251
|
Sun C, Wang A, Zhou Y, Chen P, Wang X, Huang J, Gao J, Wang X, Shu L, Lu J, Dai W, Bu Z, Ji J, He J. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun 2023; 14:2692. [PMID: 37164975 PMCID: PMC10172194 DOI: 10.1038/s41467-023-38360-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Mapping tumor metabolic remodeling and their spatial crosstalk with surrounding non-tumor cells can fundamentally improve our understanding of tumor biology, facilitates the designing of advanced therapeutic strategies. Here, we present an integration of mass spectrometry imaging-based spatial metabolomics and lipidomics with microarray-based spatial transcriptomics to hierarchically visualize the intratumor metabolic heterogeneity and cell metabolic interactions in same gastric cancer sample. Tumor-associated metabolic reprogramming is imaged at metabolic-transcriptional levels, and maker metabolites, lipids, genes are connected in metabolic pathways and colocalized in the heterogeneous cancer tissues. Integrated data from spatial multi-omics approaches coherently identify cell types and distributions within the complex tumor microenvironment, and an immune cell-dominated "tumor-normal interface" region where tumor cells contact adjacent tissues are characterized with distinct transcriptional signatures and significant immunometabolic alterations. Our approach for mapping tissue molecular architecture provides highly integrated picture of intratumor heterogeneity, and transform the understanding of cancer metabolism at systemic level.
Collapse
Affiliation(s)
- Chenglong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Anqiang Wang
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yanhe Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiamin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Liebo Shu
- Shanghai Luming Biological Technology co.Ltd, Shanghai, 201102, China
| | - Jiawei Lu
- Shanghai Luming Biological Technology co.Ltd, Shanghai, 201102, China
| | - Wentao Dai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies) & Shanghai Engineering Research Center of Pharmaceutical Translation, Fudan University, Shanghai, 200080, China.
- Shanghai Key Laboratory of Gastric Neoplasms, Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhaode Bu
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- NMPA Key Laboratory of safety research and evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
252
|
Straehle J, Ravi VM, Heiland DH, Galanis C, Lenz M, Zhang J, Neidert NN, El Rahal A, Vasilikos I, Kellmeyer P, Scheiwe C, Klingler JH, Fung C, Vlachos A, Beck J, Schnell O. Technical report: surgical preparation of human brain tissue for clinical and basic research. Acta Neurochir (Wien) 2023; 165:1461-1471. [PMID: 37147485 DOI: 10.1007/s00701-023-05611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND The study of the distinct structure and function of the human central nervous system, both in healthy and diseased states, is becoming increasingly significant in the field of neuroscience. Typically, cortical and subcortical tissue is discarded during surgeries for tumors and epilepsy. Yet, there is a strong encouragement to utilize this tissue for clinical and basic research in humans. Here, we describe the technical aspects of the microdissection and immediate handling of viable human cortical access tissue for basic and clinical research, highlighting the measures needed to be taken in the operating room to ensure standardized procedures and optimal experimental results. METHODS In multiple rounds of experiments (n = 36), we developed and refined surgical principles for the removal of cortical access tissue. The specimens were immediately immersed in cold carbogenated N-methyl-D-glucamine-based artificial cerebrospinal fluid for electrophysiology and electron microscopy experiments or specialized hibernation medium for organotypic slice cultures. RESULTS The surgical principles of brain tissue microdissection were (1) rapid preparation (<1 min), (2) maintenance of the cortical axis, (3) minimization of mechanical trauma to sample, (4) use of pointed scalpel blade, (5) avoidance of cauterization and blunt preparation, (6) constant irrigation, and (7) retrieval of the sample without the use of forceps or suction. After a single round of introduction to these principles, multiple surgeons adopted the technique for samples with a minimal dimension of 5 mm spanning all cortical layers and subcortical white matter. Small samples (5-7 mm) were ideal for acute slice preparation and electrophysiology. No adverse events from sample resection were observed. CONCLUSION The microdissection technique of human cortical access tissue is safe and easily adoptable into the routine of neurosurgical procedures. The standardized and reliable surgical extraction of human brain tissue lays the foundation for human-to-human translational research on human brain tissue.
Collapse
Affiliation(s)
- J Straehle
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), Freiburg, Germany
| | - D H Heiland
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - N N Neidert
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A El Rahal
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I Vasilikos
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kellmeyer
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Scheiwe
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J H Klingler
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Fung
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links - Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - O Schnell
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
253
|
Abstract
Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
- Current affiliation: Department of Medicine, Department of Pathology, Microbiology, and Immunology, and Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Alexey Sergushichev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; ,
| |
Collapse
|
254
|
Jiang Y, Yang J, Liang R, Zan X, Fan R, Shan B, Liu H, Li L, Wang Y, Wu M, Qi X, Chen H, Ren Q, Liu Z, Wang Y, Zhang J, Zhou P, Li Q, Tian M, Yang J, Wang C, Li X, Jiang S, Zhou L, Zhang G, Chen Y, Xu J. Single-cell RNA sequencing highlights intratumor heterogeneity and intercellular network featured in adamantinomatous craniopharyngioma. SCIENCE ADVANCES 2023; 9:eadc8933. [PMID: 37043580 PMCID: PMC10096597 DOI: 10.1126/sciadv.adc8933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Despite improvements in microscopically neurosurgical techniques made in recent years, the prognosis of adamantinomatous craniopharyngioma (ACP) is still unsatisfactory. Little is known about cellular atlas and biological features of ACP. Here, we carried out integrative analysis of 44,038 single-cell transcriptome profiles to characterize the landscape of intratumoral heterogeneity and tumor microenvironment (TME) in ACP. Four major neoplastic cell states with distinctive expression signatures were defined, which further revealed the histopathological features and elucidated unknown cellular atlas of ACP. Pseudotime analyses suggested potential evolutionary trajectories between specific neoplastic cell states. Notably, a distinct oligodendrocyte lineage was identified in ACP, which was associated with immunological infiltration and neural damage. In addition, we described a tumor-centric regulatory network based on intercellular communication in TME. Together, our findings represent a unique resource for deciphering tumor heterogeneity of ACP, which will improve clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlong Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baoyin Shan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingqing Ren
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhao Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chaoyang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueying Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, 999077, Hong Kong
| | - Yaohui Chen
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
255
|
Walentynowicz KA, Engelhardt D, Cristea S, Yadav S, Onubogu U, Salatino R, Maerken M, Vincentelli C, Jhaveri A, Geisberg J, McDonald TO, Michor F, Janiszewska M. Single-cell heterogeneity of EGFR and CDK4 co-amplification is linked to immune infiltration in glioblastoma. Cell Rep 2023; 42:112235. [PMID: 36920905 PMCID: PMC10114292 DOI: 10.1016/j.celrep.2023.112235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of ∼15 months. Targeted approaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tumor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-cell level could provide a measure for predicting the immune state of GBM.
Collapse
Affiliation(s)
- Kacper A Walentynowicz
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Dalit Engelhardt
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Shreya Yadav
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Salatino
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Melanie Maerken
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | | | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob Geisberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas O McDonald
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Franziska Michor
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Ludwig Center at Harvard, Boston, MA, USA.
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
256
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
257
|
Yu Z, Zhou Y, Li Y, Dong Z. Integration of clinical and spatial data to explore lipid metabolism-related genes for predicting prognosis and immune microenvironment in gliomas. Funct Integr Genomics 2023; 23:82. [PMID: 36929451 DOI: 10.1007/s10142-023-01010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Lipid metabolism is crucial to tumor growth and immune microenvironment as well as drug sensitivity in glioma. Identifying prognostic indicators of glioma and elucidating the mechanisms of glioma progression are critical for improving the prognosis of glioma patients. In this study, we investigated the role and prognostic value of metabolism-related genes in glioma by integrative analysis of datasets from GEO, CGGA, and TCGA. Based on clinical data and transcriptome data, we found that the expression pattern of three major pathways related to lipid metabolism is fatty acidhigh-phospholipidhigh-triglyceridelow, which is associated with better prognosis and immune infiltration. The genes involved in these three pathways were used to generate a prognostic model, which showed high stability and efficiency in the test set and validation set. The spatial transcriptome of glioma patients revealed that the microenvironment of the regions with high expression of risk genes CAV1 and SCD is in a state of hypoxia, EMT, and cell cycle arrest, and thus can be used as markers of metabolic reprogramming in the tumor microenvironment. In the high-risk group, M0 macrophages and M1 macrophages were significantly enriched, and the risk score was significantly correlated with gene mutation and methylation of risk genes. We further performed drug sensitivity screening corresponding to different risk genes. This study provided novel insights into the differential immune microenvironment with different expression patterns of metablism-related genes and highlighted the spatial and temporal synergy of tumor progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhangyi Yu
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuneng Zhou
- School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No.206, Guanggu 1St Road, Wuhan, 430205, Hubei, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
258
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
259
|
Grabowski MM, Watson DC, Chung K, Lee J, Bayik D, Lauko A, Alban T, Melenhorst JJ, Chan T, Lathia JD, Ahluwalia MS, Mohammadi AM. Spatial immunosampling of MRI-defined glioblastoma regions reveals immunologic fingerprint of non-contrast enhancing, infiltrative tumor margins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.09.23285970. [PMID: 36945620 PMCID: PMC10029063 DOI: 10.1101/2023.03.09.23285970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Glioblastoma (GBM) treatment includes maximal safe resection of the core and MRI contrast-enhancing (CE) tumor. Complete resection of the infiltrative non-contrast-enhancing (NCE) tumor rim is rarely achieved. We established a safe, semi-automated workflow for spatially-registered sampling of MRI-defined GBM regions in 19 patients with downstream analysis and biobanking, enabling studies of NCE, wherefrom recurrence/progression typically occurs. Immunophenotyping revealed underrepresentation of myeloid cell subsets and CD8+ T cells in the NCE. While NCE T cells phenotypically and functionally resembled those in matching CE tumor, subsets of activated (CD69hi) effector memory CD8+ T cells were overrepresented. Contrarily, CD25hi Tregs and other subsets were underrepresented. Overall, our study demonstrated that MRI-guided, spatially-registered, intraoperative immunosampling is feasible as part of routine GBM surgery. Further elucidation of the shared and spatially distinct microenvironmental biology of GBM will enable development of therapeutic approaches targeting the NCE infiltrative tumor to decrease GBM recurrence.
Collapse
Affiliation(s)
- Matthew M. Grabowski
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Dionysios C. Watson
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Kunho Chung
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Juyeun Lee
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Defne Bayik
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Adam Lauko
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Tyler Alban
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Timothy Chan
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Justin D. Lathia
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Alireza M. Mohammadi
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
260
|
Jørgensen ACS, Hill CS, Sturrock M, Tang W, Karamched SR, Gorup D, Lythgoe MF, Parrinello S, Marguerat S, Shahrezaei V. Data-driven spatio-temporal modelling of glioblastoma. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221444. [PMID: 36968241 PMCID: PMC10031411 DOI: 10.1098/rsos.221444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
Collapse
Affiliation(s)
| | - Ciaran Scott Hill
- Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Saketh R. Karamched
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Dunja Gorup
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Mark F. Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
261
|
Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat Commun 2023; 14:1028. [PMID: 36823172 PMCID: PMC9950149 DOI: 10.1038/s41467-023-36707-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Diffuse midline glioma-H3K27M mutant (DMG) and glioblastoma (GBM) are the most lethal brain tumors that primarily occur in pediatric and adult patients, respectively. Both tumors exhibit significant heterogeneity, shaped by distinct genetic/epigenetic drivers, transcriptional programs including RNA splicing, and microenvironmental cues in glioma niches. However, the spatial organization of cellular states and niche-specific regulatory programs remain to be investigated. Here, we perform a spatial profiling of DMG and GBM combining short- and long-read spatial transcriptomics, and single-cell transcriptomic datasets. We identify clinically relevant transcriptional programs, RNA isoform diversity, and multi-cellular ecosystems across different glioma niches. We find that while the tumor core enriches for oligodendrocyte precursor-like cells, radial glial stem-like (RG-like) cells are enriched in the neuron-rich invasive niche in both DMG and GBM. Further, we identify niche-specific regulatory programs for RG-like cells, and functionally confirm that FAM20C mediates invasive growth of RG-like cells in a neuron-rich microenvironment in a human neural stem cell derived orthotopic DMG model. Together, our results provide a blueprint for understanding the spatial architecture and niche-specific vulnerabilities of DMG and GBM.
Collapse
|
262
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
263
|
Chen L, Liu H, Li Y, Lin X, Xia S, Wanggou S, Li X. Functional characterization of TSPAN7 as a novel indicator for immunotherapy in glioma. Front Immunol 2023; 14:1105489. [PMID: 36845098 PMCID: PMC9947846 DOI: 10.3389/fimmu.2023.1105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system in clinical practice. Most adult diffuse gliomas have poor efficacy after standard treatment, especially glioblastoma. With the in-depth understanding of brain immune microenvironment, immunotherapy as a new treatment has attracted much attention. In this study, through analyzing a large number of glioma cohorts, we reported that TSPAN7, a member of the tetraspanin family, decreased in high-grade gliomas and low expression was associated with poor prognosis in glioma patients. Meanwhile, the expression pattern of TSPAN7 was verified in glioma clinical samples and glioma cell lines by qPCR, Western Blotting and immunofluorescence. In addition, functional enrichment analysis showed that cell proliferation, EMT, angiogenesis, DNA repair and MAPK signaling pathways were activated in the TSPAN7 lower expression subgroup. Lentiviral plasmids were used to overexpress TSPAN7 in U87 and LN229 glioma cell lines to explore the anti-tumor role of TSPAN7 in glioma. Moreover, by analyzing the relationship between TSPAN7 expression and immune cell infiltration in multiple datasets, we found that TSPAN7 was significantly negatively correlated with the immune infiltration of tumor-related macrophages, especially M2-type macrophages. Further analysis of immune checkpoints showed that, the expression level of TSPAN7 was negatively correlated with the expression of PD-1, PD-L1 and CTLA-4. Using an independent anti-PD-1 immunotherapy cohorts of GBM, we demonstrated that TSPAN7 expression may had a synergistic effect with PD-L1 on the response to immunotherapy. Based on the above findings, we speculate that TSPAN7 can serve as a biomarker for prognosis and a potential immunotherapy target in glioma patients.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanwen Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuelei Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
264
|
Mierke CT. Physical and biological advances in endothelial cell-based engineered co-culture model systems. Semin Cell Dev Biol 2023; 147:58-69. [PMID: 36732105 DOI: 10.1016/j.semcdb.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
265
|
Wu S, Li X, Hong F, Chen Q, Yu Y, Guo S, Xie Y, Xiao N, Kong X, Mo W, Wang Z, Chen S, Zeng F. Integrative analysis of single-cell transcriptomics reveals age-associated immune landscape of glioblastoma. Front Immunol 2023; 14:1028775. [PMID: 36761752 PMCID: PMC9903136 DOI: 10.3389/fimmu.2023.1028775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in center nervous system. Clinical statistics revealed that senior GBM patients had a worse overall survival (OS) comparing with that of patients in other ages, which is mainly related with tumor microenvironment including tumor-associated immune cells in particular. However, the immune heterogeneity and age-related prognosis in GBM are under studied. Here we developed a machine learning-based method to integrate public large-scale single-cell RNA sequencing (scRNA-seq) datasets to establish a comprehensive atlas of immune cells infiltrating in cross-age GBM. We found that the compositions of the immune cells are remarkably different across ages. Brain-resident microglia constitute the majority of glioblastoma-associated macrophages (GAMs) in patients, whereas dramatic elevation of extracranial monocyte-derived macrophages (MDMs) is observed in GAMs of senior patients, which contributes to the worse prognosis of aged patients. Further analysis suggests that the increased MDMs arisen from excessive recruitment and proliferation of peripheral monocytes not only lead to the T cell function inhibition in GBM, but also stimulate tumor cells proliferation via VEGFA secretion. In summary, our work provides new cues for the correlational relationship between the immune microenvironment of GBM and aging, which might be insightful for precise and effective therapeutic interventions for senior GBM patients.
Collapse
Affiliation(s)
- Songang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
| | - Xuewen Li
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Fan Hong
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Qiang Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yingying Yu
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Shuanghui Guo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yuanyuan Xie
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Naian Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Xuwen Kong
- Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China
| | - Wei Mo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Shaoxuan Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Feng Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| |
Collapse
|
266
|
Rončević A, Koruga N, Soldo Koruga A, Debeljak Ž, Rončević R, Turk T, Kretić D, Rotim T, Krivdić Dupan Z, Troha D, Perić M, Šimundić T. MALDI Imaging Mass Spectrometry of High-Grade Gliomas: A Review of Recent Progress and Future Perspective. Curr Issues Mol Biol 2023; 45:838-851. [PMID: 36826000 PMCID: PMC9955680 DOI: 10.3390/cimb45020055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the brain with a relatively short median survival and high mortality. Advanced age, high socioeconomic status, exposure to ionizing radiation, and other factors have been correlated with an increased incidence of GBM, while female sex hormones, history of allergies, and frequent use of specific drugs might exert protective effects against this disease. However, none of these explain the pathogenesis of GBM. The most recent WHO classification of CNS tumors classifies neoplasms based on their histopathological and molecular characteristics. Modern laboratory techniques, such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, enable the comprehensive metabolic analysis of the tissue sample. MALDI imaging is able to characterize the spatial distribution of a wide array of biomolecules in a sample, in combination with histological features, without sacrificing the tissue integrity. In this review, we first provide an overview of GBM epidemiology, risk, and protective factors, as well as the recent WHO classification of CNS tumors. We then provide an overview of mass spectrometry workflow, with a focus on MALDI imaging, and recent advances in cancer research. Finally, we conclude the review with studies of GBM that utilized MALDI imaging and offer our perspective on future research.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-98-169-8481
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Zdravka Krivdić Dupan
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Troha
- Department of Radiology, Vinkovci General Hospital, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Clinical Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| |
Collapse
|
267
|
McClellan BL, Haase S, Nunez FJ, Alghamri MS, Dabaja AA, Lowenstein PR, Castro MG. Impact of epigenetic reprogramming on antitumor immune responses in glioma. J Clin Invest 2023; 133:e163450. [PMID: 36647827 PMCID: PMC9843056 DOI: 10.1172/jci163450] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers. Although much of the initial research primarily identified how the epigenetic aberrations impacted glioma progression by solely examining the glioma cells, recent studies have aimed at establishing the role of epigenetic alterations in shaping the tumor microenvironment (TME). In this review, we discuss the mechanisms by which these epigenetic phenomena in glioma remodel the TME and how current therapies targeting epigenetic dysregulation affect the glioma immune response and therapeutic outcomes. Understanding the link between epigenetic remodeling and the glioma TME provides insights into the implementation of epigenetic-targeting therapies to improve the antitumor immune response.
Collapse
Affiliation(s)
- Brandon L. McClellan
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Santiago Haase
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Felipe J. Nunez
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Accenture-Argentina, Autonomous City of Buenos Aires (CABA), Argentina
| | - Mahmoud S. Alghamri
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Ali A. Dabaja
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria G. Castro
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
268
|
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, Chand D, Stupp R, Sonabend AM. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest 2023; 133:e163447. [PMID: 36647828 PMCID: PMC9843050 DOI: 10.1172/jci163447] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized modern cancer therapy, arousing great interest in the neuro-oncology community. While several reports show that subsets of patients with glioma exhibit durable responses to immunotherapy, the efficacy of this treatment has not been observed for unselected patient populations, preventing its broad clinical implementation for gliomas and glioblastoma (GBM). To exploit the maximum therapeutic potential of ICB for patients with glioma, understanding the different aspects of glioma-related tumor immune responses is of critical importance. In this Review, we discuss contributing factors that distinguish subsets of patients with glioma who may benefit from ICB. Specifically, we discuss (a) the complex interaction between the tumor immune microenvironment and glioma cells as a potential influence on immunotherapy responses; (b) promising biomarkers for responses to immune checkpoint inhibitors; and (c) the potential contributions of peripheral immune cells to therapeutic responses.
Collapse
Affiliation(s)
- Víctor A. Arrieta
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Program of Combined Studies in Medicine (PECEM), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology and
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dhan Chand
- Agenus Bio, Lexington, Massachusetts, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
269
|
Chen S, Zhu B, Huang S, Hickey JW, Lin KZ, Snyder M, Greenleaf WJ, Nolan GP, Zhang NR, Ma Z. Integration of spatial and single-cell data across modalities with weak linkage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523851. [PMID: 36711792 PMCID: PMC9882150 DOI: 10.1101/2023.01.12.523851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
single-cell sequencing methods have enabled the profiling of multiple types of molecular readouts at cellular resolution, and recent developments in spatial barcoding, in situ hybridization, and in situ sequencing allow such molecular readouts to retain their spatial context. Since no technology can provide complete characterization across all layers of biological modalities within the same cell, there is pervasive need for computational cross-modal integration (also called diagonal integration) of single-cell and spatial omics data. For current methods, the feasibility of cross-modal integration relies on the existence of highly correlated, a priori "linked" features. When such linked features are few or uninformative, a scenario that we call "weak linkage", existing methods fail. We developed MaxFuse, a cross-modal data integration method that, through iterative co-embedding, data smoothing, and cell matching, leverages all information in each modality to obtain high-quality integration. MaxFuse is modality-agnostic and, through comprehensive benchmarks on single-cell and spatial ground-truth multiome datasets, demonstrates high robustness and accuracy in the weak linkage scenario. A prototypical example of weak linkage is the integration of spatial proteomic data with single-cell sequencing data. On two example analyses of this type, we demonstrate how MaxFuse enables the spatial consolidation of proteomic, transcriptomic and epigenomic information at single-cell resolution on the same tissue section.
Collapse
|
270
|
Fritz D, Inamo J, Zhang F. Single-cell computational machine learning approaches to immune-mediated inflammatory disease: New tools uncover novel fibroblast and macrophage interactions driving pathogenesis. Front Immunol 2023; 13:1076700. [PMID: 36685542 PMCID: PMC9846263 DOI: 10.3389/fimmu.2022.1076700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Recent advances in single-cell sequencing technologies call for greater computational scalability and sensitivity to analytically decompose diseased tissues and expose meaningful biological relevance in individual cells with high resolution. And while fibroblasts, one of the most abundant cell types in tissues, were long thought to display relative homogeneity, recent analytical and technical advances in single-cell sequencing have exposed wide variation and sub-phenotypes of fibroblasts of potential and apparent clinical significance to inflammatory diseases. Alongside anticipated improvements in single cell spatial sequencing resolution, new computational biology techniques have formed the technical backbone when exploring fibroblast heterogeneity. More robust models are required, however. This review will summarize the key advancements in computational techniques that are being deployed to categorize fibroblast heterogeneity and their interaction with the myeloid compartments in specific biological and clinical contexts. First, typical machine-learning-aided methods such as dimensionality reduction, clustering, and trajectory inference, have exposed the role of fibroblast subpopulations in inflammatory disease pathologies. Second, these techniques, coupled with single-cell predicted computational methods have raised novel interactomes between fibroblasts and macrophages of potential clinical significance to many immune-mediated inflammatory diseases such as rheumatoid arthritis, ulcerative colitis, lupus, systemic sclerosis, and others. Third, recently developed scalable integrative methods have the potential to map cross-cell-type spatial interactions at the single-cell level while cross-tissue analysis with these models reveals shared biological mechanisms between disease contexts. Finally, these advanced computational omics approaches have the potential to be leveraged toward therapeutic strategies that target fibroblast-macrophage interactions in a wide variety of inflammatory diseases.
Collapse
Affiliation(s)
- Douglas Fritz
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, United States,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jun Inamo
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Fan Zhang,
| |
Collapse
|
271
|
Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest 2023; 133:163446. [PMID: 36594466 PMCID: PMC9797335 DOI: 10.1172/jci163446] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.
Collapse
|
272
|
Huang B, Zhang J, Zong W, Chen S, Zong Z, Zeng X, Zhang H. Myeloidcells in the immunosuppressive microenvironment in glioblastoma: The characteristics and therapeutic strategies. Front Immunol 2023; 14:994698. [PMID: 36923402 PMCID: PMC10008967 DOI: 10.3389/fimmu.2023.994698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal malignant tumor of the central nervous system in adults. Conventional therapies, including surgery, radiotherapy, and chemotherapy, have limited success in ameliorating patient survival. The immunosuppressive tumor microenvironment, which is infiltrated by a variety of myeloid cells, has been considered a crucial obstacle to current treatment. Recently, immunotherapy, which has achieved great success in hematological malignancies and some solid cancers, has garnered extensive attention for the treatment of GBM. In this review, we will present evidence on the features and functions of different populations of myeloid cells, and on current clinical advances in immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Boyuan Huang
- Department of Neurosurgery, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, China
| | - Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sisi Chen
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Zhitao Zong
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Xiaojun Zeng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
273
|
Moffet JJD, Fatunla OE, Freytag L, Kriel J, Jones JJ, Roberts-Thomson SJ, Pavenko A, Scoville DK, Zhang L, Liang Y, Morokoff AP, Whittle JR, Freytag S, Best SA. Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct domains. Neurooncol Adv 2023; 5:vdad142. [PMID: 38077210 PMCID: PMC10699851 DOI: 10.1093/noajnl/vdad142] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2025] Open
Abstract
BACKGROUND High-grade gliomas (HGGs) are aggressive primary brain cancers with poor response to standard regimens, driven by immense heterogeneity. In isocitrate dehydrogenase (IDH) wild-type HGG (glioblastoma, GBM), increased intratumoral heterogeneity is associated with more aggressive disease. METHODS Spatial technologies can dissect complex heterogeneity within the tumor ecosystem by preserving cellular organization in situ. We employed GeoMx digital spatial profiling, CosMx spatial molecular imaging, Xenium in situ mapping and Visium spatial gene expression in experimental and validation patient cohorts to interrogate the transcriptional landscape in HGG. RESULTS Here, we construct a high-resolution molecular map of heterogeneity in GBM and IDH-mutant patient samples to investigate the cellular communities that compose HGG. We uncovered striking diversity in the tumor landscape and degree of spatial heterogeneity within the cellular composition of the tumors. The immune distribution was diverse between samples, however, consistently correlated spatially with distinct tumor cell phenotypes, validated across tumor cohorts. Reconstructing the tumor architecture revealed two distinct niches, one composed of tumor cells that most closely resemble normal glial cells, associated with microglia, and the other niche populated by monocytes and mesenchymal tumor cells. CONCLUSIONS This primary study reveals high levels of intratumoral heterogeneity in HGGs, associated with a diverse immune landscape within spatially localized regions.
Collapse
Affiliation(s)
- Joel J D Moffet
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Oluwaseun E Fatunla
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lutz Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jurgen Kriel
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jordan J Jones
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Anna Pavenko
- NanoString Technologies Inc., Seattle, Washington, USA
| | | | - Liang Zhang
- NanoString Technologies Inc., Seattle, Washington, USA
| | - Yan Liang
- NanoString Technologies Inc., Seattle, Washington, USA
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - James R Whittle
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah A Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
274
|
Sussman JH, Xu J, Amankulor N, Tan K. Dissecting the tumor microenvironment of epigenetically driven gliomas: Opportunities for single-cell and spatial multiomics. Neurooncol Adv 2023; 5:vdad101. [PMID: 37706202 PMCID: PMC10496944 DOI: 10.1093/noajnl/vdad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Malignant gliomas are incurable brain neoplasms with dismal prognoses and near-universal fatality, with minimal therapeutic progress despite billions of dollars invested in research and clinical trials over the last 2 decades. Many glioma studies have utilized disparate histologic and genomic platforms to characterize the stunning genomic, transcriptomic, and immunologic heterogeneity found in gliomas. Single-cell and spatial omics technologies enable unprecedented characterization of heterogeneity in solid malignancies and provide a granular annotation of transcriptional, epigenetic, and microenvironmental states with limited resected tissue. Heterogeneity in gliomas may be defined, at the broadest levels, by tumors ostensibly driven by epigenetic alterations (IDH- and histone-mutant) versus non-epigenetic tumors (IDH-wild type). Epigenetically driven tumors are defined by remarkable transcriptional programs, immunologically distinct microenvironments, and incompletely understood topography (unique cellular neighborhoods and cell-cell interactions). Thus, these tumors are the ideal substrate for single-cell multiomic technologies to disentangle the complex intra-tumoral features, including differentiation trajectories, tumor-immune cell interactions, and chromatin dysregulation. The current review summarizes the applications of single-cell multiomics to existing datasets of epigenetically driven glioma. More importantly, we discuss future capabilities and applications of novel multiomic strategies to answer outstanding questions, enable the development of potent therapeutic strategies, and improve personalized diagnostics and treatment via digital pathology.
Collapse
Affiliation(s)
- Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nduka Amankulor
- Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
275
|
Weth FR, Peng L, Paterson E, Tan ST, Gray C. Utility of the Cerebral Organoid Glioma 'GLICO' Model for Screening Applications. Cells 2022; 12:cells12010153. [PMID: 36611949 PMCID: PMC9818141 DOI: 10.3390/cells12010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma, a grade IV astrocytoma, is regarded as the most aggressive primary brain tumour with an overall median survival of 16.0 months following the standard treatment regimen of surgical resection, followed by radiotherapy and chemotherapy with temozolomide. Despite such intensive treatment, the tumour almost invariably recurs. This poor prognosis has most commonly been attributed to the initiation, propagation, and differentiation of cancer stem cells. Despite the unprecedented advances in biomedical research over the last decade, the current in vitro models are limited at preserving the inter- and intra-tumoural heterogeneity of primary tumours. The ability to understand and manipulate complex cancers such as glioblastoma requires disease models to be clinically and translationally relevant and encompass the cellular heterogeneity of such cancers. Therefore, brain cancer research models need to aim to recapitulate glioblastoma stem cell function, whilst remaining amenable for analysis. Fortunately, the recent development of 3D cultures has overcome some of these challenges, and cerebral organoids are emerging as cutting-edge tools in glioblastoma research. The opportunity to generate cerebral organoids via induced pluripotent stem cells, and to perform co-cultures with patient-derived cancer stem cells (GLICO model), has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. In this article, we review the recent literature on the use of patient-derived glioblastoma organoid models and their applicability for drug screening, as well as provide a potential workflow for screening using the GLICO model. The proposed workflow is practical for use in most laboratories with accessible materials and equipment, a good first pass, and no animal work required. This workflow is also amenable for analysis, with separate measures of invasion, growth, and viability.
Collapse
Affiliation(s)
- Freya R. Weth
- Gillies McIndoe Research Institute, 7 Hospital Road, Wellington 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, 7 Hospital Road, Wellington 6021, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, 7 Hospital Road, Wellington 6021, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5040, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Clint Gray
- Gillies McIndoe Research Institute, 7 Hospital Road, Wellington 6021, New Zealand
- Correspondence:
| |
Collapse
|
276
|
Riedel NC, de Faria FW, Alfert A, Bruder JM, Kerl K. Three-Dimensional Cell Culture Systems in Pediatric and Adult Brain Tumor Precision Medicine. Cancers (Basel) 2022; 14:cancers14235972. [PMID: 36497454 PMCID: PMC9738956 DOI: 10.3390/cancers14235972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Primary brain tumors often possess a high intra- and intertumoral heterogeneity, which fosters insufficient treatment response for high-grade neoplasms, leading to a dismal prognosis. Recent years have seen the emergence of patient-specific three-dimensional in vitro models, including organoids. They can mimic primary parenteral tumors more closely in their histological, transcriptional, and mutational characteristics, thus approximating their intratumoral heterogeneity better. These models have been established for entities including glioblastoma and medulloblastoma. They have proven themselves to be reliable platforms for studying tumor generation, tumor-TME interactions, and prediction of patient-specific responses to establish treatment regimens and new personalized therapeutics. In this review, we outline current 3D cell culture models for adult and pediatric brain tumors, explore their current limitations, and summarize their applications in precision oncology.
Collapse
Affiliation(s)
- Nicole C. Riedel
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Flavia W. de Faria
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Jan M. Bruder
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, 48148 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-47742; Fax: +49-251-83-47828
| |
Collapse
|
277
|
Richard Q, Laurenge A, Mallat M, Sanson M, Castro-Vega LJ. New insights into the Immune TME of adult-type diffuse gliomas. Curr Opin Neurol 2022; 35:794-802. [PMID: 36226710 PMCID: PMC9671594 DOI: 10.1097/wco.0000000000001112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Adult-type diffuse gliomas are highly heterogeneous tumors. Bulk transcriptome analyses suggested that the composition of the tumor microenvironment (TME) corresponds to genetic and clinical features. In this review, we highlight novel findings on the intratumoral heterogeneity of IDH-wildtype and IDH-mutant gliomas characterized at single-cell resolution, and emphasize the mechanisms shaping the immune TME and therapeutic implications. RECENT FINDINGS Emergent evidence indicates that in addition to genetic drivers, epigenetic mechanisms and microenvironmental factors influence the glioma subtypes. Interactions between glioma and immune cells contribute to immune evasion, particularly in aggressive tumors. Spatial and temporal heterogeneity of malignant and immune cell subpopulations is high in recurrent gliomas. IDH-wildtype and IDH-mutant tumors display distinctive changes in their myeloid and lymphoid compartments, and D-2HG produced by IDH-mutant cells impacts the immune TME. SUMMARY The comprehensive dissection of the intratumoral ecosystem of human gliomas using single-cell and spatial transcriptomic approaches advances our understanding of the mechanisms underlying the immunosuppressed state of the TME, supports the prognostic value of tumor-associated macrophages and microglial cells, and sheds light on novel therapeutic options.
Collapse
Affiliation(s)
- Quentin Richard
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Alice Laurenge
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Michel Mallat
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Marc Sanson
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
- Department of Neurology 2, Pitié-Salpêtrière Hospital
- Onconeurotek Tumor Bank, Paris, France
| | - Luis Jaime Castro-Vega
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| |
Collapse
|
278
|
Wang L, Zhang M, Pan X, Zhao M, Huang L, Hu X, Wang X, Qiao L, Guo Q, Xu W, Qian W, Xue T, Ye X, Li M, Su H, Kuang Y, Lu X, Ye X, Qian K, Lou J. Integrative Serum Metabolic Fingerprints Based Multi-Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203786. [PMID: 36257825 PMCID: PMC9731719 DOI: 10.1002/advs.202203786] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Indexed: 05/16/2023]
Abstract
Identification of novel non-invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle-based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi-modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule. The dual modal model, metabolic fingerprints with protein tumor marker neural network (MP-NN), integrating SMFs with protein tumor marker carcinoembryonic antigen (CEA) via deep learning, shows superior performance compared with the single modal model Met-NN (p < 0.001). Based on MP-NN, the tri modal model MPI-RF integrating SMFs, tumor marker CEA, and image features via random forest demonstrates significantly higher performance than the clinical models (Mayo Clinic and Veterans Affairs) and the image artificial intelligence in pulmonary nodule classification (p < 0.001). The developed platforms would be promising tools for LUAD screening and pulmonary nodule management, paving the conceptual and practical foundation for the clinical application of omics tools.
Collapse
Affiliation(s)
- Lin Wang
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Xufeng Pan
- Department of Thoracic SurgeryShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Mingna Zhao
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Lin Huang
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Xiaomeng Hu
- Department of Laboratory MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuang050051P. R. China
| | - Xueqing Wang
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Lihua Qiao
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Qiaomei Guo
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Wanxing Xu
- School of MedicineJiangsu UniversityZhenjiang212013P. R. China
| | - Wenli Qian
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Tingjia Xue
- Department of RadiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Xiaodan Ye
- Department of RadiologyShanghai Institute of Medical ImagingZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Li
- Department of Laboratory DiagnosticsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Haixiang Su
- Gansu Academic Institute for Medical ResearchGansu Cancer HospitalLanzhouGansu730050P. R. China
| | - Yinglan Kuang
- Department of A. I. ResearchJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Xing Lu
- Department of A. I. ResearchJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Xin Ye
- Department of Product DevelopmentJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jiatao Lou
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| |
Collapse
|
279
|
Waqar M, Van Houdt PJ, Hessen E, Li KL, Zhu X, Jackson A, Iqbal M, O’Connor J, Djoukhadar I, van der Heide UA, Coope DJ, Borst GR. Visualising spatial heterogeneity in glioblastoma using imaging habitats. Front Oncol 2022; 12:1037896. [PMID: 36505856 PMCID: PMC9731157 DOI: 10.3389/fonc.2022.1037896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma's imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or 'habitats' based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Petra J. Van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline Hessen
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ka-Loh Li
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Xiaoping Zhu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Neuroradiology, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - James O’Connor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Uulke A. van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Coope
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Gerben R. Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
280
|
Brooks LJ, Simpson Ragdale H, Hill CS, Clements M, Parrinello S. Injury programs shape glioblastoma. Trends Neurosci 2022; 45:865-876. [PMID: 36089406 DOI: 10.1016/j.tins.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| | - Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Ciaran Scott Hill
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK; Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| |
Collapse
|
281
|
Guyon J, Fernandez‐Moncada I, Larrieu CM, Bouchez CL, Pagano Zottola AC, Galvis J, Chouleur T, Burban A, Joseph K, Ravi VM, Espedal H, Røsland GV, Daher B, Barre A, Dartigues B, Karkar S, Rudewicz J, Romero‐Garmendia I, Klink B, Grützmann K, Derieppe M, Molinié T, Obad N, Léon C, Seano G, Miletic H, Heiland DH, Marsicano G, Nikolski M, Bjerkvig R, Bikfalvi A, Daubon T. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med 2022; 14:e15343. [PMID: 36278433 PMCID: PMC9728051 DOI: 10.15252/emmm.202115343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.
Collapse
Affiliation(s)
- Joris Guyon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | | | | | | | | | - Johanna Galvis
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Audrey Burban
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany,Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| | - Heidi Espedal
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | | | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Slim Karkar
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Justine Rudewicz
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Barbara Klink
- Department of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg,German Cancer Consortium (DKTK)DresdenGermany,Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | - Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | | | | | - Nina Obad
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | - Céline Léon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment LabUniversity Paris‐SaclayOrsayFrance
| | - Hrvoje Miletic
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway,Department of PathologyHaukeland University HospitalBergenNorway
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,German Cancer Consortium (DKTK), partner site FreiburgFreiburgGermany
| | | | - Macha Nikolski
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Rolf Bjerkvig
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Thomas Daubon
- University Bordeaux, INSERM U1312, BRICPessacFrance,University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| |
Collapse
|
282
|
Yang H, Zhou H, Wang G, Tian L, Li H, Zhang Y, Xue X. MELK is a prognostic biomarker and correlated with immune infiltration in glioma. Front Neurol 2022; 13:977180. [PMID: 36353126 PMCID: PMC9637824 DOI: 10.3389/fneur.2022.977180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Glioma accounts for the vast majority of primary brain tumors with inevitable recurrence and poor prognosis. Maternal embryonic leucine zipper kinase (MELK) is overexpressed in multiple human tumors and could activate a variety of oncogenic-associated signal pathways. However, its role in the glioma microenvironment is still largely unknown. Methods We collected the RNA sequence data and clinical information of gliomas from the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases, and investigated MELK expression and its correlation with clinicopathologic features and prognosis in glioma. Moreover, the relationship between MELK expression and immune cell infiltration in the tumor microenvironment of gliomas was explored through single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. In addition, gene set enrichment analysis (GSEA) and Metascape online analysis were performed to find out signaling pathways enriched by differentially expressed genes (DEGs) between high- and low-MELK expression groups. Finally, immunohistochemistry was performed to validate our findings. Results Data analysis of CGGA and GEO datasets showed that MELK was significantly upregulated in gliomas than in normal brain tissues, and MELK expression was obviously correlated with clinicopathologic features, including age, WHO grade, histological subtype, IDH mutant status, 1p19q codeletion status, and PRS type. Stratified analysis, Cox regression analysis, and nomogram model revealed that high expression of MELK predicted poor survival; hence, MELK could serve as an independent prognostic biomarker for glioma. Moreover, results from enrichment pathway analysis indicated that the immune system process, angiogenesis, apoptosis, cell cycle, and other oncogenic-related signal pathways were significantly enriched between high- and low-MELK expression groups. Immune infiltration analysis demonstrated that increased MELK expression was significantly correlated with higher immune scores, higher fractions of immunocytes (T cells, NK cells resting, macrophages, resting mast cells, and neutrophils), and higher expression levels of immune checkpoints (B7-H3, CTLA4, LAG3, PD-1, PD-L1, and TIM3). Finally, immunohistochemistry analysis validated our findings that high expression of MELK relates to increased malignancy and poor prognosis of glioma. Conclusion Our findings identified that MELK could act as an independent prognostic indicator and potential immunotherapy target for glioma. In conclusion, these findings suggested that DDOST mediated the immunosuppressive microenvironment of gliomas and could be an important biomarker in diagnosing and treating gliomas.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Yufeng Zhang
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue
| |
Collapse
|
283
|
Jovanovich N, Habib A, Head J, Anthony A, Edwards L, Zinn PO. Opinion: Bridging gaps and doubts in glioblastoma cell-of-origin. Front Oncol 2022; 12:1002933. [PMID: 36338762 PMCID: PMC9634038 DOI: 10.3389/fonc.2022.1002933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Austin Anthony
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Lincoln Edwards
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
284
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of a few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. Despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on revealing the general picture of GBM heterogeneity. Hence, in this mini-review, we summarized the current state of knowledge on GBM heterogeneity revealed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
285
|
Perdyan A, Lawrynowicz U, Horbacz M, Kaminska B, Mieczkowski J. Integration of single-cell RNA sequencing and spatial transcriptomics to reveal the glioblastoma heterogeneity. F1000Res 2022; 11:1180. [PMID: 36875988 PMCID: PMC9978243 DOI: 10.12688/f1000research.126243.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM), a deadly brain tumor, is still one of the few lasting challenges of contemporary oncology. Current therapies fail to significantly improve patient survival due to GBM's tremendous genetic, transcriptomic, immunological, and sex-dependent heterogeneity. Over the years, clinical differences between males and females were characterized. For instance, higher incidence of GBM in males or distinct responses to cancer chemotherapy and immunotherapy between males and females have been noted. However, despite the introduction of single-cell RNA sequencing and spatial transcriptomics, these differences were not further investigated as studies were focused only on exposing the general picture of GBM heterogeneity. Hence, in this study, we summarized the current state of knowledge on GBM heterogeneity exposed by single-cell RNA sequencing and spatial transcriptomics with regard to genetics, immunology, and sex-dependent differences. Additionally, we highlighted future research directions which would fill the gap of knowledge on the impact of patient's sex on the disease outcome.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Urszula Lawrynowicz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | | | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
286
|
Yu Q, Jiang M, Wu L. Spatial transcriptomics technology in cancer research. Front Oncol 2022; 12:1019111. [PMID: 36313703 PMCID: PMC9606570 DOI: 10.3389/fonc.2022.1019111] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
In recent years, spatial transcriptomics (ST) technologies have developed rapidly and have been widely used in constructing spatial tissue atlases and characterizing spatiotemporal heterogeneity of cancers. Currently, ST has been used to profile spatial heterogeneity in multiple cancer types. Besides, ST is a benefit for identifying and comprehensively understanding special spatial areas such as tumor interface and tertiary lymphoid structures (TLSs), which exhibit unique tumor microenvironments (TMEs). Therefore, ST has also shown great potential to improve pathological diagnosis and identify novel prognostic factors in cancer. This review presents recent advances and prospects of applications on cancer research based on ST technologies as well as the challenges.
Collapse
Affiliation(s)
- Qichao Yu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Jiang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Liang Wu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| |
Collapse
|
287
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
288
|
Monaco G, Khavaran A, Gasull AD, Cahueau J, Diebold M, Chhatbar C, Friedrich M, Heiland DH, Sankowski R. Transcriptome Analysis Identifies Accumulation of Natural Killer Cells with Enhanced Lymphotoxin-β Expression during Glioblastoma Progression. Cancers (Basel) 2022; 14:4915. [PMID: 36230839 PMCID: PMC9563981 DOI: 10.3390/cancers14194915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas are the most common primary brain tumors. Despite extensive clinical and molecular insights into these tumors, the prognosis remains dismal. While targeted immunotherapies have shown remarkable success across different non-brain tumor entities, they failed to show efficacy in glioblastomas. These failures prompted the field to reassess the idiosyncrasies of the glioblastoma microenvironment. Several high-dimensional single-cell RNA sequencing studies generated remarkable findings about glioblastoma-associated immune cells. To build on the collective strength of these studies, we integrated several murine and human datasets that profiled glioblastoma-associated immune cells at different time points. We integrated these datasets and utilized state-of-the-art algorithms to investigate them in a hypothesis-free, purely exploratory approach. We identified a robust accumulation of a natural killer cell subset that was characterized by a downregulation of activation-associated genes with a concomitant upregulation of apoptosis genes. In both species, we found a robust upregulation of the Lymphotoxin-β gene, a cytokine from the TNF superfamily and a key factor for the development of adaptive immunity. Further validation analyses uncovered a correlation of lymphotoxin signaling with mesenchymal-like glioblastoma regions in situ and in TCGA and CGGA glioblastoma cohorts. In summary, we identify lymphotoxin signaling as a potential therapeutic target in glioblastoma-associated natural killer cells.
Collapse
Affiliation(s)
- Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ashkan Khavaran
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan Cahueau
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
289
|
Gonzalez Castro LN, Liu I, Filbin M. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol 2022; 25:234-247. [PMID: 36197833 PMCID: PMC9925698 DOI: 10.1093/neuonc/noac211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic and transcriptional heterogeneity is prevalent among the most common and aggressive primary brain tumors in children and adults. Over the past 20 years, advances in bioengineering, biochemistry and bioinformatics have enabled the development of an array of techniques to study tumor biology at single-cell resolution. The application of these techniques to study primary brain tumors has helped advance our understanding of their intra-tumoral heterogeneity and uncover new insights regarding their co-option of developmental programs and signaling from their microenvironment to promote tumor proliferation and invasion. These insights are currently being harnessed to develop new therapeutic approaches. Here we provide an overview of current single-cell techniques and discuss relevant biology and therapeutic insights uncovered by their application to primary brain tumors in children and adults.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Corresponding Author: L. Nicolas Gonzalez Castro, MD, PhD, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ()
| | | | - Mariella Filbin
- Pediatric Neuro-Oncology Program, Dana-Farber/Boston Children’s and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
290
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
291
|
Giannaki M, Ruf DE, Pfeifer E, Everaerts K, Heiland DH, Schnell O, Rose CR, Roussa E. Cell-Type Dependent Regulation of the Electrogenic Na+/HCO3- Cotransporter 1 (NBCe1) by Hypoxia and Acidosis in Glioblastoma. Int J Mol Sci 2022; 23:ijms23168975. [PMID: 36012235 PMCID: PMC9408864 DOI: 10.3390/ijms23168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumour. It is characterised by transcriptionally distinct cell populations. In tumour cells, physiological pH gradients between the intracellular and extracellular compartments are reversed, compared to non-cancer cells. Intracellular pH in tumour cells is alkaline, whereas extracellular pH is acidic. Consequently, the function and/or expression of pH regulating transporters might be altered. Here, we investigated protein expression and regulation of the electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) in mesenchymal (MES)-like hypoxia-dependent and -independent cells, as well as in astrocyte-like glioblastoma cells following chemical hypoxia, acidosis and elucidated putative underlying molecular pathways. Immunoblotting, immunocytochemistry, and intracellular pH recording with the H+-sensitive dye 2′,7′-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein were applied. The results show NBCe1 protein abundance and active NBCe1 transport. Hypoxia upregulated NBCe1 protein and activity in MES-like hypoxia-dependent GBM cells. This effect was positively correlated with HIF-1α protein levels, was mediated by TGF-β signalling, and was prevented by extracellular acidosis. In MES-like hypoxia-independent GBM cells, acidosis (but not hypoxia) regulated NBCe1 activity in an HIF-1α-independent manner. These results demonstrate a cell-specific adaptation of NBCe1 expression and activity to the microenvironment challenge of hypoxia and acidosis that depends on their transcriptional signature in GBM.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Debora E. Ruf
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Emilie Pfeifer
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-5114
| |
Collapse
|