251
|
|
252
|
Abstract
Gap junctions are regarded as the primary pathway underlying propagation of Ca2+ waves between astrocytes, although signaling through extracellular space may also contribute. Results obtained from astrocytes cultured from sibling Cx43 knockout (KO) and wild-type (WT) mice in six litters showed that Ca2+ waves propagated more slowly in Cx43 KO than in WT astrocytes; however, because this difference in velocity was only seen in conditions where cell confluence was higher in WT than KO astrocytes, it is attributable to differences in plating density. By contrast, density-independent differences were observed in the amplitudes of the Ca2+ responses (15% smaller in KO astrocytes) and efficacy of spread (to 14% fewer cells in KO astrocytes). Blockade of purinergic receptors with suramin reduced the velocities of the waves by 40% in WT and KO astrocytes and reduced the amplitudes by 20% and 6%, respectively. In the presence of heptanol, Ca2+ waves spread to only 30% of the cells, with a 70% reduced velocity and 30% reduced amplitude. It is concluded that the propagation of Ca2+ waves between astrocytes from Cx43 KO mice is not so greatly affected as expected by deletion of the major gap junction protein between these cells. The residual 5% coupling contributed by the additional connexins (Cx40, Cx45, and Cx46) expressed in KO astrocytes still suffices to provide a more substantial portion of Ca2+ wave propagation than does signaling through extracellular purinergic pathways. These studies demonstrate that, even with severely reduced junctional conductance, Cx43 KO astrocytes are capable of performing long-range Ca2+ wave signaling, perhaps preserving one mechanism critical to neural function.
Collapse
Affiliation(s)
- ELIANA SCEMES
- Deptartment of Physiology, Bioscience Institute, University of Sao Paulo, Sao Paulo, Brazil
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - ROLF DERMIETZEL
- Department of Anatomy, University of Bochum, Bochum, Germany
| | - DAVID C. SPRAY
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
253
|
Venance L, Prémont J, Glowinski J, Giaume C. Gap junctional communication and pharmacological heterogeneity in astrocytes cultured from the rat striatum. J Physiol 1998; 510 ( Pt 2):429-40. [PMID: 9705994 PMCID: PMC2231053 DOI: 10.1111/j.1469-7793.1998.429bk.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Indo-1 and fluo-3 imaging techniques were used to investigate the role of gap junctions in the changes in cytosolic calcium concentrations ([Ca2+]i) induced by several receptor agonists. Subpopulations of confluent cultured astrocytes from the rat striatum were superfused with submaximal concentrations of endothelin-1 (Et1) and the alpha 1-adrenergic and muscarinic receptor agonists, methoxamine and carbachol, respectively. 2. Combined binding and autoradiographic studies indicated that all striatal astrocytes possess binding sites for Et1. In contrast, alpha 1-adrenergic and muscarinic binding sites were found to be heterogeneously distributed. In agreement with these findings, Et1 induced fast calcium responses in all cells while only subsets of striatal astrocytes responded to the application of methoxamine or carbachol. 3. Halothane, heptanol and octanol, which are commonly used as gap junction inhibitors, drastically reduced the amplitude of Et1-induced calcium responses. In contrast, 18-alpha-glycyrrhetinic acid (alpha GA) used at a concentration known to block gap junction permeability in astrocytes had no significant effect on the amplitude of these calcium responses. 4. As demonstrated by quantitative and topological analysis, Et1 application similarly increased [Ca2+]i levels in all astrocytes in both the absence and presence of alpha GA. 5. In control conditions, subpopulations of cells responding to methoxamine or carbachol exhibited two main types of calcium responses which differed in their shape and kinetic characteristics. In the presence of alpha GA the number of cells responding to these receptor agonists was significantly reduced. Indeed, responses characterized by their long latency, slow rise time and weak amplitude disappeared in the presence of alpha GA while responses with short latency and fast rise time were preserved. 6. These results indicate that permeable gap junction channels tend to attenuate the pharmacological and functional heterogeneity of populations of astrocytes, while their inhibition restricts calcium responses in astrocytes expressing high densities of transmitter receptors coupled to phospholipase C.
Collapse
Affiliation(s)
- L Venance
- INSERM U114, Collège de France, Paris, France.
| | | | | | | |
Collapse
|
254
|
|
255
|
Li WE, Ochalski PA, Hertzberg EL, Nagy JI. Immunorecognition, ultrastructure and phosphorylation status of astrocytic gap junctions and connexin43 in rat brain after cerebral focal ischaemia. Eur J Neurosci 1998; 10:2444-63. [PMID: 9749772 DOI: 10.1046/j.1460-9568.1998.00253.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gap junctions between astrocytes support a functional syncytium that is thought to play an important role in neural homeostasis. In order to investigate regulation of this syncytium and of connexin43 (Cx43), a principal astrocytic gap junction protein, we determined the sequelae of gap junction and Cx43 disposition in a rat cerebral focal ischaemia model with various ischaemia/reperfusion times using sequence-specific anti-Cx43 antibodies (designated 13-8300, 18A, 16A and 71-0700) that exhibit differential recognition of Cx43, perhaps reflecting functional aspects of gap junctions. Antibody 13-8300 specifically detects only an unphosphorylated form of Cx43 in both Western blots and tissue sections. In hypothalamus after brief (15 min) ischaemic injury, Cx43 at intact gap junctions undergoes dephosphorylation, accompanied by reduced epitope recognition by antibodies 16A and 71-0700. Tissue examined 24 h after reperfusion showed that these effects were reversible. Astrocytic gap junction internalization occurring 1 h after ischaemia was accompanied by decreased immunodetection with 13-8300. At this time, gap junctions were absent in the ischaemic core, coinciding with a loss of Cx43 recognition with 18A and 13-8300, but elevated labelling of internalized Cx43 with 16A and 71-0700. Unphosphorylated Cx43 persisted at intact gap junctions confined to a thin corridor at the ischaemic penumbra which contained presumptive apoptotic cell profiles. Similar results were obtained in ischaemic striatum and cerebral cortex, though with a delayed time course that depended on the severity of the ischaemic insult. These results demonstrate that astrocytic Cx43 epitope masking, dephosphorylation and cellular redistribution occur after ischaemic brain injury, proceed as a temporally and spatially ordered sequence of events and culminate in differential patterns of Cx43 modification and sequestration at the lesion centre and periphery. These observations suggest an attempt by astrocytes in the vicinity of injury to remodel the junctional syncytium according to altered tissue homeostatic requirements.
Collapse
Affiliation(s)
- W E Li
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
256
|
Muyderman H, Nilsson M, Blomstrand F, Khatibi S, Olsson T, Hansson E, Rönnbäck L. Modulation of mechanically induced calcium waves in hippocampal astroglial cells. Inhibitory effects of alpha 1-adrenergic stimulation. Brain Res 1998; 793:127-35. [PMID: 9630570 DOI: 10.1016/s0006-8993(98)00151-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of different adrenoceptor agonists were investigated on mechanically induced Ca2+ waves in astroglial cells in astroglial-neuronal mixed cultures from rat hippocampus. In the initial part of the study some properties of the waves were characterized. The results show that the initiation of the Ca2+ waves was not critically dependent on extracellular Ca2+ but both the calcium signal and the propagation area of the calcium wave were significantly reduced when the experiments were performed in Ca2+-free buffer. In addition, using the phospholipase C (PLC) inhibitor U-73122 (1 microM) and the gap junction uncoupler octanol (1 mM), the results showed that the Ca2+ wave propagation required PLC activation and functional gap junctions. Further, the data also showed that the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA 150 nM) reduced the spreading of the waves. The adrenoceptor agonists isoproterenol (iso; beta), phenylephrine (phe; alpha1) and clonidine (clon; alpha2) were evaluated for their short-term (<30 s) effects on the wave propagation. The propagation area was persistently decreased 1, 3 and 5 min after removal of phe. No effects were observed after incubation with iso or clon. Furthermore, using U-73122 or PMA together with phe, shortly incubated, the experiments showed that PLC was a central regulator in the initial phase of the initiation procedure of wave propagation. However, under these conditions PKC was shown not to be involved. Instead it appeared that PKC exerted its inhibitory action on the Ca2+ waves in a latter phase, after prolonged phe exposure. Taken together, the results show that the propagation of Ca2+ waves between astroglial cells in primary cultures can be inhibited/regulated in two principally different ways which involve a pronounced time component. The results also further point out the adrenergic signaling system as an important mediator of dynamic neuron-astroglial information exchange.
Collapse
Affiliation(s)
- H Muyderman
- Department of Neurology, Institute of Neurobiology and Institute of Clinical Neuroscience, Göteberg University, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
257
|
Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci 1998. [PMID: 9547248 DOI: 10.1523/jneurosci.18-09-03416.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although intercellular Ca2+ waves resemble spreading depression (SD) and occur in hippocampal organ cultures (HOTCs), SD has not been reported in these cultures. Accordingly, electrophysiological and Ca2+ imaging techniques were used to examine potential interrelations between Ca2+ waves and electrophysiological changes of SD. Our results show, for the first time, that HOTCs can support SD. Furthermore, two distinct Ca2+ waves were found to precede SD. The first traveled >100 micron/sec along the pyramidal cell dendritic layer. The second subsequently traveled mostly perpendicular to the pyramidal cell layer from CA3 (or CA1) but also in all directions from its area of initiation. This second, slower wave spread with the interstitial DC change of SD at millimeters per minute but always ahead of it by 6-16 sec. Heptanol, which uncouples gap junctions, blocked both of these Ca2+ waves and SD. Thus, two types of Ca2+ waves occur with the initiation and propagation of SD. The first might reflect interneuronal changes linked by gap junctions, whereas the second might stem from interastrocyte changes linked via similar connections. Because individual cells can be followed in space and time for protracted periods in HOTCs, this preparation may be ideal for studies designed to explore not only the mechanisms of SD but also the long-term consequences of SD, such as ischemic tolerance.
Collapse
|
258
|
Granda B, Tabernero A, Sánchez-Abarca LI, Medina JM. The K-ATP channel regulates the effect of Ca2+ on gap junction permeability in cultured astrocytes. FEBS Lett 1998; 427:41-5. [PMID: 9613596 DOI: 10.1016/s0014-5793(98)00390-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using the scrape-loading technique we show that tolbutamide and glybenzcyclamide, two inhibitors of the K+ channel sensitive to ATP (K-ATP channel), partially prevent the inhibition of gap junction permeability promoted by Ca2+ in cultured astrocytes. This effect was dose-dependent, reaching a maximum at 400 microM and 1 microM of tolbutamide and glybenzcyclamide, respectively. The presence of the Ca2+ ionophore A-23187 strongly reduced the concentration of Ca2+ required to block gap junction permeability but did not abolish the effect of tolbutamide and glybenzcyclamide. These results suggest that the effect of these two compounds are not brought about by control of the intracellular concentration of Ca2+ but probably by the promotion of plasma membrane depolarization.
Collapse
Affiliation(s)
- B Granda
- Departamento de Bioquímica y Biologia Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
259
|
Abstract
Axon injury rapidly activates microglial and astroglial cells close to the axotomized neurons. Following motor axon injury, astrocytes upregulate within hour(s) the gap junction protein connexin-43, and within one day glial fibrillary acidic protein (GFAP). Concomitantly, microglial cells proliferate and migrate towards the axotomized neuron perikarya. Analogous responses occur in central termination territories of peripherally injured sensory ganglion cells. The activated microglia express a number of inflammatory and immune mediators. When neuron degeneration occurs, microglia act as phagocytes. This is uncommon after peripheral nerve injury in the adult mammal, however, and the functional implications of the glial cell responses in this situation are unclear. When central axons are injured, the glial cell responses around the affected neuron perikarya appears to be minimal or absent, unless neuron degeneration occurs. Microglia proliferate, and astrocytes upregulate GFAP along central axons undergoing anterograde, Wallerian, degeneration. Although microglia develop into phagocytes, they eliminate the disintegrating myelin very slowly, presumably because they fail to release molecules which facilitate phagocytosis. During later stages of Wallerian degeneration, oligodendrocytes express clusterin, a glycoprotein implicated in several conditions of cell degeneration. A hypothetical scheme for glial cell activation following axon injury is discussed, implying the injured neurons initially interact with adjacent astrocytes. Subsequently, neighbouring resting microglia are activated. These glial reactions are amplified by paracrine and autocrine mechanisms, in which cytokines appear to be important mediators. The specific functional properties of the activated glial cells will determine their influence on neuronal survival, axon regeneration, and synaptic plasticity. The control of the induction and progression of these responses are therefore likely to be critical for the outcome of, for example, neurotrauma, brain ischemia and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- H Aldskogius
- Department of Neuroscience, Biomedical Center, Uppsala, Sweden.
| | | |
Collapse
|
260
|
Abstract
Instead of attacking the difficult problem of consciousness or self-consciousness directly, the theory is based on the more basic concept of reflection. A concept of reflection is suggested on four levels (recursion, reflective thinking, self-reflection, intersubjective reflection). We propose the glial-neuronal interaction as a neurobiological substrate for reflection processes. It is assumed that glia have a boundary-setting function (scaffolding, compartmentalization) in the spatio-temporal interaction with the neurons. This function could be a possible mechanism of 'dividing' the brain into different self-systems each with their own capacity of self-organization. Although the brain's different self-systems are normally integrated, they may disintegrate and show themselves in special states of the brain (e.g. multiple personality disorder). A tree of reflection consisting of a number of places (ontological loci) on which reflection processes of varying complexity take place, is suggested as the formal model. Finally, the problem of self-conscious qualitative experience (Qualia) is discussed in terms of the reflection model.
Collapse
Affiliation(s)
- B Mitterauer
- Institute of Forensic Neuropsychiatry, University of Salzburg, Austria.
| |
Collapse
|
261
|
Abstract
In recent years, it has become apparent that astrocytes (at least in vitro) harbor functional receptors to almost all possible neurotransmitters (with the potential noticeable exception of acetylcholine nicotinic receptors). Peptides are no exception, since receptors to all neuropeptides known to be produced in the CNS have been found on cultured astrocytes, and the presence of many of these has been confirmed on astrocytes in vivo. A variety of methodologies have been used to detect peptide receptors on astrocytes, as summarized in the current review. Special emphasis is also put on the possible roles that peptides may play in the regulation of astrocyte functions. These include proliferation, morphology, release of eicosanoids and arachidonic acid, induction of calcium transients and calcium waves, and control of internal pH, glucose uptake, glycogen metabolism, and gap junctional conductance. Recent data concerning the effects of natriuretic peptides on astrocytes are reviewed, and why these peptides may constitute priviledged tools to test the effects of peptides on astrocyte-neuron interactions is also discussed.
Collapse
Affiliation(s)
- C F Deschepper
- Neurobiology and Vasoactive Peptide Laboratory, Institut de recherches cliniques de Montréal, Quebec, Canada
| |
Collapse
|
262
|
Abstract
Glial cells respond to various electrical, mechanical, and chemical stimuli, including neurotransmitters, neuromodulators, and hormones, with an increase in intracellular Ca2+ concentration ([Ca2+]i). The increases exhibit a variety of temporal and spatial patterns. These [Ca2+]i responses result from the coordinated activity of a number of molecular cascades responsible for Ca2+ movement into or out of the cytoplasm either by way of the extracellular space or intracellular stores. Transplasmalemmal Ca2+ movements may be controlled by several types of voltage- and ligand-gated Ca(2+)-permeable channels as well as Ca2+ pumps and a Na+/Ca2+ exchanger. In addition, glial cells express various metabotropic receptors coupled to intracellular Ca2+ stores through the intracellular messenger inositol 1,4,5-triphosphate. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide a means for intracellular and intercellular information coding. Calcium signals can traverse gap junctions between glial cells without decrement. These waves can serve as a substrate for integration of glial activity. By controlling gap junction conductance, Ca2+ waves may define the limits of functional glial networks. Neuronal activity can trigger [Ca2+]i signals in apposed glial cells, and moreover, there is some evidence that glial [Ca2+]i waves can affect neurons. Glial Ca2+ signaling can be regarded as a form of glial excitability.
Collapse
Affiliation(s)
- A Verkhratsky
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | |
Collapse
|
263
|
Receptors for Advanced Glycosylation Endproducts in Human Brain: Role in Brain Homeostasis. Mol Med 1998. [DOI: 10.1007/bf03401729] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
264
|
Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20:570-7. [PMID: 9416670 DOI: 10.1016/s0166-2236(97)01139-9] [Citation(s) in RCA: 1340] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For several decades, the reactive gliosis that occurs after an injury to the CNS has been considered one of the major impediments to axonal regeneration. Nevertheless, recent studies have suggested that in certain conditions, reactive astrocytes may provide a permissive substratum to support axonal regrowth. The important criteria, allowing for the distinction between permissive and non-permissive gliosis, are the ultrastructural 3D organization of the scar and more importantly the recognition molecules expressed by reactive astrocytes. Reactive astrocytes express surface molecules and produce various neurotrophic factors and cytokines. The latter in turn might modulate the production of recognition molecules by reactive astrocytes, allowing them to support post-lesional axonal regrowth. Although numerous recent articles have focused on cytokines and cell adhesion molecules, scant attention has been paid to reactive astrocytes. Reactive astrocytes should be considered a key element, like neurons, of a dynamic environment, thus forming with neurons a functional unit involved in homeostasis, plasticity and neurotransmission. Attempts are in progress to identify molecular markers for reactive astrocytes.
Collapse
Affiliation(s)
- J L Ridet
- INSERM U. 336, Université Montpellier II, Montpellier, France
| | | | | | | |
Collapse
|
265
|
Colombo JA, Lipina S, Yáñez A, Puissant V. Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates. Int J Dev Neurosci 1997; 15:823-33. [PMID: 9580494 DOI: 10.1016/s0736-5748(97)00043-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Long astroglial processes traversing several cortical laminae appear to be characteristic of primate brains. Whether interlaminar processes develop as a modification of radial glia or are truly postnatal elements stemming from stellate astroglia, could be assessed by analyzing their early developmental stages. A survey of glial fibrillar acidic protein immunoreactive (GFAP-IR) astroglial interlaminar processes in the cerebral cortex of Ceboidea monkeys at various postnatal developmental ages, and in human cortical samples of a ten day and a seven year old child disclosed that such processes develop postnatally. At one month of age GFAP-IR interlaminar processes in monkeys were scarce and short in most frontal, parietal or occipital (striate) cortical areas, except for sulcal (principal and orbital sulci) and temporal cortical areas. Some processes were weakly positive for vimentin, and these were most abundant in ventral temporal cortical areas. At two months of age processes were present in all these areas, albeit in restricted patches and significantly shorter than in adults. The expression of this pattern was increased at seven months of age. At three years of age almost every area showed abundant processes and with lengths comparable to the adult Ceboidea individuals. In humans, at 10 days of age long interlaminar processes were readily apparent in a frontal cortex sample, becoming most apparent at the age of seven years although not reaching yet the adult characteristics as described previously. CONCLUSIONS (1) GFAP-IR interlaminar processes develop postnatally, thus typifying a subtype of the classical stellate forms; (2) they bear no obvious direct relationship with radial glia; (3) their development is not contemporary among the various cortical regions. These long cellular processes represent an addition to those already described for other astroglial cell types in the adult mammalian brain (Golgi-Bergmann glia, tanicytes, Muller cells).
Collapse
Affiliation(s)
- J A Colombo
- Programa Unidad de Neurobiología Aplicada (PRUNA) (CEMIC-CONICET), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
266
|
Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J Neurosci 1997. [PMID: 9278520 DOI: 10.1523/jneurosci.17-18-06850.1997] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are thought to regulate the extracellular potassium concentration by mechanisms involving both voltage-dependent and transport-mediated ion fluxes combined with intercellular communication via gap junctions. Mechanisms regulating resting membrane potential (RMP) play a fundamental role in determining glial contribution to buffering of extracellular potassium and uptake of potentially toxic neurotransmitters. We have investigated the passive electrophysiological properties of cultured neocortical astrocytes and astrocytes recorded in hippocampal slices from 18-25 d postnatal rats. These experiments revealed a wide range of astrocyte RMPs that were independent of developmental factors, length of culturing, cellular morphology, the electrophysiological techniques used (whole-cell vs perforated recording), cell-specific expression of Na+/2HCO3- co-transporters, or voltage-dependent Na+ channels. Exposure of cultured astrocytes to differentiation-inducing factors (such as cAMP) or inhibition of proliferation (by serum deprivation) did not significantly influence RMP. Expression of ATP-sensitive potassium channels was absent in these glia; thus, K(ATP)-related mechanisms did not contribute to cell resting potential. In both cultured and slice astrocytes, spontaneous electrophysiological changes were commonly observed. These reversible events, which resulted in differential sensitivity to potassium channel blockers (cesium and barium) and sudden current-voltage profile changes, were attributable to dynamic changes in cell-to-cell coupling, as confirmed by recordings from isolated pairs of cells. We conclude that the heterogeneity of astrocytic RMP and intercellular coupling both in culture and in situ are intrinsic properties of glia that may contribute to transcellular transport of potassium. We propose a model in which spatial buffering may be facilitated by heterogeneous mechanisms controlling glial RMP in combination with dynamic changes in intercellular coupling.
Collapse
|
267
|
Abstract
Since capillaries appear not to contribute significantly to rapid removal of K+ from brain tissue, the K+ released into extracellular clefts by neurons at the onset of electrical activity is presumably removed either by redistribution in the clefts or by uptake into cells. What appear to be the three major processes require no energy from the glial cells. These are diffusion through the extracellular clefts, spatial buffering by glial cells, and net uptake of K+ into glial cells through glial K+ channels associated with uptake of Cl- through an independent Cl- conductance. There is a relatively slow uptake by the Na+/K+-ATPase, which directly consumes ATP. In addition, some glial cells take up K+ on the Na+/K+/2Cl- cotransporter, which leads indirectly to energy consumption when the Na+ is subsequently pumped out. Currently available data suggest that the glial energy metabolism devoted to K+ homeostasis is less than a tenth of the total tissue energy metabolism, even under conditions of pathologically high extracellular [K+]. Hence, in situ, it is possible that glial cells could function with much less ATP than neurons do. All the various routes of muffling of changes in extracellular [K+] can be modulated, directly or indirectly, by transmitters liberated by neurons. A consequence of this could be regulation of the entry of Na+ into glial cells such that the Na+/K+-ATPase is activated. The degree of activation might be adjusted so that the resulting activation of the glial glycolytic pathway is appropriate to the provision of the quantity of metabolic substrates required by the neurons.
Collapse
|
268
|
Abstract
Gap junctions between glial cells allow intercellular exchange of ions and small molecules. We have investigated the influence of gap junction coupling on regulation of intracellular Na+ concentration ([Na+]i) in cultured rat hippocampal astrocytes, using fluorescence ratio imaging with the Na+ indicator dye SBFI (sodium-binding benzofuran isophthalate). The [Na+]i in neighboring astrocytes was very similar (12.0 +/- 3.3 mM) and did not fluctuate under resting conditions. During uncoupling of gap junctions with octanol (0.5 mM), baseline [Na+]i was unaltered in 24%, increased in 54%, and decreased in 22% of cells. Qualitatively similar results were obtained with two other uncoupling agents, heptanol and alpha-glycyrrhetinic acid (AGA). Octanol did not alter the recovery from intracellular Na+ load induced by removal of extracellular K+, indicating that octanol's effects on baseline [Na+]i were not due to inhibition of Na+, K+-ATPase activity. Under control conditions, increasing [K+]o from 3 to 8 mM caused similar decreases in [Na+]i in groups of astrocytes, presumably by stimulating Na+, K+-ATPase. During octanol application, [K+]o-induced [Na+]i decreases were amplified in cells with increased baseline [Na+]i, and reduced in cells with decreased baseline [Na+]i. This suggests that baseline [Na+]i in astrocytes "sets" the responsiveness of Na+, K+-ATPase to increases in [K]o. Our results indicate that individual hippocampal astrocytes in culture rapidly develop different levels of baseline [Na+]i when they are isolated from one another by uncoupling agents. In astrocytes, therefore, an apparent function of coupling is the intercellular exchange of Na+ ions to equalize baseline [Na+]i, which serves to coordinate physiological responses that depend on the intracellular concentration of this ion.
Collapse
Affiliation(s)
- C R Rose
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
269
|
Peuchen S, Bolaños JP, Heales SJ, Almeida A, Duchen MR, Clark JB. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 1997; 52:261-81. [PMID: 9247965 DOI: 10.1016/s0301-0082(97)00010-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes have, until recently, been thought of as the passive supporting elements of the central nervous system. However, recent developments suggest that these cells actually play a crucial and vital role in the overall physiology of the brain. Astrocytes selectively express a host of cell membrane and nuclear receptors that are responsive to various neuroactive compounds. In addition, the cell membrane has a number of important transporters for these compounds. Direct evidence for the selective co-expression of neurotransmitters, transporters on both neurons and astrocytes, provides additional evidence for metabolic compartmentation within the central nervous system. Oxidative stress as defined by the excessive production of free radicals can alter dramatically the function of the cell. The free radical nitric oxide has attracted a considerable amount of attention recently, due to its role as a physiological second messenger but also because of its neurotoxic potential when produced in excess. We provide, therefore, an in-depth discussion on how this free radical and its metabolites affect the intra and intercellular physiology of the astrocyte(s) and surrounding neurons. Finally, we look at the ways in which astrocytes can counteract the production of free radicals in general by using their antioxidant pathways. The glutathione antioxidant system will be the focus of attention, since astrocytes have an enormous capacity for, and efficiency built into this particular system.
Collapse
Affiliation(s)
- S Peuchen
- Department of Neurochemistry, Institute of Neurology, London, U.K.
| | | | | | | | | | | |
Collapse
|
270
|
Simpson PB, Russell JT. Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia. Biochem J 1997; 325 ( Pt 1):239-47. [PMID: 9224652 PMCID: PMC1218551 DOI: 10.1042/bj3250239] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have characterized the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) pumps in cultured rat cortical type-1 astrocytes, type-2 astrocytes and oligodendrocytes. Perfusion with 10 microM cyclopiazonic acid (CPA) or 1 microM thapsigargin evoked a large and persistent elevation in cytosolic [Ca2+] in normal Ca2+-containing medium and a small and transient increase in nominally Ca2+-free medium. Subtraction of the response in Ca2+-free medium from that in the control revealed a slow-onset Ca2+-entry response to SERCA inhibition, which began after most of the store depletion had occurred. Thapsigargin- and CPA-induced responses propagated as Ca2+ waves, which began in several distinct cellular sites and travelled throughout the cell and through nearby cells, in confluent cultures. Propagation was supported by specialized Ca2+-release sites where the amplitude of the response was significantly higher and the rate of rise steeper. Such higher Ca2+-release kinetics were observed at these sites during Ins(1,4,5)P3-mediated Ca2+ waves in the same cells. Fluorescently tagged thapsigargin labelled SERCA pumps throughout glial cell bodies and processes. In oligodendrocyte processes, multiple domains with elevated SERCA staining were always associated with mitochondria. Our results are consistent with a model in which only a single Ca2+ store, expressing Ins(1,4,5)P3 receptors and SERCAs sensitive to both thapsigargin and CPA, is present in rat cortical glia, and indicate that inhibition of SERCA activates both Ca2+ release as a wavefront and Ca2+ entry via store-operated channels. The spatial relationship between SERCAs and mitochondria is likely to be important for regulating microdomains of elevated Ca2+-release kinetics.
Collapse
Affiliation(s)
- P B Simpson
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA
| | | |
Collapse
|
271
|
|
272
|
|
273
|
Barrio RA, Zhang L, Maini PK. Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bull Math Biol 1997; 59:517-32. [PMID: 9136278 DOI: 10.1007/bf02459463] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ensembles of mutually coupled ultradian cellular oscillators have been proposed by a number of authors to explain the generation of circadian rhythms in mammals. Most mathematical models using many coupled oscillators predict that the output period should vary as the square root of the number of participating units, thus being inconsistent with the well-established experimental result that ablation of substantial parts of the suprachiasmatic nuclei (SCN), the main circadian pacemaker in mammals, does not eliminate the overt circadian functions, which show no changes in the phases or periods of the rhythms. From these observations, we have developed a theoretical model that exhibits the robustness of the circadian clock to changes in the number of cells in the SCN, and that is readily adaptable to include the successful features of other known models of circadian regulation, such as the phase response curves and light resetting of the phase.
Collapse
Affiliation(s)
- R A Barrio
- Instituto de Física, UNAM, México, D.F., Mexico.
| | | | | |
Collapse
|
274
|
Rodnight R, Gonçalves CA, Wofchuk ST, Leal R. Control of the phosphorylation of the astrocyte marker glial fibrillary acidic protein (GFAP) in the immature rat hippocampus by glutamate and calcium ions: possible key factor in astrocytic plasticity. Braz J Med Biol Res 1997; 30:325-38. [PMID: 9246230 DOI: 10.1590/s0100-879x1997000300005] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca(2+)-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca(2+)-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation state of GFAP and a consequent increase in the number of mitotic astrocytes.
Collapse
Affiliation(s)
- R Rodnight
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | |
Collapse
|
275
|
Abstract
Connexins form a multigene family of polytopic membrane proteins that, in vertebrates, are the constitutive subunits of intercellular channels and provide the structural basis for electrical coupling. The appearance of electrical coupling in the nervous system is developmentally regulated and restricted to distinct cell types. Electrical coupling between neurons persists after the establishment of chemical transmission, thus suggesting that this form of cell-cell signalling may be functionally interrelated with, rather than alternative to chemical transmission. Furthermore, evidence for the possible role of gap junctions in human neurological diseases is also mounting, following the discovery that the X-linked form of Charcot-Marie-Tooth syndrome, a demyelinating neuropathy of the peripheral nervous system, is associated with mutations in a connexin gene. These findings raise new questions on the significance of connexin diversity and on their functional role in the nervous system.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France.
| | | |
Collapse
|
276
|
Abstract
Glial cells respond to a variety of external stimuli such as neurotransmitters, hormones or even mechanical stress by generating complex changes in the cytoplasmic Ca2+ concentration. This Ca2+ signal is controlled by an interplay of different mechanisms including plasmalemmal and intracellular Ca2+ channels, Ca2+ transporters and cytoplasmic Ca2+ buffers. In astrocytes, the Ca2+ signal can travel as waves within the syncytium spreading via gap junctions which might be regarded as a possible means for interglial communication. Ca2+ signalling is also an important medium for neurone-glia interaction: neuronal activity can trigger Ca2+ signals in glial cells and, in turn, there is evidence that glial Ca2+ signals can elicit responses in neurones. While glial cells are not equipped with the proper channels to generate action potentials, Ca2+ signalling could be the instrument by which these cells integrate and propagate signals in the CNS.
Collapse
Affiliation(s)
- A Verkhratsky
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
277
|
Characterization and Regulation of Gap Junction Channels in Cultured Astrocytes. NEUROSCIENCE INTELLIGENCE UNIT 1996. [DOI: 10.1007/978-3-662-21935-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|