251
|
Nagarajan S, Ramalingam K, Neelakanta Reddy P, Cereghetti DM, Padma Malar EJ, Rajadas J. Lipid-induced conformational transition of the amyloid core fragment Abeta(28-35) and its A30G and A30I mutants. FEBS J 2008; 275:2415-27. [PMID: 18422968 DOI: 10.1111/j.1742-4658.2008.06378.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles. These results indicate that aggregation depends on hydrophobicity and propensity to form beta-sheets of the amyloid peptide, and thus offer new insights into the mechanism of amyloid neurodegenerative disease.
Collapse
Affiliation(s)
- Sureshbabu Nagarajan
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | | | |
Collapse
|
252
|
Channon K, MacPhee CE. Possibilities for 'smart' materials exploiting the self-assembly of polypeptides into fibrils. SOFT MATTER 2008; 4:647-652. [PMID: 32907166 DOI: 10.1039/b713013a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Programmed assembly and self-assembly of soft materials offers significant promise for the generation of new types of materials with useful properties. Through evolutionary processes occurring over billions of years, nature has produced numerous optimised building blocks for the controlled assembly of a wide range of complex architectures. Our challenge now is to imitate these naturally occurring processes for technological applications, either using biological molecules such as DNA and proteins, or macromolecular mimics that retain many of the important features of biological molecules while introducing new functionalities. We focus on a single example of biomolecular self-assembly-the self-assembly of polypeptides, including polypeptide mimics, into quasi-one-dimensional fibres-to provide a flavour of the utility of soft biological materials for construction purposes.
Collapse
Affiliation(s)
- Kevin Channon
- School of Chemistry, University of Bristol, Bristol, UKBS8 1TS.
| | - Cait E MacPhee
- Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, UKEH9 3JZ.
| |
Collapse
|
253
|
Structural elements regulating amyloidogenesis: a cholinesterase model system. PLoS One 2008; 3:e1834. [PMID: 18350169 PMCID: PMC2265548 DOI: 10.1371/journal.pone.0001834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases.
Collapse
|
254
|
Pappalardo G, Milardi D, Magrì A, Attanasio F, Impellizzeri G, La Rosa C, Grasso D, Rizzarelli E. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives. Chemistry 2008; 13:10204-15. [PMID: 17902185 DOI: 10.1002/chem.200700576] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interest in the 37-residue human islet amyloid polypeptide (hIAPP) is related to its ability to form amyloid deposits in patients affected by type II diabetes. Attempts to unravel the molecular features of this disease have indicated several regions of this polypeptide to be responsible for either the ability to form insoluble fibrils or the abnormal interaction with membranes. To extend these studies to peptides that enclose His18, whose ionization state is believed to play a key role in the aggregation of hIAPP, we report on the synthesis of two peptides, hIAPP17-29 and rIAPP17-29, encompassing the 17-29 sequences of human and rat IAPP, respectively, as well as on their conformational features in water and in several membrane-mimicking environments as revealed by circular dichroism (CD) and 2D-NMR studies. hIAPP17-29 adopts a beta-sheet structure in water and its solubility increases at low pH. Anionic sodium dodecyl sulfate (SDS) micelles promoted the formation of an alpha-helical structure in the peptide chain, which was poorly influenced by pH variations. rIAPP17-29 was soluble and unstructured in all the environments investigated, with a negligible effect of pH. The membrane interactions of hIAPP17-29 and rIAPP17-29 were assessed by recording differential scanning calorimetry (DSC) measurements aimed at elucidating the peptide-induced changes in the thermotropic behaviour of zwitterionic (DPPC) and negatively charged (DPPC/DPPS 3:1) model membranes (DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPS=1,2-dipalmitoyl-sn-glycero-3-phosphoserine). Results of DSC experiments demonstrated the high potential of hIAPP17-29 to interact with DPPC membranes. hIAPP17-29 exhibited a negligible affinity for negatively charged DPPC/DPPS model membranes at neutral pH. On the other hand, rIAPP17-29 did not interact with neutral or negatively charged membranes. The role played by His18 in the modulation of the biophysical properties of this hIAPP region was assessed by synthesising and studying the R18HrIAPP17-29 peptide; the replacement of a single Arg with a His residue is not sufficient to induce either amyloidogenic propensity or membrane interaction in this region. The results show that the 17-29 domain of hIAPP has many properties of the full-length protein "in vitro" and this opens up new perspectives for both research and eventually therapy.
Collapse
Affiliation(s)
- Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Marsili S, Chelli R, Schettino V, Procacci P. Thermodynamics of stacking interactions in proteins. Phys Chem Chem Phys 2008; 10:2673-85. [DOI: 10.1039/b718519g] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
256
|
Clarke OJ, Parker MJ. Time-averaged predictions of folded and misfolded peptides using a reduced physicochemical model. J Comput Chem 2008; 29:1177-85. [DOI: 10.1002/jcc.20879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
257
|
Choi JH, Cheon S, Lee H, Cho M. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system. Phys Chem Chem Phys 2008; 10:3839-56. [DOI: 10.1039/b719263k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
258
|
Harrison RS, Sharpe PC, Singh Y, Fairlie DP. Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 2007; 159:1-77. [PMID: 17846922 DOI: 10.1007/112_2007_0701] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloids are filamentous protein deposits ranging in size from nanometres to microns and composed of aggregated peptide beta-sheets formed from parallel or anti-parallel alignments of peptide beta-strands. Amyloid-forming proteins have attracted a great deal of recent attention because of their association with over 30 diseases, notably neurodegenerative conditions like Alzheimer's, Huntington's, Parkinson's, Creutzfeldt-Jacob and prion disorders, but also systemic diseases such as amyotrophic lateral sclerosis (Lou Gehrig's disease) and type II diabetes. These diseases are all thought to involve important conformational changes in proteins, sometimes termed misfolding, that usually produce beta-sheet structures with a strong tendency to aggregate into water-insoluble fibrous polymers. Reasons for such conformational changes in vivo are still unclear. Intermediate aggregated state(s), rather than precipitated insoluble polymeric aggregates, have recently been implicated in cellular toxicity and may be the source of aberrant pathology in amyloid diseases. Numerous in vitro studies of short and medium length peptides that form amyloids have provided some clues to amyloid formation, with an alpha-helix to beta-sheet folding transition sometimes implicated as an intermediary step leading to amyloid formation. More recently, quite a few non-pathological amyloidogenic proteins have also been identified and physiological properties have been ascribed, challenging previous implications that amyloids were always disease causing. This article summarises a great deal of current knowledge on the occurrence, structure, folding pathways, chemistry and biology associated with amyloidogenic peptides and proteins and highlights some key factors that have been found to influence amyloidogenesis.
Collapse
Affiliation(s)
- R S Harrison
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, QLD 4072, Brisbane, Australia
| | | | | | | |
Collapse
|
259
|
Jayasinghe SA, Langen R. Membrane interaction of islet amyloid polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2002-9. [PMID: 17349968 DOI: 10.1016/j.bbamem.2007.01.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Increasing evidence suggests that the misfolding and deposition of IAPP plays an important role in the pathogenesis of type II, or non-insulin-dependent diabetes mellitus (T2DM). Membranes have been implicated in IAPP-dependent toxicity in several ways: Lipid membranes have been shown to promote the misfolding and aggregation of IAPP. Thus, potentially toxic forms of IAPP can be generated when IAPP interacts with cellular membranes. In addition, membranes have been implicated as the target of IAPP toxicity. IAPP has been shown to disrupt membrane integrity and to permeabilize membranes. Since disruption of cellular membranes is highly toxic, such a mechanism has been suggested to explain the observed IAPP toxicity. Here, we review IAPP-membrane interaction in the context of (1) catalyzing IAPP misfolding and (2) being a potential origin of IAPP toxicity.
Collapse
Affiliation(s)
- Sajith A Jayasinghe
- Department of Chemistry and Biochemistry, California State University, 333 South Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | | |
Collapse
|
260
|
Choi JH, Cheon S, Cho M. Doubly resonant two-dimensional three-wave-mixing spectroscopy of polypeptides: Structure–spectrum relationships. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
261
|
Grudzielanek S, Velkova A, Shukla A, Smirnovas V, Tatarek-Nossol M, Rehage H, Kapurniotu A, Winter R. Cytotoxicity of Insulin within its Self-assembly and Amyloidogenic Pathways. J Mol Biol 2007; 370:372-84. [PMID: 17521669 DOI: 10.1016/j.jmb.2007.04.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 04/06/2007] [Accepted: 04/20/2007] [Indexed: 01/17/2023]
Abstract
Solvational perturbations were employed to selectively tune the aggregational preferences of insulin at 60 degrees C in vitro in purely aqueous acidic solution and in the presence of the model co-solvent ethanol (EtOH) (at 40%(w/w)). Dynamic light scattering (DLS), thioflavin T (ThT)-fluorescence, Fourier transform infrared (FTIR) and atomic force microscopy (AFM) techniques were employed to characterize these pathways biophysically with respect to the pre-aggregational assembly of the protein, the aggregation kinetics, and finally the aggregate secondary structure and morphology. Using cell viability assays, the results were subsequently correlated with the cytotoxicity of the insulin species that form in the two distinct aggregation pathways. In the cosolvent-free solution, predominantly dimeric insulin self-assembles via the well-known amyloidogenic pathway, yielding exclusively fibrillar aggregates, whereas in the solution containing EtOH, the aggregation of predominantly monomeric insulin proceeds via a pathway that leads to exclusively non-fibrillar, amorphous aggregates. Initially present native insulin assemblies as well as partially unfolded monomeric species and low molecular mass oligomeric aggregates could be ruled out as direct and major cytotoxic species. Apart from the slower overall aggregation kinetics under amorphous aggregate promoting conditions, which is due to the chaotropic nature of high EtOH concentrations, however, both pathways were unexpectedly found to evoke insulin aggregates that were cytotoxic to cultured rat insulinoma cells. The observed kinetics of the decrease of cell viabilities correlated well with the results of the DLS, ThT, FTIR and AFM studies, revealing that the formation of cytotoxic species correlated well with the formation of large-sized, beta-sheet-rich assemblies (>500 nm) of both fibrillar and amorphous nature. These results suggest that large-sized, beta-sheet-rich insulin assemblies of both fibrillar and amorphous nature are toxic to pancreatic beta-cells. In the light of the ongoing discussion about putative cytotoxic effects of prefibrillar and fibrillar amyloid aggregates, our results support the hypothesis that, in the case of insulin, factors other than the specific secondary or quarternary structural features of the various different aggregates may define their cytotoxic properties. Two such factors might be the aggregate size and the aggregate propensity to expose hydrophobic surfaces to a polar environment.
Collapse
Affiliation(s)
- Stefan Grudzielanek
- University of Dortmund, Department of Chemistry, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Zhang Z, Chen H, Lai L. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 2007; 23:2218-25. [PMID: 17599928 DOI: 10.1093/bioinformatics/btm325] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MOTIVATION Experimental evidence suggests that certain short protein segments have stronger amyloidogenic propensities than others. Identification of the fibril-forming segments of proteins is crucial for understanding diseases associated with protein misfolding and for finding favorable targets for therapeutic strategies. RESULT In this study, we used the microcrystal structure of the NNQQNY peptide from yeast prion protein and residue-based statistical potentials to establish an algorithm to identify the amyloid fibril-forming segment of proteins. Using the same sets of sequences, a comparable prediction performance was obtained from this study to that from 3D profile method based on the physical atomic-level potential ROSETTADESIGN. The predicted results are consistent with experiments for several representative proteins associated with amyloidosis, and also agree with the idea that peptides that can form fibrils may have strong sequence signatures. Application of the residue-based statistical potentials is computationally more efficient than using atomic-level potentials and can be applied in whole proteome analysis to investigate the evolutionary pressure effect or forecast other latent diseases related to amyloid deposits. AVAILABILITY The fibril prediction program is available at ftp://mdl.ipc.pku.edu.cn/pub/software/pre-amyl/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
263
|
Zhang Z, Chen H, Bai H, Lai L. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35. Biophys J 2007; 93:1484-92. [PMID: 17483185 PMCID: PMC1948036 DOI: 10.1529/biophysj.106.100537] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligomeric intermediates are possible cytotoxic species in diseases associated with amyloid deposits. Understanding the early steps of fibril formation at atomic details may provide useful information for the rational therapeutic design. In this study, using the heptapeptide GNNQQNY from the yeast prion-like protein Sup35 as a model system, for which a detailed atomic structure of the fibril formed has been determined by x-ray microcrystallography, we investigated its oligomer-formation process from monomer to tetramer at the atomistic level by means of a molecular dynamics simulation with explicit water. Although the number of simulations was limited, the qualitative statistical data gave some interesting results, which indicated that the oligomer formation might start from antiparallel beta-sheet-like dimers. When a new single peptide strand was added to the preformed dimers to form trimers and then tetramers, the transition time from disorder aggregates to regular ones for the parallel alignment was found to be obviously much less than for the antiparallel one. Moreover, the parallel pattern also statistically stayed longer, providing more chances for oligomer extending, although the number of parallel stack events was almost equal to antiparallel ones. Therefore, our simulations showed that new strands might prefer to extend in a parallel arrangement to form oligomers, which agrees with the microcrystal structure of the amyloid fibril formed by this peptide. In addition, analysis of the pi-pi stacking of aromatic residues showed that this type of interaction did not play an important role in giving directionality for beta-strand alignment but played a great influence on stabilizing the structures formed in the oligomer-formation process.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | |
Collapse
|
264
|
Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 2007; 36:1263-9. [PMID: 17619686 DOI: 10.1039/b605536m] [Citation(s) in RCA: 721] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this tutorial review the process and applications of peptide self-assembly into nanotubes, nanospheres, nanofibrils, nanotapes, and other ordered structures at the nano-scale are discussed. The formation of well-ordered nanostructures by a process of self-association represents the essence of modern nanotechnology. Such self-assembled structures can be formed by a variety of building blocks, both organic and inorganic. Of the organic building blocks, peptides are among the most useful ones. Peptides possess the biocompatibility and chemical diversity that are found in proteins, yet they are much more stable and robust and can be readily synthesized on a large scale. Short peptides can spontaneously associate to form nanotubes, nanospheres, nanofibrils, nanotapes, and other ordered structures at the nano-scale. Peptides can also form macroscopic assemblies such as hydrogels with nano-scale order. The application of peptide building blocks in biosensors, tissue engineering, and the development of antibacterial agents has already been demonstrated.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
265
|
Corrigendum. FEBS J 2007. [DOI: 10.1111/j.1742-4658.2007.05745.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
266
|
Colombo G, Soto P, Gazit E. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol 2007; 25:211-8. [PMID: 17379339 DOI: 10.1016/j.tibtech.2007.03.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/09/2007] [Indexed: 12/26/2022]
Abstract
Self-assembly at the nanoscale is becoming increasingly important for the fabrication of novel supramolecular structures, with applications in the fields of nanobiotechnology and nanomedicine. Peptides represent the most favorable building blocks for the design and synthesis of nanostructures because they offer a great diversity of chemical and physical properties, they can be synthesized in large amounts, and can be modified and decorated with functional elements, which can be used in diverse applications. In this article, we review some of the most recent experimental advances in the use of nanoscale self-assembled peptide structures and the theoretical efforts aimed at understanding the microscopic determinants of their formation, stability and conformational properties. The combination of experimental observations and theoretical advances will be fundamental to fully realizing the biotechnological potential of peptide self-organization.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, 20131 Milano, Italy.
| | | | | |
Collapse
|
267
|
Corrigendum. FEBS J 2007. [DOI: 10.1111/j.1472-4658.2007.05745.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
268
|
Hills RD, Brooks CL. Hydrophobic cooperativity as a mechanism for amyloid nucleation. J Mol Biol 2007; 368:894-901. [PMID: 17368485 PMCID: PMC1997311 DOI: 10.1016/j.jmb.2007.02.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 11/18/2022]
Abstract
The kinetics of amyloid fibril formation are in most cases explained by classical nucleation theory, yet the mechanisms behind nucleation are not well understood. We show using molecular dynamics simulations that the hydrophobic cooperativity in the self-association of the model amyloidogenic peptide STVIYE is sufficient to allow for nucleation-dependent polymerization with a pentamer critical nucleus. The role of electrostatics was also investigated. Novel considerations of the electrostatic solvation energy using the Born-Onsager equation are put forth to rationalize the aggregation of charged peptides and provide new insight into the energetic differences between parallel and antiparallel beta-sheets. Together these results help explain the influence of molecular charge in the class of fibril-forming hexapeptides recently designed by Serrano and collaborators.
Collapse
|
269
|
Marek P, Abedini A, Song B, Kanungo M, Johnson ME, Gupta R, Zaman W, Wong SS, Raleigh DP. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology. Biochemistry 2007; 46:3255-61. [PMID: 17311418 DOI: 10.1021/bi0621967] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York, Stony Brook, New York 1179-3400, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
|
271
|
Yan LM, Velkova A, Tatarek-Nossol M, Andreetto E, Kapurniotu A. Ein IAPP-Mimetikum blockiert die zytotoxische Aggregation von Aβ – die Kreuzunterdrückung der Amyloidtoxizität von Aβ und IAPP deutet auf einen molekularen Zusammenhang zwischen Alzheimer-Krankheit und Typ-II-Diabetes hin. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604056] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
272
|
Yan LM, Velkova A, Tatarek-Nossol M, Andreetto E, Kapurniotu A. IAPP Mimic Blocks Aβ Cytotoxic Self-Assembly: Cross-Suppression of Amyloid Toxicity of Aβ and IAPP Suggests a Molecular Link between Alzheimer's Disease and Type II Diabetes. Angew Chem Int Ed Engl 2007; 46:1246-52. [PMID: 17203498 DOI: 10.1002/anie.200604056] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Mei Yan
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
273
|
Sano KI, Sasaki H, Shiba K. Conversion of a monodispersed globular protein into an amyloid-like filament by appending an artificial peptide at the N-terminal. Protein Eng Des Sel 2007; 20:109-16. [PMID: 17293372 DOI: 10.1093/protein/gzm001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The soluble, globular, alpha-helix-rich peptide SipA(446-684) is a domain of a bacterial protein that binds to mammalian filamentous-actin and re-arranges the host cell's cytoskeleton. We show that adding two copies of NHBP-1, a carbon nanomaterial binding peptide, to its N-terminal can induce SipA(446-684) to polymerize and assume a fibrillar structure under physiological conditions. The fibrils formed showed thioflavine T and Congo red staining profiles that are characteristic of and specific for amyloid-like structures. The alpha-helical structure of the globular protein was retained in the fibrils, suggesting the appended NHBP-1 sequence plays a key role in the formation of cross-beta spines within the fibrils. Consistent with that idea, we observed that a synthetic NHBP-1 peptide can form an amyloid-like structure under appropriate conditions. Thus, our findings add a new subtype of amyloid-like structure formation and suggest this method of assembly could be exploited in nano-biotechnology.
Collapse
Affiliation(s)
- Ken-Ichi Sano
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research and CREST, JST, Koto-Ku, Tokyo 135-8550 Japan
| | | | | |
Collapse
|
274
|
Pastor MT, Esteras-Chopo A, Serrano L. Hacking the code of amyloid formation: the amyloid stretch hypothesis. Prion 2007; 1:9-14. [PMID: 19164912 DOI: 10.4161/pri.1.1.4100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.
Collapse
|
275
|
Gazit E. Self assembly of short aromatic peptides into amyloid fibrils and related nanostructures. Prion 2007; 1:32-5. [PMID: 19164892 DOI: 10.4161/pri.1.1.4095] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7-10 nm are being observed. In spite of the great clinical important of amyloid-associated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel beta breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
276
|
|
277
|
Rauscher S, Baud S, Miao M, Keeley FW, Pomès R. Proline and Glycine Control Protein Self-Organization into Elastomeric or Amyloid Fibrils. Structure 2006; 14:1667-76. [PMID: 17098192 DOI: 10.1016/j.str.2006.09.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/28/2022]
Abstract
Elastin provides extensible tissues, including arteries and skin, with the propensity for elastic recoil, whereas amyloid fibrils are associated with tissue-degenerative diseases, such as Alzheimer's. Although both elastin-like and amyloid-like materials result from the self-organization of proteins into fibrils, the molecular basis of their differing physical properties is poorly understood. Using molecular simulations of monomeric and aggregated states, we demonstrate that elastin-like and amyloid-like peptides are separable on the basis of backbone hydration and peptide-peptide hydrogen bonding. The analysis of diverse sequences, including those of elastin, amyloids, spider silks, wheat gluten, and insect resilin, reveals a threshold in proline and glycine composition above which amyloid formation is impeded and elastomeric properties become apparent. The predictive capacity of this threshold is confirmed by the self-assembly of recombinant peptides into either amyloid or elastin-like fibrils. Our findings support a unified model of protein aggregation in which hydration and conformational disorder are fundamental requirements for elastomeric function.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function Programme, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
278
|
Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. A search for amyloidogenic regions in protein chains. Mol Biol 2006. [DOI: 10.1134/s0026893306050189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
279
|
Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJS. The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J 2006; 273:3614-24. [PMID: 16884500 DOI: 10.1111/j.1742-4658.2006.05367.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human amylin is a small fibrillogenic protein that is the major constituent of pancreatic islet amyloid, which occurs in most subjects with type 2 diabetes. There is evidence that it can elicit in vitro apoptosis in islet beta-cells, but the physical properties that underpin its cytotoxicity have not been clearly elucidated. Here we employed electron microscopy, thioflavin T fluorescence and CD spectroscopy to analyze amylin preparations whose cytotoxic potential was established by live-dead assay in cultured beta-cells. Highly toxic amylin contained few preformed fibrils and initially showed little beta-sheet content, but underwent marked time-dependent aggregation and beta-conformer formation following dissolution. By contrast, low-toxicity amylin contained abundant preformed fibrils, and demonstrated high initial beta-sheet content but little propensity to aggregate further once dissolved. Thus, mature amylin fibrils are not toxic to beta-cells, and aggregates of fibrils such as occur in pancreatic islet amyloid in vivo are unlikely to contribute to beta-cell loss. Rather, the toxic molecular species is likely to comprise soluble oligomers with significant beta-sheet content. Attempts to find ways of protecting beta-cells from amylin-mediated death might profitably focus on preventing the conformational change from random coil to beta-sheet.
Collapse
Affiliation(s)
- Barbara Konarkowska
- School of Biological Sciences, Faculty of Science, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|
280
|
Wu C, Lei H, Wang Z, Zhang W, Duan Y. Phenol red interacts with the protofibril-like oligomers of an amyloidogenic hexapeptide NFGAIL through both hydrophobic and aromatic contacts. Biophys J 2006; 91:3664-72. [PMID: 16935948 PMCID: PMC1630471 DOI: 10.1529/biophysj.106.081877] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid-associated diseases affect millions of people worldwide. Phenol red exhibits modest inhibition toward fibril formation of human Islet amyloid polypeptide (hIAPP) and its toxicity, which is associated with type II diabetes mellitus. However, the molecular level mechanisms of interactions remain elusive. The binding of phenol red molecules to the protofibrils of an amyloidogenic fragment (NFGAIL) of hIAPP has been investigated by molecular dynamics simulations with explicit solvent. The phenol red molecules were observed to bind primarily along either beta-sheet stacking or beta-strand directions. Through its three aromatic rings, the phenol red molecule preferentially interacted with the hydrophobic side chains of Phe, Leu, and Ile; and the polar sulfone and hydroxyl groups were mainly exposed in solvent. Thus, phenol red improves the solubility of the early protofibrils and represses further growth. Interestingly, there was no obvious preference toward the aromatic Phe residue in comparison to the hydrophobic Leu or Ile residues. The lack of binding along the hydrogen bond direction indicates that phenol red does not directly block the beta-sheet extension. Further free energy analysis suggested that a phenol red analog may potentially improve the binding affinity.
Collapse
Affiliation(s)
- Chun Wu
- Genome Center and Department of Applied Science, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
281
|
Gilead S, Gazit E. Self-organization of Short Peptide Fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies. Supramol Chem 2006. [DOI: 10.1080/10610270412331328943] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sharon Gilead
- a Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv, 69978, Israel
| | - Ehud Gazit
- a Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv, 69978, Israel
| |
Collapse
|
282
|
Kammerer RA, Steinmetz MO. De novo design of a two-stranded coiled-coil switch peptide. J Struct Biol 2006; 155:146-53. [PMID: 16806970 DOI: 10.1016/j.jsb.2006.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
The properties and characteristics shared by amyloid fibrils formed from disease and non-disease associated proteins that are unrelated in sequence and structure offer the prospect that model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils. Based on a de novo design approach, we recently reported a unique switch peptide model system, ccbeta, that forms a three-stranded coiled-coil structure at low temperatures and which can be easily converted to amyloid fibrils by increasing the temperature. To simplify the system further, we describe here the redesign of a two-stranded ccbeta coiled-coil variant and its detailed analysis by a variety of biophysical methods. Compared with the original design, the characteristics of the peptide make it even simpler to elucidate and validate fundamental principles of amyloid fibril-formation.
Collapse
Affiliation(s)
- Richard A Kammerer
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 PT, UK.
| | | |
Collapse
|
283
|
Elgersma RC, Meijneke T, Posthuma G, Rijkers DTS, Liskamp RMJ. Self-Assembly of Amylin(20–29) Amide-Bond Derivatives into Helical Ribbons and Peptide Nanotubes rather than Fibrils. Chemistry 2006; 12:3714-25. [PMID: 16528792 DOI: 10.1002/chem.200501374] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uncontrolled aggregation of proteins or polypeptides can be detrimental for normal cellular processes in healthy organisms. Proteins or polypeptides that form these amyloid deposits differ in their primary sequence but share a common structural motif: the (anti)parallel beta sheet. A well-accepted approach for interfering with beta-sheet formation is the design of soluble beta-sheet peptides to disrupt the hydrogen-bonding network; this ultimately leads to the disassembly of the aggregates or fibrils. Here, we describe the synthesis, spectroscopic analysis, and aggregation behavior, imaged by electron microscopy, of several backbone-modified amylin(20-29) derivatives. It was found that these amylin derivatives were not able to form fibrils and to some extent were able to inhibit fibril growth of native amylin(20-29). However, two of the amylin peptides were able to form large supramolecular assemblies, like helical ribbons and peptide nanotubes, in which beta-sheet formation was clearly absent. This was quite unexpected since these peptides have been designed as soluble beta-sheet breakers for disrupting the characteristic hydrogen-bonding network of (anti)parallel beta sheets. The increased hydrophobicity and the presence of essential amino acid side chains in the newly designed amylin(20-29) derivatives were found to be the driving force for self-assembly into helical ribbons and peptide nanotubes. This example of controlled and desired peptide aggregation may be a strong impetus for research on bionanomaterials in which special shapes and assemblies are the focus of interest.
Collapse
Affiliation(s)
- Ronald C Elgersma
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
284
|
Zanuy D, Nussinov R, Alemán C. From peptide-based material science to protein fibrils: discipline convergence in nanobiology. Phys Biol 2006; 3:S80-90. [PMID: 16582467 DOI: 10.1088/1478-3975/3/1/s08] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper illustrates the merits of convergence in nanobiology of two seemingly disparate fields, material science and computational biology. Traditionally, material science has been a discipline involving design and fabrication of synthetic polymers consisting of repeating units. Collaboration with synthetic organic chemists allowed design of new polymers, with a range of altered conformations. Yet, naturally occurring proteins are also materials. Their varied sequences and structures should enrich material science providing more complex shapes, scaffolds and chemical properties. For material scientists, the enhanced coverage of chemical space obtained by integrating proteins and synthetic organic chemistry through the introduction of non-natural residues allows a range of new useful potential applications.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, ETS d'Enginyeria Industrial de Barcelona, Universitat Politécnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | | | | |
Collapse
|
285
|
Cohen T, Frydman-Marom A, Rechter M, Gazit E. Inhibition of Amyloid Fibril Formation and Cytotoxicity by Hydroxyindole Derivatives. Biochemistry 2006; 45:4727-35. [PMID: 16605241 DOI: 10.1021/bi051525c] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gaining insight into the mechanism of amyloid fibril formation, the hallmark of multiple degenerative syndromes of unrelated origin, and exploring novel directions of inhibition are crucial for preventing disease development. Specific interactions between aromatic moieties were suggested to have a key role in the recognition and self-assembly processes leading to the formation of amyloid fibrils by several amyloidogenic polypeptides, including the beta-amyloid polypeptide associated with Alzheimer's disease. Our finding of the high-affinity molecular recognition and intense amyloidogenic potential of tryptophan-containing peptide fragments led to the hypothesis that screening for indole derivatives might lead to the identification of potential inhibitors of amyloid formation. Such inhibitors could mediate specific recognition processes without allowing further growth of the well-ordered amyloid chain. Using fluorescence spectroscopy, atomic force microscopy, and electron microscopy to screen 29 indole derivatives, we identified three potent inhibitors: indole-3-carbinol (I3C), 3-hydroxyindole (3HI), and 4-hydroxyindole (4HI). The latter, a simple low-molecular weight aromatic compound, was the most effective, completely abrogating not only the formation of aggregated structures by Abeta but also the cytotoxic activity of aggregated Abeta toward cultured cells. The results of this study provide further experimental support for the paradigm of amyloid inhibition by heteroaromatic interaction and point to indole derivatives as a simple molecular platform for the development of novel fibrillization inhibitors.
Collapse
Affiliation(s)
- Tomer Cohen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
286
|
Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 2006; 103:4074-8. [PMID: 16537487 PMCID: PMC1449648 DOI: 10.1073/pnas.0511295103] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Based on the crystal structure of the cross-beta spine formed by the peptide NNQQNY, we have developed a computational approach for identifying those segments of amyloidogenic proteins that themselves can form amyloid-like fibrils. The approach builds on experiments showing that hexapeptides are sufficient for forming amyloid-like fibrils. Each six-residue peptide of a protein of interest is mapped onto an ensemble of templates, or 3D profile, generated from the crystal structure of the peptide NNQQNY by small displacements of one of the two intermeshed beta-sheets relative to the other. The energy of each mapping of a sequence to the profile is evaluated by using ROSETTADESIGN, and the lowest energy match for a given peptide to the template library is taken as the putative prediction. If the energy of the putative prediction is lower than a threshold value, a prediction of fibril formation is made. This method can reach an accuracy of approximately 80% with a P value of approximately 10(-12) when a conservative energy threshold is used to separate peptides that form fibrils from those that do not. We see enrichment for positive predictions in a set of fibril-forming segments of amyloid proteins, and we illustrate the method with applications to proteins of interest in amyloid research.
Collapse
Affiliation(s)
- Michael J. Thompson
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095; and
| | - Stuart A. Sievers
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095; and
| | - John Karanicolas
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Magdalena I. Ivanova
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095; and
| | - David Baker
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - David Eisenberg
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
287
|
Colombo G, Daidone I, Gazit E, Amadei A, Di Nola A. Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Proteins 2006; 59:519-27. [PMID: 15778964 DOI: 10.1002/prot.20426] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The formation of amyloid fibrils is associated with major human diseases. Nevertheless, the molecular mechanism that directs the nucleation of these fibrils is not fully understood. Here, we used molecular dynamics simulations to study the initial self-assembly stages of the NH2-NFGAIL-COOH peptide, the core-recognition motif of the type II diabetes associated islet amyloid polypeptide. The simulations were performed using multiple replicas of the monomers in explicit water, in a confined box starting from a random distribution of the peptides at T = 300 K and T = 340 K. At both temperatures the formation of unique clusters was observed after a few nanoseconds. Structural analysis of the clusters clearly suggested the formation of "flat" ellipsoid-shaped clusters through a preferred locally parallel alignment of the peptides. The unique assembly is facilitated by a preference for an extended conformation of the peptides and by intermolecular aromatic interactions. Taken together, our results may provide a description of the molecular recognition determinants involved in fibril formation, in terms of the atomic detailed structure of nascent aggregates. These observations may yield information on new ways to control this process for either materials development or drug design.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy.
| | | | | | | | | |
Collapse
|
288
|
Ivanova MI, Thompson MJ, Eisenberg D. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 2006; 103:4079-82. [PMID: 16537488 PMCID: PMC1449649 DOI: 10.1073/pnas.0511298103] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying sequence determinants of fibril-forming proteins is crucial for understanding the processes causing >20 proteins to form pathological amyloid depositions. Our approach to identifying which sequences form amyloid-like fibrils is to screen the amyloid-forming proteins human insulin and beta(2)-microglobulin for segments that form fibrils. Our screen is of 60 sequentially overlapping peptides, 59 being six residues in length and 1 being five residues, covering every noncysteine-containing segment in these two proteins. Each peptide was characterized as amyloid-like or nonfibril-forming. Amyloid-like peptides formed fibrils visible in electron micrographs or needle-like microcrystals showing a cross-beta diffraction pattern. Eight of the 60 peptides (three from insulin and five from beta(2)-microglobulin) were identified as amyloid-like. The results of the screen were used to assess the computational method, and good agreement between prediction and experiments was found. This agreement suggests that the pair-of-sheets, zipper spine model on which the computational method is based is at least approximately correct for the structure of the fibrils and suggests the nature of the sequence signal for formation of amyloid-like fibrils.
Collapse
Affiliation(s)
- Magdalena I. Ivanova
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Michael J. Thompson
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - David Eisenberg
- Howard Hughes Medical Institute and University of California–Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
289
|
Yan LM, Tatarek-Nossol M, Velkova A, Kazantzis A, Kapurniotu A. Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis. Proc Natl Acad Sci U S A 2006; 103:2046-51. [PMID: 16467158 PMCID: PMC1413694 DOI: 10.1073/pnas.0507471103] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Indexed: 12/12/2022] Open
Abstract
Protein aggregation into cytotoxic oligomers and fibrils in vivo is linked to cell degeneration and the pathogenesis of >25 uncurable diseases, whereas the high aggregation propensity and insolubility of several bioactive polypeptides and proteins in vitro prevent their therapeutic use. Aggregation of human islet amyloid polypeptide (IAPP) into pancreatic amyloid is strongly associated with the pathogenesis of type II diabetes. IAPP is a 37-residue polypeptide that acts as a neuroendocrine regulator of glucose homeostasis. However, IAPP misfolds and self-associates into cytotoxic aggregates and fibrils even at nanomolar concentrations. Because IAPP aggregation causes beta-cell death and prohibits therapeutic application of IAPP in diabetes, we pursued a minimalistic chemical design approach to generate a molecular mimic of a nonamyloidogenic and bioactive IAPP conformation that would still be able to associate with IAPP and thus inhibit its fibrillogenesis and cytotoxicity. We show that the double N-methylated full length IAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI) is a highly soluble, nonamyloidogenic, and noncytotoxic IAPP molecular mimic and an IAPP receptor agonist. Moreover, IAPP-GI binds IAPP with low nanomolar affinity and completely blocks IAPP cytotoxic self-assembly and fibrillogenesis with activity in the low nanomolar concentration range. Importantly, IAPP-GI dissociates cytotoxic IAPP oligomers and fibrils and is able to reverse their cytotoxicity. Bifunctional soluble IAPP mimics that combine bioactivity with the ability to block and reverse IAPP cytotoxic self-assembly are promising candidates for the treatment of diabetes. Moreover, our amyloid disease inhibitor design concept may be applicable to other protein aggregation diseases.
Collapse
Affiliation(s)
- Li-Mei Yan
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch–Westfälische Technische Hochschule Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| | - Marianna Tatarek-Nossol
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch–Westfälische Technische Hochschule Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| | - Aleksandra Velkova
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch–Westfälische Technische Hochschule Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| | - Athanasios Kazantzis
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch–Westfälische Technische Hochschule Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| | - Aphrodite Kapurniotu
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch–Westfälische Technische Hochschule Aachen, Pauwelstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
290
|
Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:1313-20. [PMID: 16430299 DOI: 10.1021/la052409d] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The diphenylalanine peptide, the core recognition motif of the beta-amyloid polypeptide, efficiently self-assembles into discrete, well-ordered nanotubes. Here, we describe the notable thermal and chemical stability of these tubular structures both in aqueous solution and under dry conditions. Scanning and transmission electron microscopy (SEM and TEM) as well as atomic force microscopy (AFM) revealed the stability of the nanotubes in aqueous solution at temperatures above the boiling point of water upon autoclave treatment. The nanotubes preserved their secondary structure at temperatures up to 90 degrees C, as shown by circular dichroism (CD) spectra. Cold field emission gun (CFEG) high-resolution scanning electron microscope (HRSEM) and thermogravimetric analysis (TGA) of the peptide nanotubes after dry heat revealed durability at higher temperature. It was shown that the thermal stability of diphenylalanine peptide nanotubes is significantly higher than that of a nonassembling dipeptide, dialanine. In addition to thermal stability, the peptide nanotubes were chemically stable in organic solvents such as ethanol, methanol, 2-propanol, acetone, and acetonitrile, as shown by SEM analysis. Moreover, the acetone environment enabled AFM imaging of the nanotubes in solution. The significant thermal and chemical stability of the peptide nanotubes demonstrated here points toward their possible use in conventional microelectronic and microelectromechanics processes and fabrication into functional nanotechnological devices.
Collapse
Affiliation(s)
- Lihi Adler-Abramovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
291
|
Cecchini M, Curcio R, Pappalardo M, Melki R, Caflisch A. A molecular dynamics approach to the structural characterization of amyloid aggregation. J Mol Biol 2006; 357:1306-21. [PMID: 16483608 DOI: 10.1016/j.jmb.2006.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/21/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
A novel computational approach to the structural analysis of ordered beta-aggregation is presented and validated on three known amyloidogenic polypeptides. The strategy is based on the decomposition of the sequence into overlapping stretches and equilibrium implicit solvent molecular dynamics (MD) simulations of an oligomeric system for each stretch. The structural stability of the in-register parallel aggregates sampled in the implicit solvent runs is further evaluated using explicit water simulations for a subset of the stretches. The beta-aggregation propensity along the sequence of the Alzheimer's amyloid-beta peptide (Abeta(42)) is found to be highly heterogeneous with a maximum in the segment V(12)HHQKLVFFAE(22) and minima at S(8)G(9), G(25)S(26), G(29)A(30), and G(38)V(39), which are turn-like segments. The simulation results suggest that these sites may play a crucial role in determining the aggregation tendency and the fibrillar structure of Abeta(42). Similar findings are obtained for the human amylin, a 37-residue peptide that displays a maximal beta-aggregation propensity at Q(10)RLANFLVHSSNN(22) and two turn-like sites at G(24)A(25) and G(33)S(34). In the third application, the MD approach is used to identify beta-aggregation "hot-spots" within the N-terminal domain of the yeast prion Ure2p (Ure2p(1-94)) and to design a double-point mutant (Ure2p-N4748S(1-94)) with lower beta-aggregation propensity. The change in the aggregation propensity of Ure2p-N4748S(1-94) is verified in vitro using the thioflavin T binding assay.
Collapse
Affiliation(s)
- M Cecchini
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
292
|
Gazit E. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J 2006; 272:5971-8. [PMID: 16302962 DOI: 10.1111/j.1742-4658.2005.05022.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several micro-organisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
293
|
Inouye H, Kirschner DA. X-Ray fiber and powder diffraction of PrP prion peptides. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:181-215. [PMID: 17190614 DOI: 10.1016/s0065-3233(06)73006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conformational change from the alpha-helical, cellular form of prion to the beta-sheet, scrapie (infectious) form is the central event for prion replication. The folding mechanism underlying this conformational change has not yet been deciphered. Here, we review prion pathology and summarize X-ray fiber and powder diffraction studies on the N-terminal fragments of prion protein and on short sequences that initiate the beta-assembly for various fibrils, including poly(L-alanine) and poly(L-glutamine). We discuss how the quarter-staggered beta-sheet assembly (like in polyalanine) and polar-zipper beta-sheet formation (like in polyglutamine) may be involved in the formation of the scrapie form of prion.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
294
|
Elgersma RC, Meijneke T, de Jong R, Brouwer AJ, Posthuma G, Rijkers DTS, Liskamp RMJ. Synthesis and structural investigations of N-alkylated β-peptidosulfonamide–peptide hybrids of the amyloidogenic amylin(20–29) sequence: implications of supramolecular folding for the design of peptide-based bionanomaterials. Org Biomol Chem 2006; 4:3587-97. [PMID: 16990934 DOI: 10.1039/b606875h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incorporation of a single beta-aminoethane sulfonyl amide moiety in a highly amyloidogenic peptide sequence resulted in a complete loss of amyloid fibril formation. Instead, supramolecular folding morphologies were observed. Subsequent chemoselective N-alkylation of the sulfonamide resulted in amphiphilic peptide-based hydrogelators. It was found that variation of merely the alkyl chain induced a dramatic variation in aggregation motifs such as helical ribbons and tapes, ribbons progressing to closed tubes, twisted lamellar sheets and entangled/branched fibers.
Collapse
Affiliation(s)
- Ronald C Elgersma
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
295
|
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005; 14:2723-34. [PMID: 16195556 PMCID: PMC2253302 DOI: 10.1110/ps.051471205] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
296
|
Abedini A, Raleigh DP. Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: is there a critical amyloidogenic domain in human IAPP? J Mol Biol 2005; 355:274-81. [PMID: 16303136 DOI: 10.1016/j.jmb.2005.10.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/14/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Islet amyloid polypeptide (IAPP; amylin) is responsible for amyloid formation in type-2 diabetes. Not all organisms form islet amyloid, and amyloid formation correlates strongly with variations in primary sequence. Studies of human and rodent IAPP have pointed to the amino acid residues 20-29 region as the important amyloid-modulating sequence. The rat 20-29 sequence contains three proline residues and does not form amyloid, while the human sequence contains no proline and readily forms amyloid. This has led to the view that the 20-29 region constitutes a critical amyloidogenic domain that dictates the properties of the entire sequence. The different behavior of human and rat IAPP could be due to differences in the 20-29 region or due simply to the fact that multiple proline residues destabilize amyloid fibrils. We tested how critical the 20-29 region is by studying a variant identical with the human peptide in this segment but with three proline residues outside this region. We designed a variant of the amyloidogenic 8-37 region of human IAPP (hIAPP(8-37) 3xP) with proline substitutions at positions 17, 19 and 30. Compared to the wild-type, the 3xP variant was much easier to synthesize and had dramatically greater solubility. Fourier transform infra red spectroscopy, transmission electron microscopy, Congo red staining and thioflavin-T binding indicate that this variant has a reduced tendency to form beta-sheet structure and forms deposits with much less structural order than the wild-type. Far-UV CD studies show that the small amount of beta-sheet structure developed by hIAPP(8-37) 3xP after long periods of incubation dissociates readily into random-coil structure upon dilution into Tris buffer. The observation that proline substitutions outside the putative core domain effectively abolish amyloid formation indicates that models of IAPP aggregation must consider contributions from other regions.
Collapse
Affiliation(s)
- Andisheh Abedini
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
297
|
Esteras-Chopo A, Serrano L, López de la Paz M. The amyloid stretch hypothesis: recruiting proteins toward the dark side. Proc Natl Acad Sci U S A 2005; 102:16672-7. [PMID: 16263932 PMCID: PMC1283810 DOI: 10.1073/pnas.0505905102] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A detailed understanding of the molecular events underlying the conversion and self-association of normally soluble proteins into amyloid fibrils is fundamental to the identification of therapeutic strategies to prevent or cure amyloid-related disorders. Recent investigations indicate that amyloid fibril formation is not just a general property of the polypeptide backbone depending on external factors, but that it is strongly modulated by amino acid side chains. Here, we propose and address the validation of the premise that the amyloidogenicity of a protein is indeed localized in short protein stretches (amyloid stretch hypothesis). We demonstrate that the conversion of a soluble nonamyloidogenic protein into an amyloidogenic prone molecule can be triggered by a nondestabilizing six-residue amyloidogenic insertion in a particular structural environment. Interestingly enough, although the inserted amyloid sequences clearly cause the process, the protease-resistant core of the fiber also includes short adjacent sequences from the otherwise soluble globular domain. Thus, short amyloid stretches accessible for intermolecular interactions trigger the self-assembly reaction and pull the rest of the protein into the fibrillar aggregate. The reliable identification of such amyloidogenic stretches in proteins opens the possibility of using them as targets for the inhibition of the amyloid fibril formation process.
Collapse
|
298
|
Tatarek-Nossol M, Yan LM, Schmauder A, Tenidis K, Westermark G, Kapurniotu A. Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid- core-containing hexapeptide. ACTA ACUST UNITED AC 2005; 12:797-809. [PMID: 16039527 DOI: 10.1016/j.chembiol.2005.05.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/26/2005] [Accepted: 05/09/2005] [Indexed: 11/30/2022]
Abstract
The pathogenesis of type II diabetes is associated with the aggregation of the 37-residue human islet amyloid polypeptide (hIAPP) into cytotoxic beta sheet aggregates and fibrils. We have recently shown that introduction of two N-methyl rests in the beta sheet- and amyloid-core-containing sequence hIAPP(22-27), or NFGAIL converted this amyloidogenic and cytotoxic sequence into nonamyloidogenic and noncytotoxic NF(N-Me)GA(N-Me)IL. Here, we show that NF(N-Me)GA(N-Me)IL is able to bind with high-affinity full-length hIAPP and to inhibit its fibrillogenesis. NF(N-Me)GA(N-Me)IL also inhibits hIAPP-mediated apoptotic beta cell death. By contrast, unmodified NFGAIL does not inhibit hIAPP amyloidogenesis and cytotoxicity, suggesting that N-methylation conferred on NFGAIL the properties of NF(N-Me)GA(N-Me)IL. These results support the concept that rational N-methylation of hIAPP amyloid-core sequences may be a valuable strategy to design pancreatic-amyloid diagnostics and therapeutics for type II diabetes.
Collapse
Affiliation(s)
- Marianna Tatarek-Nossol
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the Rheinisch-Westfälische Technische Hochschule Aachen, D-52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
299
|
Wu C, Lei H, Duan Y. Elongation of Ordered Peptide Aggregate of an Amyloidogenic Hexapeptide NFGAIL Observed in Molecular Dynamics Simulations with Explicit Solvent. J Am Chem Soc 2005; 127:13530-7. [PMID: 16190716 DOI: 10.1021/ja050767x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which amyloidogenic peptides and proteins form soluble toxic oligomers remain elusive. We have studied the formation of partially ordered tetramers and well-ordered octamers of an amyloidogenic hexapeptide NFGAIL (residues 22-27 of the human islet amyloid polypeptide) in our previous work. Continuing the effort, we here probe the beta-sheet elongation process by a combined total of 2.0 micros molecular dynamics simulations with explicit solvent. In a set of 10 simulations with the peptides restrained to the extended conformation, we observed that the main growth mode was elongation along the beta-sheet hydrogen bonds through primarily a two-stage process. Driven by hydrophobic forces, the peptides initially attached to the surface of the ordered oligomer, moved quickly to the beta-sheet edges, and formed stable beta-sheet hydrogen bonds. Addition of peptides to the existing oligomer notably improved the order of the peptide aggregate in which labile outer layer beta-sheets were stabilized, which provides good templates for further elongation. These simulations suggested that elongation along the beta-sheet hydrogen bonds occurs at the intermediate stage when low-weight oligomers start to form. We did not observe significant preference toward either parallel or antiparallel beta-sheets at the elongation stage for this peptide. In another set of 10 unrestrained simulations, the dominant growth mode was disordered aggregation. Taken together, these results offered a glimpse at the molecular events leading to the formation of ordered and disordered low-weight oligomers.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
300
|
Petty SA, Decatur SM. Intersheet rearrangement of polypeptides during nucleation of {beta}-sheet aggregates. Proc Natl Acad Sci U S A 2005; 102:14272-7. [PMID: 16176990 PMCID: PMC1242284 DOI: 10.1073/pnas.0502804102] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many neurodegenerative diseases are characterized by the accumulation of amyloid fibers in the brain, which can occur when a protein misfolds into an extended beta-sheet conformation. The nucleation of these beta-sheet aggregates is of particular interest, not only because it is the rate-determining step toward fiber formation but also because early, soluble aggregate species may be the cytotoxic entities in many diseases. In the case of the prion peptide H1 (residues 109-122 of the prion protein) stable amyloid fibers form only after the beta-strands of the peptide have adopted their equilibrium antiparallel beta-sheet configuration with residue 117 in register across all strands. In this article, we present the kinetic details of the realignment of these beta-strands from their fastformed nonequilibrium structure, which has no regular register of the strands, into the more ordered beta-sheets capable of aggregating into stable fibers. This process is likely the nucleating step toward the formation of stable fibers. Isotope-edited IR spectroscopy is used to monitor the alignment of the beta-strands by the introduction of a (13)C-labeled carbonyl at residue 117. Nonexponential kinetics is observed, with a complex dependence on concentration. The results are consistent with a mechanism in which the beta-sheet realigns by both the repeated detachment and annealing of strands in solution and reptation of polypeptide strands within an aggregate.
Collapse
Affiliation(s)
- Sarah A Petty
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | | |
Collapse
|