North Carolina, Greensboro, NC 27412, USA
| | | | | | | |
Collapse
|
282
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
283
|
Yamaguchi T, Togashi H, Matsumoto M, Izumi T, Yoshioka M. [Impairment of emotional behaviors induced by early postnatal stress]. Nihon Yakurigaku Zasshi 2012; 139:142-6. [PMID: 22498676 DOI: 10.1254/fpj.139.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
284
|
Lacaria M, Spencer C, Gu W, Paylor R, Lupski JR. Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum Mol Genet 2012; 21:3083-96. [PMID: 22492990 DOI: 10.1093/hmg/dds124] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Potocki-Lupski syndrome (PTLS; MIM #610883), characterized by neurobehavioral abnormalities, intellectual disability and congenital anomalies, is caused by a 3.7-Mb duplication in 17p11.2. Neurobehavioral studies determined that ∼70-90% of PTLS subjects tested positive for autism or autism spectrum disorder (ASD). We previously chromosomally engineered a mouse model for PTLS (Dp(11)17/+) with a duplication of a 2-Mb genomic interval syntenic to the PTLS region and identified consistent behavioral abnormalities in this mouse model. We now report extensive phenotyping with behavioral assays established to evaluate core and associated autistic-like traits, including tests for social abnormalities, ultrasonic vocalizations, perseverative and stereotypic behaviors, anxiety, learning and memory deficits and motor defects. Alterations were identified in both core and associated ASD-like traits. Rearing this animal model in an enriched environment mitigated some, and even rescued selected, neurobehavioral abnormalities, suggesting a role for gene-environment interactions in the determination of copy number variation-mediated autism severity.
Collapse
Affiliation(s)
- Melanie Lacaria
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
285
|
Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7:e32969. [PMID: 22412961 PMCID: PMC3296759 DOI: 10.1371/journal.pone.0032969] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 12/27/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.
Collapse
|
286
|
Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology. ASN Neuro 2012; 5:e00106. [PMID: 23298182 PMCID: PMC3575035 DOI: 10.1042/an20120060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders). In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon). Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.
Collapse
|
287
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
288
|
Deutsch SI, Urbano MR, Zemlin C. Mouse models have limitations for development of medications for autism spectrum disorders, but also show much promise. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.11.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Maria R Urbano
- Department of Psychiatry & Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA
| | - Christian Zemlin
- Department of Electrical & Computer Engineering, Old Dominion University, 231B Kaufman Hall, Norfolk, VA 23529, USA
| |
Collapse
|
289
|
Deutsch SI, Pepe GJ, Burket JA, Winebarger EE, Herndon AL, Benson AD. D-cycloserine improves sociability and spontaneous stereotypic behaviors in 4-week old mice. Brain Res 2011; 1439:96-107. [PMID: 22261249 DOI: 10.1016/j.brainres.2011.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 01/06/2023]
Abstract
Balb/c mice are a model of impaired sociability and social motivation relevant to autism spectrum disorders (ASDs). Impaired sociability of 8-week old Balb/c mice is attenuated by agonists of the glycine(B) site on the NMDA receptor, such as d-cycloserine. Although ASDs are often recognized in toddlerhood, there is interest in earlier identification (e.g., before 6 months) and disease-modifying interventions to improve functional outcomes. Thus, we wondered if d-cycloserine could improve sociability in 4-week old Balb/c mice, similar to its effects in 8-week old mice. d-Cycloserine improved measures of impaired sociability in 4-week old (i.e., one-week post-weanling) Balb/c mice. Moreover, because stereotypies can compete with the salience of social stimuli, we compared Balb/c and Swiss Webster mice on several spontaneous stereotypic behaviors emerging during social interaction with a social stimulus mouse. Interestingly, similar to 8-week old mice, spontaneous stereotypic behaviors during social interaction were more intense in the 4-week old Swiss Webster mice; furthermore, d-cycloserine reduced their intensity. Thus, d-cycloserine improves both sociability and stereotypic behaviors, but these effects may lack strain-selectivity. A prosocial effect of d-cycloserine was observed at a dose as low as 32.0mg/kg in Balb/c mice. d-cycloserine has the therapeutic properties of a desired medication for ASDs; specifically, a medication should not improve stereotypic behaviors at the expense of worsening sociability and vice versa. The data suggest that targeting the NMDA receptor can have promising therapeutic effects on two prominent domains of psychopathology in ASDs: impaired sociability and spontaneous stereotypic behaviors.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk Virginia, USA.
| | | | | | | | | | | |
Collapse
|
290
|
Fairless AH, Dow HC, Kreibich AS, Torre M, Kuruvilla M, Gordon E, Morton EA, Tan J, Berrettini WH, Li H, Abel T, Brodkin ES. Sociability and brain development in BALB/cJ and C57BL/6J mice. Behav Brain Res 2011; 228:299-310. [PMID: 22178318 DOI: 10.1016/j.bbr.2011.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022]
Abstract
Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development.
Collapse
Affiliation(s)
- Andrew H Fairless
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Jacome LF, Burket JA, Herndon AL, Deutsch SI. Genetically inbred Balb/c mice differ from outbred Swiss Webster mice on discrete measures of sociability: relevance to a genetic mouse model of autism spectrum disorders. Autism Res 2011; 4:393-400. [PMID: 21882363 DOI: 10.1002/aur.218] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/27/2011] [Indexed: 11/05/2022]
Abstract
The Balb/c mouse is proposed as a model of human disorders with prominent deficits of sociability, such as autism spectrum disorders (ASDs) that may involve pathophysiological disruption of NMDA receptor-mediated neurotransmission. A standard procedure was used to measure sociability in 8-week-old male genetically inbred Balb/c and outbred Swiss Webster mice. Moreover, because impaired sociability may influence the social behavior of stimulus mice, we also measured the proportion of total episodes of social approach made by the stimulus mouse while test and stimulus mice were allowed to interact freely. Three raters with good inter-rater agreement evaluated operationally defined measures of sociability chosen because of their descriptive similarity to deficits of social behavior reported in persons with ASDs. The data support previous reports that the Balb/c mouse is a genetic mouse model of impaired sociability. The data also show that the behavior of the social stimulus mouse is influenced by the impaired sociability of the Balb/c strain. Interestingly, operationally defined measures of sociability did not necessarily correlate with each other within mouse strain and the profile of correlated measures differed between strains. Finally, "stereotypic" behaviors (i.e. rearing, grooming and wall climbing) recorded during the session of free interaction between the test and social stimulus mice were more intensely displayed by Swiss Webster than Balb/c mice, suggesting that the domains of sociability and "restricted repetitive and stereotyped patterns of behavior" are independent of each other in the Balb/c strain.
Collapse
Affiliation(s)
- Luis F Jacome
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA 23507-1912, USA
| | | | | | | |
Collapse
|
292
|
Dendrinos G, Hemelt M, Keller A. Prenatal VPA Exposure and Changes in Sensory Processing by the Superior Colliculus. Front Integr Neurosci 2011; 5:68. [PMID: 22025911 PMCID: PMC3198155 DOI: 10.3389/fnint.2011.00068] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/06/2011] [Indexed: 12/22/2022] Open
Abstract
Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA), a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition, and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.
Collapse
Affiliation(s)
- Georgia Dendrinos
- Program in Neuroscience, Department of Anatomy and Neurobiology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
293
|
Abstract
Signaling through extracellular signal-regulated kinase (ERK) is important in multiple signal transduction networks in the CNS. However, the specific role of ERK2 in in vivo brain functions is not fully understood. Here we show that ERK2 play a critical role in regulating social behaviors as well as cognitive and emotional behaviors in mice. To study the brain function of ERK2, we used a conditional, region-specific, genetic approach to target Erk2 using the Cre/loxP strategy with a nestin promoter-driven cre transgenic mouse line to induce recombination in the CNS. The resulting Erk2 conditional knock-out (CKO) mice, in which Erk2 was abrogated specifically in the CNS, were viable and fertile with a normal appearance. These mice, however, exhibited marked anomalies in multiple aspects of social behaviors related to facets of autism-spectrum disorders: elevated aggressive behaviors, deficits in maternal nurturing, poor nest-building, and lower levels of social familiarity and social interaction. Erk2 CKO mice also exhibited decreased anxiety-related behaviors and impaired long-term memory. Pharmacological inhibition of ERK1 phosphorylation in Erk2 CKO mice did not affect the impairments in social behaviors and learning disabilities, indicating that ERK2, but not ERK1 plays a critical role in these behaviors. Our findings suggest that ERK2 has complex and multiple roles in the CNS, with important implications for human psychiatric disorders characterized by deficits in social behaviors.
Collapse
|
294
|
Mehta MV, Gandal MJ, Siegel SJ. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One 2011; 6:e26077. [PMID: 22016815 PMCID: PMC3189241 DOI: 10.1371/journal.pone.0026077] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/19/2011] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorders (ASD) are highly disabling developmental disorders with a population prevalence of 1–3%. Despite a strong genetic etiology, there are no current therapeutic options that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of glutamatergic signaling, in particular through metabotropic glutamate receptor 5 (mGluR5) receptors, may contribute to phenotypic deficits and may be appropriate targets for pharmacologic intervention. This study assessed the therapeutic potential of 2-methyl-6-phenylethyl-pyrididine (MPEP), an mGluR5-receptor antagonist, on repetitive and anxiety-like behaviors in the valproic acid (VPA) mouse model of autism. Mice were exposed prenatally on day E13 to VPA and assessed for repetitive self-grooming and marble burying behaviors as adults. Anxiety-like behavior and locomotor activity were measured in an open-field. VPA-exposed mice displayed increased repetitive and anxiety-like behaviors, consistent with previously published results. Across both marble burying and self-grooming assays, MPEP significantly reduced repetitive behaviors in VPA-treated mice, but had no effect on locomotor activity. These results are consistent with emerging preclinical literature that mGluR5-antagonists may have therapeutic efficacy for core symptoms of autism.
Collapse
Affiliation(s)
- Mili V. Mehta
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Gandal
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Steven J. Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
295
|
Bishop SL, Lahvis GP. The autism diagnosis in translation: shared affect in children and mouse models of ASD. Autism Res 2011; 4:317-35. [PMID: 21882361 PMCID: PMC3684385 DOI: 10.1002/aur.216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
In the absence of molecular biomarkers that can be used to diagnose ASD, current diagnostic tools depend upon clinical assessments of behavior. Research efforts with human subjects have successfully utilized standardized diagnostic instruments, which include clinician interviews with parents and direct observation of the children themselves [Risi et al., 2006]. However, because clinical instruments are semi-structured and rely heavily on dynamic social processes and clinical skill, scores from these measures do not necessarily lend themselves directly to experimental investigations into the causes of ASD. Studies of the neurobiology of autism require experimental animal models. Mice are particularly useful for elucidating genetic and toxicological contributions to impairments in social function [Halladay et al., 2009]. Behavioral tests have been developed that are relevant to autism [Crawley, 2004, 2007], including measures of repetitive behaviors [Lewis, Tanimura, Lee, & Bodfish, 2007; Moy et al., 2008], social behavior [Brodkin, 2007; Lijam et al., 1997; Moretti, Bouwknecht, Teague, Paylor, & Zoghbi, 2005], and vocal communication [D'Amato et al., 2005; Panksepp et al., 2007; Scattoni et al., 2008]. Advances also include development of high-throughput measures of mouse sociability that can be used to reliably compare inbred mouse strains [Moy et al., 2008; Nadler et al., 2004], as well as measures of social reward [Panksepp & Lahvis, 2007] and empathy [Chen, Panksepp, & Lahvis, 2009; Langford et al., 2006]. With continued generation of mouse gene-targeted mice that are directly relevant to genetic linkages in ASD, there remains an urgent need to utilize a full suite of mouse behavioral tests that allows for a comprehensive assessment of the spectrum of social difficulties relevant to ASD. Using impairments in shared affect as an example, this paper explores potential avenues for collaboration between clinical and basic scientists, within an amply considered translational framework.
Collapse
Affiliation(s)
- Somer L. Bishop
- Cincinnati Children’s Hospital Medical Center (CCHMC) Division of Developmental and Behavioral Pediatrics 3333 Burnet Avenue Cincinnati, OH 45229 Phone: (513) 636-3849 Fax: 513-636-1360
| | - Garet P. Lahvis
- Oregon Health and Science University 3181 SW Sam Jackson Park Rd., Mail Code L470 Portland, OR 97239 Phone: (503) 346 0820 Fax: (503) 494 6877
| |
Collapse
|
296
|
Fairless AH, Shah RY, Guthrie AJ, Li H, Brodkin ES. Deconstructing sociability, an autism-relevant phenotype, in mouse models. Anat Rec (Hoboken) 2011; 294:1713-25. [PMID: 21905241 DOI: 10.1002/ar.21318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/05/2010] [Indexed: 11/10/2022]
Abstract
Reduced sociability is a core feature of autism spectrum disorders (ASD) and is highly disabling, poorly understood, and treatment refractory. To elucidate the biological basis of reduced sociability, multiple laboratories are developing ASD-relevant mouse models in which sociability is commonly assessed using the Social Choice Test. However, various measurements included in that test sometimes support different conclusions. Specifically, measurements of time the "test" mouse spends near a confined "stimulus" mouse (chamber scores) sometimes support different conclusions from measurements of time the test mouse sniffs the cylinder containing the stimulus mouse (cylinder scores). This raises the question of which type of measurements are best for assessing sociability. We assessed the test-retest reliability and ecological validity of chamber and cylinder scores. Compared with chamber scores, cylinder scores showed higher correlations between test and retest measurements, and cylinder scores showed higher correlations with time spent in social interaction in a more naturalistic phase of the test. This suggests that cylinder scores are more reliable and valid measures of sociability in mouse models. Cylinder scores are reported less commonly than chamber scores, perhaps because little work has been done to establish automated software systems for measuring the former. In this study, we found that a particular automated software system performed at least as well as human raters at measuring cylinder scores. Our data indicate that cylinder scores are more reliable and valid than chamber scores, and that the former can be measured very accurately using an automated video analysis system in ASD-relevant models.
Collapse
Affiliation(s)
- Andrew H Fairless
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Translational Research Laboratory, Philadelphia, USA
| | | | | | | | | |
Collapse
|
297
|
Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull 2011; 86:152-8. [PMID: 21840381 DOI: 10.1016/j.brainresbull.2011.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Balb/c mice display deficits of sociability; for example, they show reduced locomotor activity in the presence of an enclosed or freely-moving social stimulus mouse. Transgenic mice with defective or diminished expression of NMDA receptors manifest impaired sociability, while a partial and full agonist of the obligatory glycine co-agonist binding site on the NMDA receptor improved sociability in the Balb/c mouse strain. Because 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor (mGluR), reduced self-grooming behavior in BTBR T+tfJ (BTBR) mice, another inbred genetic mouse model of autism spectrum disorders (ASDs), and mGluR5 antagonism is emerging as an experimental treatment for the 'fragile X syndrome," which has a high prevalence of co-morbid ASDs, we examined the effects of MPEP on sociability and stereotypic behaviors in Balb/c and Swiss Webster mice in a standard paradigm. MPEP had complex effects on sociability, impairing some measures of sociability in both strains, while it reduced the intensity of some spontaneous measures of stereotypic behaviors emerging during free social interaction in Swiss Webster mice. Conceivably, mGluR5 antagonism exacerbates diminished endogenous tone of NMDA receptor-mediated neurotransmission in neural circuits relevant to at least some measures of sociability in Balb/c mice; the mGluR5 receptor contributes to regulation of the phosphorylation status of the NMDA receptor. In any event, although stereotypies are an important therapeutic target in ASDs, medication strategies to attenuate their severity via antagonism of mGluR5 receptors must be pursued cautiously because of their potential to worsen at least some measures of sociability.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | | | | |
Collapse
|
298
|
LeBlanc JJ, Fagiolini M. Autism: a "critical period" disorder? Neural Plast 2011; 2011:921680. [PMID: 21826280 PMCID: PMC3150222 DOI: 10.1155/2011/921680] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/02/2011] [Indexed: 11/24/2022] Open
Abstract
Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits.
Collapse
Affiliation(s)
- Jocelyn J. LeBlanc
- Harvard Medical School and The F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
| | - Michela Fagiolini
- Harvard Medical School and The F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
| |
Collapse
|
299
|
Impaired social interactions and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin. Neurobiol Dis 2011; 45:156-64. [PMID: 21827857 DOI: 10.1016/j.nbd.2011.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/23/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by the development of hamartomas in multiple organs. Neurological manifestation includes cortical dysplasia, epilepsy, and cognitive deficits such as mental impairment and autism. We measured the impact of TSC2-GAP mutations on cognitive processes and behavior in, ΔRG transgenic mice that express a dominant/negative TSC2 that binds to TSC1, but has mutations affecting its GAP domain and its rabaptin-5 binding motif, resulting in inactivation of the TSC1/2 complex. We performed a behavioral characterization of the ΔRG transgenic mice and found that they display mild, but significant impairments in social behavior and rotarod motor learning. These findings suggest that the ΔRG transgenic mice recapitulate some behavioral abnormalities observed in human TSC patients.
Collapse
|
300
|
Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 8:Unit 8.26. [PMID: 21732314 PMCID: PMC4904775 DOI: 10.1002/0471142301.ns0826s56] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism is diagnosed by three major symptom categories: unusual reciprocal social interactions, impaired communication, and repetitive behaviors with restricted interests. Direct social approach in mice has strong face validity to simple social approach behaviors in humans, which are frequently impaired in autism. This unit presents a basic protocol for a standardized, high-throughput social approach test for assaying mouse sociability. Our automated three-chambered social approach task quantifies direct social approach behaviors when a subject mouse is presented with the choice of spending time with either a novel mouse or a novel object. Sociability is defined as the subject mouse spending more time in the chamber containing the novel target mouse than in the chamber containing the inanimate novel object. The Basic Protocol describes procedures for testing one subject at a time in a single apparatus. A Support Protocol addresses data collection.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|