251
|
Kuzmichev A, Reinberg D. Role of histone deacetylase complexes in the regulation of chromatin metabolism. Curr Top Microbiol Immunol 2001; 254:35-58. [PMID: 11190574 DOI: 10.1007/978-3-662-10595-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Kuzmichev
- Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
252
|
Mizuguchi G, Vassilev A, Tsukiyama T, Nakatani Y, Wu C. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J Biol Chem 2001; 276:14773-83. [PMID: 11279013 DOI: 10.1074/jbc.m100125200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing protein complex that facilitates nucleosome mobility and transcriptional activation in an ATP-dependent manner. Numerous studies have implicated histone acetylation in transcriptional activation. We investigated the relative contributions of these two chromatin modifications to transcription in vitro of a chromatinized adenovirus E4 minimal promoter that contains binding sites for the GAL4-VP16 activator. We found that NURF could remodel chromatin and stimulate transcription irrespective of the acetylation status of histones. In contrast, hyperacetylation of histones in the absence of NURF was unable to stimulate transcription, suggesting that NURF-dependent chromatin remodeling is an obligatory step in E4 promoter activation. When chromatin templates were first hyperacetylated and then incubated with NURF, significantly greater transcription stimulation was observed. The results suggest that changes in chromatin induced by acetylation of histones and the mobilization of nucleosomes by NURF combine synergistically to facilitate transcription. Experiments using single and multiple rounds of transcription indicate that these chromatin modifications stimulate transcription preinitiation as well as reinitiation.
Collapse
Affiliation(s)
- G Mizuguchi
- Laboratory of Molecular Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
253
|
Abstract
During development and differentiation, early inductive processes that influence cell fate at a later stage leave marks at distinct gene loci that are maintained through several rounds of mitosis. The structure of chromatin is part of this epigenetic memory that restricts or permits differential expression of genes in descendant cells. Establishing a cell-type-specific chromatin pattern thus predestines future cell differentiation and deters cell-lineage infidelity, as it often occurs during neoplastic transformation. As such, understanding the dynamics and mechanisms underlying chromatin remodeling has been a major focus of recent molecular genetic research that holds great promise for biomedical discoveries.
Collapse
Affiliation(s)
- C Müller
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany.
| | | |
Collapse
|
254
|
Abstract
A central problem in the regulation of eukaryotic gene expression is understanding how gene-specific transcriptional activators orchestrate the recruitment of the myriad proteins that are required for transcription initiation. An emerging view indicates that activators must first target two types of chromatin remodeling enzyme to the promoter region: an ATP-dependent SWI/SNF-like complex and a histone acetyltransferase. These two enzymes appear to act synergistically to establish a local chromatin structure that is permissive for subsequent events. Furthermore, several recent studies indicate that the recruitment of chromatin remodeling enzymes must follow an obligatory, sequential order of events that is determined by either promoter context or cell-cycle position. Here we review recent developments concerning the role of chromatin remodeling enzymes in gene regulation, and propose several models to explain how different chromatin remodeling activities can be functionally coupled.
Collapse
Affiliation(s)
- C J Fry
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 301, Worcester, MA 01605, USA
| | | |
Collapse
|
255
|
Kent NA, Karabetsou N, Politis PK, Mellor J. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 2001; 15:619-26. [PMID: 11238381 PMCID: PMC312638 DOI: 10.1101/gad.190301] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Isw1p and Isw2p are budding yeast homologs of the Drosophila ISWI chromatin-remodeling ATPase. Using indirect-end-label and chromatin immunoprecipitation analysis, we show both independent and cooperative Isw1p- and Isw2p-mediated positioning of short nucleosome arrays in gene-regulatory elements at a variety of transcription units in vivo. We present evidence that both yeast ISWI complexes regulate developmental responses to starvation and that for Isw2p, recruitment by different DNA-binding proteins controls meiosis and haploid invasive growth.
Collapse
Affiliation(s)
- N A Kent
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
256
|
Wallberg AE, Wright A, Gustafsson JA. Chromatin-remodeling complexes involved in gene activation by the glucocorticoid receptor. VITAMINS AND HORMONES 2001; 60:75-122. [PMID: 11037622 DOI: 10.1016/s0083-6729(00)60017-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, Huddinge, Sweden
| | | | | |
Collapse
|
257
|
Guyon JR, Narlikar GJ, Sullivan EK, Kingston RE. Stability of a human SWI-SNF remodeled nucleosomal array. Mol Cell Biol 2001; 21:1132-44. [PMID: 11158300 PMCID: PMC99567 DOI: 10.1128/mcb.21.4.1132-1144.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 11/03/2000] [Indexed: 11/20/2022] Open
Abstract
SWI-SNF alters DNA-histone interactions within a nucleosome in an ATP-dependent manner. These alterations cause changes in the topology of a closed circular nucleosomal array that persist after removal of ATP from the reaction. We demonstrate here that a remodeled closed circular array will revert toward its original topology when ATP is removed, indicating that the remodeled array has a higher energy than that of the starting state. However, reversion occurs with a half-life measured in hours, implying a high energy barrier between the remodeled and standard states. The addition of competitor DNA accelerates reversion of the remodeled array by more than 10-fold, and we interpret this result to mean that binding of human SWI-SNF (hSWI-SNF), even in the absence of ATP hydrolysis, stabilizes the remodeled state. In addition, we also show that SWI-SNF is able to remodel a closed circular array in the absence of topoisomerase I, demonstrating that hSWI-SNF can induce topological changes even when conditions are highly energetically unfavorable. We conclude that the remodeled state is less stable than the standard state but that the remodeled state is kinetically trapped by the high activation energy barrier separating it from the unremodeled conformation.
Collapse
Affiliation(s)
- J R Guyon
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
258
|
Crevel G, Huikeshoven H, Cotterill S. Df31 is a novel nuclear protein involved in chromatin structure in Drosophila melanogaster. J Cell Sci 2001; 114:37-47. [PMID: 11112688 DOI: 10.1242/jcs.114.1.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We originally isolated the Df31 protein from Drosophila embryo extracts as a factor which could decondense Xenopus sperm, by removing the sperm specific proteins and interacting with histones to facilitate their loading onto DNA. We now believe that this protein has a more general function in cellular DNA metabolism. The Df31 gene encodes a very hydrophilic protein with a predicted molecular mass of 18.5 kDa. Immunostaining showed that Df31 was present in a wide range of cell types throughout differentiation and in both dividing and non-dividing cells. In all cases the protein is present in large amounts, comparable with the level of nucleosomes. Injection of antisense oligonucleotides to lower the level of Df31 in embryos caused severe disruption of the nuclear structure. Large irregular clumps of DNA were formed, and in most cases the amount of DNA associated with each clump was more than that found in a normal nucleus. Immunofluorescence, cell fractionation, and formaldehyde cross-linking show that Df31 is associated with chromatin and that a significant fraction of it binds very tightly. It also shows the same binding characteristics when loaded onto chromatin in vitro. Chromatin fractionation shows that Df31 is tightly associated with nucleosomes, preferentially with oligonucleosomes. Despite this no differences were observed in the properties of nucleosomes loaded in the in vitro system in the presence and absence of Df31. These results suggest that Df31 has a role in chromosomal structure, most likely acting as a structural protein at levels of folding higher than that of nucleosomes.
Collapse
Affiliation(s)
- G Crevel
- Dept Biochemistry and Immunology, St Georges Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK
| | | | | |
Collapse
|
259
|
Shen HH, Huang AM, Hoheisel J, Tsai SF. Identification and characterization of a SET/NAP protein encoded by a brain-specific gene, MB20. Genomics 2001; 71:21-33. [PMID: 11161794 DOI: 10.1006/geno.2000.6397] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new member of the NAP/SET gene family, named MB20, was isolated from a mouse brain cDNA library by virtue of its CAG trinucleotide repetitive sequence and a brain-specific gene expression pattern. The complementary DNA sequence predicted an open reading frame of 545 amino acids, with four copies of an 11-amino-acid direct repeat. The consensus sequence for these repeats, PKE-P--K-EE, is present in the largest subunit of murine neurofilament (NF-H). The MB20 protein sequence is homologous to nucleosome assembly proteins of several species, and its C-terminus is homologous to SET proteins. Immunoblot analysis revealed that MB20 protein is expressed in the brain. Transient transfection and immunofluorescence microscopy demonstrated that MB20 is distributed in the cytoplasm as well as in the nucleus. Deletion of the N-terminal end imparts the complete localization of MB20 protein to the nucleus. The ability of MB20 to bind histone proteins was analyzed by sucrose gradient sedimentation and by retention of histone proteins by immobilized MB20 protein. On the basis of its expression pattern, predicted sequence, and protein properties, we propose that MB20 plays a unique role in modulating nucleosome structure and gene expression during brain development.
Collapse
Affiliation(s)
- H H Shen
- Institute of Genetics, National Yang Ming University, Taipei, 112, Republic of China
| | | | | | | |
Collapse
|
260
|
Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA. Multiple ISWI ATPase complexes from xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J Biol Chem 2000; 275:35248-55. [PMID: 10942776 DOI: 10.1074/jbc.m006041200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosomal ATPase ISWI is the catalytic subunit of several protein complexes that either organize or perturb chromatin structure in vitro. This work reports the cloning and biochemical characterization of a Xenopus ISWI homolog. Surprisingly, whereas we find four complex forms of ISWI in egg extracts, we find no functional homolog of NURF. One of these complexes, xACF, consists of ISWI, Acf1, and a previously uncharacterized protein of 175 kDa. Like both ACF and CHRAC, this complex organizes randomly deposited histones into a regularly spaced array. The remaining three forms include two novel ISWI complexes distinct from known ISWI complexes plus a histone-dependent ATPase complex. This comprehensive biochemical characterization of ISWI underscores the evolutionary conservation of the ACF/CHRAC family.
Collapse
Affiliation(s)
- D Guschin
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
261
|
Abstract
The regulated alteration of chromatin structure, termed 'chromatin remodeling', can be accomplished by covalent modification of histones or by the action of ATP-dependent remodeling complexes. A variety of mechanisms can be used to remodel chromatin; some act locally on a single nucleosome and others act more broadly. It is critical to establish a direct connection between the remodeling events observed in vivo and the mechanistic capabilities of remodeling complexes in vitro.
Collapse
Affiliation(s)
- J D Aalfs
- Dept of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
262
|
Dilworth FJ, Fromental-Ramain C, Yamamoto K, Chambon P. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol Cell 2000; 6:1049-58. [PMID: 11106744 DOI: 10.1016/s1097-2765(00)00103-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using a "crude" chromatin-based transcription system that mimics transactivation by RAR/RXR heterodimers in vivo, we could not demonstrate that chromatin remodeling was required to relieve nucleosomal repression. Using "purified" chromatin templates, we show here that, irrespective of the presence of histone H1, both ATP-driven chromatin remodeling activities and histone acetyltransferase (HAT) activities of coactivators recruited by liganded receptors are required to achieve transactivation. DNA footprinting, ChIP analysis, and order of addition experiments indicate that coactivator HAT activities and two ATP-driven remodeling activities are sequentially involved at distinct steps preceding initiation of transcription. Thus, both ATP-driven chromatin remodeling and HAT activities act in a temporally ordered and interdependent manner to alleviate the repressive effects of nucleosomal histones on transcription by RARalpha/RXRalpha heterodimers.
Collapse
Affiliation(s)
- F J Dilworth
- Institut de Genetique et de Biologie Moleculaire et Cellulaire CNRS/INSERM/ULP/College de France 67404 Cedex CU de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
263
|
Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 2000; 103:423-33. [PMID: 11081629 DOI: 10.1016/s0092-8674(00)00134-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ISWI class of chromatin remodeling factors exhibits potent chromatin remodeling activities in vitro. However, the in vivo functions of this class of factors are unknown at a molecular level. We have found that S. cerevisiae Isw2 complex represses transcription of early meiotic genes during mitotic growth in a parallel pathway to Rpd3-Sin3 histone deacetylase complex. This repressor function of lsw2 complex is largely dependent upon Ume6p, which recruits the complex to target genes. Nuclease digestion analyses revealed that lsw2 complex establishes nuclease-inaccessible chromatin structure near the Ume6p binding site in vivo. Based on these findings, we propose a model for the mechanism of transcriptional repression by two distinct chromatin remodeling complexes.
Collapse
MESH Headings
- Binding Sites
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Macromolecular Substances
- Meiosis/genetics
- Mitosis/genetics
- Models, Genetic
- Molecular Conformation
- Mutation/genetics
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- J P Goldmark
- Division of Basic Sciences, Fred Hutchinson Cancer Research Institute, Fred Hutchinson Cancer Research Center and University of Washington, Seattle 98109, USA
| | | | | | | | | |
Collapse
|
264
|
Read D, Butte MJ, Dernburg AF, Frasch M, Kornberg TB. Functional studies of the BTB domain in the Drosophila GAGA and Mod(mdg4) proteins. Nucleic Acids Res 2000; 28:3864-70. [PMID: 11024164 PMCID: PMC110799 DOI: 10.1093/nar/28.20.3864] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The BTB/POZ (BTB) domain is an approximately 120 residue sequence that is conserved at the N-terminus of many proteins in both vertebrates and invertebrates. We found that the protein encoded by a lethal allele of the Drosophila modifier of mdg4 [mod(mdg4)] gene has two mutated residues in its BTB domain. The identities of the residues at the positions of these mutations are highly conserved in the BTB domain family of proteins, and when the corresponding mutations were engineered into the BTB domain-containing GAGA protein, the activity of GAGA as a transcription activator in a transient transfection assay was severely reduced. The functional equivalence of the BTB domains was established by showing that the BTB domain of the mod(mdg4) protein can effectively substitute for that of GAGA.
Collapse
Affiliation(s)
- D Read
- Department of Biochemistry and Biophysics and Graduate Group in Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
265
|
Citterio E, Van Den Boom V, Schnitzler G, Kanaar R, Bonte E, Kingston RE, Hoeijmakers JH, Vermeulen W. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol 2000; 20:7643-53. [PMID: 11003660 PMCID: PMC86329 DOI: 10.1128/mcb.20.20.7643-7653.2000] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Cockayne syndrome B protein (CSB) is required for coupling DNA excision repair to transcription in a process known as transcription-coupled repair (TCR). Cockayne syndrome patients show UV sensitivity and severe neurodevelopmental abnormalities. CSB is a DNA-dependent ATPase of the SWI2/SNF2 family. SWI2/SNF2-like proteins are implicated in chromatin remodeling during transcription. Since chromatin structure also affects DNA repair efficiency, chromatin remodeling activities within repair are expected. Here we used purified recombinant CSB protein to investigate whether it can remodel chromatin in vitro. We show that binding of CSB to DNA results in an alteration of the DNA double-helix conformation. In addition, we find that CSB is able to remodel chromatin structure at the expense of ATP hydrolysis. Specifically, CSB can alter DNase I accessibility to reconstituted mononucleosome cores and disarrange an array of nucleosomes regularly spaced on plasmid DNA. In addition, we show that CSB interacts not only with double-stranded DNA but also directly with core histones. Finally, intact histone tails play an important role in CSB remodeling. CSB is the first repair protein found to play a direct role in modulating nucleosome structure. The relevance of this finding to the interplay between transcription and repair is discussed.
Collapse
Affiliation(s)
- E Citterio
- Medical Genetic Center, Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Fletcher TM, Ryu BW, Baumann CT, Warren BS, Fragoso G, John S, Hager GL. Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol 2000; 20:6466-75. [PMID: 10938123 PMCID: PMC86121 DOI: 10.1128/mcb.20.17.6466-6475.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Accepted: 06/07/2000] [Indexed: 11/20/2022] Open
Abstract
Activation of the mouse mammary tumor virus (MMTV) promoter by the glucocorticoid receptor (GR) is associated with a chromatin structural transition in the B nucleosome region of the viral long terminal repeat (LTR). Recent evidence indicates that this transition extends upstream of the B nucleosome, encompassing a region larger than a single nucleosome (G. Fragoso, W. D. Pennie, S. John, and G. L. Hager, Mol. Cell. Biol. 18:3633-3644). We have reconstituted MMTV LTR DNA into a polynucleosome array using Drosophila embryo extracts. We show binding of purified GR to specific GR elements within a large, multinucleosome array and describe a GR-induced nucleoprotein transition that is dependent on ATP and a HeLa nuclear extract. Previously uncharacterized GR binding sites in the upstream C nucleosome region are involved in the extended region of chromatin remodeling. We also show that GR-dependent chromatin remodeling is a multistep process; in the absence of ATP, GR binds to multiple sites on the chromatin array and prevents restriction enzyme access to recognition sites. Upon addition of ATP, GR induces remodeling and a large increase in access to enzymes sites within the transition region. These findings suggest a dynamic model in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, and is then lost from the template. This model is consistent with the recent description of a "hit-and-run" mechanism for GR action in living cells (J. G. McNally, W. G. Müller, D. Walker, and G. L. Hager, Science 287:1262-1264, 2000).
Collapse
Affiliation(s)
- T M Fletcher
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | | | | | |
Collapse
|
267
|
Farkas G, Leibovitch BA, Elgin SC. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene 2000; 253:117-36. [PMID: 10940549 DOI: 10.1016/s0378-1119(00)00240-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is increasingly clear that the packaging of DNA in nucleosome arrays serves not only to constrain the genome within the nucleus, but also to encode information concerning the activity state of the gene. Packaging limits the accessibility of many regulatory DNA sequence elements and is functionally significant in the control of transcription, replication, repair and recombination. Here, we review studies of the heat-shock genes, illustrating the formation of a specific nucleosome array at an activatable promoter, and describe present information on the roles of DNA-binding factors and energy-dependent chromatin remodeling machines in facilitating assembly of an appropriate structure. Epigenetic maintenance of the activity state within large domains appears to be a key mechanism in regulating homeotic genes during development; recent advances indicate that chromatin structural organization is a critical parameter. The ability to utilize genetic, biochemical and cytological approaches makes Drosophila an ideal organism for studies of the role of chromatin structure in the regulation of gene expression.
Collapse
Affiliation(s)
- G Farkas
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
268
|
Maraldi NM, Zini N, Santi S, Riccio M, Falconi M, Capitani S, Manzoli FA. Nuclear domains involved in inositol lipid signal transductionmaltese cross. ADVANCES IN ENZYME REGULATION 2000; 40:219-53. [PMID: 10828353 DOI: 10.1016/s0065-2571(99)00032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Maraldi
- Institute of Cytomorphology, CNR Chieti and Bologna, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
269
|
Shen X, Mizuguchi G, Hamiche A, Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 2000; 406:541-4. [PMID: 10952318 DOI: 10.1038/35020123] [Citation(s) in RCA: 621] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The packaging of the eukaryotic genome in chromatin presents barriers that restrict the access of enzymes that process DNA. To overcome these barriers, cells possess a number of multi-protein, ATP-dependent chromatin remodelling complexes, each containing an ATPase subunit from the SNF2/SWI2 superfamily. Chromatin remodelling complexes function by increasing nucleosome mobility and are clearly implicated in transcription. Here we have analysed SNF2/SWI2- and ISWI-related proteins to identify remodelling complexes that potentially assist other DNA transactions. We purified a complex from Saccharomyces cerevisiae that contains the Ino80 ATPase. The INO80 complex contains about 12 polypeptides including two proteins related to the bacterial RuvB DNA helicase, which catalyses branch migration of Holliday junctions. The purified complex remodels chromatin, facilitates transcription in vitro and displays 3' to 5' DNA helicase activity. Mutants of ino80 show hypersensitivity to agents that cause DNA damage, in addition to defects in transcription. These results indicate that chromatin remodelling driven by the Ino80 ATPase may be connected to transcription as well as DNA damage repair.
Collapse
Affiliation(s)
- X Shen
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
270
|
Ito T, Ikehara T, Nakagawa T, Kraus WL, Muramatsu M. p300-Mediated acetylation facilitates the transfer of histone H2A–H2B dimers from nucleosomes to a histone chaperone. Genes Dev 2000. [DOI: 10.1101/gad.14.15.1899] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have used a purified recombinant chromatin assembly system, including ACF (Acf-1 + ISWI) and NAP-1, to examine the role of histone acetylation in ATP-dependent chromatin remodeling. The binding of a transcriptional activator (Gal4–VP16) to chromatin assembled using this recombinant assembly system dramatically enhances the acetylation of nucleosomal core histones by the histone acetyltransferase p300. This effect requires both the presence of Gal4-binding sites in the template and the VP16-activation domain. Order-of-addition experiments indicate that prior activator-meditated, ATP-dependent chromatin remodeling by ACF is required for the acetylation of nucleosomal histones by p300. Thus, chromatin remodeling, which requires a transcriptional activator, ACF and ATP, is an early step in the transcriptional process that regulates subsequent core histone acetylation. Glycerol gradient sedimentation and immunoprecipitation assays demonstrate that the acetylation of histones by p300 facilitates the transfer of H2A–H2B from nucleosomes to NAP-1. The results from these biochemical experiments suggest that (1) transcriptional activators (e.g., Gal4–VP16) and chromatin remodeling complexes (e.g., ACF) induce chromatin remodeling in the absence of histone acetylation; (2) transcriptional activators recruit histone acetyltransferases (e.g., p300) to promoters after chromatin remodeling has occurred; and (3) histone acetylation is important for a step subsequent to chromatin remodeling and results in the transfer of histone H2A–H2B dimers from nucleosomes to a histone chaperone such as NAP-1. Our results indicate a precise role for histone acetylation, namely to alter the structure of nucleosomes (e.g., facilitate the loss of H2A–H2B dimers) that have been remodeled previously by the action of ATP-dependent chromatin remodeling complexes. Thus, transcription from chromatin templates is ordered and sequential, with precise timing and roles for ATP-dependent chromatin remodeling, subsequent histone acetylation, and alterations in nucleosome structure.
Collapse
|
271
|
Ridgway P, Almouzni G. CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 2000; 113 ( Pt 15):2647-58. [PMID: 10893180 DOI: 10.1242/jcs.113.15.2647] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromatin is no longer considered to be a static structural framework for packaging DNA within the nucleus but is instead believed to be an interactive component of DNA metabolism. The ordered assembly of chromatin produces a nucleoprotein template capable of epigenetically regulating the expression and maintenance of the genome. Factors have been isolated from cell extracts that stimulate early steps in chromatin assembly in vitro. The function of one such factor, chromatin-assembly factor 1 (CAF-1), might extend beyond simply facilitating the progression through an individual assembly reaction to its active participation in a marking system. This marking system could be exploited at the crossroads of DNA replication and repair to monitor genome integrity and to define particular epigenetic states.
Collapse
Affiliation(s)
- P Ridgway
- Institut Curie/Section de Recherche UMR218 du CNRS, Paris cedex 05, France
| | | |
Collapse
|
272
|
Abstract
Members of the ATP-dependent class of chromatin remodeling enzymes are found in all eukaryotes where they play key roles in many DNA-mediated processes. Each of these enzymes are multi-subunit assembles that hydrolyze approximately 1000 ATP/min. The energy of ATP hydrolysis is used to disrupt the chromatin structure which can be scored by enhanced factor binding, disruption of the DNase I cleavage pattern of mononucleosomes, formation of dinucleosomes, movements of histone octamers in cis and in trans, and by generation of nuclease hypersensitive sites. Here the biochemical properties of these enzymes are reviewed and the manner in which ATP-driven nucleosome movements might account for many of these diverse activities is discussed.
Collapse
Affiliation(s)
- C L Peterson
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, Biotech 2, Suite 301, 373 Plantation St., 01605, Worcester, MA, USA.
| |
Collapse
|
273
|
Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem 2000; 275:18864-70. [PMID: 10779516 DOI: 10.1074/jbc.m002810200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ATP-dependent chromatin remodeling enzymes antagonize the inhibitory effects of chromatin. We compare six different remodeling complexes: ySWI/SNF, yRSC, hSWI/SNF, xMi-2, dCHRAC, and dNURF. We find that each complex uses similar amounts of ATP to remodel nucleosomal arrays at nearly identical rates. We also perform assays with arrays reconstituted with hyperacetylated or trypsinized histones and isolated histone (H3/H4)(2) tetramers. The results define three groups of the ATP-dependent family of remodeling enzymes. In addition we investigate the ability of an acidic activator to recruit remodeling complexes to nucleosomal arrays. We propose that ATP-dependent chromatin remodeling enzymes share a common reaction mechanism and that a key distinction between complexes is in their mode of regulation or recruitment.
Collapse
Affiliation(s)
- L A Boyer
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Thompson EM, Legouy E, Renard JP. Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. DEVELOPMENTAL GENETICS 2000; 22:31-42. [PMID: 9499578 DOI: 10.1002/(sici)1520-6408(1998)22:1<31::aid-dvg4>3.0.co;2-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Xenopus and Drosophila embryos, activation of the zygotic genome occurs after a series of rapid nuclear divisions in which DNA replication occupies most of the cell cycle. In these organisms, it has been proposed that zygotic transcription does not begin until a threshold nucleocytoplasmic ratio has been obtained in which repressive factors are titrated out and interphase becomes long enough to allow synthesis of transcripts. In mammalian embryos, however, a model of threshold nucleocytoplasmic ratios does not seem to apply, as beginning with the 1-cell stage, there are regulated cell cycles with the expression of zygotic transcripts during the cleavage period. By taking advantage of the slower kinetics at the onset of mouse development, we have characterized changes in chromatin structure and the basal transcription machinery throughout the transition from transcriptional incompetence, to minor activation of the zygotic genome during the 1-cell stage, and through major genome activation at the 2-cell stage. Further maturation of chromatin structure continues through subsequent cleavage cycles as a foundation for the first cellular differentiations in the blastocyst. The epigenetic chromatin modifications that occur during the cleavage period may have long range and inheritable effects and are undoubtedly important in the ability of the mammalian oocyte to remodel previously defined nuclear structures and cell fates.
Collapse
Affiliation(s)
- E M Thompson
- Unité de Biologie du Développement, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | | | | |
Collapse
|
275
|
Magnaghi-Jaulin L, Ait-Si-Ali S, Harel-Bellan A. Histone acetylation and the control of the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:41-7. [PMID: 10740813 DOI: 10.1007/978-1-4615-4253-7_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The critical steps of the cell cycle are generally controlled through the transcriptional regulation of specific subsets of genes. Transcriptional regulation has been recently linked to acetylation or deacetylation of core histone tails: acetylated histone tails are generally associated with active chromatin, whereas deacetylated histone tails are associated with silent parts of the genome. A number of transcriptional co-regulators are histone acetyl-transferases or histone deacetylases. Here, we discuss some of the critical cell cycle steps in which these enzymes are involved.
Collapse
|
276
|
|
277
|
Corona DF, Eberharter A, Budde A, Deuring R, Ferrari S, Varga-Weisz P, Wilm M, Tamkun J, Becker PB. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J 2000; 19:3049-59. [PMID: 10856248 PMCID: PMC203371 DOI: 10.1093/emboj/19.12.3049] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ISWI ATPase of Drosophila is a molecular engine that can drive a range of nucleosome remodelling reactions in vitro. ISWI is important for cell viability, developmental gene expression and chromosome structure. It interacts with other proteins to form several distinct nucleosome remodelling machines. The chromatin accessibility complex (CHRAC) is a biochemical entity containing ISWI in association with several other proteins. Here we report on the identification of the two smallest CHRAC subunits, CHRAC-14 and CHRAC-16. They contain histone fold domains most closely related to those found in sequence-specific transcription factors NF-YB and NF-YC, respectively. CHRAC-14 and CHRAC-16 interact directly with each other as well as with ISWI, and are associated with functionally active CHRAC. The developmental expression profiles of both subunits suggest specialized roles in chromatin remodelling reactions in the early embryo for both histone fold subunits.
Collapse
Affiliation(s)
- D F Corona
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, 80336 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev 2000. [DOI: 10.1101/gad.14.11.1308] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK protein substantially reduces the replication efficiency of chromatin but not of naked DNA templates.
Collapse
|
279
|
LeRoy G, Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem 2000; 275:14787-90. [PMID: 10747848 DOI: 10.1074/jbc.c000093200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported the isolation and characterization of a nucleosome remodeling and spacing factor, RSF. One of the RSF subunits is hSNF2h, a SNF2 homologue. Here we set out to isolate and characterize other hSNF2h-containing complexes. We have identified a novel hSNF2h complex that facilitates ATP-dependent chromatin assembly with the histone chaperone NAP-1. The complex possesses ATPase activity that is DNA-dependent and nucleosome-stimulated. This complex is capable of facilitating ATP-dependent nucleosome remodeling and transcription initiation from chromatin templates. In addition to hSNF2h, this complex also contains a 190-kDa protein encoded by the BAZ1A gene. Since both subunits are homologues of the Drosophila ACF complex (ATP-utilizing chromatin assembly and remodeling factor), we have named this factor human ACF or hACF.
Collapse
Affiliation(s)
- G LeRoy
- Howard Hughes Medical Institute, Division of Nucleic Acid Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
280
|
John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL. The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF II30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1196] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have purified and characterized a Gcn5-independent nucleosomal histone H3 HAT complex, NuA3 (NucleosomalAcetyltransferase of histone H3). Peptide sequencing of proteins from the purified NuA3 complex identified Sas3 as the catalytic HAT subunit of the complex. Sas3 is the yeast homolog of the human MOZ oncogene. Sas3 is required for both the HAT activity and the integrity of the NuA3 complex. In addition, NuA3 contains the TBP- associated factor, yTAFII30, which is also a component of the TFIID, TFIIF, and SWI/SNF complexes. Sas3 mediates interaction of the NuA3 complex with Spt16 both in vivo and in vitro. Spt16 functions as a component of the yeast CP (Cdc68/Pob3) and mammalian FACT (facilitateschromatin transcription) complexes, which are involved in transcription elongation and DNA replication. This interaction suggests that the NuA3 complex might function in concert with FACT–CP to stimulate transcription or replication elongation through nucleosomes by providing a coupled acetyltransferase activity.
Collapse
|
281
|
Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP. The Drosophila Brahma complex is an essential coactivator for the trithorax group protein Zeste. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1058] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The trithorax group (trxG) of activators andPolycomb group (PcG) of repressors are believed to control the expression of several key developmental regulators by changing the structure of chromatin. Here, we have sought to dissect the requirements for transcriptional activation by the DrosophilatrxG protein Zeste, a DNA-binding activator of homeotic genes. Reconstituted transcription reactions established that the Brahma (BRM) chromatin-remodeling complex is essential for Zeste-directed activation on nucleosomal templates. Because it is not required for Zeste to bind to chromatin, the BRM complex appears to act after promoter binding by the activator. Purification of the Drosophila BRM complex revealed a number of novel subunits. We found that Zeste tethers the BRM complex via direct binding to specific subunits, including trxG proteins Moira (MOR) and OSA. The leucine zipper of Zeste mediates binding to MOR. Interestingly, although the Imitation Switch (ISWI) remodelers are potent nucleosome spacing factors, they are dispensable for transcriptional activation by Zeste. Thus, there is a distinction between general chromatin restructuring and transcriptional coactivation by remodelers. These results establish that different chromatin remodeling factors display distinct functional properties and provide novel insights into the mechanism of their targeting.
Collapse
|
282
|
Yoo EJ, Jin YH, Jang YK, Bjerling P, Tabish M, Hong SH, Ekwall K, Park SD. Fission yeast hrp1, a chromodomain ATPase, is required for proper chromosome segregation and its overexpression interferes with chromatin condensation. Nucleic Acids Res 2000; 28:2004-11. [PMID: 10756203 PMCID: PMC103280 DOI: 10.1093/nar/28.9.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 02/15/2000] [Accepted: 03/09/2000] [Indexed: 11/14/2022] Open
Abstract
Hrp1 of Schizosaccharomyces pombe is a member of the CHD protein family, characterized by a chromodomain, a Myb-like telobox-related DNA-binding domain and a SNF2-related helicase/ATPase domain. CHD proteins are thought to be required for modification of the chromatin structure in transcription, but the exact roles of CHD proteins are not known. Here we examine the sub-cellular localization and biochemical activity of Hrp1 and the phenotypes of hrp1 Delta and Hrp1-overexpressing strains. Fluorescence microscopy revealed that Hrp1 protein is targeted to the nucleus. We found that Hrp1 exhibited DNA-dependent ATPase activity, stimulated by both single- and double-stranded DNA. Overexpression of Hrp1 caused slow cell growth accompanied by defective chromosome condensation in anaphase resulting in a 'cut' (celluntimelytorn) phenotype and chromosome loss. The hrp1 Delta mutation also caused abnormal anaphase and mini-chromosome loss phenotypes. Electron micrographs demonstrated that aberrantly shaped nucleoli appeared in Hrp1-overexpressing cells. Therefore, these results suggest that Hrp1 may play a role in mitotic chromosome segregation and maintenance of chromatin structure by utilizing the energy from ATP hydrolysis.
Collapse
Affiliation(s)
- E J Yoo
- Department of Molecular Biology and Research Center for Cell Differentiation, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Jaskelioff M, Gavin IM, Peterson CL, Logie C. SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state. Mol Cell Biol 2000; 20:3058-68. [PMID: 10757790 PMCID: PMC85587 DOI: 10.1128/mcb.20.9.3058-3068.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SWI-SNF is an ATP-dependent chromatin remodeling complex that disrupts DNA-histone interactions. Several studies of SWI-SNF activity on mononucleosome substrates have suggested that remodeling leads to novel, accessible nucleosomes which persist in the absence of continuous ATP hydrolysis. In contrast, we have reported that SWI-SNF-dependent remodeling of nucleosomal arrays is rapidly reversed after removal of ATP. One possibility is that these contrasting results are due to the different assays used; alternatively, the lability of the SWI-SNF-remodeled state might be different on mononucleosomes versus nucleosomal arrays. To investigate these possibilities, we use a coupled SWI-SNF remodeling-restriction enzyme assay to directly compare the remodeling of mononucleosome and nucleosomal array substrates. We find that SWI-SNF action causes a mobilization of histone octamers for both the mononucleosome and nucleosomal array substrates, and these changes in nucleosome positioning persist in the absence of continued ATP hydrolysis or SWI-SNF binding. In the case of mononucleosomes, the histone octamers accumulate at the DNA ends even in the presence of continued ATP hydrolysis. On nucleosomal arrays, SWI-SNF and ATP lead to a more dynamic state where nucleosomes appear to be constantly redistributed and restriction enzyme sites throughout the array have increased accessibility. This random positioning of nucleosomes within the array persists after removal of ATP, but inactivation of SWI-SNF is accompanied by an increased occlusion of many restriction enzyme sites. Our results also indicate that remodeling of mononucleosomes or nucleosomal arrays does not lead to an accumulation of novel nucleosomes that maintain an accessible state in the absence of continuous ATP hydrolysis.
Collapse
Affiliation(s)
- M Jaskelioff
- Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
284
|
Abstract
The assembly of eukaryotic DNA into folded nucleosomal arrays has drastic consequences for many nuclear processes that require access to the DNA sequence, including RNA transcription, DNA replication, recombination, and repair. Two types of highly conserved chromatin remodeling enzymes have been implicated as regulators of the repressive nature of chromatin structure: ATP-dependent remodeling complexes and nuclear histone acetyltransferases (HATs). Recent studies indicate that both types of enzymes can be recruited to chromosomal loci through either physical interactions with transcriptional activators or via the global accessibility of chromatin during S phase of the cell cycle. Here we review these recent observations and discuss the implications for gene-specific regulation by chromatin remodeling machines.
Collapse
Affiliation(s)
- C L Peterson
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
285
|
Kang SW, Kuzuhara T, Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 2000; 5:251-63. [PMID: 10792464 DOI: 10.1046/j.1365-2443.2000.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
Collapse
Affiliation(s)
- S W Kang
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
286
|
Tang H, Liu Y, Madabusi L, Gilmour DS. Promoter-proximal pausing on the hsp70 promoter in Drosophila melanogaster depends on the upstream regulator. Mol Cell Biol 2000; 20:2569-80. [PMID: 10713179 PMCID: PMC85473 DOI: 10.1128/mcb.20.7.2569-2580.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II pauses in the promoter-proximal region of many genes during transcription. In the case of the hsp70 promoter from Drosophila melanogaster, this pause is long-lived and occurs even when the gene is not induced. Paused polymerase escapes during heat shock when the transcriptional activator heat shock factor associates with the promoter. However, pausing is still evident, especially when induction is at an intermediate level. Yeast Gal4 protein (Gal4p) will induce transcription of the hsp70 promoter in Drosophila when binding sites for Gal4p are positioned upstream from the hsp70 TATA element. To further our understanding of promoter-proximal pausing, we have analyzed the effect of Gal4p on promoter-proximal pausing in salivary glands of Drosophila larvae. Using permanganate genomic footprinting, we observed that various levels of Gal4p induction resulted in an even distribution of RNA polymerase throughout the first 76 nucleotides of the transcribed region. In contrast, promoter-proximal pausing still occurs on endogenous and transgenic hsp70 promoters in salivary glands when these promoters are induced by heat shock. We also determined that mutations introduced into the region where the polymerase pauses do not inhibit pausing in a cell-free system. Taken together, these results indicate that promoter-proximal pausing is dictated by the regulatory proteins interacting upstream from the core promoter region.
Collapse
Affiliation(s)
- H Tang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
287
|
de La Serna IL, Carlson KA, Hill DA, Guidi CJ, Stephenson RO, Sif S, Kingston RE, Imbalzano AN. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol 2000; 20:2839-51. [PMID: 10733587 PMCID: PMC85505 DOI: 10.1128/mcb.20.8.2839-2851.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP-dependent chromatin-remodeling complexes are conserved among all eukaryotes and function by altering nucleosome structure to allow cellular regulatory factors access to the DNA. Mammalian SWI-SNF complexes contain either of two highly conserved ATPase subunits: BRG1 or BRM. To identify cellular genes that require mammalian SWI-SNF complexes for the activation of gene expression, we have generated cell lines that inducibly express mutant forms of the BRG1 or BRM ATPases that are unable to bind and hydrolyze ATP. The mutant subunits physically associate with at least two endogenous members of mammalian SWI-SNF complexes, suggesting that nonfunctional, dominant negative complexes may be formed. We determined that expression of the mutant BRG1 or BRM proteins impaired the ability of cells to activate the endogenous stress response gene hsp70 in response to arsenite, a metabolic inhibitor, or cadmium, a heavy metal. Activation of hsp70 by heat stress, however, was unaffected. Activation of the heme oxygenase 1 promoter by arsenite or cadmium and activation of the cadmium-inducible metallothionein promoter also were unaffected by the expression of mutant SWI-SNF components. Analysis of a subset of constitutively expressed genes revealed no or minimal effects on transcript levels. We propose that the requirement for mammalian SWI-SNF complexes in gene activation events will be specific to individual genes and signaling pathways.
Collapse
Affiliation(s)
- I L de La Serna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
288
|
De Graeve F, Bahr A, Chatton B, Kedinger C. A murine ATFa-associated factor with transcriptional repressing activity. Oncogene 2000; 19:1807-19. [PMID: 10777215 DOI: 10.1038/sj.onc.1203492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ATFa proteins, which are members of the CREB/ATF family of transcription factors, have previously been shown to interact with the adenovirus E1a oncoprotein and to mediate its transcriptional activity; they heterodimerize with Jun, Fos or related transcription factors, possibly altering their DNA-binding specificity; they also stably bind JNK2, a stress-induced protein kinase. Here we report the identification and characterization of a novel protein isolated in a yeast two-hybrid screen using the N-terminal half of ATFa as a bait. This 1306-residue protein (mAM, for mouse ATFa-associated Modulator) is rather acidic (pHi 4.5) and contains high proportions of Ser/Thr (21%) and Pro (11%) residues. It colocalizes and interacts with ATFa in mammalian cells, contains a bipartite nuclear localization signal and possesses an ATPase activity. Transfection experiments show that mAM is able to downregulate transcriptional activity, in an ATPase-independent manner. Our results indicate that mAM interacts with several components of the basal transcription machinery (TFIIE and TFIIH), including RNAPII itself. Together, these findings suggest that mAM may be involved in the fine-tuning of ATFa-regulated gene expression, by interfering with the assembly or stability of specific preinitiation transcription complexes.
Collapse
Affiliation(s)
- F De Graeve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, Communauté Urbaine de Strasbourg, France
| | | | | | | |
Collapse
|
289
|
Lee D, Lee B, Kim J, Kim DW, Choe J. cAMP response element-binding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription. J Biol Chem 2000; 275:7045-51. [PMID: 10702269 DOI: 10.1074/jbc.275.10.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP response element-binding protein-binding protein (CBP) is a eucaryotic transcriptional co-activator that contains multiple protein-protein interaction domains for association with various transcription factors, components of the basal transcriptional apparatus, and other co-activator proteins. Here, we report that CBP is also a co-activator of the human papillomavirus (HPV) E2 protein, which is a sequence-specific transcription/replication factor. We provide biochemical, genetic, and functional evidence that CBP binds directly to HPV E2 in vivo and in vitro and activates E2-dependent transcription. Mutations in an amphipathic helix within HPV-18 E2 abolish its transcriptional activation properties and its ability to bind to CBP. Furthermore, the binding of CBP to E2 was shown to be necessary for E2-dependent transcription. Interestingly, the histone acetyltransferase activity of CBP plays a role in CBP activation of E2-dependent transcription.
Collapse
Affiliation(s)
- D Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | |
Collapse
|
290
|
Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 2000; 5:221-33. [PMID: 10759893 DOI: 10.1046/j.1365-2443.2000.00319.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Structural changes in chromatin play essential roles in regulating eukaryotic gene expression. Silencing, potent repression of transcription in Saccharomyces cerevisiae, occurs near telomeres and at the silent mating-type loci, as well as at rDNA loci. This type of repression relates to the condensation of chromatin that occurs in the heterochromatin of multicellular organisms. Anti-silencing is a reaction by which silenced loci are de-repressed. Genetic studies revealed that several factors participate in the anti-silencing reaction. However, actions of factors and molecular mechanisms underlying anti-silencing remain unknown. RESULTS Here we report the functional activity of a highly evolutionarily conserved human factor termed CIA (CCG1-interacting factor A), whose budding yeast homologue ASF1 has anti-silencing activity. Using yeast two-hybrid screening, we isolated histone H3 as an interacting factor of CIA. We also showed that CIA binds to histones H3/H4 in vitro, and that the interacting region of histone H3 is located in the C-terminal helices. Considering the functional role of CIA as a histone-interacting protein, we found that CIA forms a nucleosome-like structure with DNA and histones. CONCLUSIONS These results show that human CIA, whose yeast homologue ASF1 is an anti-silencing factor, possesses histone chaperone activity. This leads to a better understanding of the relationship between chromatin structural changes and anti-silencing processes.
Collapse
Affiliation(s)
- T Munakata
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo,1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
291
|
Affiliation(s)
- M Vignali
- Howard Hughes Medical Institute, Department of Biochemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | |
Collapse
|
292
|
Abstract
We discuss nuclear chaperones that bind correctly folded protein subunits and mediate molecular interactions, particularly between proteins and nucleic acids. The charge of these chaperones helps to prevent non-specific electrostatic interactions between the components. Thus, an ordered assembly of macromolecular complexes is mediated, most notably in the formation and maintenance of chromatin, though similar principles are likely to apply in ribonucleoprotein assembly. Here, we discuss roles for nuclear chaperones in mediating nucleosome assembly and remodelling during DNA replication and transcription, and upon fertilisation.
Collapse
Affiliation(s)
- A Philpott
- Department of Oncology, University of Cambridge, Wellcome Trust Centre for the Study of Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
293
|
Bochar DA, Savard J, Wang W, Lafleur DW, Moore P, Côté J, Shiekhattar R. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc Natl Acad Sci U S A 2000; 97:1038-43. [PMID: 10655480 PMCID: PMC15513 DOI: 10.1073/pnas.97.3.1038] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodeling complexes have been implicated in the disruption or reformation of nucleosomal arrays resulting in modulation of transcription, DNA replication, and DNA repair. Here we report the isolation of WCRF, a new chromatin-remodeling complex from HeLa cells. WCRF is composed of two subunits, WCRF135, the human homolog of Drosophila ISWI, and WCRF180, a protein related to the Williams syndrome transcription factor. WCRF180 is a member of a family of proteins sharing a putative heterochromatin localization domain, a PHD finger, and a bromodomain, prevalent in factors involved in regulation of chromatin structure.
Collapse
Affiliation(s)
- D A Bochar
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, Tsukiyama T, Wu C, Pimpinelli S, Tamkun JW. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 2000; 5:355-65. [PMID: 10882076 DOI: 10.1016/s1097-2765(00)80430-x] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila ISWI, a highly conserved member of the SWI2/SNF2 family of ATPases, is the catalytic subunit of three chromatin-remodeling complexes: NURF, CHRAC, and ACF. To clarify the biological functions of ISWI, we generated and characterized null and dominant-negative ISWI mutations. We found that ISWI mutations affect both cell viability and gene expression during Drosophila development. ISWI mutations also cause striking alterations in the structure of the male X chromosome. The ISWI protein does not colocalize with RNA Pol II on salivary gland polytene chromosomes, suggesting a possible role for ISWI in transcriptional repression. These findings reveal novel functions for the ISWI ATPase and underscore its importance in chromatin remodeling in vivo.
Collapse
Affiliation(s)
- R Deuring
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000. [DOI: 10.1101/gad.14.2.121] [Citation(s) in RCA: 900] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
296
|
Pile LA, Cartwright IL. GAGA factor-dependent transcription and establishment of DNase hypersensitivity are independent and unrelated events in vivo. J Biol Chem 2000; 275:1398-404. [PMID: 10625691 DOI: 10.1074/jbc.275.2.1398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a Drosophila transgenic system we investigated the ability of GAGA factor, a putative anti-repressor, to modulate transcription-related events in the absence or presence of a bona fide activator, the Adf-1 transcription factor. In contrast to previous in vitro and in vivo data linking the binding of GAGA factor to the acquisition of DNase hypersensitivity at heat shock promoters, we observed that inserting multiple GAGA binding motifs adjacent to a minimal alcohol dehydrogenase (Adh) promoter led to strongly elevated embryonic transcription without creation of a promoter-associated DNase-hypersensitive (DH) site. Establishment of DNase hypersensitivity required the presence of both GAGA and Adf-1 binding sites and was accompanied by a further, synergistic increase in transcription. Because Adf-1 is capable neither of establishing a DH site nor of promoting efficient transcription by itself in embryos, it is likely that DH site formation depends on a GAGA factor-mediated binding of Adf-1 to chromatin, perhaps facilitated by a locally remodeled downstream promoter region. More generally we suggest that GAGA factor-binding sequences may operate in a promoter-specific context, with transcriptional activation, polymerase pausing, and/or DH site formation critically dependent on the nature of the sequences (and their binding partners) linked in cis.
Collapse
Affiliation(s)
- L A Pile
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
297
|
Massa S, Junker S, Matthias P. Molecular mechanisms of extinction: old findings and new ideas. Int J Biochem Cell Biol 2000; 32:23-40. [PMID: 10661892 DOI: 10.1016/s1357-2725(99)00102-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fusion experiments between somatic cells have been used for a long time as a means to understand the regulation of gene expression. In hybrids between differentiated cells such as hepatocytes or lymphocytes and undifferentiated cells such as fibroblasts a phenomenon called extinction has been described. In such hybrids expression of cell-specific genes derived from the more differentiated parental cell is selectively turned off (extinguished), whereas genes expressed from both cells like housekeeping genes remain active after fusion. Study of the molecular basis of extinction of the liver-specifically expressed tyrosine aminotransferase gene and of the B-cell-specifically expressed immunoglobulin genes has revealed that in hybrids the transcriptional program of the differentiated cells is reset. This is accompanied by a loss of expression or activity of many of the regulatory molecules that were operating in the differentiated cells. In the light of new insights in eukaryotic gene regulation we speculate that molecular mechanisms such as chromatin remodelling, recruitment to heterochromatin or subnuclear localization could underly the extinction process.
Collapse
Affiliation(s)
- S Massa
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
298
|
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
299
|
Rhodes D, Solomon A, Bolton W, Wood J, Sullivan J, Learmont J, Deacon N. Identification of a new recipient in the Sydney Blood Bank Cohort: a long-term HIV type 1-infected seroindeterminate individual. AIDS Res Hum Retroviruses 1999; 15:1433-9. [PMID: 10555106 DOI: 10.1089/088922299309946] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have reported previously a cohort of long-term survivors of HIV-1 infection, known as the Sydney Blood Bank Cohort, who received HIV-1-positive blood from a common infected donor. A new recipient, C135, has been identified. This recipient became infected after receiving blood donated during the presumed time of seroconversion of the donor in February 1981. C135 has been infected for more than 18 years without signs of disease progression. The virus load in this recipient has remained below the detectable level (<20 RNA copies/ml of plasma) and repeated Western blot analyses have given an indeterminate result. By booster PCR techniques we have demonstrated that this individual is infected with HIV-1 and have characterized the viral nef and nef/LTR region sequences present. The strain of HIV-1 identified contains deletions of 88 bp from the nef alone region and a total of 139 bp deleted from the nef/LTR overlap and LTR regions. The LTR contains three wild-type Sp1 transcription factor-binding sites, the 3' wildtype NF-kappaB site, and a duplicated Sp1 and NF-kappaB region. A truncated Nef protein of only 19 amino acids is encoded. The deletions and rearrangements in the nef gene and LTR sequences are characteristic of Sydney Blood Bank Cohort strains of virus. The identification of C135 increases the Sydney Blood Bank Cohort size to nine individuals and represents a rare example of a genuine, long-term HIV-1 infection accompanied by indeterminate anti-HIV-1 serology.
Collapse
Affiliation(s)
- D Rhodes
- AIDS Molecular Biology Unit, National Centre for HIV Virology Research, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
300
|
Abstract
SWI/SNF, RSC, NURF, CHRAC, ACF, RSF and NuRD are highly conserved multiprotein complexes that use the energy of ATP-hydrolysis to remodel chromatin. These complexes that have different subunit composition, all rely on helicase-like enzymes for ATPase activity and affect chromatin structure in similar ways. The specific function of the different complexes remains unclear, but many of them seem to be involved in transcriptional regulation. Although all cellular genes may not depend on chromatin remodelling for normal expression, recent data has shown that the complexes are required for both positive and negative control of a variety of cellular pathways.
Collapse
Affiliation(s)
- C Muchardt
- Unite des Virus Oncogenes URA1644 du CNRS Departement des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|